

PROJET MINIER WINDFALL

PLAN DE RESTAURATION
TRAVAUX D'EXPLOITATION

Volume 1

MARS 2023 201-11330-19

PROJET MINIER WINDFALL PLAN DE RESTAURATION TRAVAUX D'EXPLOITATION

MINIÈRE OSISKO INC.

PROJET N° : 201-11330-19 DATE : MARS 2023

WSP CANADA INC. 1135, BOULEVARD LEBOURGNEUF QUÉBEC (QUÉBEC) G2K 0M5 CANADA

TÉLÉPHONE : +1 418 623-2254 TÉLÉCOPIEUR : +1 418 624-1857

WSP.COM

SIGNATURES

PRÉPARÉ PAR

Florence Trudeau, CPI (OIQ nº 6030840) Assistante de projet

Audrey Bédard, ing. (OIQ nº 5091139) Chargée de projet

RÉVISÉ PAR

Simon Latulippe, ing. (OIQ n°121692)

Directeur de projet

osy-Anne Douville, CPI (OIQ no 6012095)

Assistante de projet

WSP Canada Inc. (WSP) a préparé ce rapport uniquement pour son destinataire MINIÈRE OSISKO INC, conformément à la convention de consultant convenue entre les parties. Advenant qu'une convention de consultant n'ait pas été exécutée, les parties conviennent que les modalités générales à titre de consultant de WSP régiront leurs relations d'affaires, lesquelles vous ont été fournies avant la préparation de ce rapport.

Ce rapport est destiné à être utilisé dans son intégralité. Aucun extrait ne peut être considéré comme représentatif des résultats de l'évaluation.

Les conclusions présentées dans ce rapport sont basées sur le travail effectué par du personnel technique, entraîné et professionnel, conformément à leur interprétation raisonnable des pratiques d'ingénierie et techniques courantes et acceptées au moment où le travail a été effectué.

Le contenu et les opinions exprimées dans le présent rapport sont basés sur les observations et/ou les informations à la disposition de WSP au moment de sa préparation, en appliquant des techniques d'investigation et des méthodes d'analyse d'ingénierie conformes à celles habituellement utilisées par WSP et d'autres ingénieurs/techniciens travaillant dans des conditions similaires, et assujettis aux mêmes contraintes de temps, et aux mêmes contraintes financières et physiques applicables à ce type de projet.

WSP dénie et rejette toute obligation de mise à jour du rapport si, après la date du présent rapport, les conditions semblent différer considérablement de celles présentées dans ce rapport ; cependant, WSP se réserve le droit de modifier ou de compléter ce rapport sur la base d'informations, de documents ou de preuves additionnels.

WSP ne fait aucune représentation relativement à la signification juridique de ses conclusions.

La divulgation de tout renseignement faisant partie du présent rapport relève uniquement de la responsabilité de son destinataire. Si un tiers utilise, se fie, ou prend des décisions ou des mesures basées sur ce rapport, ledit tiers en est le seul responsable. WSP n'accepte aucune responsabilité quant aux dommages que pourrait subir un tiers suivant l'utilisation de ce rapport ou quant aux dommages pouvant découler d'une décision ou mesure prise basée sur le présent rapport.

WSP a exécuté ses services offerts au destinataire de ce rapport conformément à la convention de consultant convenue entre les parties tout en exerçant le degré de prudence, de compétence et de diligence dont font habituellement preuve les membres de la même profession dans la prestation des mêmes services ou de services comparables à l'égard de projets de nature analogue dans des circonstances similaires. Il est entendu et convenu entre WSP et le destinataire de ce rapport que WSP n'offre aucune garantie, expresse ou implicite, de quelque nature que ce soit. Sans limiter la généralité de ce qui précède, WSP et le destinataire de ce rapport conviennent et comprennent que WSP ne fait aucune représentation ou garantie quant à la suffisance de sa portée de travail pour le but recherché par le destinataire de ce rapport.

En préparant ce rapport, WSP s'est fié de bonne foi à l'information fournie par des tiers, tel qu'indiqué dans le rapport. WSP a raisonnablement présumé que les informations fournies étaient correctes et WSP ne peut donc être tenu responsable de l'exactitude ou de l'exhaustivité de ces informations.

Les bornes et les repères d'arpentage utilisés dans ce rapport servent principalement à établir les différences d'élévation relative entre les emplacements de prélèvement et/ou d'échantillonnage et ne peuvent servir à d'autres fins. Notamment, ils ne peuvent servir à des fins de nivelage, d'excavation, de construction, de planification, de développement, etc.

L'original du fichier électronique que nous vous transmettons sera conservé par WSP pour une période minimale de dix ans. WSP n'assume aucune responsabilité quant à l'intégrité du fichier qui vous est transmis et qui n'est plus sous le contrôle de WSP. Ainsi, WSP n'assume aucune responsabilité quant aux modifications faites au fichier électronique suivant sa transmission au destinataire.

Ces limitations sont considérées comme faisant partie intégrante du présent rapport.

CLIENT

MINIÈRE OSISKO INC.

Vice-Présidente environnement et relations communautaires Andréanne Boisvert, géographe, M. A.

Directrice environnement Vanessa Millette, géographe, M. Sc. Env.

ÉQUIPE DE RÉALISATION

WSP CANADA INC. (WSP)

Directrice de projet Marie-Hélène Brisson, biologiste

Révision Simon Latulippe, ingénieur

Audrey Bédard, ingénieure, M. Sc. Marie-Hélène Brisson, biologiste

Rédaction Florence Trudeau, CPI

Josy-Anne Douville, CPI

Estimation des coûts Audrey Bédard, ingénieure, M. Sc.

Cartographie et géomatique Jonathan Roy, Technicien

Traitement de texte et édition Linette Poulin

Référence à citer :

WSP. 2023. PROJET MINIER WINDFALL. PLAN DE RESTAURATION - TRAVAUX D'EXPLOITATION.
RAPPORT PRODUIT POUR MINIÈRE OSISKO INC. 95 PAGES ET ANNEXES.

RÉSUMÉ DU PLAN DE RESTAURATION

La propriété Windfall est localisée à environ 115 km à l'est de Lebel-sur-Quévillon et à 70 km au sud-est de la communauté de Waswanipi. La propriété minière se situe dans la région administrative du Nord-du-Québec.

À la suite de la découverte de la minéralisation d'or dans le comté de Barry en 1994, des campagnes extensives de cartographie, d'excavation de tranchées et de forages au diamant ont mené à des activités d'exploration souterraine avancées à la propriété Windfall par la compagnie minière Noront Resources Ltd durant les années 2007 et 2008. La compagnie a pris la décision de cesser définitivement les travaux d'exploration sur cette propriété en 2008. En 2009, la compagnie Eagle Hill Exploration Corporation a acquis la propriété minière Windfall. Des travaux d'exploration en surface ont été effectués par la compagnie durant les années 2009 à 2015. Minière Osisko inc. (Osisko) a acquis la propriété Windfall en 2015 et procède présentement à des activités d'exploration et d'échantillonnage en vrac du gisement. Osisko termine actuellement les études nécessaires en vue du début de l'exploitation de la mine, prévue en 2025.

En vertu de l'article 232.6 de la Loi sur les mines (ch. M 13.1), une mise à jour du plan de restauration doit être préparée lors de changements dans les activités minières. Le précédent plan de restauration pour le projet d'exploration a été soumis en janvier 2022 au ministère des Ressources naturelles et des Forêts (MRNF) et approuvé en décembre 2022. En vue du début de l'exploitation, Osisko se doit de préparer un nouveau plan de restauration pour les activités d'exploitation minière, tâche qui a été confiée à WSP Canada Inc. (WSP). Ce plan de restauration est transmis aux autorités gouvernementales en complément à l'étude d'impact sur l'environnement (ÉIE) et en vue d'une approbation du projet d'exploitation par les autorités gouvernementales. Ce plan de restauration comprend une description des activités d'exploitation prévues ainsi que la description et l'estimation des coûts des travaux de restauration lors de la fin de la vie de la mine, prévue en 2035, ou dans l'éventualité où les travaux d'exploitation seraient interrompus.

Sommairement, le plan de restauration de la propriété consistera à démanteler tous les bâtiments et infrastructures de support, à retirer les équipements du site, à sécuriser les ouvertures au jour de la mine, à stabiliser le terrain et à restaurer la halde à stériles, le parc à résidus miniers et les infrastructures de gestion des eaux de surface (bassins et fossés). Ces travaux seront entrepris au cours des six mois suivant la fin des activités au site.

Les travaux de restauration sont prévus sur une période de deux (2) ans. Les suivis agronomiques et de l'intégrité des ouvrages prévus en période de postrestauration s'échelonneront sur cinq (5) ans, alors que le suivi environnemental se poursuivra sur une période de 10 ans suivant la restauration du site. Le coût total associé aux travaux de fermeture et de restauration est estimé à 82 914 000 \$. Ce montant inclut tous les coûts directs estimés à 64 857 000 \$, les frais d'ingénierie et de supervision représentant 10 % des coûts directs, le coût des suivis postexploitation et postrestauration d'un montant de 687 700 \$, ainsi qu'une contingence de 15 % s'appliquant sur les coûts directs et indirects.

Le programme de restauration du site de la propriété Windfall s'articulera principalement autour des éléments suivants :

- Les monteries de ventilation, seront recouvertes d'une dalle de béton puis remblayées avec du matériau granulaire inerte. Une signalisation adéquate des dangers sera installée.
- Les rampes d'accès aux chantiers souterrains seront remblayées dans le but d'en sceller l'accès. Une signalisation adéquate sera installée.

- Tous les bâtiments (mobiles et permanents) et toutes les infrastructures qui ne seront pas utiles pour le suivi postrestauration seront transportés hors site ou démantelés. Les rebuts du démantèlement seront envoyés dans un lieu d'élimination autorisé, conformément à la réglementation en vigueur. Une attention sera portée sur la récupération du métal, de la tôle et du bois et sur leur disposition dans un lieu de recyclage autorisé.
- Toutes les infrastructures de soutien seront démantelées et envoyées dans un lieu d'élimination autorisé. Ces infrastructures incluent des conduites, des infrastructures électriques et des réservoirs pour les usages divers.
 Les lieux où ces infrastructures ont servi à l'entreposage et au transport des matières dangereuses seront caractérisés et décontaminés selon les normes environnementales en vigueur.
- Une évaluation de la qualité des sols pour tous les endroits susceptibles d'être contaminés sera réalisée et les interventions correctrices seront appliquées selon les exigences du *Guide d'intervention - Protection des sols et* réhabilitation des terrains contaminés (Guide d'intervention du MELCC) (Beaulieu, 2021).
- Tous les sols contaminés aux huiles, aux graisses ou aux produits pétroliers au-delà du critère « B » de la grille des critères indicatifs établie par le ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP) seront traités sur le site même ou acheminés dans un lieu d'élimination autorisé.
- Les terrains touchés par les activités seront scarifiés afin de favoriser le drainage et seront recouverts d'une couche de 150 mm de dépôts meubles provenant de la halde à mort-terrain, avant d'être ensemencés, afin de contrôler l'érosion et de rétablir l'aspect naturel du site.
- Il est prévu que la réalisation des travaux de restauration du parc à résidus miniers soit effectuée de manière progressive, avant la fin des activités d'exploitation. Ainsi, les phases 1 et 2 du parc à résidus miniers seront restaurées pendant l'exploitation du site. La phase 3 du parc à résidus sera restaurée à la fin de la vie de la mine. Pour éviter la génération de drainage minier acide, un recouvrement d'ingénierie composé d'une géomembrane et de matériaux granulaires sera mis en place, permettant de limiter l'infiltration d'eau et d'oxygène. Une couche d'une épaisseur minimale de 150 mm de dépôt meuble provenant de la halde à mort-terrain ou des travaux de construction des ouvrages sera mise en place sur le parc à résidus, avant que ce dernier ne soit ensemencé.
- Le matériel entreposé sur la halde à stériles sera d'abord recouvert d'une couche de matériaux granulaires servant d'assise pour la géomembrane, qui sera ensuite recouverte d'une couche protectrice de matériaux granulaires et de mort-terrain avant d'être ensemencée. Le recouvrement proposé est similaire au recouvrement proposé pour le parc à résidus miniers et vise à éviter la génération de drainage minier acide.
- À la fin de la vie de la mine, le mort-terrain entreposé dans la halde à mort-terrain sera utilisé pour les travaux de restauration. Toutefois, il est attendu que du mort-terrain soit toujours entreposé dans la halde à mort-terrain. La halde à mort-terrain sera régalée puis ensemencée.
- La géomembrane sous l'empreinte de la halde à minerai et l'aire industrielle sera enlevée, puis la surface sera régalée et ensemencée.
- Aucune matière dangereuse résiduelle ne sera présente sur le site après la cessation des activités d'exploitation.
 Tous réservoirs pétroliers et conduites connexes seront gérés conformément à la réglementation applicable.
- Le suivi de l'intégrité des ouvrages sera fait sur une période de cinq ans suivant la restauration du site et prévoit l'inspection des dalles de béton couvrant les ouvertures à jour, l'intégrité physique des recouvrements d'ingénierie installés sur les haldes à stériles et résidus, ainsi que leur stabilité géotechnique.

- Le suivi agronomique sera effectué sur une période de cinq ans suivant la mise en végétation du site afin de vérifier la pérennité du couvert végétal. Si requis, des travaux correctifs seront apportés dans les zones où la reprise d'un couvert végétal ne sera pas satisfaisante.
- Le suivi environnemental en période postexploitation sera effectué après la fin des opérations et pendant les travaux de restauration, conformément aux exigences de la section 2.10 de la Directive 019 sur l'industrie minière (MDDEP, 2012).
- Le suivi environnemental en période postrestauration, c'est-à-dire après la complétion des travaux, sera effectué sur une période minimale de dix ans, conformément aux exigences de la section 2.11 de la Directive 019 sur l'industrie minière (MDDEP, 2012).
- Dix ans après la complétion des travaux de restauration, si les résultats d'analyses de la qualité de l'eau sont conformes et suivant l'approbation du MRNF, les bassins seront vidangés et les boues contenues dans le fond des bassins seront excavées et disposées sous terre. Les géosynthétiques seront retirés des bassins et fossés, et les talus des bassins et des fossés seront reprofilés afin de redonner un aspect naturel au site.

TABLE DES MATIÈRES

1	INTRODUCTION	1
1.1	MISE EN CONTEXTE	1
1.2	OBJECTIFS	2
2	RENSEIGNEMENTS GÉNÉRAUX	3
2.1	IDENTIFICATION DU REQUÉRANT	3
2.1.1	REQUÉRANT	3
2.1.2	CONSULTANT MANDATÉ	3
2.1.3	NUMÉRO CIDREQ	3
2.1.4	RÉSOLUTION	3
2.2	LOCALISATION DU SITE MINIER	4
2.3	PROPRIÉTÉ MINIÈRE DES TERRAINS	4
2.4	HISTORIQUE DU SITE	5
2.5	RESSOURCES MINÉRALES	6
2.6	GÉOLOGIE ET MINÉRALOGIE	8
2.6.1	GÉOLOGIE RÉGIONALE ET LOCALE	8
2.6.2	GÉOLOGIE DU GISEMENT DE LA PROPRIÉTÉ WINDFALL	9
2.6.3	MINÉRALISATION	9
2.6.4	CARACTÉRISATION GÉOCHIMIQUE	10
2.7	AUTORISATIONS DIVERSES	14
3	DESCRIPTION DES ACTIVITÉS MINIÈRES	
	ACTUELLES ET FUTURES	17
3.1	DESCRIPTION DES ACTIVITÉS MINIÈRES	17
3.1.1	MÉTHODE D'EXPLOITATION ET DE TRAITEMENT	18
3.1.2	ZONES MINÉRALISÉES	22
3.1.3	RAMPE D'ACCÈS	23
3.2	DESCRIPTION DES BÂTIMENTS ET	
	DES INFRASTRUCTURES	
3.2.1	BÂTIMENTS ET INFRASTRUCTURES DE SURFACE	
3.2.2	SECTEUR DU CAMPEMENT	27
3.2.3	INFRASTRUCTURES ÉLECTRIQUES, DE TRANSPORT ET DE SOUTIEN	28
3.3	GESTION DES EAUX SUR LE SITE	
3.3.1	BILAN HYDRIQUE	
3.3.2	FOSSÉS DE DÉRIVATION ET DE CAPTAGE	31

3.3.3	BASSINS	31
3.3.4	TRAITEMENT DES EAUX	32
3.3.5	EFFLUENT FINAL	33
3.3.6	EAUX SANITAIRES	34
3.3.7	EAU POTABLE	34
3.3.8	GESTION DES EAUX SOUTERRAINES	34
3.4	AIRES D'ACCUMULATION	35
3.4.1	HALDE À MORT-TERRAIN	35
3.4.2	HALDE À STÉRILES	36
3.4.3	HALDE À MINERAI	38
3.4.4	PARC À RÉSIDUS MINIERS	39
3.5	LIEUX D'ENTREPOSAGE ET D'ÉLIMINATION	41
3.5.1	PRODUITS CHIMIQUES ET RÉACTIFS, PRODUITS PÉTROLIERS ET EXPLOSIFS	42
3.5.2	MATIÈRES RÉSIDUELLES NON DANGEREUSES	45
3.5.3	MATIÈRES RÉSIDUELLES DANGEREUSES	45
3.5.4	PRÉCAUTIONS PARTICULIÈRES	45
4	MESURES DE RÉAMÉNAGEMENT ET DE	
	RESTAURATION	47
4.1	SÉCURITÉ DES LIEUX	48
4.1.1	SÉCURISATION DES ACCÈS	48
4.1.2	SÉCURITÉ DES OUVERTURES AU JOUR	48
4.1.3	STABILITÉ DES PILIERS DE SURFACE	49
4.2	DÉMANTÈLEMENT DES BÂTIMENTS ET	
	DES INFRASTRUCTURES	49
4.3	GESTION DES ÉQUIPEMENTS ET DE LA	
	MACHINERIE LOURDE	51
4.4	AIRES D'ACCUMULATION	51
4.4.1	HALDE À STÉRILES	52
4.4.2	PARC À RÉSIDUS MINIERS	53
4.4.3	HALDE À MORT-TERRAIN	54
4.5	INFRASTRUCTURES DE GESTION DES EAUX	54
4.6	PRODUITS PÉTROLIERS ET CHIMIQUES ET	
	MATIÈRES RÉSIDUELLES	54
4.6.1	PRODUITS CHIMIQUES	54

4.6.2	PRODUITS PÉTROLIERS	55
4.6.3	MATIÈRES RÉSIDUELLES DANGEREUSES	55
4.6.4	MATIÈRES RÉSIDUELLES NON-DANGEREUSES	56
4.6.5	EXPLOSIFS	56
4.7	RÉHABILITATION DES TERRAINS	56
4.8	CHANGEMENTS CLIMATIQUES	57
5	PROGRAMME DE CONTRÔLE ET SUIVI	
	POSTRESTAURATION	59
5.1	SUIVI DE L'INTÉGRITÉ DES OUVRAGES	59
5.2	SUIVI AGRONOMIQUE	59
5.3	SUIVI ENVIRONNEMENTAL	60
5.3.1	SUIVI DE L'EFFLUENT FINAL	60
5.3.2	SUIVI DES EAUX SOUTERRAINES	60
6	PLAN D'URGENCE	61
7	MESURES EN CAS D'ARRÊT TEMPORAIRE	
	DES ACTIVITÉS	63
8	CONSIDÉRATIONS ÉCONOMIQUES ET	
	TEMPORELLES	65
8.1	ÉVALUATION DES COÛTS DE LA RESTAURATION	
8.1.1	COÛTS DE FERMETURE	65
8.1.2	COÛTS DE SUIVIS POSTRESTAURATION	65
8.2	CALCUL DE LA GARANTIE FINANCIÈRE	66
8.3	GARANTIE FINANCIÈRE	66
8.4	CALENDRIER DE RÉALISATION DES TRAVAUX	
	DE RESTAURATION	66
RÉFÉ	RENCES BIBLIOGRAPHIQUES	69

TABLEAUX

TABLEAU 1	RESSOURCES MINÉRALES DU PROJET
	MINIER WINDFALL6
TABLEAU 2	RESSOURCES MINÉRALES PAR ZONE7
TABLEAU 3	RÉSUMÉ DE LA CLASSIFICATION DES
	STÉRILES, DU MORT-TERRAIN ET DES
	RÉSIDUS SELON LES ESSAIS STATIQUES
	(TIRÉ DE L'ÉTUDE DE CARACTÉRISATION
	GÉOCHIMIQUE, WSP, 2023C)14
TABLEAU 4	SOMMAIRE DES TAUX DE PRODUCTION ET
TABLEAG 4	DE TRAITEMENT18
TABLEAU 5	RÉSUMÉ DES PRINCIPAUX CRITÈRES DE
IADLLAG 3	CONCEPTION DU TRAITEMENT DU MINERAI19
TABLEAU 6	RÉSUMÉ DES PRINCIPAUX CRITÈRES DE
IABLEAU 0	CONCEPTION DE L'USINE DE FILTRATION
	DES RÉSIDUS22
TADLEALLZ	CLASSIFICATION DES ZONES
TABLEAU 7	CLASSIFICATION DES ZONES
TABLEALLO	MINÉRALISÉES22 PRINCIPALES CARACTÉRISTIQUES DES
TABLEAU 8	
TABLEALLO	ZONES D'EXTRACTION DE LA MINE WINDFALL23
TABLEAU 9	ÉQUIPEMENT MOBILE SOUTERRAIN26
TABLEAU 10	ÉQUIPEMENT MOBILE DE SURFACE27
TABLEAU 11	CARACTÉRISTIQUES DES CHEMINS D'ACCÈS28
TABLEAU 12	LISTE DES BASSINS ET LEURS PROPRIÉTÉS32
TABLEAU 13	PROGRESSION DE LA CAPACITÉ DE LA
	HALDE À STÉRILES PRÉVUS
TABLEAU 14	PARAMETRES DES STERILES MINIERS
	UTILISÉS DANS LES ANALYSES DE STABILITÉ38
TABLEAU 15	CARACTÉRISTIQUES GÉOTECHNIQUES
	DES RÉSIDUS39
TABLEAU 16	PHASES DE DÉVELOPPEMENT DU PARC À
	RÉSIDUS40
TABLEAU 17	MATIÈRES RÉSIDUELLES, ESTIMATION
	DES VOLUMES ANNUELS ET DISPOSITION41
TABLEAU 18	PRODUITS CHIMIQUES UTILISÉS DANS LE
	TRAITEMENT DES EAUX42
TABLEAU 19	RÉACTIFS UTILISÉS AUX USINES DE
	CYANURATION, DE FILTRATION ET DE
	REMBLAI43
TABLEAU 20	RÉSERVOIRS DE CARBURANT SUR LE SITE
TABLETTO 20	MINIER WINDFALL POUR LES ACTIVITÉS
	D'EXPLOITATION44
TABLEAU 21	PHASE DU PARC À RÉSIDUS MINIERS ET
IADLLAU ZI	SÉQUENCE D'EXPLOITATION53
TABLEAU 22	CALENDRIER DE RÉALISATION DES TRAVAUX67
I ABLEAU ZZ	CALLIDRICK DE REALIGATION DES TRAVAUX07

CARTES	
CARTE 1	LOCALISATION DU SITE MINIER WINDFALL75
CARTE 2	TITRES MINIERS76
CARTE 3	INFRASTRUCTURES ACTUELLES77
CARTE 4	INFRASTRUCTURES PROJETÉES79
CARTE 5	PORTAILS ET RAMPES D'ACCÈS81
CARTE 6	MATIÈRES DANGEREUSES83
CARTE 7	RESTAURATION ET SÉCURISATION DU
	SITE85
FIGURES	
FIGURE 1	DIAGRAMME DU PROCESSUS DE
	TRAITEMENT DU MINERAI DANS LE CADRE
	DES OPÉRATIONS DU SITE MINIER WINDFALL, TIRÉ DE L'ÉTUDE NI 43-101
	(BBA INC. <i>ET AL</i> . 2023)89

DIAGRAMME DU PROCESSUS DE GESTION

OPÉRATIONS DU SITE MINIER WINDFALL, TIRÉ DE L'ÉTUDE NI 43-101 (BBA INC. *ET*

IMPERMÉABILISÉE ET DU PARC À RÉSIDUS

AL, 2023)91

MINIERS......93

DÉPÔTS D'EXPLOSIFS......95

DES EAUX DANS LE CADRE DES

COUPE-TYPE DU RECOUVREMENT ÉTANCHE DE LA HALDE À STÉRILES

LOCALISATION SOUTERRAINE DES

FIGURE 2

FIGURE 3

FIGURE 4

ANNEXES

- A GRILLE DE VALIDATION
- B RÉSOLUTION DU CONSEIL D'ADMINISTRATION
- C GÉOCHIMIE
- D LISTE DES AUTORISATIONS ET DES ENTENTES DÉTENUES PAR OSISKO
- E ANALYSE DE STABILITÉ
- F ESTIMATION DES COÛTS DE RESTAURATION

LISTE DES ABRÉVIATIONS

As Arsenic Au Or

Ba Baryum

CA Certificat d'autorisation
CaCO₃ Carbonate de calcium

CIDREQ Centre informatique du registre des entreprises du Québec

CIP Charbon en pulpe (Carbon in pulp)

COMEX Comité d'examen des répercussions sur l'environnement et le milieu social

Cr Chrome

CTEU-9 Essai de lixiviation à l'eau

Cu Cuivre

D019 Directive 019 sur l'industrie minière

EC Eaux souterraines utilisées pour des fins de consommation

ÉES Évaluation environnementale de site ÉÉP Évaluation économique préliminaire EPA Environmental Protection Agency

g/t Gramme par tonne

h, hrs Heure
ha Hectare
kg Kilogramme
km Kilomètre
L Litre

LHD Camion de chargement souterrain (*Load haul dump*)

LQE Loi sur la qualité de l'environnement

M Million m Mètre

m² Mètre carré
m³ Mètre cube
mm Millimètre

m³/j Mètres cubes par jour Mm³ Million de mètres cubes

MELCCFP Ministère de l'Environnement, de la Lutte contre les changements climatiques,

de la Faune et des Parcs

Le MELCCFP a connu diverses dénominations par le passé, telles que MELCC, MDDELCC, MDDEP, MENVIQ, MEF et MENV. De façon générale, dans le présent rapport, l'acronyme MELCCFP a aussi été utilisé pour nommer ses désignations antérieures.

MDR Matières dangereuses résiduelles

MRNF Ministère des Ressources naturelles et des Forêts

Le MRNF a connu diverses dénominations par le passé, telles que MERN et MRN. De façon générale, dans le

présent rapport, l'acronyme MERN a aussi été utilisé pour nommer ses désignations antérieures.

MES Matières en suspension

MFFP Ministère des Forêts, de la Faune et des Parcs

À la suite de la nomination du nouveau conseil des ministres en octobre 2022, le secteur des Forêts relève

désormais du MRNF alors que les secteurs de la Faune et des Parcs relèvent du MELCCFP.

Mn Manganèse

mRL Mètre au niveau sous terre (metre Reduced Level)

Mt Million de tonnes

Mt/a Million de tonnes par année

NaOH Hydroxyde de sodium

NPGA Non potentiellement générateur d'acide

Oz Once Pb Plomb

PEHD Polyéthylène de haute densité
PGA Potentiel de génération d'acide

PN Potentiel neutralisant ou potentiel de neutralisation d'acide

PNN Potentiel neutralisant net (PNN = PN - PA) ou pouvoir net de neutralisation

REIMR Règlement sur l'enfouissement et l'incinération de matières résiduelles

RES Résurgence dans les eaux de surface

RMD Règlement sur les matières dangereuses

RSMPGNS Règlement sur les substances minérales autres que le pétrole, le gaz naturel et la saumure

S Soufre

S % Teneur en soufre

SPLP Essai de lixiviation pour la simulation des pluies acides

TCLP Essai de lixiviation pour la mobilité des espèces inorganiques

USG Gallon américain

UTE Usine de traitement de l'eau

t Tonne

t/j Tonne par jour t.m. Tonne métrique

w/w Poids pour poids (Weight per weight)

Zn Zinc

1 INTRODUCTION

1.1 MISE EN CONTEXTE

WSP Canada Inc. (WSP) a été mandatée par Minière Osisko inc. (Osisko) afin de préparer le plan de restauration du site d'exploitation minière Windfall, situé à moins de 10 km au nord de la limite avec la région de l'Abitibi-Témiscamingue. La propriété minière se trouve sur le territoire du Gouvernement régional d'Eeyou Istchee Baie-James (GREIBJ), plus précisément dans le canton d'Urban et à 73 km au sud-est du village cri de Waswanipi et 115 km à l'est par la route de la ville de Lebel-sur-Quévillon (carte 1).

L'emplacement de la propriété Windfall se situe essentiellement dans un secteur isolé à vocation minière et forestière. Elle se compose de 286 claims miniers contigus appartenant à Osisko, qui couvrent approximativement 12 400 hectares (ha).

Dans le cadre des activités d'exploitation, les infrastructures du site Windfall seront rassemblées près des deux portails d'accès aux chantiers souterrains. Ainsi, le site minier comprendra les aires d'accumulation, les infrastructures de gestion des eaux de surface, les rampes d'accès, le campement ainsi que des aires d'entreposage. L'ancien secteur du campement, situé à environ 2 km au sud du secteur du portail, sera toujours utilisé pour des fins d'exploration et n'est donc pas visé dans le présent plan de restauration.

Une partie des infrastructures actuelles ont été développées à l'époque où la compagnie Noront Resources Ltd (Noront) a procédé à un échantillonnage en vrac. En 2008, Noront a débuté le développement de la rampe, pour l'interrompre quelques mois plus tard dans la même année. Au moment de l'arrêt des travaux, la rampe avait une longueur de 1 200 m et approximativement 230 m de galeries d'exploration avaient été creusés. Un total de 9 700 m³ (environ 18 500 t) de roche¹ a été entreposé sur la halde imperméabilisée et 41 600 m³ (environ 79 000 t) ont été entreposés sur la halde non imperméabilisée, qui n'existe plus actuellement. Ces infrastructures étaient présentes sur le site lors de l'acquisition de la propriété par Osisko en 2015.

Osisko a procédé au dénoyage de la rampe foncée par Noront en 2017 afin de poursuivre ses activités d'exploration et le développement des galeries d'exploration permettant d'accéder à différentes zones minéralisées et de procéder à des échantillonnages en vrac. Osisko a obtenu des autorisations permettant de procéder à ces échantillonnages en vrac du ministère des Ressources naturelles et des Forêts (MRNF), en vertu de la l'article 69 de la Loi sur les mines (ch. M-13.1).

Depuis le redémarrage des activités pour l'échantillonnage en vrac, Osisko a procédé à l'excavation de la halde non imperméabilisée, l'agrandissement de la halde imperméabilisée et la construction de bassins et fossés pour gérer les eaux de contact du site. Des bâtiments et des infrastructures de support ont également été construits dans le but de permettre la poursuite des activités d'exploration. Jusqu'en 2022, les échantillons en vrac extraits par Osisko ont été traités en usine à l'extérieur du site; il n'y a donc actuellement aucune usine de traitement du minerai ou parc à résidus miniers sur la propriété Windfall.

Osisko réalise présentement les différentes études nécessaires à l'obtention des permis requis pour la construction des infrastructures du site et le début de l'exploitation.

Les volumes ont été mesurés à l'aide d'un arpentage de surface.

Le présent document est donc le premier plan de restauration pour les activités d'exploitation de la propriété minière Windfall. Il inclut les travaux de restauration pour les infrastructures actuelles et projetées du site qui seront utilisées dans le cadre de l'exploitation du site et qui seront présentes à la fin de la vie de la mine. Le secteur du campement d'exploration n'est pas inclus dans le document présent.

1.2 OBJECTIFS

Le présent plan de restauration pour les activités d'exploitation minière a été élaboré conformément aux dispositions de la Loi sur les mines (ch. M-13.1) et selon les prescriptions et les recommandations du *Guide de préparation du plan de réaménagement et de restauration des sites miniers au Québec* (le Guide) (MERN, 2022).

Le programme de restauration décrit dans ce document vise le secteur où les activités d'exploitation auront lieu et s'articulera principalement autour des éléments suivants :

- renseignement généraux, historique et géologie;
- description des activités d'exploitation et des installations en place;
- mesures de protection, de réaménagement et de restauration prévues;
- programme de suivi et d'entretien postrestauration;
- plan des mesures d'urgence;
- mesures en cas d'arrêt temporaire des activités;
- évaluation du coût des travaux de restauration;
- évaluation de la garantie financière;
- échéancier des travaux de restauration.

Afin de faciliter la lecture du document, les cartes et les figures citées ont été regroupées et présentées à la fin du présent plan de restauration.

La grille de validation du contenu du plan de restauration dûment remplie est jointe à l'annexe A.

2 RENSEIGNEMENTS GÉNÉRAUX

2.1 IDENTIFICATION DU REQUÉRANT

2.1.1 REQUÉRANT

Nom du requérant : Minière Osisko inc.

Adresse: 1100, avenue des Canadiens-de-Montréal, bureau 300, Montréal, QC, H3B 2S2

 Téléphone :
 438-363-8653

 Télécopieur :
 416-363-7579

Site internet : <u>www.miniereosisko.com</u>

Représentant autorisé : Mme Andréanne Boisvert, géographe, M. A.

Vice-Présidente, Environnement et Relations communautaires

Courriel: aboisvert@osiskomining.com

Personnes-ressources: Mme Vanessa Millette, géographe, M. Sc. Env.

Directrice Environnement

Courriel: vmillette@osiskomining.com

2.1.2 CONSULTANT MANDATÉ

Consultant: WSP Canada Inc.

Adresse: 1135, boul. Lebourgneuf

Québec (Québec) G2K 0M5

Téléphone : 418-623-2254
Site internet : www.wsp.com

<u>Personnes-ressources</u>: Mme Marie-Hélène Brisson, B. Sc.

Directrice de projet

Courriel: marie-helene.brisson@wsp.com

2.1.3 NUMÉRO CIDREO

Le numéro de code du centre informatique du registre des entreprises du Québec (CIDREQ) assigné par le registraire des entreprises pour la compagnie Minière Osisko inc. est le 1172033616.

2.1.4 RÉSOLUTION

La résolution du conseil d'administration aux fins de l'article 232.2 de la Loi sur les mines (ch. M-13.1) autorisant Mmes Andréanne Boisvert, Vice-Présidente Environnement et Relations communautaires, et Vanessa Millette, Directrice Environnement, à agir au nom de l'organisation et de soumettre le plan de restauration se trouve à l'annexe B.

2.2 LOCALISATION DU SITE MINIER

La propriété Windfall se situe dans la région administrative du Nord-du-Québec, au nord du 49° parallèle, à moins de 10 km au nord de la limite avec la région de l'Abitibi-Témiscamingue. Le site Windfall est situé au sein des territoires traditionnels de la Première Nation des Cris de Waswanipi (PNCW), se trouvant sur le territoire du Gouvernement régional d'Eeyou Istchee Baie-James, plus précisément dans le canton d'Urban. Le site minier Windfall est localisé par la route à environ 115 km à l'est de Lebel-sur-Quévillon et à environ 270 km de Val-d'Or. Le site est accessible par des chemins forestiers (chemin 1000 (R1050) jusqu'au kilomètre 12, chemin 5000 (R0853) jusqu'au kilomètre 66, puis le chemin 6000 (R1053) jusqu'au kilomètre 112 - site Windfall). Les coordonnées géographiques de la propriété minière Windfall sont les suivantes (au centre de la propriété) :

Latitude: 49,069873 Nord

Longitude : -75,645724 Ouest

L'emplacement de la propriété Windfall se situe essentiellement dans un secteur isolé à vocation minière et forestière. La localisation générale du site minier est présentée à la carte 1.

2.3 PROPRIÉTÉ MINIÈRE DES TERRAINS

La propriété Windfall se compose de 286 claims qui couvrent approximativement 12 400 ha et le titulaire des claims est Osisko. Les activités en cours sur le site Windfall sont réalisées sur les claims suivants :

_	2 379 373	_	2 376 883	_	2 376 861
_	2 379 374	_	2 376 889	_	2 376 862
_	2 379 375	_	2 376 891	_	2 376 863
_	2 379 376	_	2 379 896	_	2 379 866
_	2 379 372	_	2 379 359	_	2 379 360

Osisko détient deux baux d'occupation du territoire du projet minier Windfall (le Projet) :

- bail d'utilisation du territoire à des fins industrielles (no réf : 332-17-910) : secteur de la rampe d'exploration;
- bail à des fins de parc à résidus miniers (n° réf. : 494-18-910) : secteur de la rampe d'exploration.

Osisko est en voie d'obtenir les permis nécessaires pour procéder aux phases de construction et d'exploitation sur le site Windfall. De plus, Osisko possède un troisième bail pour utilisation du territoire à des fins industrielles (no réf : 218098-00-000) qui concerne le secteur du campement d'exploration. Les travaux du site d'exploitation minière ne couvrent pas ce secteur.

Les titres miniers et les baux détenus par Osisko sont montrés sur la carte 2.

2.4 HISTORIQUE DU SITE

Des activités d'exploration minière ont eu lieu sur la propriété Windfall depuis 1975. La minéralisation d'or dans cette zone a été découverte en 1994 par Murgor Resources dans le comté de Barry, qui est situé approximativement à 10 km au sud-est de la propriété Windfall.

La faille Alto a été découverte sur la propriété Windfall par Alto Minerals Inc. et Noront en 1996, lors d'une campagne de cartographie et d'excavation de tranchées. Depuis, les travaux d'exploration ont été effectués de façon continue par Inmet Mining Corporation et Fury Explorations Ltd., chacun obtenant (et plus tard abandonnant) la propriété. De 1997 à 2005, 104 trous de forage ont été réalisés. Vingt-cinq (25) autres trous ont été forés en 2006.

Durant les années 2007 et 2008, Noront a déposé et obtenu une demande d'autorisation auprès des différents ministères du Québec pour aménager une rampe souterraine afin d'effectuer un échantillonnage en vrac de 40 000 t de minerai d'or. Les travaux ont pris fin à la fin de l'année 2008 sans que le programme ne soit complété. Les aires d'accumulation et d'entreposage des stériles et du minerai, le campement, la carothèque, les différentes fosses septiques avec les différents champs d'épuration et les bassins de traitement des eaux usées sont demeurés sur le site de la propriété Windfall.

L'acquisition de la propriété minière Windfall par la compagnie Eagle Hill a eu lieu en 2009. Des travaux d'exploration en surface ont été planifiés et effectués de 2009 à 2015. Les travaux d'exploration incluaient le « rééchantillonnage » des carottes historiques, la réalisation de tranchées, les levés géophysiques du sol, les travaux d'exploration en surface (trous de forage), etc.

Au total, trois estimations de ressources minérales ont été publiées par Eagle Hill (2011, 2012 et 2014). En novembre 2014, la dernière mise à jour de l'estimation des ressources minérales du projet, réalisée par SRK (Canada), a mené Eagle Hill à publier les résultats d'une évaluation économique préliminaire (ÉÉP) indépendante sur ce projet aurifère en avril 2015. Cette étude envisageait un projet de mine souterraine avec un taux de production de 1 200 t/j sur la durée de vie de la mine évaluée à 7,6 ans, soit une production totale de 3,3 Mt de minerai.

En août 2015, Eagle Hill a été acquise par Oban Mining Corporation (Oban). Oban a ensuite changé de nom en juin 2016 pour devenir Osisko. Dans le cadre de la relance des activités d'exploration du Projet par Osisko, une évaluation environnementale de site (ÉES) – phase I de la propriété a été finalisée en mars 2017. Ainsi, en 2017, Osisko a entrepris les démarches afin de poursuivre les travaux d'échantillonnage en vrac débutés par Noront. La collecte d'un échantillon en vrac de 5 567 t de matériel minéralisé dans la zone 27 a été complétée à l'automne 2018. À la fin de 2017, Osisko souhaitait poursuivre l'exploration en avançant la rampe d'exploration en direction des zones Lynx et Underdog, afin de prélever un second échantillon en vrac de 5 000 t dans chaque zone. À la suite de l'obtention des autorisations, la collecte d'un échantillon en vrac de 5 716 t de matériel minéralisé dans la zone Lynx a été complétée en septembre 2019.

Osisko a demandé, en novembre 2019, le report de la collecte de l'échantillon dans la zone Underdog pour prélever plutôt un échantillon de 5 000 t dans la partie supérieure de Triple Lynx. Osisko a alors présenté des demandes de modification et obtenu ses autorisations. Les résultats du troisième échantillon en vrac, publiés en octobre 2022 et provenant de la zone Triple Lynx, ont livré une teneur moyenne de 65,5 g/t Au, résultant du traitement de 4 809 t extraites.

À partir de 2020, les efforts d'exploration se sont concentrés sur Lynx. À l'été 2021, Osisko a demandé de nouvelles autorisations pour procéder à un quatrième échantillon en vrac dans les secteurs Lynx 4, Triple Lynx et Caribou. Ces dernières ont été obtenues en décembre 2022.

Les travaux d'aménagement des infrastructures de surface, dont l'aménagement d'une partie de l'usine de traitement de l'eau, débuteront en 2023. Les activités de fonçage de la rampe se poursuivent en continu.

Selon les données actuelles, il est prévu que la production sur la propriété Windfall débutera en 2025 pour prendre fin en 2035.

2.5 RESSOURCES MINÉRALES

Osisko a complété, en août 2022, un programme de 300 000 m de forages de définition et d'expansion du gisement afin de produire une mise à jour de sa ressource minérale, publiée en 2022. La campagne de forage totalise actuellement 1 852 861 m, dont 1 665 282 m complétés et analysés par Osisko. À la suite de ce programme de forage, le secteur Lynx représente 65 % de l'or total de l'estimation des ressources minérales (ERM). Ce secteur inclut la zone Lynx principale, Lynx HW, Lynx SW, Lynx 4 et Triple Lynx. Les ressources ont été classées comme mesurées, indiquées et présumées dans le cadre de l'ERM. Les ressources mesurées sont celles qui ont le potentiel d'être converties en réserve. Les réserves probables sont établies en fonction de teneurs de coupure de 3,5 g/t (exploitation), 2,5 g/t (marginale) et 1,7 g/t (développement).

Cette mise à jour de l'estimation des ressources minérales fait état de 297 000 onces d'or à une teneur de 11,4 g/t d'or dans la catégorie mesurée, 3 754 000 onces d'or à une teneur de 11,4 g/t d'or dans la catégorie indiquée et 3 337 000 onces d'or à une teneur de 8,4 g/t dans la catégorie présumée (tableau 1). Les réserves minérales sont également résumées par zone dans le tableau 2.

Le plan minier comprendrait également 1,3 Mt de ressources minérales présumées, pour laquelle une valeur à teneur nulle a été attribuée pour l'instant. Actuellement, la durée de vie de la mine est estimée à 10 ans.

La mise à jour de l'ERM a été utilisée comme intrant principal de l'étude de faisabilité du Projet, publiée en 2023 (BBA Inc. *et al*, 2023), et de la mise à jour de l'étude d'impact sur l'environnement (ÉIE), en vue du début de la phase d'exploitation du site. Le présent plan de restauration est basé sur le plan minier et les infrastructures développées dans le cadre de l'étude de faisabilité (BBA Inc. *et al*, 2023).

Les informations présentées aux tableaux 1 et 2 sont tirées de l'étude de faisabilité (BBA Inc. *et al*, 2023) et du communiqué de presse émis par Osisko en réponse à l'étude. L'estimation des réserves minérales a une date d'effet au 1^{er} septembre 2022 et est basée sur le bloc modèle des ressources minérales daté du 7 juin 2022.

Tableau 1 Ressources minérales du projet minier Windfall

RESSOURCES	QUANTITÉ (tonnes)	TENEUR Au (g/t)	CONTENU Au (oz)			
Mesurées	811 000	11,4	297 000			
Indiquées	10 250 000	11,4	3 754 000			
Présumées	12 287 000	8,4	3 337 000			

Notes:

Les valeurs sont arrondies au millier le plus près, ce qui peut entraîner des écarts apparents.

²⁾ Estimation selon un seuil de coupure de 3,5 g/t d'or, en supposant un scénario d'extraction souterraine avec un prix de l'or à 1 600 \$ US/oz et un taux de récupération métallurgique de 93 %. Les ressources présumées impliquent une grande part d'incertitude quant à leur existence et au fait qu'elles pourront ou non être légalement ou économiquement exploitées. On ne devrait pas supposer que des ressources présumées pourront éventuellement être converties, en tout ou en partie, à une catégorie supérieure. La viabilité économique de ressources minérales qui ne sont pas des réserves minérales n'a pas été démontrée.

Tableau 2 Ressources minérales par zone

Mesurées			Indiquées				Présumées								
Zone	Tonnes ⁽¹⁾ (000 t)	Teneur Au (g/t)	Teneur Ag (g/t)	Onces Au ⁽¹⁾ (000 oz)	Onces Ag ⁽¹⁾ (000 oz)	Tonnes ⁽¹⁾ (000 t)	Teneur Au (g/t)	Teneur Ag (g/t)	Onces Au ⁽¹⁾ (000 oz)		Tonnes ⁽¹⁾ (000 t)	Teneur Au (g/t)	Teneur Ag (g/t)	Onces Au ⁽¹⁾ (000 oz)	Onces Ag ⁽¹⁾ (000 oz)
Lynx (2)	671	11,4	7,2	247	154	6,638	13,2	6,7	2,814	1,426	4,774	10,8	6,9	1,663	1,063
Underdog	-	-	-	-	-	928	9,5	3,4	284	101	4,072	7,7	3,0	1 011	397
Main (3)	109	9,4	4,4	33	16	2,685	7,6	4,8	655	412	2,799	5,8	3,3	518	296
Triple 8	-	-	-	-	-	-	-	-	-	-	642	7,0	6,6	145	136
Total in situ	780	11,1	6,8	279	170	10,250	11,4	5,9	3,754	1,939	12,287	8,4	4,8	3,337	1,892
Halde à stériles (4)	32	16,9	4,3	17	4	-	-	-	-	-	-	-	-	-	-
Total	811	11,4	6,7	297	174	10,250	11,4	5,9	3,754	1,939	12,287	8,4	4,8	3,337	1,892

- Les valeurs sont arrondies au millier le plus près, ce qui peut entraîner des écarts apparents.
- La zone Lynx inclut : Lynx Main, Lynx HW, Lynx SW, Lynx 4 et Triple Lynx.
- La zone Principale inclut : Zone 27, Caribou 1 et 2, Caribou Extension, Bobcat, Mallard, Windfall North et F-Zones.
- 4) La teneur de coupure ne s'applique pas au matériel sur la halde à stériles.

Les notes suivantes s'appliquent aux tableaux 1 et 2 :

- La personne qualifiée indépendante aux fins de l'ERM de 2022, comme défini dans le Règlement 43-101, est Pierre-Luc Richard, géo. (OGQ no1119), de Ressources PLR inc. La date d'effet de l'estimation est le 7 juin 2022.
- 2 L'estimation des ressources minérales de Windfall respecte les lignes directrices sur les pratiques exemplaires en matière d'estimation des ressources et des réserves minérales adoptées par l'ICM le 29 novembre 2019.
- Ces ressources minérales ne sont pas des réserves minérales puisque leur viabilité économique n'a pas été démontrée. La quantité et la teneur des ressources minérales présumées présentées dans ce communiqué sont de nature incertaine et il n'y a pas eu suffisamment de travaux d'exploration réalisés pour définir ces ressources comme étant des ressources indiquées ou mesurées; toutefois, il est raisonnable de s'attendre à ce que la majeure partie des ressources minérales présumées puisse être convertie en ressources minérales indiquées en poursuivant l'exploration. Les ressources sont présentées avant dilution et in situ, et sont considérées comme ayant des perspectives raisonnables d'extraction économique. Les blocs isolés et discontinus dont la teneur est supérieure à la teneur de coupure choisie sont exclus de l'estimation des ressources minérales. Les blocs qui doivent être inclus, c'est-à-dire les blocs isolés dont la teneur est inférieure à la teneur de coupure situés à l'intérieur des volumes potentiellement exploitables, ont été inclus dans l'estimation des ressources minérales.
- Au 7 juin 2022, la base de données comprenait un total de 4 834 sondages totalisant 1 852 861 m de forage dans le secteur ciblé pour l'estimation des ressources minérales, dont 4 152 sondages (1 665 282 m) ont été forés et analysés par Osisko. L'espacement entre les sondages est d'environ 12,5 m × 12,5 m pour le forage de définition et 25 m × 25 m pour le forage intercalaire, avec un espacement plus grand pour le forage d'expansion.
- Tous les résultats d'analyse de carottes de forage publiés par Osisko ont été obtenus à partir de méthodes analytiques « Contrôle de la qualité et protocoles de présentation » présentées ci-dessous.
- L'interprétation géologique du gîte est basée sur les lithologies, le style de minéralisation, l'altération et les éléments structuraux. La plupart des enveloppes minéralisées sont subverticales, orientées NE-SO avec une plongée d'environ 40 degrés vers le nord-est. Les modèles fil-de-fer en 3D ont été générés dans le logiciel de modélisation Leapfrog Geo, en utilisant des intervalles minéralisés sélectionnés à la main. L'estimation des ressources minérales englobe 579 domaines tabulaires, subverticaux pour la plupart, définis par des modèles fil-de-fer individuels d'une épaisseur réelle d'au moins 2,0 m.
- Les analyses ont été regroupées à l'intérieur des domaines minéralisés en composites de 2,0 m de long. Des valeurs de 0,00125 g/t Au et 0,0025 g/t Ag (1/4 de la limite de détection) ont été utilisées comme teneurs dans le cas des carottes non analysées.
- Une teneur de coupure supérieure a été appliquée aux composites à haute teneur. La teneur de coupure supérieure a été déterminée dans chaque zone par analyse statistique des lentilles regroupées partageant des caractéristiques minéralisées similaires. La teneur de coupure supérieure varie de 6 g/t Au à 200 g/t Au et de 5 g/t Ag à 150 g/t Ag. Une stratégie de coupure en trois étapes, où la valeur de la teneur de coupure diminue à mesure que la distance d'interpolation augmente, a été utilisée durant l'estimation des teneurs.
- Les blocs modèles ont été produits à l'aide du logiciel Studio RM de DatamineTM. Les modèles sont définis en blocs dont les dimensions sont de 5 m EW par 2 m NS par 5 m de hauteur, et ces blocs sont subdivisés en sous-blocs dont les dimensions minimales sont de 1,25 m EW par 0,5 m NS par 1,25 m de hauteur.
- 10. Des interpolations par krigeage ordinaire (KO) ont été produites pour estimer les teneurs en or dans chaque zone du gîte Windfall, tandis que les estimations des teneurs en argent ont été produites en utilisant la méthode d'interpolation de l'inverse de la distance au carré (ID2). Les paramètres d'estimation des teneurs en or sont basés sur l'analyse par variogramme des composites. Les paramètres d'estimation des teneurs en or ont été utilisés pour l'estimation des teneurs en argent.
- Des valeurs de densité variant de 2,74 à 2,93 ont été appliquées aux zones minéralisées.
- L'estimation des ressources minérales de Windfall comprend des ressources minérales des catégories mesurée, indiquée et présumée, comme suit :
 - Les ressources minérales de catégorie mesurée sont définies manuellement et comprennent des secteurs où :
 - l'espacement entre les sondages est inférieur à 12,5 m,
 - h la plupart des blocs comprennent quatre sondages,
 - les lentilles sont généralement accessibles par des excavations souterraines.
 - les preuves géologiques sont suffisantes pour confirmer la continuité de la géologie et de la teneur.
 - Les ressources minérales de catégorie indiquée sont définies manuellement et comprennent des secteurs où :
 - l'espacement entre les sondages est généralement inférieur à 25 m,
 - la plupart des blocs comprennent trois sondages,
 - les preuves géologiques sont suffisantes pour supposer la continuité de la géologie et de la teneur.
 - Les ressources minérales de catégorie présumée sont définies manuellement et comprennent des secteurs où :
 - l'espacement entre les sondages est inférieur à 100 m,
 - les blocs comprennent au moins deux sondages,
 - les preuves géologiques sont suffisantes pour suggérer, mais non vérifier, la continuité de la géologie et de la teneur.

- 13. Le tonnage et la teneur en or du matériel empilé ont été estimés à l'aide du modèle de contrôle de teneur. Les valeurs de densité des lithologies, variant de 2,76 à 2,84, ont été utilisées pour estimer les tonnages. Les teneurs en or ont été estimées en utilisant une moyenne pondérée des résultats d'échantillons de déblais pour le tonnage de chaque ronde, en se basant sur des échantillons de déblais de 3,4 kg en moyenne, prélevés dans chaque godet de 8 verges. Des teneurs de coupure supérieure variant entre 60 g/t Au et 80 g/t Au ont été appliquées aux résultats d'analyse des échantillons de déblais. La teneur en argent pour le matériel empilé a été estimée à partir du bloc modèle des ressources puisque l'argent n'a pas été analysé dans les échantillons de déblais.
- 14. Les ressources minérales sont présentées selon une teneur de coupure de 3,5 g/t Au. L'estimation de la teneur de coupure est basée sur les paramètres économiques suivants: prix de l'or de 1 600 \$ US/oz, taux de change de 1,28 USD/CAD, récupération à l'usinage de 93,0 %, pourcentage payable de 99,95 %, coût de vente de 5 \$ US/oz, redevance NSR de 2 %, coût d'extraction minière de 125 \$ CA/t usinée, coût G&A de 39 \$ CA/t usinée, coût de traitement de 42 \$ CA/t, et coût environnemental de 4 \$ CA/t.
- 15. Les calculs ont été effectués avec des unités métriques (mètres (m), tonnes (t) et g/t). Le contenu en métaux est présenté en onces troy (tonne métrique x teneur / 31.103475).
- 16. La personne qualifiée indépendante n'a connaissance d'aucun enjeu environnemental, lié aux permis, juridique, lié aux titres, fiscal, sociopolitique ou lié à la commercialisation, ou de tout autre enjeu pertinent qui pourrait avoir une incidence importante sur l'estimation des ressources minérales.

2.6 GÉOLOGIE ET MINÉRALOGIE

2.6.1 GÉOLOGIE RÉGIONALE ET LOCALE

La propriété Windfall est localisée dans la sous-province volcano-plutonique archéenne de l'Abitibi, faisant partie de la Province du Supérieur du Bouclier canadien, plus précisément de la ceinture de roche verte d'Urban Barry. Cette dernière s'étend d'est en ouest sur 135 km, à une épaisseur qui varie entre 4 et 20 km. La ceinture est délimitée au nord par la suite plutonique de Father, à l'est par la province d'âge protérozoïque du Grenville, au sud par les granitoïdes et les paragneiss du complexe de Barry et à l'ouest par les plutons de Corriveau et Souart. Tous les types de roches retrouvés au sein de la ceinture appartiennent à l'époque archéenne, à l'exception des dykes de diabase datant du Protérozoïque.

La ceinture d'Urban Barry se compose de roches volcaniques mafiques à felsiques et de roches sédimentaires qui sont recoupées par plusieurs zones de cisaillement d'orientation est/nord-est. Ces zones de cisaillement définissent trois grands domaines structuraux :

- 1 La zone de déformation d'Urban, une zone de cisaillement majeure d'orientation est-ouest qui délimite la ceinture au nord.
- 2 Le domaine centre qui se situe entre les membres du Lac Rouleau et de Windfall et dont la foliation principale est orientée est/nord-est et recoupée par les failles principales de Milner et Mazères ayant la même orientation.
- 3 Le domaine sud désigné comme la zone de déformation Barry. Cette zone de déformation, également d'orientation est/nord-est, est associée à plusieurs indices aurifères incluant le dépôt Gladiator de Bonterra Ressources.

La ceinture d'Urban Barry peut être subdivisée en quatre formations lithologiques avec des âges variant entre 2 791 Ma et 2701 Ma (Rhéaume and Bandyayera, 2006) :

- 1 La formation Fecteau (2 791 Ma) située dans la partie sud-est de la ceinture et qui consiste en des roches volcaniques mafiques à felsiques, incluant des unités sédimentaires graphitiques.
- 2 La formation Chanceux (2 727 Ma) composée majoritairement de basaltes tholéitiques, de roches rhyolitiques à rhyo-dacitiques intercalées avec des greywackes et des argilites (Bandyayera et al., 2004). La géométrie et l'étendue de la formation sont mal définies.
- 3 La formation Macho (2 718 Ma) située dans la portion centre de la ceinture et composée de basaltes, d'andésites et de sills gabbroiques (Bandyayera et al., 2002a-b, 2004). La formation de Macho inclut les membres de Windfall et de Rouleau. La propriété du lac Windfall fait partie de la formation de Macho.

4 La formation d'Urban (2 714 to 2 707 Ma) qui possède la plus grande étendue et qui se compose de basaltes tholéitiques gloméroporphyriques. Ces basaltes sont interprétés comme étant contemporains à la formation d'Obatogamau à Chibougamau. La formation d'Urban se compose également à parts égales de roches mafiques et de roches volcaniques felsiques et sédimentaires.

Finalement, une série de dykes à porphyres de quartz et feldspath recoupent les roches volcaniques de la formation de Macho incluant les roches du membre de Windfall. Ces dykes à quartz et feldspath ont été datés à $2\,697\,\pm0.6\,$ Ma sur les dépôts de Barry (Kitney et al., 2011) et de Windfall. Les âges U-Pb des zircons provenant des dykes pré et postminéralisation à Windfall permettent de restreindre l'âge de la minéralisation aurifère entre $2\,701\,$ Ma et $2\,697.2\,$ Ma.

Les roches de la ceinture d'Urban Barry sont principalement métamorphisées au faciès schistes vert, bien qu'à proximité des grandes intrusions magmatiques et le long des corridors de déformation, les conditions locales peuvent atteindre le faciès des amphibolites. Le gradient métamorphique augmente graduellement vers l'est en direction du front du Grenville (Joly, 1990).

2.6.2 GÉOLOGIE DU GISEMENT DE LA PROPRIÉTÉ WINDFALL

Le site minier Windfall se situe dans la partie centrale de la ceinture d'Urban Barry. Le dépôt Windfall, qui se situe dans le membre du même nom, se compose de roches volcaniques mafiques à felsiques à intermédiaires. Le membre de Windfall fait partie de la formation Macho, qui est elle-même composée de larges séquences de basaltes et gabbros tholéitiques intercalées avec des roches volcanoclastiques.

Dans le secteur du dépôt Windfall, la stratigraphie s'oriente vers le nord avec un pendage modéré vers l'est. Les roches volcaniques sont recoupées à fort angle par une série de dykes à quartz-feldspath d'affinité calco-alcaline. Les roches volcaniques et les dykes sont affectés par la foliation régionale. L'intensité de cette foliation varie en fonction des unités lithologiques et elle superpose localement l'altération et la minéralisation.

La nature, la distribution et l'intensité de l'altération sont principalement contrôlées par la composition de la roche hôte et par sa proximité aux zones aurifères. Plusieurs assemblages d'altération sont visibles sur le dépôt Windfall et incluent la séricite, la silice, la chlorite, l'ankérite, la fuchsite et localement la biotite à de plus grandes profondeurs. Ces halos d'altérations s'observent dans tous les types de roche sur le dépôt, à l'exception de l'altération à fuchsite, qui s'observe principalement à proximité des roches mafique/ultramafique.

Trois évènements de déformation sont documentés sur le dépôt Windfall et sont désignés comme D1-D3. Ces évènements incluent : 1) un plissement précoce; 2) des failles, des zones de cisaillement ainsi qu'une fabrique (S2) d'orientation nord/est-nord-est; et 3) des failles tardives cassantes d'orientation nord. Il est important de noter que ces évènements de déformation se limitent au dépôt Windfall et que ceux-ci ne sont pas interprétés dans un contexte régional à l'échelle de la ceinture.

2.6.3 MINÉRALISATION

La minéralisation aurifère du gisement Windfall se présente en deux styles: 1) minéralisation filonienne, et 2) minéralisation de type remplacement.

La minéralisation de type filonienne consiste en des veines de quartz grises translucides qui contiennent des quantités accessoires d'ankérite, tourmaline, pyrite et d'or visible. Les veines ont des contacts francs avec la roche hôte et peuvent, dans certains cas, être plissées. Au niveau de la texture, ces veines peuvent être massives ou parfois laminées. Les veines ont des épaisseurs qui varient entre 0,1 m à 1 m et sont majoritairement associées aux hautes valeurs en or variant entre 20 et >100 g/t. La quantité de sulfures associés aux veines varie entre 1 et 80 % et est dominée par la pyrite et par des quantités accessoires (<1 %) de chalcopyrite, sphalérite, arsénopyrite, galène, pyrrhotite, tennantite et par d'autres minéraux à Bi-Te identifiés en pétrographie ou par microanalyses. Ce style de minéralisation s'observe principalement dans les domaines dominés par les roches felsiques (Caribou et Lynx).

La minéralisation de type remplacement s'observe en marge des veines de quartz et dans les zones fortement déformées en l'absence de veines de quartz. Ce style de minéralisation se caractérise par des zones à pyrite disséminée et en filonnet associées à des zones d'altération en silice-séricite-ankérite±tourmaline. Les métaux liés à la gangue et à la minéralisation sont similaires à ceux dans la minéralisation filonienne. L'or est associé avec la pyrite disséminée, qui varie entre 1 et 80 %. Ce style de minéralisation s'observe principalement au sein des domaines dominés par les roches mafiques.

L'or visible s'observe fréquemment sur le dépôt Windfall. Dans la carotte de forage, l'or à une taille millimétrique à centimétrique. L'or grossier s'observe à l'intérieur de veines à quartz-carbonate et suggère une mise en place tardive de quartz-carbonate blanc nuageux juxtaposant la minéralisation de type veine et remplacement.

Sur le dépôt Windfall, la minéralisation a été, jusqu'à ce jour, définie latéralement sur 3 000 m et jusqu'à une profondeur approximative de 1 600 m. Quatre-vingt-dix-huit (98) % de l'estimation des ressources minérales se situe entre la surface et une profondeur verticale de 1 200 m. La minéralisation se divise en quatre secteurs :

- la zone Lynx (Lynx Main, Lynx HW, Lynx SW, Triple Lynx et Lynx 4);
- la zone principale (Zone 27, Caribou 1, Caribou 2, Caribou Extension, Bobcat, Mallard, Windfall North, F-Zones);
- la zone Underdog;
- la zone Triple 8.

Dans le secteur Main, la majorité des enveloppes minéralisées sont associées à des filonnets de pyrite. Dans les secteurs Lynx et Underdog, les lentilles minéralisées forment un réseau anastomosant de veines riches en quartz et en pyrite. Le système minéralisé se situe près des contacts entre les roches volcaniques et les roches intrusives préminéralisation dans les secteurs Main et Lynx, plus spécifiquement dans les unités intrusives préminéralisation à Underdog (BBA, Inc. *et al*, 2023).

La minéralisation est généralement constituée de lentilles subverticales suivant des contacts porphyriques intrusifs plongeant vers le nord-est/sud-ouest, avec une plongée d'environ 40 degrés vers le nord-est.

2.6.4 CARACTÉRISATION GÉOCHIMIQUE

Une étude géochimique sur les stériles, les résidus miniers, le minerai et les eaux de traitement a été réalisée en 2023 par WSP. Cette étude est présentée à l'annexe C du présent plan de restauration. L'étude géochimique de WSP (2023) vise à mettre à jour les propriétés géochimiques des matériaux du site Windfall; elle inclut donc les données précédemment présentées dans les versions antérieures, notamment dans l'étude de Golder (2021).

MÉTHODOLOGIE

En 2021, Golder a réalisé une étude visant à déterminer les propriétés géoenvironnementales du minerai, des résidus et des stériles qui seront produits par les opérations Windfall en lien avec le potentiel de drainage minier acide (DMA) et de lixiviation des métaux. Les résultats sont utilisés pour classer ces matériaux selon le *Guide de caractérisation des résidus miniers et du minerai* (MELCC, 2020) (le Guide de caractérisation).

Les échantillons de minerai, de résidus et d'eau de traitement ont été sélectionnés et fournis par les ingénieurs métallurgistes d'Osisko. Les échantillons de stériles de 2017-2018 ont été sélectionnés et collectés par les techniciens de Golder, à l'exception des échantillons I1 Frag, qui ont été sélectionnés par Osisko. Les échantillons de stériles prélevés en 2020 ont été sélectionnés par Golder, prélevés par Osisko, et un sous-ensemble représentatif a ensuite été sélectionné pour être inspecté par Golder. Tous les travaux d'échantillonnage de Golder ont été effectués et/ou directement supervisés par un géologue spécialisé en géochimie.

Les analyses effectuées sur les échantillons solides consistaient à faire un bilan acide-base, des analyses des métaux extractibles et des tests de lixiviabilité statique utilisant les protocoles analytiques du Centre d'expertise en analyse environnementale du Québec (CEAEQ). Tous les résidus, le minerai et la plupart des échantillons de stériles ont été analysés selon les tests requis pour la classification selon le Guide de caractérisation (MELCC, 2020). Les résultats ont été comparés aux critères de qualité des sols et des eaux souterraines (résurgence dans l'eau de surface, RES et eau de consommation (EC) du Guide d'intervention (Beaulieu, 2021). Les résultats des tests sur les eaux de traitement et les tests cinétiques ont également été comparés aux critères de l'effluent final de la Directive 019 sur l'industrie minière (D019).

En 2023, WSP a réalisé une nouvelle étude de géochimie portant sur les stériles, le minerai, le mort-terrain et les résidus miniers. Cette étude a également comme objectif d'évaluer le risque environnemental en lien avec le potentiel de drainage minier acide (DMA) et la lixiviation des métaux. Cette étude reprend les échantillons et les analyses ciblées par le rapport de 2021.

Les résultats des essais statiques et cinétiques sont utilisés pour classer ces matières selon le Guide de caractérisation (MELCC, 2020) et sont comparés aux critères de la D019. La chimie de l'eau de procédé a également été évaluée. Ces résultats permettent de définir les charges chimiques ainsi que de préciser le design des circuits de traitement de l'eau et d'élaborer les plans de gestion d'eau et des rejets industriels.

Les échantillons de minerai, de résidus et d'eau de procédé ont été sélectionnés par WSP et fournis par Osisko. Selon l'étude en cours, les échantillons et le processus d'échantillonnage sont conformes.

Tous les échantillons ont été évalués pour leur potentiel de génération d'acide (PGA) et leur composition chimique. Certains échantillons sélectionnés ont été soumis à des essais de lixiviation, des analyses minéralogiques et des essais cinétiques.

MINERAL

Entre 2017 et 2020, 21 échantillons de minerai ont été fournis par Osisko.

Les conclusions du rapport de 2023 (WSP) mentionnent que le quartz et la muscovite sont les minéraux dominants dans tous les échantillons de minerai. La teneur en pyrite est la plus élevée dans l'échantillon de la zone 27. Aucun gypse n'a été observé dans les échantillons de minerai. La concentration totale de minéraux carbonatés qui ont le potentiel de neutraliser significativement l'acide est plus élevée dans les échantillons de la zone Lynx principale, suivi de la zone Caribou, de la zone 27 et de la zone Underdog.

Tous les échantillons sont considérés comme potentiellement générateurs d'acide (PGA) en raison de la teneur élevée en soufre total. Les échantillons du secteur Lynx sont ceux qui ont une teneur en soufre total la plus faible.

Les concentrations de métaux extractibles dans tous les échantillons de minerai dépassent les critères de sol « A » pour l'arsenic. Les autres concentrations de métaux extractibles qui dépassent les critères de sols sont le cuivre, le cobalt, le cadmium, le plomb, le zinc, le mercure, le molybdène, le nickel et le sélénium. Les essais de lixiviation SPLP/CTEU-9 montrent que tous les échantillons de minerai analysés ont au minimum un échantillon qui dépassent les critères RES. Des dépassements ont également été observés pour l'aluminium, l'argent, l'antimoine et le manganèse. Dans la plupart des échantillons, l'argent et l'arsenic sont lixiviables. Dans les échantillons provenant des zones 27 et Caribou, le cadmium, le cuivre, le mercure, le sélénium et le zinc sont lixiviables.

Les calculs d'épuisement des minéraux à partir des essais cinétiques montrent que tous les échantillons de minerai ont le potentiel de générer de l'acide dans environ 10 à 306 ans, en conditions de laboratoire.

Un résumé des résultats de la caractérisation géochimique (WSP, 2023c) obtenus par les échantillons de minerai est présenté au tableau 3.

Les conclusions du rapport de Golder (2021) indiquent que des mesures de protection des eaux souterraines doivent être mises en place sur le site du stockage de minerai proposé. Des mesures de gestion supplémentaires seront nécessaires pour tenir compte du développement potentiel du DMA et de la lixiviation des métaux, dans le cas où le minerai serait stocké sur le site à long terme (c.-à-d. de 10 ans ou plus).

RÉSIDUS MINIERS ET EAUX DE PROCÉDÉ

Entre 2017 et 2020, neuf échantillons de résidus miniers ont été fournis par Osisko. Des échantillons d'eau de procédé pour chaque échantillon de résidus ont également été fournis par Osisko, afin de représenter des combinaisons potentielles de minerai qui seront traitées pendant la durée de vie de la mine. Les résultats sont détaillés dans l'étude de WSP (2023) (annexe C).

Les résultats sur la qualité de l'eau de procédé sont comparés aux critères de l'effluent final (MDDEP, 2012), de l'eau de consommation (EC) et de résurgence des eaux de surface (RES). Des dépassements ont été observés dans les paramètres de traitement des résidus.

La minéralogie est similaire entre les échantillons de résidus miniers. Le quartz et la muscovite sont les minéraux dominants dans tous les échantillons de résidus. La teneur en pyrite est plus élevée dans les échantillons de résidus que dans ceux de stériles et de minerai. La teneur totale en minéraux carbonatés, qui ont le potentiel de neutraliser significativement l'acide, est faible dans les échantillons de résidus. Du gypse, généré par le processus de broyage et de destruction au cyanure, est observé dans tous les échantillons de résidus.

Toutes les concentrations en métaux extractibles dans les échantillons de résidus dépassent le critère de sol « A » pour l'arsenic et l'argent. Des dépassements dans le cuivre, le cobalt, le cadmium, le plomb, le zinc, le mercure, le molybdène, le nickel et le sélénium sont également observés.

Puisque le cyanure est utilisé dans le traitement du minerai, les résidus miniers contiennent également du cyanure.

Tous les échantillons de résidus sont potentiellement générateurs d'acide selon les essais statiques réalisés en raison de leur forte teneur en soufre (entre 2,4 % et 4,8 % en poids) et de leur faible potentiel de neutralisation d'acide.

L'ensemble des échantillons de résidus a été classé comme étant potentiellement lixiviables en arsenic et dans au moins un échantillon. Les résidus ont été classés comme potentiellement lixiviables en argent, en mercure, en cadmium, en cuivre, en sélénium et en zinc. Les calculs d'épuisement des minéraux réalisés à partir des essais cinétiques suggèrent que la plupart des échantillons ont un potentiel générateur d'acide de 1 à 15 ans environ, en conditions de laboratoire.

Le tableau 3 résume les résultats de la caractérisation géochimique (WSP, 2023c) obtenus par les échantillons de résidus miniers.

STÉRILES

Un total de 256 échantillons de stériles provient des zones Bobcat, Caribou, Lynx Main, Lynx HW, Lynx 4, Triple Lynx, Mallard, Underdog et Zone 27. Les stériles ont été sélectionnés sur la base d'un seuil de coupure de 3 g/t d'or.

La sélection des échantillons dans chaque zone minéralisée a été faite en fonction des types de lithologie et de la teneur en soufre. Les lithologies retrouvées dans les échantillons sont : rhyolite/dacite (V1), basalte/andésite (V2), granodiorite en fragment (I1 Frg), granodiorite avec hématite (I2F/I13), granodiorite (I1P/I2P), sédiments (S6) et gabbro-diorite (I3A).

Le quartz et la muscovite sont les minéraux les plus abondants dans les échantillons de stériles. La teneur en quartz est plus élevée dans les lithologies felsiques (V1, I1P, I2P, I2F, I1Frg) et la teneur en muscovite varie selon les unités. La teneur en pyrite et les minéraux carbonatés varient selon les lithologies, les teneurs étant plus élevées dans les lithologies mafiques et felsiques. Il n'y a pas de gypse qui a été observé dans les échantillons de stériles.

Toutes les lithologies de stériles analysées comportent au minimum un échantillon dont les concentrations de métaux extractibles dépassent le critère de sol « A ». L'arsenic dépasse le critère de sol dans toutes les lithologies. L'argent dépasse le critère de sol dans toutes les lithologies, sauf la I2F. D'autres dépassements ont été observés pour le cadmium, le chrome, le cobalt, le cuivre, le plomb, le manganèse, le molybdène, le nickel et le zinc.

Les lithologies pouvant être valorisées sur le site ont été identifiées. À cet effet, les teneurs en As pour le I3A ont été comparés aux teneurs de fond naturelles de l'étude de WSP (2023d). Il a été déterminé que l'unité I3A ne représentait pas un risque significatif de lixiviation de métaux à des concentrations supérieur aux teneurs de fond de la qualité des eaux souterraines du mort-terrain et du socle rocheux peu profond. Ainsi, mise à part l'I3A, les autres lithologies de stériles sont classées comme étant potentiellement lixiviables en arsenic. Toutes les lithologies sont potentiellement lixiviables en argent, à l'exception des lithologies I2F et I13. Certains échantillons ont également été classés comme étant potentiellement lixiviables pour le cuivre, le manganèse, le mercure et le molybdène. Chacune des lithologies de stériles analysées comportent au minimum un échantillon dont l'essai de lixiviation SPLP/CTEU-9 dépasse le critères RES. Des dépassements ont également été observés pour l'aluminium, le mercure, l'antimoine et l'uranium.

Dans les échantillons de stériles, la teneur en soufre totale varie selon les lithologies, la plus élevée étant mesurée dans la lithologie V2 mentionnée ci-dessus. En fonction des essais cinétiques et statiques réalisés, les échantillons provenant des lithologies I1Frg (14 % PGA), V1 (40 % PGA), V2 (43 % PGA), I1P/I2P (52 % PGA) et S6 (60 % PGA) sont classifiés comme étant potentiellement générateur d'acide. La pyrite est la principale source de potentiel d'acidification. Les lithologies I2F et I3A sont classées comme n'étant pas potentiellement acidogènes, conformément aux critères du MELCCFP (MELCC, 2020). Selon les calculs d'épuisement des taux de sulfures, les échantillons de stériles ont le potentiel de générer de l'acide et des métaux de lixiviation de 2 à 304 ans, en conditions de laboratoire. Les résultats minéralogiques de tous les échantillons des lithologies V1, V2, I1Frg, I1P/I2P, I2F/I13 et I3A indiquent que la pyrite est la principale source de PGA. Le tableau 3 résume les résultats de la caractérisation géochimique (WSP, 2023c) obtenus par les échantillons de stériles.

MORT-TERRAIN

Un total de 230 échantillons de mort-terrain sur l'ensemble du site minier a été prélevé par WSP en 2021 et en 2022, avec des profondeurs allant de 0 m à 4,5 m sous la surface du sol.

Quatre-vingt-sept (87) % des échantillons de mort-terrain présentent des teneurs en métaux inférieurs aux critères de sol « A ». Des essais de lixiviation SPLP/CTEU-9 effectués ont montré qu'il n'y avait pas de risque significatif de lixiviation de métaux à des concentrations supérieures au bruit de fond naturel.

Les échantillons de mort-terrain sont considérés comme non potentiellement générateurs d'acide. Les concentrations de métaux extractibles sont inférieures aux critères du sol « A ».

Le tableau 3 résume les caractéristiques géoenvironnementales des stériles, du mort-terrain, des résidus miniers et du minerai (WSP, 2023c).

Tableau 3 Résumé de la classification des stériles, du mort-terrain et des résidus selon les essais statiques (tiré de l'étude de caractérisation géochimique, WSP, 2023c)

Type d'échantillon	Lithologie	Classification					
	V1	PGA variable, lixiviable pour Ag et As					
	V2	PGA variable, lixiviable pour Ag, As, Cu, Mn					
	I1 Frg	PGA variable, lixiviable pour Ag et As					
Stériles	I1P/I2P	PGA variable, lixiviable pour Hg, Ag, As, Cu, Mo					
Ñ	I2F/I13	NPGA, lixiviable pour l'As					
	I3A	NPGA, lixiviable pour Ag et As, jugée raisonnable pour une utilisation comme matériau de construction sur le site, à condition qu'une surveillance appropriée soit effectuée et que des mesures d'atténuation soient mises en place si nécessaire.					
	S6	PGA variable, lixiviable pour As, Ag					
Mort-terrain		NPGA, pas de risque significatif de lixiviation de métaux à des concentrations supérieures aux bruits de fond naturels					
Résidus		PGA, contenant du cyanure, lixiviable pour Hg, As, Cd, Cu, Pb, Zn					
Minerai		PGA, lixiviable pour Hg, Ag, As, Cd, Cu, Se, Zn					

2.7 AUTORISATIONS DIVERSES

Depuis l'acquisition du Projet, plusieurs baux, permis et autorisations ont été obtenus par Osisko, dont les autorisations nécessaires à la prise de plusieurs échantillons en vrac.

En 2017, Osisko a obtenu les autorisations nécessaires à la prise d'un échantillon en vrac dans les zones Caribou et 27. En 2018, les autorisations nécessaires à la prise d'un échantillon en vrac dans les zones Lynx et Underdog ont aussi été obtenues; l'échantillon de la zone Lynx a été prélevé et celui dans Underdog a été annulé. En 2020 et en 2021, Osisko a aussi obtenu les autorisations pour procéder à la prise d'un échantillon en vrac dans la partie supérieure de Triple Lynx, incluant des travaux de caractérisation; tous ces travaux ont été complétés. Finalement, une demande de modification d'autorisation nécessaire à la construction des installations a été obtenue en décembre 2022 afin de procéder à la prise d'un échantillon en vrac dans Lynx 4, Caribou et Triple Lynx.

De plus, afin de soutenir les activités de forage et d'échantillonnage en vrac, plusieurs autorisations reliées au traitement des eaux minières et des eaux usées domestiques, ainsi qu'aux prélèvements d'eau potable et d'eau souterraine pour le maintien à sec des infrastructures souterraines, ont été obtenues au fil des ans.

Pour la construction de chemins et de bassins, il y a un besoin en matériaux meubles provenant de bancs d'emprunt. Selon la nature des activités, les bancs d'emprunt doivent faire l'objet d'une demande d'autorisation au MELCCFP ou d'une demande de bail non exclusif (BNE) au MRNF, conformément aux exigences de la Loi sur les mines et de la LQE. Un banc d'emprunt situé au nord-ouest du site est présentement utilisé par Osisko.

D'autre part, les activités d'exploitation et de construction des infrastructures menant à la production commerciale du gisement aurifère de la propriété minière Windfall feront l'objet de plusieurs demandes d'autorisation, une fois le Projet autorisé dans le cadre de la procédure d'évaluation environnementale en milieu nordique.

La liste à jour des autorisations et tout autre document obtenu auprès des autorités gouvernementales est fournie à l'annexe D.

3 DESCRIPTION DES ACTIVITÉS MINIÈRES ACTUELLES ET FUTURES

Les informations contenues aux sections suivantes ont été en partie tirées de la précédente version du plan de restauration émise pour les activités d'exploration, et ont été mises à jour selon les informations contenues dans l'étude de faisabilité NI-43-101 de 2023 (BBA) ainsi que dans l'ÉIE de 2023 (WSP).

3.1 DESCRIPTION DES ACTIVITÉS MINIÈRES

Osisko procède à des travaux d'exploration sur la propriété Windfall depuis son acquisition du site en 2015. Depuis, plusieurs échantillonnages en vrac, études environnementales et d'ingénierie ont été réalisées dans le but de développer le Projet. Osisko a publié, à l'automne 2022, une mise à jour des réserves minérales du Projet, qui a mené à la publication d'une étude de faisabilité. Les méthodes d'exploitation, la description des bâtiments, des infrastructures d'opération et de soutien ainsi que les infrastructures de gestion des résidus miniers et des eaux détaillés dans la présente section sont basées sur le projet présenté dans cette étude de faisabilité (BBA Inc. *et al*, 2023).

À l'heure actuelle, les infrastructures dont la construction est prévue en 2023 et qui sont nécessaires à l'échantillonnage en vrac (activités d'exploration) en cours ont été autorisées. Osisko procède actuellement aux études et demandes nécessaires à l'obtention des permis et autorisations requis pour débuter la phase d'exploitation. Le cas échéant, Osisko prévoit commencer la construction des infrastructures nécessaires à l'exploitation en 2024 et prévoit débuter l'exploitation du gisement en 2025.

Depuis la reprise des travaux sur le site Windfall par Osisko en 2017, plusieurs installations de support déjà en place ont été modifiées, agrandies ou ajoutées pour les fins des échantillonnages en vrac. C'est le cas des aires de stockage des stériles, des chemins et des lignes électriques. Les installations présentes actuellement sur le site sont montrées à la carte 3.

À partir de 2024, les activités de construction et les opérations minières seront axées sur la préparation à l'exploitation du gisement aurifère du site minier Windfall. Ainsi, pour la phase d'exploitation minière, une fois les autorisations obtenues, plusieurs infrastructures seront modifiées, agrandies ou ajoutées. Les travaux prévoient la construction de nouvelles aires d'accumulation, d'infrastructures de gestion des eaux, d'une usine de traitement du minerai et de filtration des résidus, d'un campement et de bâtiments administratifs, entre autres. La halde à stériles existante sera agrandie (2030) et la halde à mort-terrain sera déplacée et agrandie. Un parc à résidus filtrés (de type dry stack) et une halde à minerai seront également construits.

Selon le rapport de faisabilité NI 43-101 (BBA Inc. *et al*, 2023), la période de préproduction débutera au second trimestre de l'année 2024 et la production terminera en 2035, ce qui équivaut à une période d'environ 10 ans. L'exploitation débutera par le secteur Lynx, sera suivie par la zone Main (Caribou et Zone 27) et terminera par la zone Underdog. La zone Triple 8 est actuellement écartée du plan minier en raison de l'absence de ressources classifiées.

La présente section décrit la méthode d'exploitation et de traitement du minerai ainsi que les infrastructures qui y sont reliées. Le diagramme simplifié du processus de traitement du minerai est présenté à la figure 1 (BBA Inc. *et al*, 2023), montrant les circuits du procédé de traitement du minerai lors de la phase d'exploitation.

Un calendrier de réalisation des travaux est présenté à la section 8.4.

3.1.1 MÉTHODE D'EXPLOITATION ET DE TRAITEMENT

Le plan minier en vigueur prévoit l'extraction d'environ 12,1 Mt de minerai ainsi que 8,5 Mt de roches stériles sur une durée de vie de 10 ans, pour un total de 20,6 Mt de matériel extrait. Le taux d'extraction par année d'exploitation, stériles et minerai combiné représente environ de 2 Mt par année. Les taux d'extraction moyens et de production sont résumés au tableau 4.

Il est à noter qu'un plan minier établi peut être modifié en cours de route; les modifications peuvent être justifiées par plusieurs facteurs, comme le marché de la ressource, la facilité ou la difficulté d'exploitation, le degré de concordance entre la géologie et le terrain, la découverte de ressources additionnelles, ou même la disponibilité des équipements.

Les infrastructures et les bâtiments projetés dans le cadre des activités d'extraction, de traitement du minerai et des résidus sont présentés sur la carte 4.

Tableau 4 Sommaire des taux de production et de traitement

Taux d'extraction de minerai	3 315 t/j
Taux d'extraction de stériles	2 329 t/j
Taux d'extraction moyen total (minerai et stériles)	5 000 t/j
Taux moyen visé de traitement de minerai	3 400 t/j
Taux de production de résidus miniers	3 400 t/j

MÉTHODE D'EXTRACTION

L'exploitation souterraine du gisement aurifère Windfall est réalisée selon la méthode d'abattage de chantiers à longs trous par retrait longitudinal. Cette méthode consiste à développer des galeries dans le bas et le haut d'un filon-couche et à forer entre les deux niveaux, pour ensuite casser le matériel et le soutirer par le bas à partir d'une rampe principale ou d'une galerie de transport.

Il est prévu qu'aucun employé n'entre dans les chantiers d'extraction; le remplissage des pelles (scoop) est téléguidé à partir de la salle de contrôle située dans l'usine de traitement de minerai. Les matériaux seront ensuite transportés à l'aide de chargeurs souterrains jusqu'à une rampe d'accès vers la surface. Par la suite, à partir de la rampe d'accès, des camions à benne (tombereau) d'une capacité de 54 t transporteront ces matériaux vers l'usine de traitement du minerai.

Sur chaque niveau de production, il y aura un puisard avec une pompe ou un trou de drainage pour récolter et pour évacuer les eaux d'exhaure, des monteries d'entrée et de sortie d'air, une sous-station électrique, une aire d'accumulation du minerai en attente d'être transférée à la surface, un accès de réception pour le ciment de remblai du chantier, lorsque nécessaire, ainsi qu'un accès facile vers les refuges de sécurité.

Comme mentionné précédemment, le tonnage à extraire par année d'exploitation, minerai et stériles cumulés, représente autour de 2 Mt par année, dont la moitié correspond au développement pour accéder aux zones qui deviendront des chantiers. Environ 20 % des stériles seront directement entreposés dans des galeries à remblayer.

L'emplacement des ouvertures au jour est présenté à la carte 5.

TRAITEMENT DU MINERAI

À noter qu'en date de la rédaction du présent plan de restauration, aucune usine de traitement de minerai n'est présente sur le site.

Le traitement du minerai s'effectuera dans l'usine de traitement du minerai, dont la construction est prévue de débuter en 2024. L'emplacement proposé de l'usine est présenté à la carte 4. Selon l'étude de faisabilité NI 43-101 (BBA Inc. *et al*, 2023), la production annuelle moyenne prévue est de 294 234 onces d'or à une teneur moyenne de 8,1 g/t d'or à l'entrée de l'usine de traitement du minerai. Pour la durée de la vie de la mine, il est estimé que l'usine de traitement du minerai récupèrera en moyenne 93,1 % de l'or payable et 83,3 % pour l'argent.

L'usine de traitement du minerai aura une capacité nominale de traitement de 3 400 t/j; sa capacité moyenne maximale sera de 4 080 t/j. Les principaux paramètres envisagés pour le traitement du minerai sont les suivants décrits au tableau 5.

La séquence de traitement du minerai est décrite dans les sections suivantes.

Tableau 5 Résumé des principaux critères de conception du traitement du minerai

Description	Unité	Valeur
Taux de production nominale de l'usine	t/j	3 400
Teneur moyenne d'alimentation en Au	g/t	8,06
Teneur moyenne d'alimentation en Ag	g/t	4,18
Récupération globale	-	-
- Au	%	93,1
- Ag	%	83,8
Concentration résiduelle en cyanure à l'effluent de l'usine (moyenne/max)	mg/L	10/20
Objectif de densité final pour la pulpe de résidus	% w/w	48

Source: BBA, Inc. et al, 2023.

CONCASSAGE ET BROYAGE

Comme mentionné précédemment, le minerai est transporté à la surface par camion à benne d'une capacité de 54 t par charge. Une aire d'entreposage du minerai (halde à minerai) sera aménagée à proximité du bâtiment de concassage.

Le traitement consiste tout d'abord en un concassage primaire à circuit ouvert. Les produits du concassage sont collectés sur un convoyeur qui alimente le silo à minerai. La capacité nominale du silo est de 4 010 t ou environ 26 heures.

Le concassage est suivi d'un circuit de broyage en circuit fermé, composé de deux broyeurs et d'un concasseur à cône. De l'eau est ajoutée au procédé pour contrôler la densité de la pulpe et atteindre environ 65 % de solide dans le broyeur à boulets. Les particules fines sont dirigées vers le circuit de gravimétrie et les particules grossières sont recirculées dans le circuit de broyage.

GRAVIMÉTRIE

Un circuit de gravimétrie recueillera les particules fines du crible rotatif du broyeur à boulets. Ce matériel alimentera deux tamis d'émottage (scalpeur) via un boîtier divisé. Le matériau grossier des tamis retournera à l'alimentation des cyclones. Le matériau fin des tamis alimentera deux concentrateurs gravimétriques. Le concentré d'or des deux concentrateurs gravimétriques alimentera un réacteur de lixiviation intensive. Les résidus de la gravimétrie retourneront dans le boitier de la pompe d'alimentation des cyclones.

La solution mère de la lixiviation du circuit de gravimétrie sera pompée vers une cellule d'extraction électrolytique dédiée via un réservoir de solution mère, situé dans la raffinerie. Les résidus du réacteur de lixiviation intensive seront pompés vers le boitier de la pompe d'alimentation des cyclones.

ÉPAISSISSEMENT DE PRÉLIXIVIATION

La sousverse des cyclones, sous forme de pulpe, passera à travers un tamis à déchets avant d'alimenter l'épaississeur de prélixiviation. L'épaississeur de prélixiviation épaissit la pulpe à 50 % solide (w/w) avant de la pomper vers le circuit de lixiviation. L'eau de la surverse de l'épaississeur est envoyée dans le réservoir d'eau de procédé.

LIXIVIATION

La pulpe de la sousverse de l'épaississeur de prélixiviation sera pompée vers la boite d'alimentation de la lixiviation. Ce circuit consiste en un réservoir de prétraitement et quatre réservoirs de lixiviation au cyanure opérés en séries. Dans le réservoir de prétraitement, la pulpe sera additionnée de nitrate de plomb et de l'oxygène sera injecté. Cette opération permet de réduire la consommation de cyanure en optimisant la lixiviation de l'or. Chaque réservoir de lixiviation aura un diamètre de 14 m. Les réservoirs seront agités mécaniquement. De la chaux et du cyanure seront ajoutés et de l'oxygène sera aussi injecté afin de mettre l'or et l'argent en solution, sous forme d'ions d'or et d'argent.

ADSORPTION AU CHARBON - CIP

La pulpe est ensuite dirigée vers les réservoirs d'adsorption; neuf réservoirs de 11 m de diamètre chacun, agités mécaniquement et fonctionnant en mode carrousel.

Dans ce mode de fonctionnement, le charbon actif est maintenu dans des réservoirs CIP (*Carbon in pulp*), tandis que la pulpe est pompée de réservoir en réservoir. Le flux de pulpe est inverse au flux de charbon activé. Les ions d'or et d'argent s'attachent aux particules de charbon, lesquelles sont envoyées à l'élution via le réservoir initial. Des filtres empêchent les particules de charbon de suivre le flux de pulpe. La pulpe vidée des métaux précieux dissous, dite pulpe stérile, devient un résidu industriel.

ÉLUTION, RÉGÉNÉRATION ET RAFFINERIE

À la suite de l'adsorption des ions d'or et d'argent sur le charbon, le charbon chargé est pompé vers un tamis de charbon également chargé. Le matériel passant est renvoyé vers l'alimentation du circuit CIP alors que le matériel grossier est transféré vers un réservoir de lavage à l'acide, avant d'être transféré vers une colonne d'élution pour séparer les ions d'or et d'argent et les transférer vers l'électrolyse, où ils seront remis sous forme solide et coulés en lingots de doré.

Le charbon est ensuite envoyé vers un four rotatif à haute température pour être réactivé et retourné dans le circuit CIP. Afin de garder la bonne quantité de charbon actif dans le circuit CIP et palier à la perte du charbon fin, du nouveau charbon actif est ajouté dans le circuit.

DESTRUCTION DU CYANURE

L'usine comprend également une zone de préparation des réactifs et des circuits de pompage pour alimenter les différents secteurs de l'usine en eaux de procédé. Un circuit de destruction du cyanure est également inclus pour traiter les résidus du CIP avant de les pomper 1 km plus loin, vers l'usine de filtration des résidus et de remblai en pâte.

La destruction du cyanure est effectuée à l'aide d'un procédé SO₂/oxygène. Le processus se déroule dans deux réservoirs fonctionnant en parallèle. Le SO₂ liquide est ajouté dans les réservoirs et de l'oxygène gazeux est injecté par le fond des réservoirs pour oxyder les différents composés de cyanure présents. Du sulfate de cuivre sera également ajouté comme catalyseur, si requis, ainsi que de la chaux hydratée pour contrôler le pH dans les réservoirs. Un agitateur assure un mélange adéquat et une dispersion des gaz.

Les résidus traités sont ensuite pompés vers l'épaississeur à résidus (voir section traitement des résidus). Leur concentration en cyanure à ce stage est d'environ 5mg/L et leur pourcentage solide est de 50 % (w/w).

TRAITEMENT DES RÉSIDUS

Une fois que le minerai a été traité dans l'usine de traitement du minerai, les résidus sont acheminés par conduite vers l'usine de filtration des résidus et de remblai en pâte, située au sud-est du site, près du portail Lynx (carte 4). L'usine de filtration des résidus et de remblai en pâte comprend un épaississeur, des filtres-presses, un clarificateur, un système de production de remblai en pâte et des pompes à déplacement positif. La figure 1 illustre le procédé de filtration des résidus.

L'épaississeur à résidus est localisé dans un bâtiment au sud-est du site, près des lacs SN6 et SN2 (carte 4). Ce bâtiment intègre l'usine de filtration des résidus (l'épaississeur à résidus), l'usine de remblai en pâte et l'usine de traitement de l'eau. L'épaississeur, de 28 m de diamètre, est suivi de filtres-presses qui traitent la totalité des résidus de l'usine et des boues d'exhaure de la mine souterraine. Le produit, à la sortie des filtres-presses, est un résidu filtré (84 % solide w/w) qui sera mélangé avec du ciment pour le remblai souterrain ou transporté par camion vers le parc à résidus filtrés. En fonction des besoins en remblai de la mine, la proportion estimée de résidus dirigée vers l'usine de remblai est de 39 % et la proportion dirigée vers le parc à résidus est de 61 %. Ce ratio pourrait varier selon les besoins en temps réel en remblai.

L'usine de filtration des résidus reçoit, en plus des résidus miniers, les boues épaissies de la mine souterraine à un taux nominal entre 6,9 et 9,7 t par heure (t/h). L'usine peut traiter 196 t/h de résidus et de boues.

Les principaux paramètres des critères de conception envisagés pour le traitement des résidus miniers sont présentés au tableau 6.

Tableau 6 Résumé des principaux critères de conception de l'usine de filtration des résidus

Description	Unité	Valeur
Taux de production de résidus	t/j	3 400
Facteur de conception de l'usine de filtration des résidus	%	20
Capacité de l'usine de filtration	t/h	196,4
Résidus dirigés vers l'usine de remblai (LOM)	%	39
Résidus dirigés vers le parc à résidus miniers (LOM)	%	61

Source: BBA, Inc. et al, 2023.

Les résidus secs sont dirigés vers le circuit de production de remblai en pâte ou transportés par camion vers le parc à résidus miniers. Les résidus en pâte sont envoyés sous terre via des conduites dirigées directement dans les chantiers à remblayer. La densité du mélange est contrôlée pour obtenir une boue facile à faire circuler dans des conduites. Certains chantiers à remblayer sont remplis de stériles puis cimentées avec la pâte résidus/ciment, alors que d'autres sont remplis seulement de pâte de résidus/ciment.

La demande pour le remblai en pâte, résidus mélangés à du ciment, est en fonction des chantiers à exploiter. Le remblai est utilisé soit pour renforcer les piliers de surface, soit pour faciliter l'exploitation de nouveaux chantiers, voisins de zones déjà ouvertes, créant ainsi des murs de support pour les chantiers à ouvrir.

Au total, sur 10 ans, il est prévu envoyer 4,75 Mt de résidus et 450 000 t de ciment sous terre pour les opérations de remblai.

3.1.2 ZONES MINÉRALISÉES

Les zones minéralisées du site minier Windfall sont les zones Lynx, Underdog, Main zone et Triple 8. Le secteur défini comme ressources, incluant les réserves, mesure 3 km x 1,7 km x 1,6 km de profondeur, à l'exception de la zone Triple 8, où la profondeur est de 1,2 km. Le Tableau 7 présente les divers secteurs des zones minéralisées.

Tableau 7 Classification des zones minéralisées

Zone	Secteur	
	Lynx Main	
	Triple Lynx	
Lynx	Lynx SW	
	Lynx 4	
	Lynx HW	
Underdog	Underdog	
	Mallard	
	F-Zones	
	Bobcat	
Dein ein ele	Caribou Extension	
Principale	Zone 27	
	Caribou 1	
	Caribou 2	
	Windfall North	
Triple 8	Triple 8	

3.1.3 RAMPE D'ACCÈS

L'extraction se fera par deux portails, soit le portail Principal et le portail Lynx, dont les caractéristiques sont présentées au tableau 8. Les données contenues dans le tableau sont tirées de l'étude de faisabilité (BBA Inc. *et al*, 2023). La carte 5 présente l'emplacement des portails et de leur rampe d'accès.

La longueur actuelle de la rampe du portail Principal est de 12,8 km en longueur avec une autorisation permettant de l'étendre à 31,6 km de longueur et son développement est toujours en cours.

Tableau 8 Principales caractéristiques des zones d'extraction de la mine Windfall

Caractéristiques	Portail principal	Portail Lynx	
Localisation	Côté ouest du gisement	Côté est du gisement	
Zones comprises	Caribou, Zone 27, Mallard, F-Zone et Underdog	Bobcat, Lynx 4, Lynx Main et Triple Lynx	
Profondeur	S'étend de la surface à 410 mRL vers le bas à -618 mRL	S'étend de la surface à 390 mRL vers le bas à -700 mRL	
Nombre de niveaux	42	52	
Espacement entre les niveaux	20 m	20 m	
Développement latéral	69 km	108 km	
Extraction mineral	3.3 Mt	8.9 Mt	

3.2 DESCRIPTION DES BÂTIMENTS ET DES INFRASTRUCTURES

3.2.1 BÂTIMENTS ET INFRASTRUCTURES DE SURFACE

Dans le cadre des activités d'exploitation, certaines infrastructures existantes du secteur du portail des activités d'exploration seront utilisées. Les infrastructures existantes et projetées sur le site minier sont énumérées dans la liste ci-dessous et sont décrites dans les sections qui suivent. La carte 3 montre l'aménagement général des installations existantes. La carte 4 montre l'aménagement général des installations projetées au site Windfall.

L'emplacement des installations projetées minimise l'empiètement sur le milieu naturel afin de faciliter la circulation entre les installations, avoir une meilleure gestion des activités, assurer une meilleure sécurité des employés tout en gardant des distances sécuritaires selon les installations. Son optimisation est toujours en cours.

Les infrastructures électriques, de transport et de soutien sont listées ci-dessous et décrites dans les pages qui suivent. Les infrastructures d'extraction et de traitement sont listées ci-dessous et ont été décrites à la section 3.1.

BÂTIMENTS ET INFRASTRUCTURES D'EXTRACTION ET DE TRAITEMENT DU MINERAI

- Routes de production;
- portail Principal (existant) et une rampe de 31,6 km de longueur;

portail Lynx; refuges souterrains; atelier mécanique souterrain; bâtiment multi-services où se trouveront : les bureaux administratifs; l'infirmerie; un vestiaire et des douches pour les travailleurs; la salle de sauvetage minier et les salles de formation; l'entrepôt; le garage pour l'entretien mécanique; la carothèque de production; l'usine de traitement du minerai, qui inclura notamment : un circuit de broyage SABC avec 1 broyeur semi-autogène (SAG), 1 broyeur à boulets, 1 concasseur à cône et des cyclones; des concentrateurs gravimétriques; un épaississeur de prélixiviation; un réservoir de préparation et des réservoirs de lixiviation au cyanure de 14 m de diamètre chacune; des réservoirs d'adsorption de 11 m de diamètre chacune; un circuit d'élution; un four de régénération rotatif à haute température; des réservoirs pour le processus de destruction au cyanure; bâtiment du concasseur, qui inclura notamment : un brise-roche; un concasseur à mâchoire (1);

un système de dépoussiérage;

silo à minerai d'une capacité utile de 4 010 t ou 26 heures;

dépôts d'explosif souterrain pour chacun des portails (2).

convoyeur principal d'alimentation;

BÂTIMENTS ET INFRASTRUCTURE DE TRAITEMENT DES RÉSIDUS

- Usine de filtration des résidus miniers et de remblai en pâte, qui inclura notamment :
 - un épaississeur à résidus de 28 m de diamètre (1);
 - des filtres-presses;
 - un circuit de remblai en pâte;
 - un système de dépoussiérage;
 - des douches de sécurité;
 - un dôme en toile pour l'entreposage des résidus miniers secs de 28 m de large par 51 m de long et 18 m de haut;
- conduite pour les résidus en pâte à retourner sous terre.

INFRASTRUCTURES ÉLECTRIQUES, DE TRANSPORT ET DE SOUTIEN

- Secteur du campement, incluant notamment :
 - une aire de stationnement;
 - des bermes visuelles et de son;
 - un système de traitement des eaux usées;
 - un système de traitement de l'eau potable;
- route d'accès au site et guérites (2);
- tour de télécommunication;
- 40 conteneurs d'entreposage;
- parc d'entreposage de produits pétroliers, incluant notamment :
 - des réservoirs (4) de 45 000 L de diesel;
 - un réservoir de 10 000 L d'essence
 - un réservoir de 1 000 L de diesel pour les besoins de la mine souterraine;
- aire de tri de matières résiduelles;
- trois bancs d'emprunt;
- réservoirs de propanes (6) ainsi que la tuyauterie associée;
- génératrices (3) avec un réservoir de 50 000 L de diesel par génératrice;
- conteneur de 40 pieds pour l'entreposage de matériel pour les génératrices;
- ligne de distribution électrique sur le site 13,8kV;

- sous-stations électriques;
- cheminées de ventilation;
- système de ventilation incluant une plateforme et un accès pour le secteur de la cheminée de ventilation de surface.

ÉQUIPEMENT MOBILE

Les principaux équipements mobiles utilisés sur le site sont présentés au tableau 9, tiré de BBA *et al* (2023). Les tableaux 9 et 10, tirés de l'étude de faisabilité (BBA Inc. *et al*, 2023), présentent les principaux équipements mobiles requis pour les activités en surface et souterraines.

La majorité de ces équipements mobiles ne seront apportés au site qu'au début des activités de construction des infrastructures d'exploitation du site, suivant l'obtention des autorisations nécessaire au démarrage du Projet.

Tableau 9 Équipement mobile souterrain

Équipement minier Modèle		Quantité 2024	Quantité 2024 à 2035
Équipement pour la production et le développement			
Foreuse frontale (Jumbos)	Epiroc M20-EV	3	5
Boulonneuse	MacLean 975 - EV Omnia	5	7
Boulonneuse	MacLean 975 - EV Omnia High Reach	1	1
Transporteur d'émulsion (développement)	MacLean EC3-EV	2	3
Transporteur d'émulsion (production)	MacLean CS3-EV	0	2
Chargeuse souterraine – 14 t	Epiroc ST14	2	5
Chargeuse souterraine – 18 t	Epiroc ST18	2	3
Camion tombereau – 54 t	Epiroc MT54	6	10
Foreuse de production hydraulique à longs trous	Epiroc Simba ME7C-EV	0	5
Foreuse long trou	Sandvik DL 432i	1	2
Élévateur à ciseaux	MacLean SL3-EV	2	5
Équipement de service			
Camion Block holder	MacLean BH3-EV	1	1
Camion à mat	MacLean BT3-EV	1	2
Chargeuse souterraine – 3,6 t	Epiroc ST2	1	2
Niveleuse	MacLean GR5-EV	1	2
Machine à béton projeté –SWATcrete Mobile CRF Unit	Entrepreneur	1	1
Machine à béton projeté – SWATcrete Sprayer	Entrepreneur	1	1
Camion modulaire – 14 à 22 passagers	MacLean PC3-EV	1	2
Camion modulaire pour le personnel – 2 à 4 passagers	Kovaterra - K200 - IFIX10017	6	12
Camion de service – Service technique	Kovaterra - K200 - IFIX10049	1	5
Camion de service – Arpentage	Kovaterra - K200 - IFIX10029	2	2
Camion de service avec grue	Kovaterra - K200 - IFIX10022	1	1
Camion de service – Mécanique	Kovaterra - K200 – IFI10528	3	3
Camion de service – Construction	Kovaterra - MT100 - IFIF99338	2	3

Tableau 10 Équipement mobile de surface

Équipement mobile	Quantité	Modèle suggéré	Utilisation
Véhicule de type pick-up	14	RAM 2500	Construction et surveillance
Niveleuse	1	JD 772G	Maintenance du site
Camion à eau	1	TA 400	Maintenance du site
Chargeur	1	WA 320	Carothèque et support du site
Chargeur	1	WA 600	Usine de traitement
Chargeur	1	WS 380	Support aux infrastructures de surface
Chargeur	1	WA 500	Chargement des résidus secs
Camion articulé de 40 tonnes	2	740	Transport des résidus secs vers le parc à résidus miniers
Bulldozer	2	D8T et D6	Gestion des résidus secs dans le parc à résidus miniers
Compacteur	1	DH 5	Gestion des résidus secs dans le parc à résidus miniers
Pelle hydraulique	1	PC 360	Gestion des résidus secs dans le parc à résidus miniers
Pelle hydraulique	1	320	Maintenance du site
Chariot élévateur	1	P 6000	Usine de traitement et entrepôt
Chargeuse compacte	1	2424D3	Nettoyage de l'usine de traitement
Chariot élévateur à mat rétractable	1	7300	Entrepôt
Ambulance	1	Chevrolet	Urgence
Camion de pompier	1	Volvo WCN	Protection contre le feu
Véhicule d'urgence	1	40S	Premier répondant
Véhicule tout terrain	1	Outlander	Supervision du site et urgence
Motoneige	1	Skandic	Supervision du site et urgence

3.2.2 SECTEUR DU CAMPEMENT

Le secteur du campement qui sera construit dans le cadre de l'exploitation de la mine est présenté à la carte 4. Le campement offre une capacité d'occupation maximale de 450 travailleurs. Le campement sera composé d'unités modulaires préfabriquées et comprendra les dortoirs, la cafétéria, la salle à manger, le centre de conditionnement physique, le centre culturel des Premières Nations, la salle de jeux, le centre d'accueil, de service, l'infirmerie et la buanderie.

Comme mentionné précédemment, le secteur du campement d'exploration, situé à environ 2 km au sud du site minier, n'est pas inclus dans le présent plan de restauration des activités d'exploitation. Toutefois, il demeurera en place afin de soutenir les activités d'exploration qui ont encore lieu à proximité du site Windfall ainsi que pour loger une partie du surplus de personnel attendu durant la construction du site. Le concept de restauration de ce secteur est énoncé dans le plan de restauration des activités d'exploration, émis en janvier 2022.

3.2.3 INFRASTRUCTURES ÉLECTRIQUES, DE TRANSPORT ET DE SOUTIEN

INFRASTRUCTURES ÉLECTRIQUES

Actuellement, l'électricité pour les activités du site est fournie par des génératrices. La distribution est assurée par une sous-station électrique et une ligne aérienne de 13,8 kV. Les génératrices actuelles sont alimentées en diésel par trois réservoirs de 50 000 L.

Dans le cadre des activités d'exploitation, la construction d'installations de transmission et le transport de l'énergie hydroélectrique jusqu'au site minier Windfall seront nécessaires. Les usines, la mine souterraine et le secteur du campement seront alimentés par des lignes aériennes de 13,8 kV. La demande prévue en énergie de l'ensemble du site minier Windfall est d'environ 27,4 MW. Les travaux préparatoires pour la construction de cette ligne hydroélectrique sont en cours. En 2022, Osisko a signé une entente exécutoire avec l'entreprise Miyuukaa Corporation (Miyuukaa), une filiale en propriété exclusive de la Première Nation crie de Waswanipi (CFNW), pour le transport d'énergie hydroélectrique vers le site Windfall.

INFRASTRUCTURES DE TRANSPORT

Comme mentionné à la section 2.2, le site minier Windfall est localisé à l'ouest de Lebel-sur-Quévillon et est accessible par un chemin forestier d'environ 115 km (chemin 1000 (R1050) jusqu'au kilomètre 12, chemin 5000 (R0853) jusqu'au kilomètre 66, puis le chemin 6000 (R1053) jusqu'au kilomètre 112 - Lac Windfall). Puisque ces chemins sont publics, ils ne font pas partie du programme de réaménagement et de restauration.

Trois types de chemin d'accès sont présents sur le site : les routes de halage, les chemins d'accès et les chemins de services. Le Tableau 11 Caractéristiques des chemins d'accès Tableau 11 présente les caractéristiques des chemins sur le site. Les routes de halage sont empruntées par les camions surdimensionnés pour le transport des stériles, du minerai et des résidus. Les chemins de services permettent d'accéder aux infrastructures, notamment au pourtour du parc à résidus et de la halde à stériles. Les chemins d'accès permettent d'accéder au site.

Les chemins d'accès présents sur le site Windfall sont illustrés sur les cartes 3 et 4.

Tableau 11 Caractéristiques des chemins d'accès

Type de chemin	Utilisation	Longueur totale (m)	Largeur (m)	Superficie (m²)
Halage	Équipements lourds Camion	1 937	12	23 240
Accès	Camion	450	8	3 600
Service	Camion	3 558	5	17 790

INFRASTRUCTURES DE SOUTIEN

Dans le cadre des opérations, sur chaque niveau de production souterrain, il y aura un puisard avec pompe pour récolter et pour évacuer les eaux d'exhaure, des monteries d'entrée et de sortie d'air, une sous-station électrique, un endroit pour accumuler le minerai en attente d'être envoyé à la surface, un accès pour recevoir le ciment de remblai du chantier lorsque nécessaire ainsi qu'un accès facile vers un refuge de sécurité. Une tour de télécommunication est déjà installée près du portail Principal, une seconde est envisagée.

3.3 GESTION DES EAUX SUR LE SITE

Dans le cadre des activités d'exploitation, la majorité des infrastructures de gestion des eaux existantes du secteur du portail des activités d'exploration sont utilisées. La carte 3 montre l'aménagement général des installations de gestion des eaux existantes. La carte 4 montre l'aménagement général des installations de gestion des eaux projetées au site Windfall. Les paragraphes suivants décrivent de façon détaillée des infrastructures de gestion des eaux.

Toutes les eaux potentiellement en contact avec le site minier sont captées. Les eaux de drainage externe au site qui se déverseraient naturellement sur le site des infrastructures seront déviées par des fossés de déviation vers des zones non impactées. Toutes les aires d'accumulation de rejets miniers et aires industrielles seront munies de fossés collecteurs pour diriger les eaux de contact vers des points de collectes, puis par gravité ou par pompage vers une usine de traitement des eaux (UTE) avant d'être recirculées dans le procédé ou retournées vers l'environnement. Toutes les eaux de précipitation qui transiteront par le site minier seront collectées par ce système de fossés et seront traitées avant d'être retournées à l'environnement. Les autorisations en lien avec les systèmes de traitement des eaux minières, les eaux usées et de prélèvement d'eau potable sont présentées à l'annexe D.

Actuellement sur le site, les infrastructures de gestion des eaux existantes sont les suivantes :

- le fossé périphérique de la halde à mort-terrain actuelle;
- le fossé périphérique de la halde à stériles;
- les bassins de sédimentation (SP1) et de polissage (sans nom, situé directement à l'est du bassin SP1);
- le bassin de collecte (CP) et son déversoir d'urgence;
- l'unité de traitement des eaux.

Les eaux de contact du site sont présentement collectées via un système de fossés de drainage liés au bassin de collecte aménagée en 2020 et sont acheminées par pompage au bassin de sédimentation (SP1) localisé au sud-est de la halde à stériles. Ce bassin alimente l'unité de traitement d'eau. Le bassin de polissage (sans nom) reçoit les eaux traitées des Géotubes TM et de l'unité de traitement des eaux. À la suite d'un ajustement du pH, l'eau est retournée à l'environnement via l'effluent final (Étang 1). Ces deux bassins sont juxtaposés et imperméabilisés à l'aide d'une géomembrane PEHD. Le bassin de collecte (CP) aménagé en 2020 vise à assurer un temps de rétention suffisant permettant de respecter la capacité en eaux des ouvrages localisés en aval.

Dans le cadre des travaux 2023 pour l'échantillonnage en vrac, les infrastructures supplémentaires de gestion des eaux à construire sont les suivantes (WSP, 2022b) :

- le fossé périphérique de collecte autour de l'agrandissement de la halde à stériles et le bassin A;
- les fossés de collecte, des conduites de pompage et le bassin d'accumulation D (bassin D);
- la phase I de la nouvelle UTE et le bassin de polissage P (bassin P), situés à proximité de l'usine de filtration des résidus projetée.

Dans le cadre des opérations minières, dont le début est prévu vers 2025, les infrastructures de gestion des eaux projetées sont les suivantes :

- des fossés de dérivation des eaux propres;
- des fossés de collecte d'eau de contact;

- des bassins de collecte au parc à résidus (PAR1 et PAR2);
- des bassins de collecte en aval du site industriel (B, C1 et C2);
- un bassin de collecte pour les eaux liées à l'agrandissement 2030 de la halde à stériles (F);
- un bassin de collecte en aval de la nouvelle halde à mort-terrain (J);
- un bassin d'accumulation en amont de l'usine de traitement d'eau (D2) requis en 2030;
- un système de pompage, y compris les puisards, les stations de pompage et les tuyaux;
- la phase II de l'UTE;
- un bassin de collecte entre l'UTE et le lieu de décharge de l'effluent industriel (bassin U).

Une fois que la nouvelle UTE sera entièrement fonctionnelle, l'UTE utilisée dans le cadre des activités d'exploration et les Géotubes TM ainsi que les bassins de sédimentation (SP1) et de polissage de l'unité de traitement des eaux seront repensés. Le bassin de collecte CP restera en place.

En période d'exploitation, l'eau de contact du site comprend l'eau qui a transité par le parc à résidus, la halde à stériles, la halde à minerai, la halde à mort-terrain ainsi que par la zone industrielle. Cette eau sera recueillie et dirigée vers les bassins d'accumulation (A, F et/ou CP) par un système de fossés périphériques, de bassins de transit et de pompes.

L'eau de la réserve de mort-terrain et de la plate-forme industrielle est recueillie dans des fossés, acheminée vers les bassins de rétention (bassins B, C, C2, J et/ou U) et traitée avant d'être rejetée dans le bassin de polissage (P), puis à l'environnement.

L'eau recueillie dans les bassins du parc à résidus (PAR1 et PAR2) sera pompée vers les bassins D et D2, puis recirculée dans le procédé de traitement de minerai ou à l'UTE pour traitement avant son rejet dans l'environnement via le bassin P. Les eaux de contact du parc à résidus sont séparées du reste du système d'eau de contact et ne se mélangent qu'à l'usine de traitement.

Les apports d'eau souterraine sont gérés sous terre. L'eau de la mine souterraine est pompée à l'UTE pour être utilisée et/ou traitée avant d'être rejetée dans l'environnement via le bassin de polissage (P).

L'eau extraite de l'usine de filtration des résidus sera dirigée vers l'UTE.

Les dimensions et la structure des bassins et des fossés ont été établies en fonction des critères de la D019 ou les bonnes pratiques de l'industrie.

3.3.1 BILAN HYDRIQUE

Actuellement, sur le site minier, les eaux pluviales sont collectées par un réseau de drainage qui les achemine gravitairement ou par pompage vers l'unité de traitement des eaux existante, où les eaux seront traitées avant d'être recirculées ou rejetées dans l'Étang 1. Actuellement, la capacité maximale de traitement de l'unité de traitement des eaux est de 150 m³/h.

Dans le cadre des activités d'exploitation, une plus grande superficie sera drainée par les nouveaux aménagements, ce qui augmentera la quantité d'eau à traiter. Les eaux pluviales seront collectées par le réseau de drainage qui les acheminera gravitairement ou par pompage vers les différents bassins pour se retrouver ultimement à l'UTE où elles seront traitées avant d'être recirculées ou rejetées dans l'Étang 1.

Le bilan hydrique est présentement en cours de rédaction afin de vérifier les volumes d'eau de contact à traiter. Le rapport sera transmis sur demande lorsqu'il sera disponible.

3.3.2 FOSSÉS DE DÉRIVATION ET DE CAPTAGE

Actuellement sur le site, les eaux de ruissellement en provenance de la halde à stériles sont captées à l'aide de fossés imperméabilisés et dirigées vers les bassins, avant d'être traitées à l'UTE et dirigées dans le bassin de polissage actuel (carte 3).

Les fossés construits depuis 2017 sont imperméabilisés de la façon suivante :

- géotextile;
- géomembrane PEHD 2 mm texturée;
- géotextile et empierrement d'épaisseur et granulométrie variables;
- pentes des talus des fossés seront de 2H :1V;
- fond d'une largeur de 1 m.

La construction des différentes infrastructures en vue de l'exploitation implique l'ajout de plusieurs fossés de collecte des eaux de contact et des fossés de dérivation (carte 4). Tous les fossés de collecte seront imperméabilisés. Ces fossés dirigent les eaux de contacts de manière gravitaire ou par pompage vers les bassins. Les fossés collecteurs sont conçus de la même façon que cité ci-dessus, avec une profondeur qui varie entre 1,0 et 1,8 m, à l'exception des fossés de stockage ceinturant le sud parc à résidus dont le fond de fossé est d'une largeur de 5 m. Compte tenu de la topographie et des pentes, desquelles découlent des vitesses d'écoulement faibles attendues durant la crue de conception, le calibre d'enrochement minimal requis (D₅₀) pour les fossés collecteurs projetés est de 100 mm.

Des fossés de dérivation seront également construits afin de rediriger les eaux propres vers l'environnement. Ces fossés sont localisés à des endroits stratégiques afin de limiter la contamination de ces eaux et leur accumulation dans les bassins de collecte. Ces fossés ne sont pas imperméabilisés.

3.3.3 BASSINS

Actuellement, trois bassins sont présents sur le site; les bassins de sédimentation (SP1) et de polissage (sans nom) ont été construits par Noront avant l'acquisition du site par Osisko. Ceux-ci sont localisés près de l'UTE actuelle et sont utilisés depuis la reprise des travaux d'exploration. Le bassin de collecte (CP) a été construit en 2020 au sud de la halde à stériles et de l'UTE. Ce bassin a un volume utile de 6 950 m³.

Les eaux d'exhaure sont présentement pompées vers l'un des bassins existants, permettant le laminage du débit et de la qualité de l'eau ainsi qu'une décantation primaire des matières en suspension (MES). Le bassin de sédimentation a une capacité d'environ 3 292 m³. L'eau du bassin de sédimentation est ensuite pompée vers l'unité de traitement des eaux existante.

Dans le cadre de l'échantillonnage en vrac de 2023 et pour les opérations d'exploitation de la mine, des bassins supplémentaires seront construits. Comme mentionné précédemment, les bassins A, D et P seront construits en 2023, les bassins B, C, C2, J, U, PAR1 et PAR2 seront construits pour le démarrage de la mine et les bassins D2 et F seront construit à l'année 5 de la vie de la mine. Une fois que les nouvelles infrastructures de gestion des eaux et l'UTE seront pleinement fonctionnelles, les bassins de sédimentation (SP1) et de polissage (sans nom) actuels perdront leur utilité et seront repensés.

Les infrastructures de gestion des eaux, dont les bassins, sont dimensionnées en fonction du bilan d'eau du site et selon les standards de l'industrie, dont la D019.

Le tableau 12 présente les différentes caractéristiques des bassins qui seront requis lors des activités d'exploitation sur le site Windfall.

Tableau 12 Liste des bassins et leurs propriétés

Bassin	Année prévue de construction	Туре	Volume utile (m³)	Élévation berme (m)	Élévation du fond (m)	Niveau d'eau max (m)	Superficie (m²)
Α	2023	Collecte	9 650	407	402	405,4	5 839
В	2025	Collecte	13 350	400	387	399,5	11 031
С	2025	Collecte	7 600	405,5	403	405	8 763
C2	2025	Collecte	9 750	405,5	403	405	9 773
СР	Existant	Collecte	6 950	406	404,5	405,5	9 245
D	2023	Accumulation	74 100	404	398	402,5	29 985
D2	2029	Accumulation	42 000	404	399	403	23 674
F	2029	Collecte	21 800	404	400	404	14 066
J	2025	Collecte	3 700	401,5	398	401,5	5 139
Р	2023	Polissage	7 500	398,5	396	397,35	9 722
U	2025	Polissage	5 450	397,5	393	396	4 912
PAR1	2025	Collecte	204 600	401,5	396,75	401,5	94 412
PAR2	2025	Collecte	34 200	402	398	402	30 587
SP1	Existant	Sédimentation	3 292	NA	-	-	1 644
Polissage	Existant	Polissage	1 674	NA	-	-	908

3.3.4 TRAITEMENT DES EAUX

Actuellement, les contaminants à traiter contenus dans les eaux d'exhaure sont les MES, les métaux ainsi que l'azote ammoniacal. Le traitement des eaux est présentement complété à l'UTE située au sud-est de la halde à stériles. Cette usine est conçue pour les besoins d'exploration de la mine et traite seulement les eaux de ruissellement de la halde à stériles et d'exhaure.

Pour assurer l'enlèvement des métaux (notamment le zinc), une augmentation du pH par l'ajout d'hydroxyde de sodium 50 % (NaOH) permet de réduire la solubilité des métaux. L'ajout de coagulant (sulfate de fer) et de floculant (polyacrylamide) permet de former des flocs qui, une fois l'eau filtrée, réduiront les métaux et les MES.

La méthode de filtration des boues consiste en des Géotubes TM. Deux Géotubes TM d'une capacité de 800 m³ de 27 m par 30 m de long permettent de capter le filtrat et de l'acheminer vers le bassin de polissage.

UTE POUR PHASE D'EXPLOITATION

Dans le cadre de la phase d'exploitation, le nouveau système de traitement de l'eau sera localisé dans un bâtiment existant voisin de celui de l'usine de filtration des résidus et de remblai en pâte. Celui-ci est nécessaire pour traiter les débits d'eau issus du procédé de traitement du minerai et les eaux de contacts des nouvelles infrastructures qui seront construites en phase d'exploitation, dont le parc à résidus miniers, l'agrandissement de la halde à stériles, etc.

La majeure partie de l'équipement de traitement de l'eau sera installée dans l'entrepôt existant annexé au système de destruction de l'ammoniac, installé en 2023 et servant aux besoins en traitement pour les activités de l'échantillonnage en vrac.

Le diagramme simplifié du processus de traitement de l'eau est présenté à la figure 2 (BBA Inc. *et al*, 2023) et montre les circuits du procédé de traitement de l'eau lors de la phase d'exploitation.

Le procédé de traitement des eaux par la nouvelle UTE est basé sur quatre trains de traitement. Le premier train de traitement prendra l'eau en provenance du circuit des métaux dans un processus se déclinant en deux étapes et utilisant un MBBR (réacteur à biofilm à lit mobile). La première étape de ce premier train consiste en l'oxydation de thiocyanates et les cyanates, contenus dans l'eau de procédé en ammoniac. La seconde permet de transformer l'ammoniac produit par la première étape de traitement et l'ammoniac contenu à l'origine dans tous les flux d'eau alimentant le train des métaux en nitrates (nitrification).

Le deuxième train de traitement des eaux est dédié à l'élimination des MES lessivées des aires d'accumulation, des routes et des surfaces au pourtour des bâtiments sur le site.

Le troisième train de traitement permettra le retrait des métaux. Il est conçu pour traiter principalement l'aluminium, l'arsenic, le cuivre, le fer et le plomb contenus dans les eaux de ruissellement des aires d'accumulation. Ce train de traitement des métaux sera également en mesure de prendre l'eau souterraine pompée à la surface et de traiter la purge d'eau nécessaire pour maintenir une qualité d'eau adéquate à l'usine de traitement du minerai.

Le quatrième train de traitement sera dédié aux eaux d'exhaure et est différent de celui installé pour traiter eaux de surface. Ceci est nécessaire, car il est attendu que la teneur en MES des eaux d'exhaure soit quelque centaine de fois supérieures à la concentration initiale des eaux de contact en surface.

Par le biais des trains de traitement présentés ci-haut, il est anticipé que les eaux issues de l'UTE seront conformes à la règlementation en vigueur, incluant les essais de létalité.

3.3.5 EFFLUENT FINAL

Actuellement, l'eau traitée se déverse à l'Étang 1 (milieu récepteur) (carte 3). La localisation de l'effluent final est demeurée la même depuis la reprise des travaux d'exploration par Osisko.

Lors des phases d'exploitation et de restauration, l'effluent final de la nouvelle usine de traitement des eaux continuera à se déverser dans l'Étang 1 situé à 550 m au nord-ouest de l'UTE.

Durant les premières années d'exploitation, le volume d'eau traité et évacué vers l'environnement sera de l'ordre de 1,9 à 2 Mm³ d'eau annuellement, selon les scénarios climatiques. Pour les dernières années, le volume annuel évacué sera plutôt entre 2,3 et 2,7 Mm³.

Depuis la reprise des travaux par Osisko, l'effluent final est échantillonné conformément aux exigences de la D019 et au Règlement sur les effluents des mines de métaux et des mines de diamants (REMMMD; DORS/2002-222).

3.3.6 EAUX SANITAIRES

Dans le cadre des activités d'exploitation, les eaux usées générées par le site Windfall seront soient acheminées vers un système de traitement par un réseau d'égout souterrain ou dans un champ d'infiltration. Le système de traitement proposé pourrait comprendre \pm 240 m de conduites gravitaires, deux stations de pompage d'une capacité approximative de 10 L/s et \pm 310 m de conduites d'évacuation. Le système de traitement des eaux usées est basé sur les différents usages prévus pour le camp et les autres infrastructures, les débits unitaires d'eaux usées prescrits par le MELCCFP dans son Guide pour l'étude des technologies conventionnelles de traitement des eaux usées d'origine domestique et une occupation maximale de 450 travailleurs. Le débit de conception considéré pour les équipements de traitement est de 118 m³/j.

3.3.7 EAU POTABLE

Lors de la phase d'exploitation, l'eau brute du site Windfall sera fournie par un puits d'eau souterraine (P5), situé à \pm 1,1 km de l'unité de production d'eau potable. L'eau brute pompée est considérée comme de bonne qualité, mais nécessite un traitement pour l'élimination du fer et du manganèse (filtres à sable vert) ainsi qu'une chloration avant sa distribution à travers le réseau d'approvisionnement.

Le système de production d'eau potable sera situé à l'entrée du site, dans quatre unités préfabriquées de 12 m x 2,5 m. Deux réservoirs souterrains d'un volume total de 70 m³ serviront à stocker l'eau traitée avant sa distribution.

Le système offre une capacité ajustée à une occupation maximale de 450 travailleurs. Le débit journalier moyen estimé est de 135 m³/j, avec une pointe horaire à 50 m³/h et une pointe journalière estimée à 270 m³.

3.3.8 GESTION DES EAUX SOUTERRAINES

Un programme de suivi des eaux souterraines a été entamé par Osisko en janvier 2019 dans plusieurs puits d'observation afin de suivre la qualité de l'eau et de mesurer les variations du niveau d'eau. Les mesures de niveaux d'eau sont réalisées en utilisant des sondes à pressions à enregistrement automatique. Une sonde barométrique a aussi été installée afin de permettre la correction des niveaux d'eau souterraine selon les variations de la pression atmosphérique. L'enregistrement des données est effectué deux fois par jour. Le suivi des niveaux de l'eau comprend aussi celui de l'eau de surface.

Dans le cadre de l'agrandissement de la halde à stériles à l'été 2023, le puits WIN-17-189R/S sera condamné pour la construction de l'assise de la halde. Dans le cadre des activités d'exploitation, des puits d'observation additionnels seront aménagés afin d'effectuer un suivi régulier de la qualité de l'eau souterraine en amont et en aval hydraulique des aménagements à risque, comme l'usine de traitement du minerai, le parc à résidus miniers, l'aire d'entreposage de produits pétroliers ou chimiques, etc. Les puits d'observation existants et projetés sont illustrés aux cartes 3, 4 et 7.

3.4 AIRES D'ACCUMULATION

Actuellement, la propriété minière Windfall comprend une halde à mort-terrain ainsi qu'une halde à stériles, qui sert également pour l'entreposage temporaire de minerai. La carte 3 montre l'emplacement des aires d'accumulation existantes.

Dans le cadre des opérations, la halde à mort-terrain sera déplacée et trois aires d'accumulation supplémentaires seront construites sur le site, soit une nouvelle halde à mort-terrain, une halde à minerai et un parc à résidus miniers. La halde à stériles sera également agrandie et empiètera, à terme, sur l'empreinte de la halde à mort-terrain actuelle qui sera relocalisée ailleurs sur le site (carte 3).

Un suivi régulier est réalisé dans le but de déceler et de signaler la présence de signes d'instabilité dans les aires d'accumulation, tels que l'apparition de fissures en crête, des tassements ou des bombements le long des pentes ou des fondations en pied de talus et/ou des signes d'érosion significative.

Les sections suivantes décrivent les conditions actuelles et projetées des aires d'accumulation.

3.4.1 HALDE À MORT-TERRAIN

Actuellement, la halde à mort-terrain, d'une superficie de 14 720 m², est localisée sur un plat topographique situé au sud de la halde à stériles actuelle et au sud-ouest du bassin CP (carte 3). Les matériaux de décapage qui ne sont pas valorisés pour la restauration des sites de forage d'exploration sont entreposés sur cette halde.

Le compost généré par les déchets alimentaires et le carton du campement sont aussi déposés sur la halde à mort-terrain pour terminer sa maturation, mais constitue un faible volume.

Dans le cadre des activités d'exploitation, une nouvelle halde à mort-terrain sera aménagée; sa position projetée est présentée à la carte 4. La capacité maximale de la future halde à mort-terrain est de 638 100 m³, avec une empreinte de 82 800 m². Les caractéristiques géométriques finales de la halde à mort-terrain proposée sont les suivantes :

- hauteur totale de 21 m;
- pentes de bancs de 4H:1V pour les deux premiers bancs et 3H:1V pour le troisième banc;
- trois bancs de 7 m;
- pente finale moyenne 4.6H:1V;
- largeur de berme de 10 m entre chaque banc.

Le matériel organique à stocker et à gérer sur le site Windfall provient principalement de la préparation des sites et des infrastructures, soit le parc à résidus, l'usine de traitement, les haldes et les bassins.

La semelle de la halde à mort-terrain ne sera pas recouverte d'une géomembrane, mais les eaux de ruissellement seront collectées par des fossés périphériques imperméabilisés, dirigées vers un bassin de sédimentation et contrôlées avant d'être rejetées dans l'environnement. Dans tous les cas, les eaux de contact seront envoyées à l'UTE pour faire retirer les MES avant leur rejet dans l'environnement.

Le mort-terrain manipulé pendant les travaux de construction pourra être réutilisé comme remblai sur le chantier du site minier Windfall au lieu d'être envoyé sur la halde à mort-terrain. De plus, une partie du mort-terrain sera utilisé pour la construction de bermes visuelles et de sons dans le secteur du nouveau campement.

3.4.2 HALDE À STÉRILES

En 2008, dans le cadre des travaux d'échantillonnage en vrac par Noront, deux haldes, une imperméabilisée et une sans mesure de protection, ont été aménagées pour l'entreposage du minerai et du stérile. Le secteur non imperméabilisé a été retiré et maintenant toutes les surfaces d'entreposage de minerai et de stériles sont imperméabilisées. La halde à stériles a été agrandie à trois reprises afin d'accommoder le volume de stériles et minerai supplémentaire à entreposer en lien avec les quatre échantillonnages en vrac réalisés depuis la reprise des travaux d'exploration par Osisko sur la propriété Windfall. Le sommaire de ces agrandissements et la progression de la capacité de stockage sont résumés au tableau 13.

Tableau 13 Progression de la capacité de la halde à stériles prévus

Phases		Élévation	Production			Production cumulative
гназа	rnases		m³ initial¹	m³ réel	Mt	Mt
Α	Existante avant 2020	419	250 000	264 700	0,54	0,54
В	Agrandissement 2020 jusqu'à l'élévation 413 m	413	205 000	215 700	0,44	0,98
С	Déposition supplémentaire 2020 entre l'élévation 413 m et 419 m	419	195 000	205 900	0,42	1,40
D	Agrandissement 2023	419	-	823 500	1,68	3,08
E	Ajout de paliers entre l'élévation 419 m et 437 m sur l'ensemble de la halde	437	-	1 127 000	2,30	5,38
F	Agrandissement 2029	437	-	1 828 000	3,73	9,11

Une densité de 2,8 t/m³ et un facteur de foisonnement de 30% ont été utilisés pour réaliser le calcul de ces volumes au moment de cette conception (WSP, 2020). Les volumes de ces calculs sont représentés afin de faire allusion aux notes techniques précédemment réalisées. Cependant, comme une contingence avait été appliquée sur le volume, les tonnages visés sont encore respectés avec une densité de 2,77 t/m³ et un facteur de foisonnement de 36%.

L'agrandissement vers l'est de la halde initiale, construit en 2018, permettait le stockage du stérile et de l'échantillon des zones Lynx et Underdog. Par ces travaux, l'emprise de la halde à stériles a été agrandie d'environ 16 100 m² vers l'est et la superficie totale était de 39 700 m². Cette extension a permis d'augmenter la capacité initiale de la halde de 107 620 t à une capacité de 540 000 t, ce qui permettait d'entreposer un volume supplémentaire d'environ 127 570 m³.

En 2020, une extension vers l'ouest de la halde à stériles a été construite afin d'entreposer les 440 000 t de stériles produits lors du fonçage de la rampe menant à la zone Triple Lynx et le minerai de l'échantillonnage en vrac de la zone. Ces travaux ont nécessité l'augmentation de la capacité d'entreposage de la halde à stériles, des modifications aux ouvrages de gestion des eaux (bassin CP) ainsi que l'aménagement de nouvelles infrastructures de soutien. Par ces travaux, la halde à stériles a été agrandie d'environ 45 900 m² vers l'ouest et la superficie de la halde est maintenant de 85 600 m². Cette extension a permis de faire passer la capacité de la halde à stériles de 540 000 t depuis l'agrandissement de 2018 à 980 000 t en 2020, ce qui permet d'accommoder un volume supplémentaire d'environ 205 000 m³.

Les phases C et D combinées représentent le volume total de 2,1 Mt supplémentaires.

L'extension de 2020, construite vers l'ouest, permettait de stocker un total de 1,4 Mt (0,69 Mm³) de stériles à l'élévation 419 m. La capacité maximale devrait être atteinte en 2023.

Dans le cadre de l'échantillonnage en vrac de 2023, la halde à stériles sera à nouveau agrandi. Le rapport d'ingénierie détaillée est présenté à l'annexe E du présent document.

Dans le cadre des activités d'exploitation, le volume de stériles à entreposer a été calculé à partir du tonnage estimé dans le plan minier avec une contingence déterminée par Osisko, pour un total de 9,11 Mt (4,46 Mm³). Par conséquent, une troisième extension, située à l'ouest, est prévue en 2023. Ce prolongement augmentera la capacité à 1,68 Mt (0,82 Mm³), pour un total cumulatif de 3,08 Mt de stériles. La capacité de cette extension devrait être atteinte à la fin de 2026.

Un banc supplémentaire de 15 à 18 m de hauteur, atteignant l'élévation 437 m, sera alors ajouté à la halde à stériles, pour une capacité supplémentaire de 2,3 Mt et un total cumulatif de 5,38 Mt de stériles. Ce volume devrait être atteint au cours de 2030.

Enfin, une dernière extension permettra d'augmenter de 3,73 Mt la capacité de stockage, pour un total de 9,11 Mt de stériles stockés. L'extension finale de la halde à stériles s'étendra vers le sud et couvrira une partie du terrain occupé par la pile existante de mort-terrain, laquelle aura été réduite pour servir aux travaux de restauration progressive sur le site. L'empreinte finale de la halde à stérile sera de 235 038 m².

Le tableau 13 ci-haut présente la capacité de la halde à stériles au cours des différentes phases, avant et après les activités d'exploitation.

Les caractéristiques géométriques finales de la halde à stériles proposée sont les suivantes :

- hauteur totale de 32 m;
- pentes de banc de 3H:1V;
- deux bancs de 16 m;
- pente finale moyenne 3,4:1;
- largeur de berme de 10 m entre chaque banc.

L'emplacement de la halde à stérile à capacité maximale est illustré à la carte 4. L'emplacement et la conception de la halde à stériles visent à réduire l'impact sur l'environnement en limitant l'empreinte du site minier ainsi que les distances de transport.

Les travaux requis pour la construction de la halde à stériles comprennent le décapage du sol, la préparation des fondations et l'installation d'une membrane en PEHD. La membrane sera installée sur toute l'empreinte de la halde à l'image de la halde à stériles actuelle. La géomembrane sera protégée par deux couches de géotextile (une en dessous et une au-dessus de la membrane). Une couche de matériau granulaire de calibre 0 à 56 mm sera placée sur le dessus des géosynthétiques pour créer une protection contre la circulation de la machinerie lourde, et ainsi éviter les perforations pendant l'opération. La membrane s'étendra dans les fossés périphériques qui recueilleront toute eau de contact.

Les deux extensions de la halde déjà aménagées (2018 et 2020) ont été construites selon cette même séquence de construction.

STABILITÉ DE LA HALDE

La halde contient majoritairement des stériles miniers. Des études ont été réalisées pour évaluer la stabilité de la halde actuelle et projetée. Les paramètres utilisés pour faire ces études sont présentés au tableau 14.

Tableau 14 Paramètres des stériles miniers utilisés dans les analyses de stabilité

Études	Halde à stériles	Masse volumique (kN /m³)	Angle de frottement interne (°)
WSP (2018)	Actuelle	20,5 à 21	36 à 38
WSP (2022)	Projetée	19	35

La conception de l'agrandissement projeté de la halde à stériles satisfait les critères de stabilité requis proposés dans la D019 sur l'industrie minière (MDDEP, 2012) et est appuyée par des analyses de stabilité des pentes. Ces analyses de stabilité sont réalisées en fonction des données géotechniques antérieures et des campagnes d'investigations réalisées par WSP à l'hiver et à l'automne 2022. La halde à stériles a été classifiée selon le système de classifications des haldes (Hawley et Cunning, 2017), et des recommandations ont été émises dans le but de continuer d'opérer cette halde de façon sécuritaire à long terme. Les plus récents rapports de conception sont présentés à l'annexe E.

MESURES ET CONTRÔLE DES EAUX DE RUISSELLEMENT DE LA HALDE À STÉRILES

La gestion de l'eau de ruissellement des haldes à stériles est contrôlée et prise en charge par des fossés de collecte périphériques. Ces fossés transportent l'eau gravitairement ou par pompage vers les bassins de collecte. L'ensemble de ces ouvrages sont imperméabilisés. Les eaux recueillies sont par la suite envoyées à l'UTE afin d'être traitées. La liste suivante indique les différents bassins qui permettent la gestion des eaux issues de la halde à stériles :

- Bassin CP (existant);
- Bassin A (construction 2023);
- Bassin F (construction 2029).

3.4.3 HALDE À MINERAL

En période d'exploration, le minerai est actuellement entreposé à la surface, sur la halde à stériles.

Dans le cadre des activités d'exploitation, une halde à minerai sera aménagée à l'est du circuit de concassage, comme illustré à la carte 4. Cette halde a une capacité maximale de 157 750 t (54 553 m³), soit 46 jours de production au taux nominal de 3 400 t/j.

La halde est conçue pour avoir une hauteur maximale de 10 m, un seul banc et des pentes de 3H: 1V. Son empreinte est de 14 077 m². Cette halde sera utilisée comme aire stockage temporaire de minerai avant son transfert au concasseur. La halde reposera sur une plate-forme surélevée construite en remblai pour faciliter le transfert du minerai vers le concasseur.

Comme le minerai est classé comme PGA et peut-être lixiviable pour les métaux (argent, arsenic, cadmium, cuivre, mercure, sélénium et/ou zinc), la semelle de cette pile sera décapée puis recouverte d'une géomembrane, puis protégée de géotextile. Un fossé de drainage périphérique à la plate-forme du concasseur sera aménagé pour recueillir les eaux de ruissellement.

À la fin de la période d'exploitation, la halde à minerai sera vidée.

La conception de la halde à minerai satisfait les critères de stabilité requis proposés dans la D019 sur l'industrie minière (MDDEP, 2012) et est appuyée par des analyses de stabilité présentées à l'annexe E. Ces analyses de stabilité sont réalisées en fonction des données géotechniques antérieures et des campagnes d'investigations réalisées par WSP à l'hiver et l'automne 2022. La halde à minerai a été classifiée selon le système de classifications des haldes (Hawley et Cunning, 2017).

3.4.4 PARC À RÉSIDUS MINIERS

L'emplacement du parc à résidus miniers a été choisi en fonction du contexte topographique du secteur ainsi que des contraintes opérationnelles du site. Le parc à résidus est situé à moins de 1 km au nord-est de l'usine de filtration des résidus. L'emplacement du parc ainsi que les infrastructures de gestion d'eau qui y sont associés sont présentés à la carte 4. Les résidus sont transportés par camions de l'usine de filtration et seront compactés de manière contrôlée.

Le parc à résidus miniers comprendra un empilement de résidus asséchés compactés, un système de gestion de l'eau et une route environnante.

La capacité maximale du parc est de 9 Mt de résidus secs, incluant environ 5 % de boues mélangées provenant du système de décantation des eaux d'exhaure. Le mélange de résidus et de boues formera un mélange homogène et n'aura pas d'impact sur les propriétés géotechniques du parc (BBA Inc. *et al*, 2023). Le parc à résidus a une élévation maximale de 423 m dans le secteur nord-ouest et de 420 m dans le secteur sud-est, ce qui donne une pente de 0,5 %, favorisant ainsi le ruissellement de l'eau vers le système de drainage. Les pentes latérales finales de la pile de résidus secs seront de 4,5H : 1V. L'empreinte du parc à résidus est de 461 600 m². La hauteur maximale de la pile est de 20 m.

Le tableau 15 présente les principales propriétés des résidus utilisés dans la conception du parc à résidus. Le rapport de conception est présenté à l'annexe E du présent plan de restauration.

Tableau 15 Caractéristiques géotechniques des résidus

Description	Unités	Résidus filtrés
Production totale	Mt	8,2
Portion solide (w/w)	%	81 à 84
Pourcentage de fines	%	98
Granulométrie au 80% passant	μm	37
Densité relative	-	2,85 to 3,01
Densité sèche maximale (Essai Proctor Standard)	kN/m³	16
Teneur en eau optimale (Essai Proctor Standard)	%	21,5
Limite d'Atterberg	-	Non plastique

La préparation pour la construction du parc à résidus comprend le décapage organique du sol ainsi que le défrichage de la surface. Au besoin, les fondations du parc à résidus seront surélevées avec un matériau granulaire, pour s'assurer que les points inférieurs dans le secteur sud-est et nord-ouest de l'installation soient à une altitude minimale de 400 m et 401 m, respectivement. L'objectif du rehaussement est que la semelle du parc soit plus élevée en altitude que les niveaux d'eau maximaux de conception des bassins et des fossés d'eau de contact. Ce rehaussement sera construit avec une pente de 1 % pour favoriser le drainage de l'eau à l'extérieur du parc à résidus.

La caractérisation géochimique indique que les résidus sont potentiellement générateurs d'acide et lixiviables pour certains métaux. Le détail de la composition minéralogique des résidus peut être trouvé dans l'étude de WSP (2023c) sur la géochimie, disponible à l'annexe C. Le traitement métallurgique comprend une étape de destruction du cyanure. Compte tenu du potentiel de génération d'acide, de lixiviation des métaux, de la présence potentielle de traces résiduelles de cyanure dans les eaux interstitielles des résidus et d'une fondation relativement perméable, la conception du parc à résidus comprend un revêtement géosynthétique comme mesure pour minimiser l'infiltration d'eau interstitielle dans les eaux souterraines.

Un système de revêtement comprenant une doublure linéaire en polyéthylène basse densité (LLDPE) d'une épaisseur de 1,5 mm et une couche de géotextile superposé sera installée. Le système de revêtement sera installé audessus de la fondation granulaire, le cas échéant. À l'exception du matériau granulaire utilisé pour soulever la fondation du parc à résidus, aucune mesure supplémentaire (matériau granulaire et/ou géotextile sous-jacent) ne sera nécessaire avant l'installation du système de revêtement.

Un réseau de drains granulaires sera construit sur le revêtement géosynthétique pour faciliter le drainage de l'eau et favoriser la désaturation des résidus. La conception préliminaire du réseau de drains se compose de drains de 2 m de haut, comprenant une couche de transition granulaire pour assurer la compatibilité des matériaux avec les résidus. Les drains seront placés parallèlement aux axes de drainage naturels avec un espacement minimal de 100 m (centre à centre) et une pente minimale de 1 %. Un autre drain sera installé au pied de la pile. Une route de service de 2 m de haut, également composée de matériaux de drainage granulaires, sera construite autour du parc à résidus et servira de prolongement du drain de pied.

DÉPOSITION DES RÉSIDUS

Les résidus seront placés mécaniquement directement sur le système géosynthétique et compactés à 95 % de la densité sèche optimale par essai Proctor. Des routes d'accès seront périodiquement nécessaires dans le parc à résidus pendant les opérations, afin de faciliter l'emplacement des résidus.

Le parc à résidus sera élaboré en trois phases afin de faciliter les opérations et de promouvoir la restauration progressive, comme le recommandent les lignes directrices sur la fermeture du MRNF (Guide, 2022). Le tableau 16 présente la capacité et les années de fonctionnement des trois phases.

Tableau 16 Phases de développement du parc à résidus

Phase	Capacité (résidus asséchés)	Empreinte au sol (m²)	Années d'opération
Phase 1	4,8 Mt	240 900	1 à 5
Phase 2	2,5 Mt	119 200	6 à 8
Phase 3	1,7 Mt	101 500	9 à 11

STABILITÉ DU PARC

La conception du parc à résidus satisfait les critères de stabilité requis proposés dans la D019 (MDDEP, 2012) et est appuyée par des analyses de stabilité des pentes (annexe E).

Pour assurer la stabilité long terme de la zone sud-est du parc à résidus en période postrestauration, il est actuellement envisagé d'aménager une berme de stabilité près du bassin PAR1. La berme de stabilité serait nécessaire pour assurer le respect des critères lors de la fermeture du site minier. Les coûts de construction de la berme sont inclus dans l'estimation des coûts de restauration.

MESURES ET CONTRÔLE DES EAUX DE RUISSELLEMENT

Le choix de filtrer les résidus miniers permet de faciliter la gestion des eaux du parc à résidus miniers. Deux bassins, PAR1 et PAR2, seront aménagés afin de recueillir les eaux de ruissellement provenant du parc à résidus. Les eaux recueillies sont par la suite envoyées à l'UTE afin d'être traitées. L'emplacement de ces deux bassins est illustré à la carte 4. Aucune digue de retenue n'est nécessaire dans la gestion des eaux du parc à résidus lors des activités d'exploitation.

3.5 LIEUX D'ENTREPOSAGE ET D'ÉLIMINATION

Les matières résiduelles ou les sols contaminés qui sont générés sur le site de la mine sont transportés hors du site et éliminés par des compagnies spécialisées dans des centres autorisés, à l'exception des matières compostables, qui sont entreposées sur la halde à mort-terrain. Différentes installations, présentées à la carte 6, sont mises en place afin d'entreposer adéquatement les différentes matières résiduelles produites sur le site.

Le tableau 17 (tiré de l'ÉIE, WSP, 2023a) présente les diverses catégories de matières résiduelles ainsi que leurs volumes annuels estimés et leur lieu de disposition.

Tableau 17 Matières résiduelles, estimation des volumes annuels et disposition

Catégorie	Description (non exhaustive)	Estimation de volume annuel pour l'exploitation	Lieu de disposition ou entreprise de collecte
Matières réutilisables	Matériaux résiduels neufs, emballages non contaminés	n.a.	n.a.
Matières recyclables	Papier, verre, plastique, canettes, métal non contaminé, pneus	Ferraille : 261 tonnes Cuivre : 277 tonnes	Site de récupération de métaux (AIM-Amos)
Matières compostables	Déchets alimentaires de cafétéria, aliments périmés, carton brun	41 298 kg	Halde à mort-terrain
Matières dangereuses résiduelles – Liquides	Huile usée, graisse, boues de la baie de lavage, eau huileuse, neige contaminée	21 760 litres	Entreprise de collecte spécialisée (AmNor Industries)
Matières dangereuses résiduelles – Solides industriels et ménagers	Antigel, solvant, aérosol, peinture, ampoules fluorescentes, lampes, batteries, détecteurs de fumée, filtres à huile, guenilles, emballages, contenants contaminés, halocarbures, absorbants usés, rebuts informatiques, produits de laboratoire	340 000 kg	Entreprise de collecte spécialisée (AmNor Industries)
Sols contaminés	Nettoyages des déversements; gérés avec les MDR	653 tonnes	Entreprise de collecte spécialisée (AmNor Industries)
Débris de construction, de rénovation et de démolition	Bois, agrégats, placoplâtre, matériaux secs non contaminés	Bois : 1 714 m³	Site d'enfouissement de Lebel-sur-Quévillon
Matières résiduelles à éliminer	Déchets encombrants, sacs à litière, mousse de polystyrène, emballages, tissus sanitaires, objets composites, objets contaminés, plastique non recyclable, caoutchouc, cendres, déchets de procédés, divers contenants vides	1 346 m³	Site d'enfouissement de Lebel-sur-Quévillon
Boues sanitaires	Boues du bioréacteur	34 000 USG	Entreprise de collecte spécialisée (AmNor Industries)
Déchets biomédicaux	Issus de l'infirmerie; gérés conformément au RLRQ, Q-2, r.12	4 contenants de 5,1 L	Entreprise de collecte spécialisée (Steri-Cycle)

3.5.1 PRODUITS CHIMIQUES ET RÉACTIFS, PRODUITS PÉTROLIERS ET EXPLOSIFS

PRODUITS CHIMIQUES ET RÉACTIFS

Dans le cadre des activités d'exploitation de la mine, des produits chimiques et des réactifs seront nécessaires dans le traitement des eaux et le traitement du minerai. Les produits chimiques et les réactifs seront entreposés dans les bâtiments d'usine où ils seront utilisés (WSP, 2023a). Les produits pour la cyanuration, la sédimentation et la destruction des cyanures seront entreposés à l'usine de traitement du minerai, les réactifs de l'UTE seront entreposés dans une annexe au bâtiment, les produits pour la filtration (floculant et détartrant) seront entreposés dans le bâtiment de l'usine de filtration et le ciment sera entreposé dans un silo voisin de l'usine de remblai (WSP, 2023a). L'emplacement de ces produits chimiques et ces réactifs est présenté à la carte 6.

Les eaux issues de l'UTE seront conformes à la règlementation en vigueur, incluant les essais de létalité. Les réactifs utilisés dans le traitement des eaux sont présentés au tableau 18. Les réactifs seront entreposés sur place afin de satisfaire une consommation d'environ un mois.

Tableau 18 Produits chimiques utilisés dans le traitement des eaux

	Produits chimique	ues	Entreposage			Quantité consommé (tm/année)		
#	Nom	État	Mode	Réservoirs Réservoirs		Phase 1	Phase 2	
#	# NOIII	Eldl	WOOG	Nombre	Capacité	Maximum	rnase 1	Filase 2
1	Acide phosphorique	Liquide (75% H3PO4)	Tote - 1m ³	N/A	N/A	13 totes / 20 tm	32	36
2	Acide sulfurique	Liquide (93% H ₂ SO ₄)	Réservoir	1	30 m³ / 55 mt	26 m ³ / 48 tm	51	56
3	Anti-Moussant	Liquide	Tote – 1 m ³	N/A	N/A	20 totes / 20 tm	8	9
4	Anti-Tartre	Liquide (< 25%)	Tote – 1 m ³	N/A	N/A	Inclue avec celui de l'usine de traitement	8	9
5	Sulfate ferrique	Liquido	Réservoir	2	50 m³ / 78 mt	43 m ³ / 67 tm	- 447	561
5	Sullate lemque	Liquide	Keservoll	2	33 m³ / 51 mt	29 m ³ / 45 tm		
6	Floculant (AN 905 VHM)	Solide	Sac - 750 kg	N/A	N/A	Inclut avec celui de l'usine de traitement	4	5
7	Floculant (pour DAF)	Solide	Sac - 750 kg	N/A	N/A	27 sacs / 20 tm	6	7
8	Floculant cationique (émulsion)	Liquide	Baril - 250 kg	N/A	N/A	40 drums / 20 tm	1	1
9	Micro-Sable (Silice)	Solide	Sac - 25 kg	N/A	N/A	400 sacs / 20 tm	8	11
10	Précipitateur de métaux (HCO)	Liquide	Tote - 1 m ³	N/A	N/A	17 totes / 20 tm	10	14
11	Occurle countin	Liquide (50% NaOH) Réservoir	Págos seis	2	100 m³ / 152 mt	90 m ³ / 137 tm	2 085	2 374
11	Soude caustique		(35 m³ / 53 mt	31 m ³ / 47 tm	2 000	2 314	
12	Sulfure de sodium	Solide	Sac - 750 kg	N/A	N/A	27 sacs / 20 tm	14	20

Les réactifs utilisés pour le traitement du minerai sont présentés au tableau 19. Les produits seront réceptionnés à la guérite par des employés certifiés en transport des matières dangereuses (TMD) et dirigés vers leur site d'entreposage dans le bâtiment de l'usine de traitement du minerai. Selon le type de réactif, ces derniers seront entreposés selon les exigences du Code national de prévention des incendies (CNPI).

Tableau 19 Réactifs utilisés aux usines de cyanuration, de filtration et de remblai

Secteur / Numéro du circuit	Produit	Usage	Consommation (tpj)
Usine de traitement du minerai - 4	Chaux vive (« CaO »)	Floculant des solides dans les épaississeurs	0,13
Usine de traitement du minerai - 5	Chaux vive (« CaO »)	Modificateur de pH	11,16
Usine de traitement du minerai - 5	Cyanure de sodium (« NaCN »)	Lixiviant d'or, éluant d'or	12,09
Usine de traitement du minerai - 5	Nitrate de plomb	Lixiviant d'or	1,22
Usine de traitement du minerai - 5	Sels de sodium LeachAid UL	Amélioration de l'efficacité de lixiviation	0,02
Usine de traitement du minerai - 6	Charbon activé	Adsorption d'or	0,16
Usine de traitement du minerai - 6	Anti-scalant (< 25%)	Protecteur de membranes	0,06
Usine de traitement du minerai - 7a	Acide chlorhydrique (« HCl ») 28 %	Lavage du charbon	1,63
Usine de traitement du minerai - 7a	Hydroxyde de sodium (« NaOH ») 50 %	Séparation et lavage du charbon	1,40
Usine de traitement du minerai - 7a	Fondant d'affinage (silice, borax)	Raffinerie	0,01
Usine de traitement du minerai - 7b	SO ₂ liquide	Destruction des cyanures	3,27
Usine de traitement du minerai - 7b	Sulfate de cuivre (« CuSO ₄ .5H ₂ O »)	Catalyseur de réaction à la destruction des cyanures	0,21
Usine de filtration et de remblai	Floculant	Floculation des solides dans les épaississeurs	0,14
Usine de filtration et de remblai	Ciment	Liant pour pâte de remblai	147,98

PRODUITS PÉTROLIERS

Les produits pétroliers utilisés sur le site minier se divisent en trois catégories, soit les huiles, les graisses et les carburants. Les produits pétroliers de type carburant comprennent du diesel, de l'essence et du propane.

Dans le cadre des activités d'exploitation de la mine, chaque réservoir de propane sera entouré de bornes de protection et sera relié au bâtiment à chauffer par une conduite enfouie. Ces réservoirs seront installés, aménagés et gérés conformément aux exigences réglementaires fédérales (RUE) et provinciales (RMD). La consommation totale annuelle de propane est estimée à 23 000L/jour. Un camion-citerne de 35 000 L devra donc se rendre au site au moins chaque deux jours.

Dans le cadre des activités d'exploitation, l'entreposage du diesel et de l'essence se fera dans un parc à carburant localisé à mi-chemin entre l'usine de traitement du minerai et les usines de filtration, de remblai et de traitement de l'eau. Le parc à carburant comprendra l'approvisionnement pour une semaine, soit quatre réservoirs de 45 000 L de diesel, un réservoir de dosage de 1 000 L de diesel pour les besoins souterrains et un réservoir de 10 000 L d'essence. Les réservoirs à double paroi comprennent des capteurs de surveillance de niveau et de pression et une console pour la lecture des mesures. Aux postes de distribution d'essence et de diesel, une dalle de béton armé sera installée pour accueillir les camions pendant le remplissage et pour faciliter le nettoyage en cas de déversement.

L'installation des réservoirs de diesel et d'essence sera construite conformément aux exigences du chapitre sur les équipements pétroliers du Code de construction (Loi sur le bâtiment, r.2) et gérée conformément aux exigences du chapitre sur les équipements pétroliers du Code de Sécurité (Loi sur le bâtiment, r.3).

L'emplacement de ces installations projetées est présenté à la carte 6.

Sous terre, une baie de carburant permettra de procéder au ravitaillement en diesel de l'équipement mobile souterrain. L'emplacement de la baie de carburant est identifié à la figure 4 du présent plan de restauration.

Le tableau 20 présente les réservoirs qui seront sur le site minier Windfall dans le cadre des opérations minières.

Tableau 20 Réservoirs de carburant sur le site minier Windfall pour les activités d'exploitation

TYPE DE RÉSERVOIR	QUANTITÉ	FONCTION	CAPACITÉ
Propane	1	Chauffage de l'usine de traitement du minerai	40 000 USG
Propane	2	Chauffage de la mine souterraine, installé près de chaque portail	20 000 USG
Propane	1	Chauffage du bâtiment du garage et de l'entrepôt	20 000 USG
Propane	1	Chauffage des usines de filtration, de remblai et de traitement d'eau	20 000 USG
Propane	1	Chauffage du camp et l'alimentation de la cuisine	20 000 USG
Diesel	4	Poste de distribution pour carburant à véhicule	45 000 L
Diesel	1	Réservoir de dosage pour les besoins souterrains	1 000 L
Essence	1	Poste de distribution pour carburant à véhicule	10 000 L

Un plan de gestion des déversements accidentels est en place et décrit en détail les étapes à suivre lors d'un déversement. Les mesures suivantes seront prises :

- récupération du déversement dans des contenants appropriés;
- nettoyage du site et mise de côté des sols contaminés;
- déclaration du déversement aux autorités;
- investigation des déversements de plus de 20 L;
- transport hors du site des sols contaminés par un transporteur homologué et disposition dans un site homologué.

En 2022, 60 m³ de sols contaminés ont été inscrits au registre québécois. Les sols contaminés seront gérés au fur et à mesure qu'ils surviennent. Toutefois, à la suite d'un déversement survenu dans le secteur des génératrices, une partie des sols contaminés n'a pu être excavée puisqu'ils se trouvent sous une sous-station électrique; ceux-ci devront être gérés lors de la fermeture du site.

PRODUITS EXPLOSIFS

Actuellement, des explosifs en émulsion sont utilisés pour le prolongement de la rampe d'exploration et pour l'échantillonnage en vrac. Les explosifs sont transportés et gérés par une firme autorisée. Les explosifs et les détonateurs sont livrés et entreposés séparément, conformément à la procédure interne d'Osisko sur le transport des explosifs (STY-RSK-STD-063). L'entreposage des explosifs et des détonateurs est régi par une procédure interne (STY-RSK-STD-062), laquelle reprend les exigences légales, notamment la distance à respecter entre les détonateurs et les explosifs et le mode d'élimination des emballages d'explosifs.

Dans le cadre de la phase d'exploitation, les explosifs sont entreposés sous terre dans des baies spécifiques en retrait des rampes d'accès. L'emplacement des baies est identifié à la figure 4 du présent plan de restauration. Au portail Principal, cette baie est située près de l'entrée au niveau 0020. Au portail Lynx, cette baie est située au niveau 480. Chaque poudrière pourra accommoder un maximum de 36 000 kg au total. Les explosifs seront des émulsions encartouchées (emballées) de type Senatel Pyromex et des émulsions non emballées de type Subtek Eclipse, un explosif sensibilisé chimiquement et spécialement conçu pour modérer les sautages dans les mines souterraines. Les émulsions seront livrées mélangées. Ces mélanges sont faits à base de nitrate d'ammonium et de produits.

3.5.2 MATIÈRES RÉSIDUELLES NON DANGEREUSES

Les matières résiduelles non dangereuses consistent principalement à des déchets domestiques, du métal et du bois qui sont triés dans la zone industrielle. Les déchets de table et le carton sont compostés. Le compost ainsi produit est entreposé sur la halde à mort-terrain et servira à la restauration du site. Les déchets domestiques qui ne sont pas compostables sont compactés et envoyés au site d'enfouissement de la ville de Lebel-sur-Quévillon. Il en va de même pour le bois. Pour ce qui est des autres rebuts, notamment les métaux ferreux et le cuivre, ils sont triés et disposés dans des conteneurs identifiés et recyclés par une firme spécialisée.

L'aire d'entreposage des matières résiduelles non dangereuses est située au sud du campement projeté (carte 6).

3.5.3 MATIÈRES RÉSIDUELLES DANGEREUSES

Conformément au Règlement sur les matières dangereuses (RMD) (ch. Q-2, r.32), les matières dangereuses résiduelles et les sols contaminés sont entreposés selon les normes prescrites au chapitre IV de ce règlement, dans la zone industrielle et près du portail. Ils sont retirés du site régulièrement par une firme spécialisée.

3.5.4 PRÉCAUTIONS PARTICULIÈRES

Outre le plan de gestion des déversements accidentels, Osisko a mis en place diverses procédures et bonnes pratiques qui permettent de minimiser le risque d'émission de contaminant dans l'environnement. Voici les différentes mesures d'atténuation :

- inspections régulières par les superviseurs environnement;
- procédure pour la circulation sur les routes forestières;
- clauses environnementales insérées dans les contrats des entrepreneurs;
- réunion d'introduction pour tous les travailleurs et visiteurs du site;
- formation des techniciens pour l'implantation, l'inspection et la fermeture des forages d'exploration;
- plan de gestion des espèces exotiques envahissantes.

4 MESURES DE RÉAMÉNAGEMENT ET DE RESTAURATION

Osisko prévoit débuter les travaux d'exploitation sur le site Windfall en 2025. Certaines installations et infrastructures mises en place pour les travaux d'exploration sont prévues être conservées et utilisées pour les activités d'exploitation. De nouvelles installations et infrastructures seront aménagées pour permettre l'exploitation du gisement, telles que décrites à la section 3. Les sections suivantes présentent les mesures de protection, de réaménagement et de restauration prévues progressivement pendant les opérations et à la suite de la fermeture du site minier, prévue en 2035.

Les travaux de restauration seront menés en conformité avec les modalités du Guide (MRNF, 2022), de la D019 (MDDEFP, 2012) et de toute autre disposition applicable, comme la Politique de protection des sols et de réhabilitation des terrains contaminés (Beaulieu, 2021) et le Règlement sur la protection et la réhabilitation des terrains (ch. Q-2, r. 37) et la Loi sur les mines (ch. M-13.1).

Les mesures de protection, de réaménagement et de restauration qui sont présentées ci-dessous ont pour objectif de remettre le site minier dans un état satisfaisant, c'est-à-dire :

- éliminer les risques inacceptables pour la santé et assurer la sécurité des personnes;
- limiter la production et la propagation de contaminants susceptibles de porter atteinte au milieu récepteur et,
 à long terme, viser à éliminer toute forme d'entretien et de suivi;
- remettre le site dans un état visuellement acceptable pour la collectivité;
- remettre le site des infrastructures dans un état compatible avec l'usage futur.

Dès la phase de conception du projet, une attention particulière a été portée afin de minimiser les travaux correctifs en phase de restauration en favorisant, entre autres, la restauration progressive. Les opportunités pour minimiser les distances de transport sur le site ont également été considérées dans l'élaboration du plan des infrastructures de surface. Le présent plan de restauration vise la restauration de toutes les infrastructures qui seront en place à la fin des activités d'exploitation sur la propriété Windfall, soit :

- les chemins d'accès présents sur le site (à l'exclusion des chemins publics), les chemins de halage de service;
- les aires d'entreposage;
- les bâtiments, incluant l'usine de traitement de minerai, les bâtiments administratifs, le centre culturel des Premières Nations, le centre d'accueil, le campement, etc.;
- les portails, les rampes, les galeries souterraines et les monteries de ventilation;
- les roulottes de chantier et les conteneurs d'entreposage;
- les équipements mobiles et stationnaires;
- les postes distribution de carburant et réservoirs ainsi que les dépôts à explosifs;
- les unités de traitement des eaux;

- les bassins de collecte et de polissage ainsi que les fossés;
- la halde à stériles, le parc à résidus miniers, l'emprise de la halde à minerai, la halde à mort-terrain et autres aires d'entreposage;
- les installations sanitaires.

Toutes les aires affectées par les activités d'exploitation seront restaurées. Les surfaces considérées dans l'estimation des coûts de restauration sont montrées à la carte 7.

Sur le site minier Windfall, les résidus et certaines lithologies de stériles sont potentiellement générateurs d'acide (PGA) et lixiviables selon les essais réalisés conformément au Guide de caractérisation des résidus miniers et du minerai (MELCC, 2020) par WSP (2023c, annexe C).

Les infrastructures existantes situées dans le secteur du campement situé à environ 2 km au sud du site seront conservées et utilisées dans le cadre d'activités d'exploration par Osisko. Ceux-ci sont exclus du plan de restauration proposé.

4.1 SÉCURITÉ DES LIEUX

4.1.1 SÉCURISATION DES ACCÈS

Au moment de la cessation des activités minières, l'accès au site sera maintenu, et ce, jusqu'à la fin des travaux de restauration. Une fois les travaux de restauration terminés, seuls les chemins requis pour les suivis postrestauration du site demeureront disponibles et carrossables. Ces accès seront bloqués par des barrières cadenassées munies d'une signalisation adéquate du danger, dans le but d'assurer la sécurité des personnes. Les autres accès seront condamnés et une signalisation adéquate sera installée.

4.1.2 SÉCURITÉ DES OUVERTURES AU JOUR

Lors de la cessation des activités, Osisko prévoit retirer tous les équipements sous terre, tels que les pompes, la tuyauterie, les fils électriques, etc. Les structures des portails seront retirées et l'accès aux chantiers souterrains sera remblayé de stériles miniers NPGA dans le but d'en sceller l'accès.

Les monteries de ventilation seront recouvertes d'une dalle de béton armé en conformité avec le Règlement sur les substances minérales de surface autre que le pétrole, le gaz naturel et la saumure (M-13.1, r.2, Chap. IX) et qui répondra aux caractéristiques décrites à l'article 100 de ce règlement. Ces dalles et les alentours décapés seront recouverts de matériau granulaire inerte.

Les chemins requis pour les suivis postrestauration du site demeureront accessibles et carrossables.

Des panneaux de signalisation « Danger » seront installés à proximité des portails et au droit des monteries de ventilation. À noter que lors des travaux d'exploration antérieurs, aucun habitat propice aux chauves-souris ni aucune chauve-souris n'a été observé.

4.1.3 STABILITÉ DES PILIERS DE SURFACE

Pour les travaux d'exploitation à venir, la conception des piliers de surface et le développement des chantiers souterrain seront faits de façon à assurer leur stabilité à long terme. Il est prévu que les chantiers souterrains sous ces piliers seront remblayés au cours de la vie de la mine pour minimiser les vides sous ces piliers. Certains chantiers seront également remblayés par un remblai de résidus en pâte créé à l'usine de filtration. Une note technique réalise par A2GC démontrant la stabilité des piliers de surface prévus pour l'exploitation est montrée à l'annexe E.

4.2 DÉMANTÈLEMENT DES BÂTIMENTS ET DES INFRASTRUCTURES

Au moment de la fermeture du site minier Windfall, tous les bâtiments et toutes les infrastructures qui ne seront pas utiles pour la réalisation du suivi postrestauration seront transportés hors site ou démantelés par un entrepreneur certifié. Ces bâtiments et infrastructures sont listés à la section 3.2. Le démantèlement sera réalisé selon les lignes directrices du *Guide de bonnes pratiques – La gestion des matériaux de démantèlement* (MDDEP, 2002a).

Les travaux de démantèlement et de restauration des aires des infrastructures incluront les activités suivantes :

- démantèlement de l'ensemble des bâtiments du site incluant, notamment, le bâtiment multi-services, l'usine de filtration des résidus et de remblai en pâte et le campement;
- les bâtiments temporaires (roulottes et modules mobiles) seront possiblement réutilisés dans le cadre d'autres opérations minières d'Osisko, ou seront vendus. Ils seront transportés hors site;
- tout équipement de services, comme les réservoirs, les conduites et les pompes, sera vidangé et nettoyé. Les eaux de nettoyage seront collectées et traitées (sédimentation et séparation eau-huile, si nécessaire) avant leur rejet vers l'environnement;
- les dalles et autres composantes de béton seront perforées et/ou concassées et les fragments de béton pourront être laissés sur place, à condition qu'ils respectent les énoncés du Guide de valorisation des matières résiduelles inorganiques non dangereuses de source industrielle comme matériau de construction (MDDEP, 2002b);
- tous les équipements électriques appartenant à Osisko, notamment les lignes de transport électrique et les sous-stations électriques seront démantelées. Les matériaux seront gérés suivant les règlements en vigueur;
- les ponceaux aménagés sur le site seront démantelés et la surface du nouvel accès sera scarifiée puis revégétée;
- les géomembranes sous les infrastructures, notamment au droit de l'usine de traitement de minerai et de la halde à minerai seront enlevées, puis les surfaces seront scarifiées et ensemencées;
- les conduites d'eau et pompes seront démantelées. Les conduites qui seront en bonne condition seront soient vendues ou conservées pour réutilisation future. Celles dont la vie utile est terminée seront éliminées en conformité avec les dispositions du Règlement sur l'enfouissement et l'incinération de matières résiduelles (REIMR);

- les conduites de surface du système d'approvisionnement en eau sanitaire seront enlevées alors que les conduites souterraines seront laissées en place et leurs ouvertures seront colmatées. Les pompes et contrôles électriques seront retirés et, en fonction de leur condition, seront soit vendus, conservés pour réutilisation future ou éliminés;
- lorsque les installations de collecte d'eaux usées domestiques ne seront plus requises, le réservoir sera vidangé par une firme spécialisée et les équipements seront retirés du sol et éliminés dans un site autorisé du MELCCFP;
- tout équipement contenant des huiles ou tout autre liquide à potentiel de contamination, comme les équipements électriques et les véhicules, sera vidangé de ses liquides avant d'être éliminé;
- les matériaux et équipements récupérables seront mis en réserve et donnés ou vendus sur les marchés de la récupération et de l'usager;
- l'empreinte au sol des infrastructures démantelées sera d'abord scarifiée pour faciliter le drainage et la reprise de la végétation, puis recouverte de mort-terrain avant d'être revégétalisée;
- une portion du contenu de la halde à mort-terrain servira au recouvrement des sols affectés par les activités d'exploitation. La halde à mort-terrain sera ensuite ensemencée;
- la gestion de tous produits chimiques, matières résiduelles et matières dangereuses se fera de façon sécuritaire dans le respect des normes et de la réglementation en vigueur. Tout matériau solide, liquide, pulpeux et boueux se trouvant à l'intérieur des bâtiments sera caractérisé, si nécessaire, et le lieu de leur disposition sera approuvé par le représentant de la gestion environnementale sur le site;
- les secteurs susceptibles de présenter une contamination feront l'objet d'analyses. Les sols contaminés seront gérés conformément à la réglementation en vigueur;
- les chemins secondaires seront bloqués à l'aide de blocs de stériles NPGA et seront scarifiés et ensemencés;
- lorsque le site aura été restauré et que la qualité des eaux du site répondra aux critères applicables, l'UTE sera démantelée, suivant l'autorisation du MRNF et du MELCCFP.

La liste des bâtiments et des infrastructures de soutien ainsi que les coûts estimés pour le démantèlement de ces derniers sont présentés à la section 8. Le démantèlement sera réalisé en suivant les lignes directrices de la dernière version disponible du *Guide de bonnes pratiques – La gestion des matériaux de démantèlement* (MDDEP, 2002a). À noter que certaines installations appartiennent à des entrepreneurs qui travaillent au site; ces derniers seront responsables du démantèlement et du transport de leurs installations hors du site.

Lorsque possible, les équipements et matériaux récupérés seront vendus, recyclés ou relocalisés sur un autre site. Les rebuts du démantèlement seront envoyés dans un lieu d'élimination autorisé. Le métal, la tôle et le bois seront récupérés et disposés dans un lieu de recyclage autorisé. Le mode d'élimination des infrastructures respectera les exigences du REIMR (ch. Q-2, r. 19). Avant de procéder au concassage et au remblayage des dalles de béton, Osisko procèdera à la caractérisation de celles-ci selon le Guide d'intervention – Protection des sols et réhabilitation des terrains contaminés (Beaulieu, 2021) et, le cas échéant, à leur décontamination selon les règlements en vigueur.

Toutes les infrastructures de soutien seront démantelées et envoyées dans un lieu d'élimination autorisé. Ces infrastructures incluent des conduites et des réservoirs pour usages divers. Les lieux où ces infrastructures ont servi à l'entreposage et au transport des matières dangereuses seront caractérisés et décontaminés selon les normes environnementales en vigueur.

La qualité des sols sous-jacents à ces infrastructures sera évaluée dans le cadre de l'étude de caractérisation du site. Ces sols seront gérés en fonction des critères de qualité appropriés. Tous les sols contaminés aux huiles, graisses et produits pétroliers au-delà du critère « B » de la grille des critères indicatifs établie par le MELCCFP seront traités sur le site même ou acheminés dans un lieu d'élimination autorisé.

Les surfaces affectées par les activités seront par la suite remises à leur état initial ou dans un état s'y rapprochant. Pour ce faire, elles seront nettoyées des débris provenant des travaux de démolition, reprofilées pour favoriser un écoulement libre de l'eau de ruissellement et recouvertes d'une couche de 150 mm de dépôt meuble provenant de la halde à mort-terrain, avant d'être ensemencées afin de contrôler l'érosion et rétablir l'aspect naturel du site.

La liste des bâtiments et des infrastructures de soutien ainsi que les coûts estimés pour le démantèlement de ces derniers sont présentés à la section 8.

4.3 GESTION DES ÉQUIPEMENTS ET DE LA MACHINERIE LOURDE

Les équipements mobiles de surface requis dans le cadre des activités minières seront retirés du site une fois l'exploitation minière complétée.

Les équipements mécaniques, électriques et hydrauliques, mobiles ou fixes nécessaires au bon fonctionnement des pompes seront démantelés.

Les équipements sous terre, comme les équipements de forage et les équipements requis pour l'exploitation et le développement de la mine (foreuses, chargeuse-navette et véhicule de service), seront ramenés à la surface une fois les travaux terminés et retirés du site. Tout débris, matériel inutilisable, pièce de machinerie ou autre rebut sera ramassé et géré d'après la réglementation en vigueur.

La liste de ces équipements ainsi que les coûts estimés pour le démantèlement de ces derniers sont inclus à l'annexe F.

4.4 AIRES D'ACCUMULATION

Les aires d'accumulation sur le site Windfall incluent la halde à stériles, le parc à résidus miniers, la halde à mort-terrain et la halde à minerai. Outre la halde à stériles, toutes les infrastructures décrites dans les sections qui suivent sont des infrastructures à construire en prévision du début de la période d'exploitation.

Comme précisé à la section 2 du présent plan de restauration, les résidus et certaines lithologies de stériles miniers sont potentiellement générateurs de drainage minier acide et lixiviable, selon Guide de caractérisation des résidus miniers et du minerai (MELCC, 2020). Ainsi, des mesures de protection de l'environnement sont prises pendant l'exploitation des aires d'accumulation et doivent également être prises lors de la restauration du site. Les méthodes de restauration proposées dans les sections qui suivent permettent de limiter la production et la propagation de drainage minier acide et de métaux dissous à l'environnement.

Dans l'optique de réduire les travaux de correctifs et d'assurer la performance des recouvrements proposés dans le cadre de ce plan de restauration, Osisko adopte une conception de ses ouvrages qui assure, dans la mesure du possible, dès sa construction, la stabilité à long terme de l'ouvrage en vertu des critères du Guide et une restauration progressive des aires d'accumulation.

4.4.1 HALDE À STÉRILES

La halde à stériles a été conçue de façon à accumuler des stériles jusqu'à une élévation de 437 m, ce qui équivaut à une hauteur d'environ 32 m. Sa disposition est telle que la halde à stériles utilisée dans le cadre des activités d'exploration est incluse dans la halde utilisée en phase d'exploitation. La déposition des stériles se fait en respectant des pentes de géométrie de 3H : 1V. L'empreinte au sol de la halde sera de 235 038 m² et la superficie finale 3D sera de 238 152 m². La capacité maximale de la halde à stériles sera de 9,11 Mt (4,46 Mm³). Le concept proposé est cohérent avec le concept de la fermeture, car les piles à profil bas réduisent les remaniements parfois nécessaires pendant les travaux de restauration et permettent une meilleure intégration dans le paysage environnant.

La coupe-type présentant le recouvrement proposé pour la restauration de la halde imperméabilisée est présentée à la figure 3.

Les stériles générés, ainsi que les matériaux actuellement entreposés sur la halde seront couverts d'un recouvrement d'ingénierie imperméable constitué des matériaux suivants, installés du bas vers le haut :

- couche de protection 200 mm de matériaux granulaires 0-20 mm ou de sable compacté servant d'assise pour la géomembrane;
- géomembrane 80 mil (2 mm) texturée sur les deux faces;
- drains de PEHD de 100 mm de diamètre annelé, perforé et enrobé d'un géotextile non tissé servant de drain permettant d'assurer la stabilité du recouvrement granulaire installé sur le dessus de la géomembrane;
- couche protectrice de 300 mm de matériaux granulaires NPGA 0-20 mm ou sable;
- couche de 150 mm de matériaux aptes à la végétalisation;
- ensemencement des aires.

La membrane en polyéthylène constitue un système d'imperméabilisation installé avec un système de drainage de surface limitant les pressions hydrostatiques sur l'installation. Les drains de 100 mm seront installés selon un espacement de 25 m au dans les pentes de la halde. Les drains PEHD seront installés à la base de la couche protectrice de 300 mm de matériaux granulaires au-dessus de la géomembrane, afin de capter et de canaliser les eaux de ruissellement sur la halde. Ainsi, les drains veilleront à limiter les pressions hydrostatiques pour éviter l'érosion des couches sus-jacentes à la géomembrane, et ainsi optimiser l'intégrité du recouvrement.

L'objectif du recouvrement étanche est d'isoler les matériaux PGA de l'environnement et de limiter l'infiltration de l'eau dans la pile, ce qui limite l'oxydation des sulfures et la lixiviation des métaux, limitant ainsi la production de drainage minier acide.

4.4.2 PARC À RÉSIDUS MINIERS

Les résidus miniers générés au site Windfall seront filtrés et transportés par camion sur le parc à résidus. Ainsi, la déposition des résidus n'est pas faite de façon conventionnelle; cette méthode de déposition de résidus filtrés a l'avantage de diminuer l'empreinte au sol de l'aire de stockage des résidus miniers, de faciliter la gestion de l'eau et d'offrir une opportunité de restaurer progressivement l'aire d'accumulation. L'aire de stockage de résidus sera exploitée en trois phases, construites d'ouest en est dont la séquence est résumée à la section 3.4. La superficie finale au sol du parc à résidus sera de 461 600 m², et sa superficie 3D sera 465 300 m². Le volume final du parc à résidus sera de 9 Mt.

La réalisation des travaux de restauration du parc à résidus miniers s'effectuera de manière progressive et commencera avant la fin des activités d'exploitation. Ainsi, les phases 1 et 2 du parc à résidus miniers seront restaurées pendant l'exploitation du site. La phase 3 du parc à résidus sera restaurée à la fin de la vie de la mine. La séquence de restauration proposée ainsi que les superficies utilisées pour les calculs sont montrées au tableau 21.

Tableau 21 Phase du parc à résidus miniers et séquence d'exploitation

Phase	Début exploitation	Fin exploitation	Restauration	Empreinte au sol (m²)	Superficie 3D (m²)
1	2025	2030	2031	240 900	242 600
2	2030	2032	2033	119 200	120 100
3	2032	2035	2036	101 500	102 600

À l'image de la halde à stériles, les résidus entreposés dans le parc à résidus seront couverts d'un recouvrement d'ingénierie construite à l'aide des matériaux suivants, installés du bas vers le haut :

- géomembrane texturée sur les deux faces;
- drain PEHD de 100 mm de diamètre annelé, perforé et enrobé d'un géotextile non tissé;
- couche protectrice de 750 mm de matériaux granulaires NPGA 0-20 mm ou sable;
- couche de 150 mm de matériaux aptes à la végétalisation;
- ensemencement des aires.

La membrane en polyéthylène constitue un système d'imperméabilisation installé avec un système de drainage de surface limitant les pressions hydrostatiques sur l'installation. Les drains de 100 mm seront installés selon un espacement de 25 m au dans les pentes de la halde. Les drains PEHD seront installés à la base de la couche protectrice de 300 mm de matériaux granulaires au-dessus de la géomembrane, afin de capter et de canaliser les eaux de ruissellement sur la halde. Ainsi, les drains veilleront à limiter les pressions hydrostatiques pour éviter l'érosion des couches sus-jacentes à la géomembrane, et ainsi optimiser l'intégrité du recouvrement.

La coupe-type présentant le recouvrement proposé lors de la restauration du parc à résidus est présentée à la figure 3.

Les contraintes géotechniques, topographiques et d'espace font que les facteurs de stabilité à long terme de la pente sud du parc à résidus miniers ne respectent pas les facteurs de sécurité exigés en phase fermeture par le Guide. Pour le besoin de l'estimation des coûts, il a été proposé de pallier la potentielle instabilité en construisant une berme stabilisatrice au pied de la halde.

Ainsi, lors de la phase 3 de restauration, une berme stabilisatrice sera aménagée au pied du parc à résidus pour respecter les critères de stabilité en phase fermeture du Guide (MNRF, 2022). La nécessité de cette berme stabilisatrice sera réévaluée lorsque la conception du parc à résidus sera plus avancée.

Dans la mesure où les critères de stabilité peuvent être maintenus, des ajustements pourront être apportés à la surface du parc à résidus afin que ce dernier s'harmonise mieux avec le paysage environnant.

4.4.3 HALDE À MORT-TERRAIN

À la fin de la vie de la mine, le contenu de la halde à mort-terrain sera utilisé dans le cadre des travaux de restauration. Il est toutefois attendu que du matériel soit toujours entreposé dans la halde à mort-terrain à la fin des travaux. L'empreinte de 82 800 m² de la halde projetée sera donc uniquement mise en végétation.

4.5 INFRASTRUCTURES DE GESTION DES EAUX

Après l'arrêt des opérations de l'usine de traitement de minerai et de filtration des résidus et à la cessation des activités sous terre, les bassins collecteront seulement l'eau de ruissellement en provenance de la halde à stériles et du parc à résidus miniers. Osisko maintiendra opérationnels les bassins, les fossés collecteurs liés à la gestion des rejets miniers et l'UTE pendant la période de postexploitation, afin d'assurer la qualité des eaux rejetées à l'effluent minier pendant les travaux de restauration. Lorsque l'aire industrielle et les aires d'accumulation auront été restaurées, que les niveaux d'eau du site se seront stabilisés et que la qualité d'eau sera conforme à la D019, il est prévu que l'UTE, les équipements nécessaires à son opération, les fossés collecteurs ainsi que les bassins soient démantelés, suivant l'autorisation du MRNF et du MELCCFP.

Les boues accumulées dans les bassins seront caractérisées. En 2040, il est prévu qu'il y ait un peu plus de 90 000 m3 de boues d'accumulés dans les bassins. Elles seront ensuite excavées et, selon les résultats de caractérisation, gérées conformément au Guide d'intervention – Protection des sols et de réhabilitation des terrains contaminés (Beaulieu, 2021). Si possible, les boues pourront également être disposées sous terre.

Les géomembranes dans les bassins et les fossés collecteurs seront enlevées et disposées dans un site autorisé. Les bassins et les fossés seront ensuite remblayés ou nivelés en utilisant les matériaux granulaires que constituent les bermes du bassin dans le but de permettre l'écoulement des eaux. La surface sera ensuite recouverte de 150 mm de dépôts meubles et ensemencée. L'estimation des coûts de restauration prévoit les sommes nécessaires pour l'équivalent de deux ans de traitement d'eau par l'UTE.

4.6 PRODUITS PÉTROLIERS ET CHIMIQUES ET MATIÈRES RÉSIDUELLES

4.6.1 PRODUITS CHIMIQUES

Les produits chimiques requis pour le fonctionnement de l'unité de traitement des eaux actuel et futur seront conservés aussi longtemps que le système de traitement sera en fonction. L'ensemble des produits chimiques sur le site sont entreposés dans les bâtiments où ils sont utilisés, dont l'usine de traitement de minerai, l'usine de filtration et l'UTE.

Dans la mesure du possible, les produits chimiques utilisés sur le site seront épuisés à la fin des opérations. Les réservoirs et contenants servant à l'entreposage des produits chimiques seront vidés, nettoyés puis disposés conformément aux exigences en vigueur. Seuls les produits chimiques pour le traitement des eaux minières seront conservés sur le site après la fermeture de ce dernier, et ce, pour la durée de la période postexploitation.

Les produits destinés au traitement des eaux minières seront utilisés tant que le traitement des eaux sera nécessaire. Lorsque ces traitements prendront fin, en période de postrestauration, les réservoirs de produits chimiques seront gérés de la même façon que mentionnée précédemment. Les sols à proximité des réservoirs et des contenants servant à l'entreposage des produits chimiques seront caractérisés et les mesures appropriées seront prises en cas de contamination.

Tous les équipements associés aux produits chimiques et à la tuyauterie seront retirés selon les règles établies.

La localisation des produits chimiques est illustrée à la carte 6.

4.6.2 PRODUITS PÉTROLIERS

Tous réservoirs pétroliers et conduites connexes seront gérés conformément aux réglementations applicables. Par exemple, toutes les huiles seront récupérées, transportées et entreposées conformément selon les normes environnementales en vigueur.

Les réservoirs de carburant diesel ainsi que leur tuyauterie de surface seront retirés en conformité avec les dispositions du Code de construction (ch. B-1.1, r.0.01.01) et du Code de sécurité (ch. B-1.1, r.0.01.01.1). Ces réservoirs seront vendus, conservés pour réutilisation future ou éliminés, en s'assurant de respecter les dispositions du Code de construction (ch. B-1.1, r.0.01.01) à cet égard. La tuyauterie et les réservoirs non réutilisables seront éliminés en conformité avec les dispositions du REIMR (ch. Q-2, r.19) ou du RMD (ch. Q-2, r.32). Seuls les produits pétroliers requis pour procéder aux travaux de restauration seront conservés sur le site après la fermeture de ce dernier. Les sols à proximité de ces infrastructures seront caractérisés et des mesures correctrices seront appliquées, si nécessaire.

Tous les équipements associés aux produits pétroliers et à la tuyauterie seront retirés selon les règles établies.

La localisation des produits pétroliers est illustrée à la carte 6.

4.6.3 MATIÈRES RÉSIDUELLES DANGEREUSES

Les principales matières résiduelles dangereuses générées sur le site comprennent des huiles usées, de l'antigel usé, des filtres à huile, des contenants d'huile, des boyaux hydrauliques, des aérosols et des linges souillés.

Aucune matière dangereuse résiduelle ne sera présente sur le site après la cessation des activités d'exploitation. Toutes les matières résiduelles qui sont générées sur le site minier sont transportées hors du site et éliminées par des compagnies spécialisées dans des centres autorisés.

Enfin, la manutention et le transport hors site des matières résiduelles dangereuses s'effectueront conformément aux lois et règlements en vigueur.

4.6.4 MATIÈRES RÉSIDUELLES NON-DANGEREUSES

Actuellement, il n'y a pas d'enfouissement, d'élimination ou de traitement de matières résiduelles sur le site. Dans le cadre des opérations d'exploitation, les conteneurs de matières résiduelles non dangereuses et le système de compostage seront relocalisés sur le site minier.

À la fin de la vie de la mine, les déchets domestiques et industriels seront transportés dans un lieu d'enfouissement. Les matières résiduelles non-dangereuses sont éliminées de façon diligente et conforme à la règlementation en vigueur durant toute la durée de l'exploitation et lors de la cessation des activités minières.

De façon générale, les matériaux issus de la démolition d'un immeuble ou d'infrastructure ne sont pas des matières dangereuses au sens du RMD (ch. Q-2, r.32), sauf s'ils sont contaminés en surface par des matières dangereuses au sens de l'article 4 de ce règlement. Ainsi, si les matériaux issus de la démolition d'un immeuble ou d'infrastructure ne sont pas des matières dangereuses ou « assimilées » à des matières dangereuses au sens du RMD, ils seront gérés en tant que matières résiduelles en vertu du REIMR (ch. Q-2, r.19).

Il est important de préciser qu'un nettoyage adéquat des matériaux de démantèlement « assimilés à des matières dangereuses » devra être fait afin de les décontaminer. Les matériaux jugés décontaminés selon les normes ou critères prescrits pourront être réemployés, recyclés ou valorisés à certaines conditions. Les matériaux encore contaminés devront être considérés comme des matériaux assimilés à des matières dangereuses et seront éliminés dans un centre autorisé par le MELCCFP. Enfin, la manutention et le transport hors site des matières résiduelles non dangereuses s'effectueront conformément aux lois et règlements en vigueur.

4.6.5 EXPLOSIFS

Osisko gère l'entreposage et l'utilisation des explosifs selon une procédure interne (STY-RSK-STD-062). Il n'y a aucun entreposage d'explosifs en surface. L'entreposage d'explosif se fait uniquement sous terre. Le transport et la manutention des explosifs et des détonateurs suivent la procédure interne d'Osisko sur le transport des explosifs (STY-RSK-STD-063). L'emplacement souterrain des aires d'entreposage des explosifs est illustré à la figure 4 du présent document.

À la fin des activités d'exploitation, l'inventaire de produits explosifs sera nul, à l'exception où des explosifs soient requis pour certaines opérations de démantèlement et de démolition.

4.7 RÉHABILITATION DES TERRAINS

Comme prescrit par l'article 31.51 de la LQE, une étude de caractérisation des sols et de l'eau souterraine du site (phases I et II) attestée par un expert sera réalisée dans les six mois suivant la cessation des activités sur le site minier Windfall. Osisko prendra les mesures nécessaires en conformité avec les dispositions de la LQE et le Règlement sur la protection et la réhabilitation des terrains (RPRT) (ch. Q-2, r.37) dans le cas où cette caractérisation révélerait la présence de contaminants au-delà des critères établis par la réglementation. Plusieurs activités désignées à l'Annexe III du RPRT sont ou seront réalisées sur le site Windfall, soit, sans s'y limiter :

- extraction et traitement de minerais d'or et d'argent;
- production d'électricité à partir de mazout ou de diesel;
- fabrication d'explosifs;

- ateliers d'usinage;
- dépôts de produits pétroliers;
- postes de distribution de carburants;
- entretien de camion ou véhicules lourds.

Dans le cas où une cessation temporaire des activités devrait avoir lieu, certaines dispositions particulières peuvent être prises pour un maximum de deux ans au total.

Étant donné qu'aucun autre usage n'est prévisible à la fermeture du site minier Windfall, le niveau visé pour la restauration des sols du site correspond à l'Annexe I du RPRT et correspond aux critères « B » du Guide d'intervention – Protection des sols et réhabilitation des terrains contaminés (Beaulieu, 2021). Ainsi, les volumes des sols présentant des concentrations égales ou supérieures aux critères génériques « B » du Guide d'intervention devront être évalués et les modes de gestion environnementale appropriés pour les sols, les eaux souterraines et de surface ainsi que les sédiments qui excèdent ces valeurs et critères devront être déterminés. Par la suite, des travaux de restauration visant à extraire ou à traiter les sols présentant des concentrations non conformes seront réalisés.

Comme mentionné à la section 3.5.1, un volume de 120 t de sols contaminés, ce qui correspond à un peu plus de 60 m³ au-delà du critère « B » de la grille des critères indicatifs établie par le MELCCFP, a été répertorié et inscrit au registre des sols contaminés. De plus, à titre préliminaire, aux fins de l'estimation des coûts de restauration, un volume de 225 m³ de sols autour des lieux où seront installés les postes de distribution d'essence a été considéré comme potentiellement affecté par des hydrocarbures pétroliers. Il est prévu d'excaver la totalité de ces sols et de les disposer dans un site autorisé. Il a aussi été considéré que 10 % de l'aire des installations de surface dans le secteur industriel (excluant le secteur du campement) aura été affecté par les métaux sur 150 mm d'épaisseur. Il est prévu de relocaliser les sols affectés par les métaux sous terre.

Le volume total de sols contaminés sera mis à jour lors de la fermeture de façon à inclure davantage de données et les risques s'étant déclarés entre la réalisation de ce plan de fermeture et la cessation des activités.

Les coûts liés à la caractérisation environnementale de l'ensemble du site sont présentés à la section 8 du présent plan de restauration.

4.8 CHANGEMENTS CLIMATIQUES

L'ÉIE réalisée par WSP en 2023 inclut une étude de résilience du Projet face aux changements climatiques. L'étude a comme objectif d'évaluer l'impact des changements climatiques anticipés sur les phases d'exploitation du site, de la conception à la restauration.

5 PROGRAMME DE CONTRÔLE ET SUIVI POSTRESTAURATION

L'objectif de la mise en œuvre du programme de suivi et d'entretien est de vérifier la performance et la conformité des travaux de restauration réalisés. Elle vise aussi à s'assurer de la pérennité des ouvrages et du couvert végétal et à évaluer, ultimement, l'atteinte de l'état satisfaisant du site minier. Ce programme comprend le suivi environnemental et l'évaluation de l'efficacité des techniques de restauration mises en place, le suivi et l'entretien de l'intégrité des ouvrages et le suivi agronomique.

Les coordonnées du responsable des programmes de suivi sont les suivantes :

<u>Personne responsable :</u> Madame Vanessa Millette

Directrice Environnement

Courriel: VMillette@osiskomining.com

Téléphone: 438-870-6237

Les sections suivantes décrivent le programme de suivi qui sera mis en œuvre suivant la cessation des activités d'exploitation.

5.1 SUIVI DE L'INTÉGRITÉ DES OUVRAGES

Les seuls ouvrages qui demeureront sur le site après la restauration sont la halde à stériles, le parc à résidus miniers, les portails remblayés et les accès condamnés aux monteries de ventilation. L'UTE sera maintenue en place jusqu'à la fin de la période postrestauration afin de traiter l'effluent final, au besoin, et sera démantelée ensuite (section 4.5).

En période postrestauration, un suivi de l'intégrité de ces ouvrages, soit une inspection réalisée par un spécialiste en géotechnique, sera effectué annuellement pendant un minimum de cinq ans. L'objectif de l'inspection est d'assurer que l'intégrité physique des recouvrements d'ingénierie installés sur la halde à stériles et sur le parc à résidus miniers soit conservée et qu'aucune érosion, tassement ou mouvement de terrain notables n'ait lieu. L'intégrité de la dalle de béton couvrant les accès aux monteries de ventilation ainsi que l'intégrité des mesures de sécurisation des portails et des accès au site seront aussi vérifiées lors de ces inspections. Tout signe d'instabilité au droit des piliers de surface sera également noté. Dans le cas où des signes de dégradation ou d'instabilité des ouvrages soient observés, des mesures correctrices seront recommandées et devront être prises.

Une copie du rapport annuel de suivi de l'intégrité des ouvrages sera fournie au MRNF en période postrestauration.

5.2 SUIVI AGRONOMIQUE

Le suivi agronomique se fera par des inspections annuelles en période estivale pour une période minimale de cinq ans. Les inspections consisteront principalement en une évaluation visuelle de différents paramètres, dont la condition de la végétation, le pourcentage des aires montrant une reprise végétative, l'érosion des sols, etc. Dans le cas où une dégradation de la végétation soit observée, des engrais de rappel seront épandus et des reprises d'ensemencement seront effectuées. Un rapport annuel d'inspection sera transmis au MRNF.

À la suite de ce délai ou lorsque la végétation sera démontrée pérenne par un expert et jugée satisfaisante par le MRNF, une demande de cesser ce suivi sera effectuée auprès du MRNF.

5.3 SUIVI ENVIRONNEMENTAL

Le suivi environnemental consiste au suivi de la qualité des eaux de l'effluent final et des eaux souterraines. L'objectif de ce suivi est de suivre la conformité ainsi que l'évolution qualitative et quantitative de ces eaux pendant la période transitoire précédant la restauration complète du site.

Ainsi, pendant la période des travaux de restauration, soit suivant l'arrêt définitif des activités et avant que les travaux de restauration ne soient achevés, un programme postfermeture d'une durée de 2 ans visant le suivi de l'effluent et des eaux souterraines sera mis à jour et appliqué là où il est nécessaire. Ce suivi sera réalisé selon les dispositions mentionnées à la section 2.10 de la D019.

À la suite des travaux de restauration, un programme de suivi postrestauration adapté aux emplacements à restaurer, aux techniques de restauration en place ainsi qu'aux contaminants présents sera réalisé selon les dispositions mentionnées à la section 2.11 de la D019.

Les résultats du suivi environnemental seront transmis au MRNF et au MELCCFP sous forme de rapport annuel.

5.3.1 SUIVI DE L'EFFLUENT FINAL

En période postexploitation, le traitement des eaux se poursuivra tant que le pompage des eaux d'exhaure et la complétion des travaux de restauration de la halde à stériles et du parc à résidus ne seront pas achevés. Le suivi environnemental se fera selon la séquence prévue au tableau 2.8 de la D019 pour les projets utilisant une aire d'accumulation de résidus miniers acidogènes, donc de façon hebdomadaire pour les six premiers mois, et ensuite de façon bimensuelle.

En période postrestauration, les eaux de ruissellement s'écoulant de la halde à stériles et du parc à résidus miniers feront l'objet d'un suivi selon la fréquence et la durée prévues au tableau 2.9 de la D019, soit huit fois par année sur une période minimale de 10 ans. Dans l'éventualité où la qualité de l'eau serait non conforme à la D019, l'eau sera traitée par l'UTE (section 4.5).

5.3.2 SUIVI DES EAUX SOUTERRAINES

Le réseau de surveillance des eaux souterraines qui aura été établi autour des aménagements à risque pendant les activités d'exploitation sera utilisé pour les suivis postexploitation et postrestauration de la qualité des eaux souterraines. Le suivi se fera selon la fréquence prévue à la section 2.3 de la D019, soit deux fois par année. Le suivi se fera pendant la période des travaux de restauration (c.-à-d. postexploitation) d'une durée de 2 ans. En période postrestauration, les suivis seront réalisés selon la durée établie pour les projets utilisant une aire d'accumulation de résidus miniers acidogènes (tableau 2.9 de la D019), soit 10 ans.

Un suivi de la piézométrie sera également effectué dans les puits d'observation utilisés pour le suivi de la qualité des eaux souterraines. La fréquence des mesures sera la même que celle pour le prélèvement des échantillons.

6 PLAN D'URGENCE

Le plan de prévention et de réponses aux urgences d'Osisko mis en place et diffusé pendant les activités minières sera adapté aux travaux de fermeture et de restauration puis aux activités postrestauration. Ce plan identifiera, d'une part, les incidents possibles, les seuils et procédures d'alerte, les procédures de réponse pour chacun des incidents potentiels et les responsabilités à chacune des étapes. D'autre part, ce plan présentera les ressources, les listes d'équipements et de matériaux disponibles, les modes de communication pendant et après un événement ainsi que des procédures de post-mortem.

Le responsable du plan d'urgence sera le responsable en santé et sécurité du chantier de fermeture pour la période des travaux; la responsabilité du plan d'urgence sera ensuite transférée au responsable des suivis environnementaux. Le plan sera révisé régulièrement, afin que l'information transmise soit toujours à jour selon l'évolution des activités sur le site minier Windfall (changement de responsabilité, de poste, secteurs plus à risque, etc.).

En période de fermeture et de restauration, soit la période évaluée à 2 ans pour la réalisation des travaux, les principaux risques actuellement identifiés sont :

- chutes de hauteur;
- effondrement de chantiers souterrains et/ou de structures:
- instabilité des pentes dans les sols autour des portails ou des empilements;
- affaissement de terrain;
- inondation des chantiers souterrains;
- collision d'équipements mobiles de surface;
- collision équipements-piétons;
- incendie d'un équipement et/ou d'un bâtiment;
- déversement de produits chimiques ou pétroliers;
- rejet d'eau non conforme à l'environnement;
- noyade;
- électrocution;
- fuite de gaz inflammable;
- vandalisme.

Si un des événements cités ci-dessus devait survenir, les mesures du plan d'urgence seraient mises en application.

En période postrestauration, les risques d'accident seront réduits. En effet, comme il n'y aura plus d'activité régulière sur le site, tous les accidents causés par l'intervention humaine auront une très faible probabilité d'occurrence. Les principaux risques actuellement identifiés sont :

- vandalisme;
- instabilité autour du portail ou des empilements de stériles et de résidus miniers;
- effondrement de chantiers souterrains.

Si ces événements se produisaient, une alerte locale serait lancée. La communication pourra se faire via le responsable du suivi environnemental, mais devra ultimement être dirigée vers le coordonnateur de gestion de crises d'Osisko, lequel nommera un chargé d'intervention sur le site.

7 MESURES EN CAS D'ARRÊT TEMPORAIRE DES ACTIVITÉS

En vertu des articles 224 et 226 de la Loi sur les mines (ch. M-13.1), lors d'une suspension temporaire des activités minières d'une durée de six mois ou plus, le MRNF sera avisé et Osisko s'engage à transmettre, dans les quatre mois après la date de début de la suspension, des copies certifiées des plans des ouvrages souterrains et des installations de surface.

Conformément au Guide du MRNF, lors d'une suspension temporaire des activités de six mois et plus, Osisko présentera les mesures de sécurité retenues afin d'assurer la sécurité du public et la protection de l'environnement. Ces mesures visent à restreindre l'accès au site minier et aux différentes installations ainsi qu'à maintenir le contrôle de la qualité de l'effluent et à assurer la stabilité physique et chimique des différentes aires d'accumulation et d'entreposage. Les mesures suivantes, sans s'y limiter, seront appliquées lors d'un arrêt temporaire des activités minières :

- le pompage se poursuivra à un débit permettant de maintenir les ouvertures minières à sec jusqu'à la reprise des travaux, ou le temps de récupérer les équipements sous terre. Les eaux d'exhaure continueront à être traitées et rejetées à l'effluent final;
- les accès aux sites seront sécurisés et restreints. Des blocs de roches NPGA seront mis en place à l'entrée des différentes installations sur le site et permettront d'assurer la sécurité du site;
- des dalles de béton armé seront installées afin de fermer et de sécuriser chacune des monteries;
- le portail sera bloqué à l'aide de blocs de roche;
- des panneaux de signalisation « Danger » seront installés tous les 30 m autour du portail et à l'endroit des monteries de ventilation;
- les programmes de suivi de l'intégrité des ouvrages et environnemental seront maintenus afin d'assurer la sécurité du public et la protection de l'environnement durant l'arrêt temporaire des activités.

8 CONSIDÉRATIONS ÉCONOMIQUES ET TEMPORELLES

8.1 ÉVALUATION DES COÛTS DE LA RESTAURATION

L'article 232.4 de la Loi sur les mines (ch. M-13.1) prévoit que toute personne visée à l'article 232.1 de cette même loi doit fournir une garantie avant le début des activités d'exploitation et dont le montant correspond aux coûts anticipés pour la réalisation des travaux prévus au plan de réaménagement et de restauration dans la mesure prévue par cette loi et conformément aux normes établies par règlement.

Cette section présente l'estimation des coûts de restauration du site Windfall à la suite de la fin des travaux d'exploitation, prévue en 2035.

8.1.1 COÛTS DE FERMETURE

L'estimation des coûts pour les travaux de démantèlement, de réhabilitation et de réaménagement du site est détaillée aux tableaux 1, 2 et 3 de l'annexe F, alors que le sommaire des coûts de restauration, incluant les frais d'ingénierie et de supervision, les coûts des programmes de suivi ainsi que la contingence applicable, sont présentés au tableau 4 de l'annexe F. Ces coûts sont calculés en présumant que les travaux seraient réalisés par un tiers. Les coûts ont été calculés en dollars d'aujourd'hui.

Les coûts de démantèlement ont été estimés initialement par un estimateur en construction et procédé de WSP, selon la méthode paramétrique. Cette méthode compare les coûts de démantèlement sur différentes bases de prix, soit unitaire, paramétrique et de réalisation. Chaque composante du projet (bâtiments et infrastructures) est d'abord listée et selon leurs dimensions approximatives ainsi que selon leurs constituants, un montant unitaire pour le démantèlement et la disposition des matériaux est attribué. Ainsi, pour chaque bâtiment ou infrastructure, des montants de démantèlement résultent de l'exercice de comparaison (unitaire, paramétrique, de réalisation) et une valeur moyenne pondérée est calculée pour chacune des infrastructures.

8.1.2 COÛTS DE SUIVIS POSTRESTAURATION

Les coûts de suivi et d'entretien postrestauration comprennent le suivi l'intégrité des ouvrages pendant 5 ans (inspections annuelles des ouvrages et préparation de rapports annuells), le suivi agronomique pendant 5 ans (inspections annuelles, suivies de la reprise d'ensemencement, préparation de rapports annuels) ainsi que le suivi de la qualité des eaux souterraines et de l'effluent du site pendant 10 ans (échantillonnages et analyses, préparation de rapports annuels).

L'estimation des coûts du suivi environnemental considère que l'échantillonnage sera réalisé huit fois par an, pour une durée minimale de 10 ans. La fréquence de ce suivi est basée sur le tableau 2.9 de la D019, soit pour une aire d'accumulation de résidus miniers acidogènes. Le suivi environnemental des eaux en période de postexploitation, c.-à-d. pendant les travaux de restauration d'une durée de 2 ans, est également inclus dans ce montant.

Les coûts de suivi et d'entretien postrestauration sont détaillés au tableau 4 de l'annexe F. Ces coûts ont été estimés par WSP. L'échéancier des suivis proposés en période de postexploitation et de postrestauration est montré dans le calendrier au tableau 22.

8.2 CALCUL DE LA GARANTIE FINANCIÈRE

Les coûts de restauration du site minier Windfall sont détaillés à l'annexe F. Comme mentionné précédemment, le montant révisé de la garantie financière correspond aux coûts anticipés pour la réalisation de tous les travaux prévus dans le plan de réaménagement et de restauration du site. Le montant total estimé de la garantie financière pour la réalisation de ces travaux est de 82 914 000 \$ (dollars canadiens de 2022).

Les coûts indirects, qui incluent les frais d'ingénierie et de supervision, représentent 10 % des coûts de restauration. Ce pourcentage est établi en fonction de la complexité des travaux de restauration et de l'enveloppe monétaire que ceux-ci représentent qui est de 6 554 500 \$.

Une contingence de 15 % a été appliquée sur tous les coûts directs et indirects, considérant que la majorité des infrastructures pour l'exploitation n'est pas encore construite. Un montant de 10 815 000 \$ est ajouté au sous-total.

8.3 GARANTIE FINANCIÈRE

La garantie financière sera déposée sous forme de cautionnement et respectera les conditions présentées aux articles 116 à 199 du Règlement sur les substances minérales autres que le pétrole, le gaz naturel et la saumure (ch. M-13.1, r. 2,).

Conformément au Règlement (ch. M-13.1, r. 2, a. 112), Osisko versera le montant de la garantie financière au MRNF suivant l'approbation du plan de restauration par le MRNF et suivant le calendrier de versement. La garantie financière d'Osisko sera maintenue en vigueur tant que celle-ci sera propriétaire du site ou jusqu'à l'émission d'un certificat de libération.

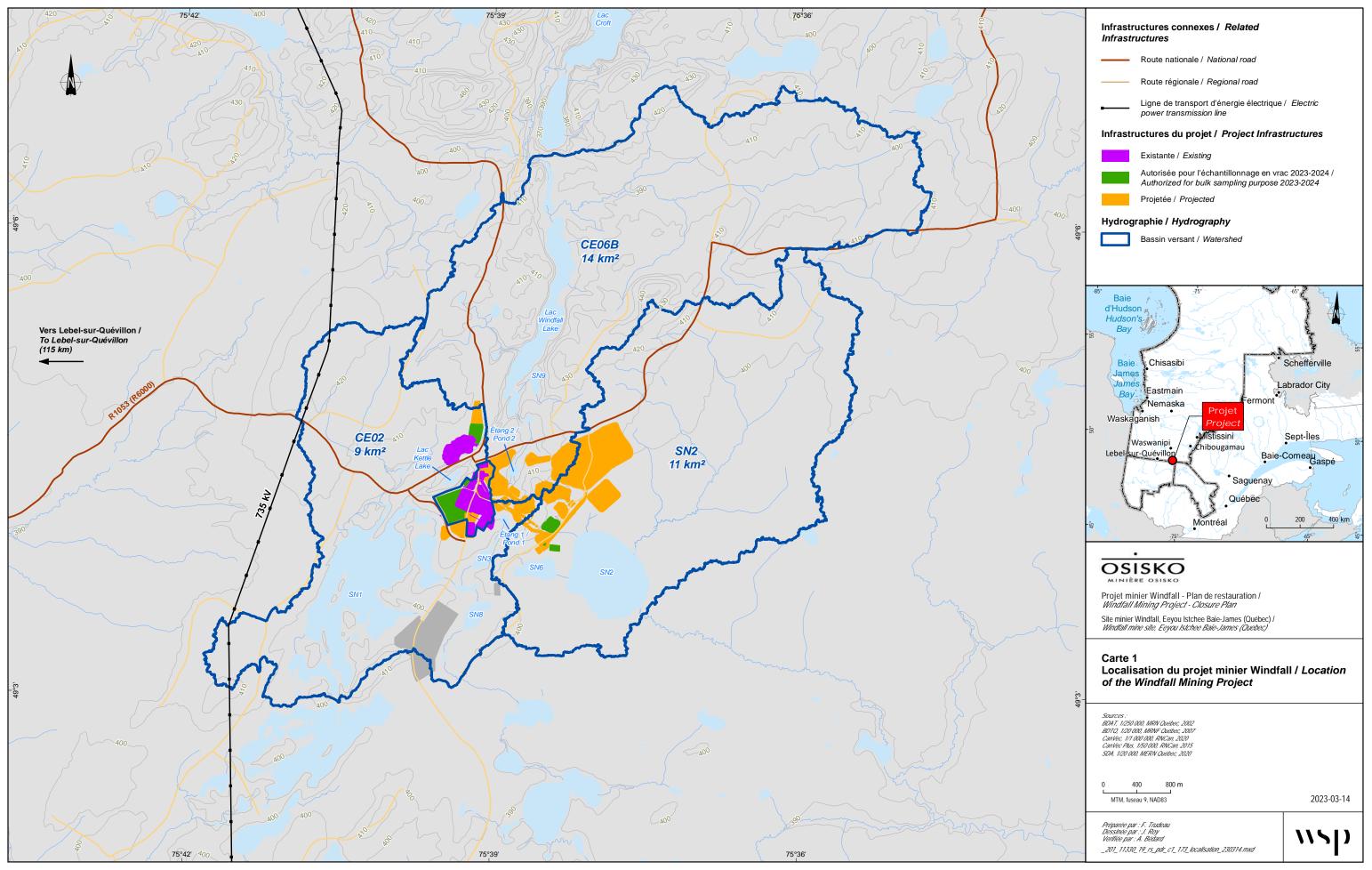
8.4 CALENDRIER DE RÉALISATION DES TRAVAUX DE RESTAURATION

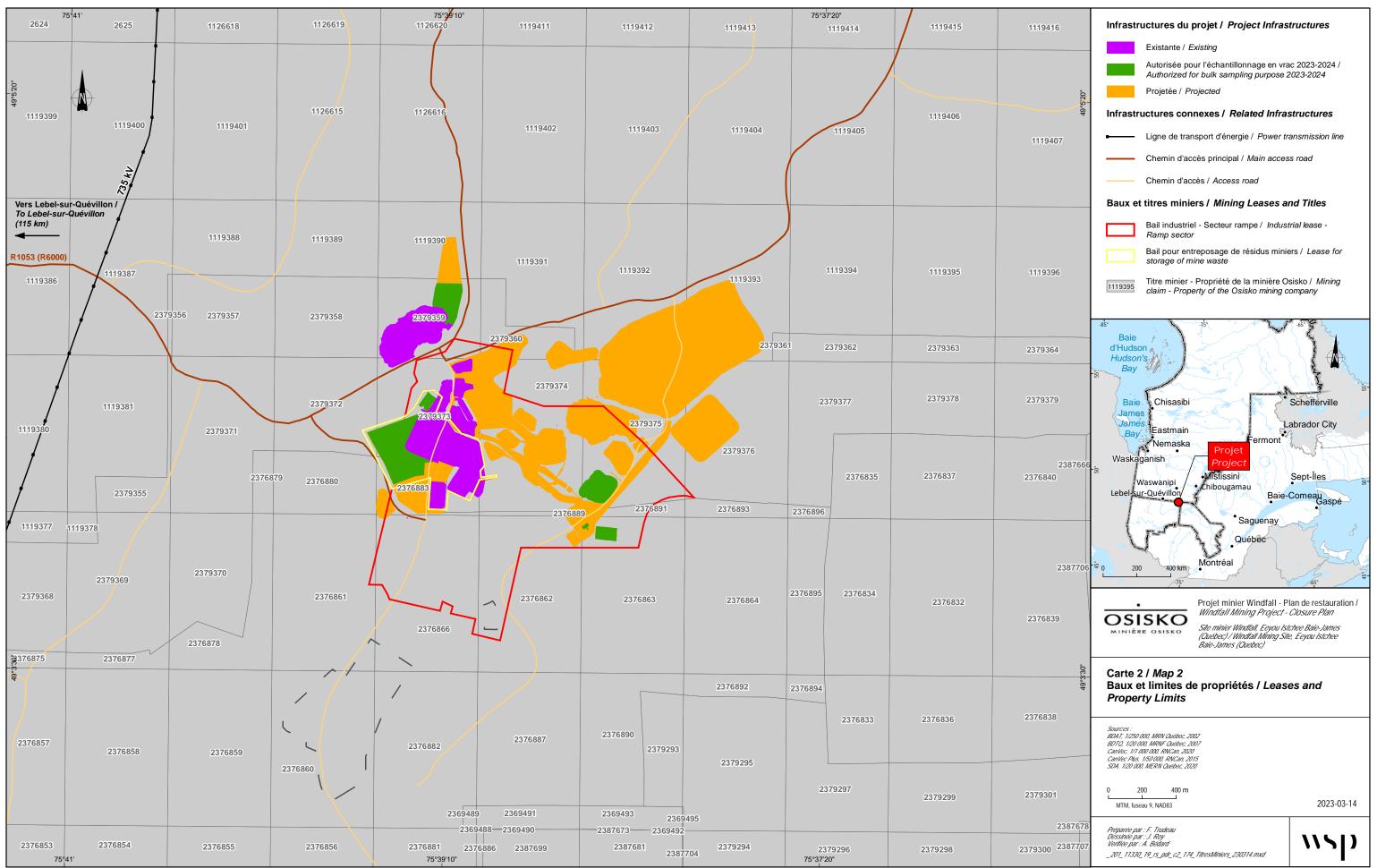
Le calendrier de réalisation des travaux de restauration est montré au tableau 22. Celui-ci a été élaboré en fonction des informations existantes et de la planification actuelle de la vie de la mine. Il sera révisé périodiquement en fonction de l'avancement des travaux et des changements pouvant survenir au cours de la vie de la mine.

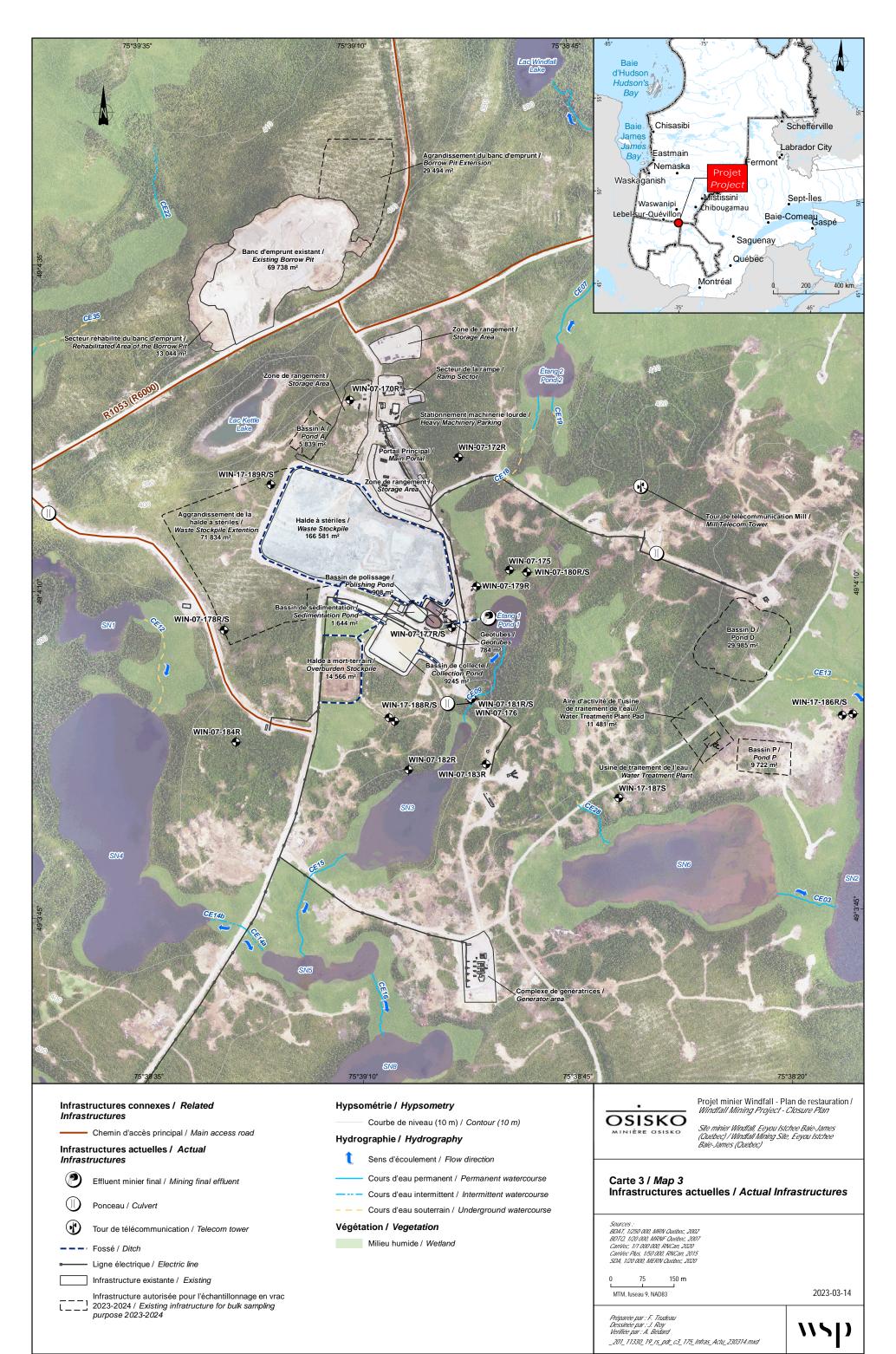
Tableau 22 Calendrier de réalisation des travaux

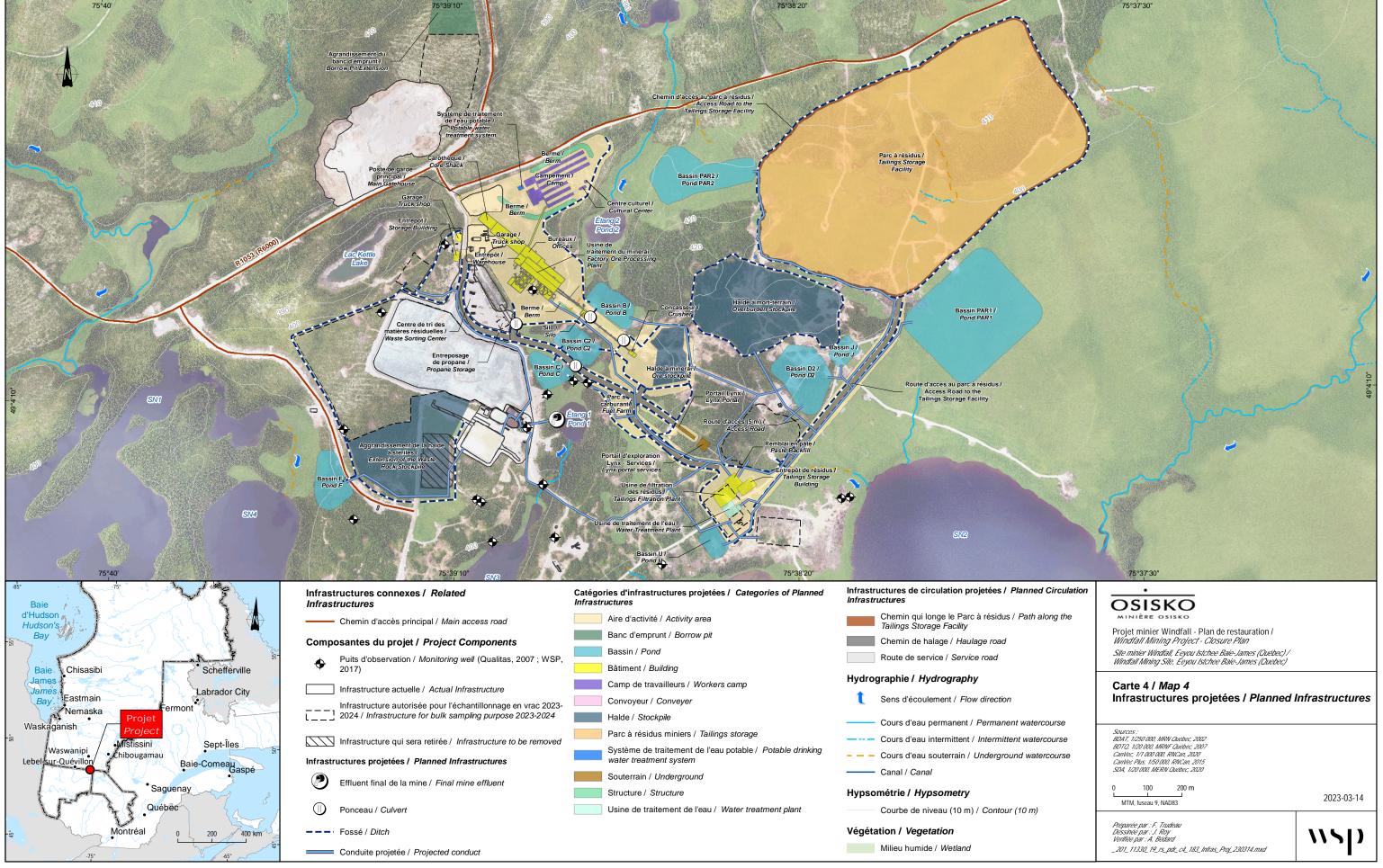
		Préexploitation Exploitation									Resta	uration			Postr	estauratio	n											
ANNÉES		20)23			:	2024				2025																	
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q	4 /	//	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	// 2047
Échantillonnage en vrac des zones Caribou principal et Lynx 4.																												
Construction																												
Production																												
Restauration phase I du parc à résidus minier																												
Restauration phase II du parc à résidus minier																												
Études environnementales et ingénierie préalables aux travaux de restauration																												
Caractérisation environnementale du site et gestion des sols contaminés sur le site																												
Sécurisation des ouvertures souterraines et du site minier																												
Restauration de l'empreinte de la halde à mort-terrain																												
Restauration de la halde à stériles																												
Restauration phase III du parc à résidus minier																												
Démantèlement des bâtiments et des infrastructures, restauration de leur empreinte																												
Restauration des chemins de halage																												
Suivi environnemental postexploitation																												
Construction de la berme stabilisatrice au parc à résidus miniers																												
Restauration des bassins et des fossés collecteurs liés à la gestion des rejets miniers																												
Démantèlement de l'UTE et restauration de son empreinte																												
Démantèlement des infrastructures de distribution électrique et de la tour de télécommunication																												
Suivi de l'intégrité des ouvrages et suivi agronomique et postrestauration																												
Suivi environnemental postrestauration																												
Restauration des chemins d'accès et de services																												

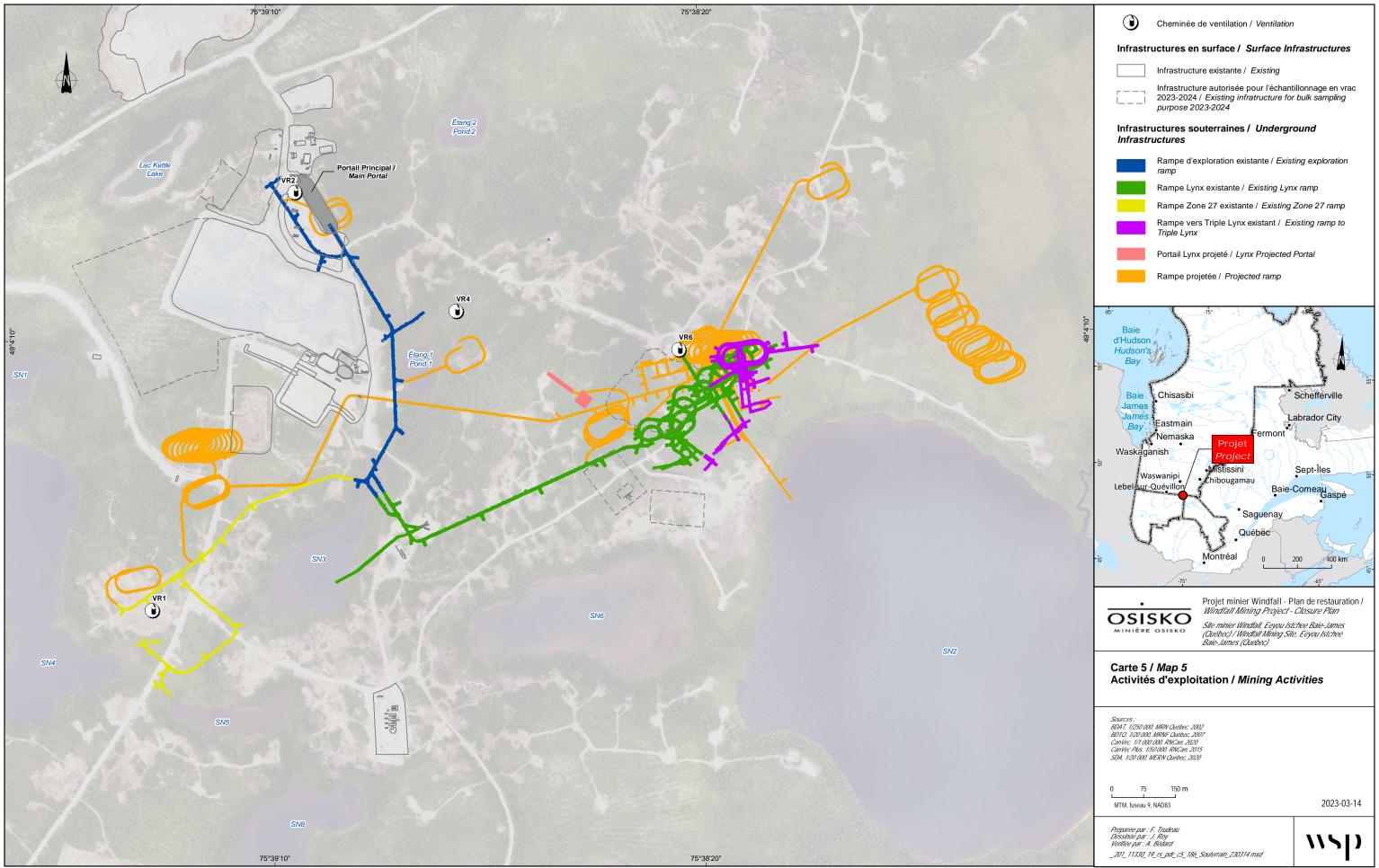
^{*} Selon les données actuelles, les travaux de restauration de l'ensemble du site sont prévus de commencer en 2036.

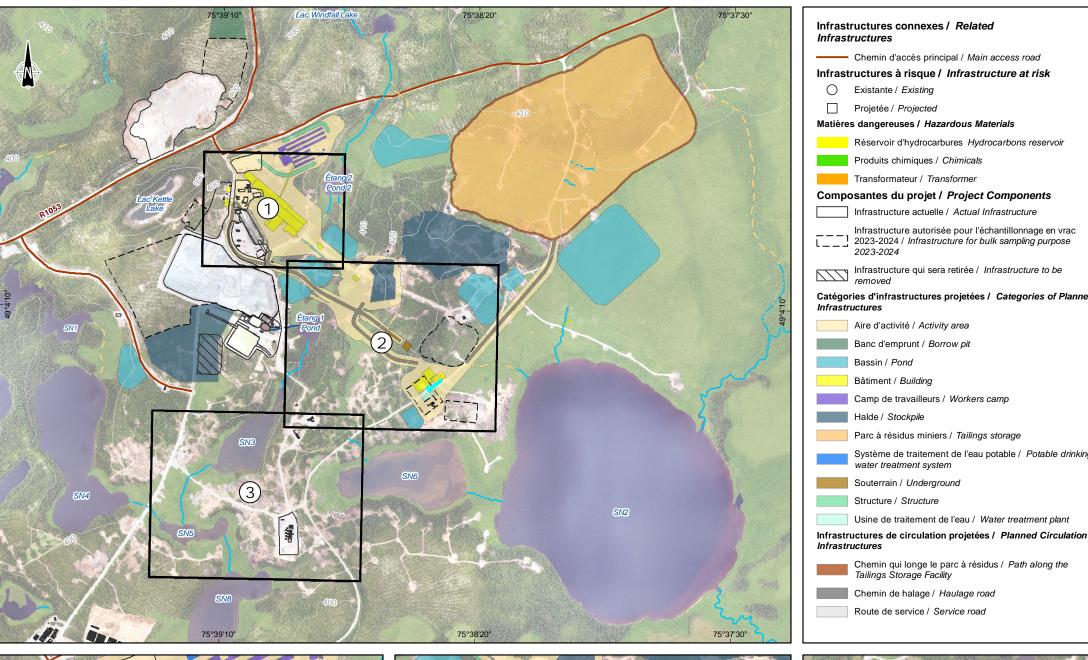

RÉFÉRENCES BIBLIOGRAPHIQUES

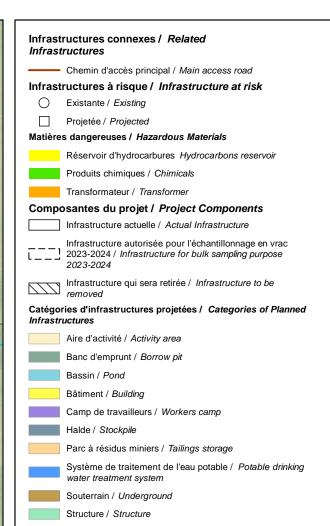

- A2GC. 2022. Windfall Lake Project Rock Engineering in Support of the Mine Design fir the 2022 Feasibility Study. Rapport technique 2243-WIN-003-R2022-v1.
- Bandyayera, D., Théberge, L., Fallara, F. 2002a. Géologie de la région des lacs Piquet et Mesplet (32G/04 et 32B/13). Ministère des Richesses naturelles du Québec; Rapport RG 2001-14.
- Bandyayera, D., Théberge, L., Fallara, F. 2002b. Compilation géoscientifique Géologie 1/20 000, 32G04-200-0102 Lac Windfall. Ministère des Richesses naturelles du Québec, Série Sigeom SI-32G04B-C4G-02C.
- Bandyayera, D., Rhéaume, P., Doyon, J., Sharma, K.N.M. 2004. Géologie de la région du lac Hébert (32G/03).
 Ministère des Ressources Naturelles et de la Faune, RG2003-07.
- BBA. 2021. NI 43-101 Technical Report Windfall Lake Project Preliminary Economic Assessment Update. Rapport produit pour Osisko Mining Inc. 594 pages et annexes.
- BBA Inc. et al. 2023. NI 43-101 Technical Report Feasibility Study for the Windfall Project. Rapport produit pour Osisko Mining Inc. 668 pages et annexes.
- Beaulieu, M. 2021. Guide d'intervention Protection des sols et réhabilitation des terrains contaminés.
 Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques.
 ISBN 978-2-550-83515 8 (PDF). 326 pages.
- GCM Consultants. 2022. Étude de faisabilité sur le traitement des eaux du site Windfall de la minière Osisko –
 Rapport technique ENV0625-1501-00.
- GENIVAR. 2007. Échantillonnage en vrac sur le site Windfall Lake. Plan de restauration du site Windfall Lake en vertu de l'article 232.2 de la Loi sur les mines. Rapport réalisé pour Ressources Noront Ltd., 71 pages et annexes.
- GENIVAR. 2008. Étude du pilier de surface Projet Windfall Lake. Nº de référence : AV 106 787. Rapport réalisé pour Ressources Noront Ltd., 43 pages et annexes.
- GENIVAR. 2010. Rapport de caractérisation du matériel échantillonné le 16 juin 2010 aux différentes haldes du site minier Windfall Lake. Rapport réalisé pour la compagnie minière Eagle Hill Exploration, 19 pages et annexes.
- GENIVAR. 2011. Projet d'exploration minière, propriété Windfall Lake. Rapport d'échantillonnage environnemental d'octobre 2010. Rapport réalisé pour Eagle Hill Exploration Corporation, 8 pages et annexes.
- GENIVAR. 2012. Propriété Minière Windfall Lake. Mise à jour du plan de restauration du site minier de la propriété en vertu de l'article 232.6 de la Loi sur les mines. Rapport réalisé pour Eagle Hill Exploration Corporation, 55 pages et annexes.
- GOLDER. 2020a. Caractérisation géochimique du minerai, des stériles et des résidus du projet Lac Windfall,
 Québec. N° de référence : GAL079-19118268-19005-RF-Rev1. 68 pages, tableaux, figures et annexes.
- GOLDER. 2020b. Applicabilité des résultats géochimiques de la zone Lynx à la Zone Triple Lynx pour l'échantillonnage en vrac, Projet Lac Windfall, Québec. Mémorandum technique préparé pour minière Osisko inc. N° de référence : GAL081-19118268-19005-MTF-Rev04. 4 pages.


- GOLDER. 2021. Geochemical Characterization of Ore, Waste Rock and Tailings for the Windfall Lake Project,
 Quebec. N° de référence: GAL101-20146303-21001-RA-Rev0. 1 485 pages.
- GOLDER. 2022. Projet Lac Windfall Résumé de la caractérisation géochimique pour la mise à jour du plan de fermeture. Mémorandum technique préparé pour Osisko Mining inc. GAL113-2148985705-MF-Rev0. 11 pages.
- Hawley, M., Cunning, J. 2017. Guidelines for Mine Waste Dump and Stockpile Design. Publié par CSIRO, Australie. 385 pages.
- JOLY, M. (1990). Geologie de la région du Lac aux Loutres et du lac Lacroix. Ministère de l'Énergie et des Ressources, Québec; MB 90-42, 55 pages.
- KITNEY, K.E., OLIVO, G.R., DAVIS, D.W., DESROCHERS, J.P., et TESSIER, A. (2011). The Barry Gold Deposit, Abitibi Subprovince, Canada: A greenstone belt-hosted gold deposit coeval with Late Archean deformation and magmatism. Economic Geology, 106: 1129-1154.
- MELCC. 2020. Guide de caractérisation des résidus miniers et du minerai. Ministère de l'environnement et de la lutte contre les changements climatique. Direction des eaux usées. 52 pages.
- MDDEP. 2002a. Guide de bonnes pratiques pour la gestion des matériaux de démantèlement. Ministère du Développement durable, de l'Environnement et des Parcs. Direction des politiques du secteur industriel. Secteur des lieux contaminés. ISBN 2-551-19609-4. 74 pages.
- MDDEP. 2002b. Guide de valorisation des matières résiduelles inorganiques non dangereuses de source industrielle comme matériau de construction. Ministère du Développement durable, de l'Environnement et des Parcs. Direction des politiques du secteur industriel. Service des matières résiduelles. 47 pages.
- MDDEP. 2012. Directive 019 sur l'industrie minière. Ministère du Développement durable, de l'Environnement et des Parcs ISBN: 978-2-550-64507-8 (PDF). 66 pages et annexes.
- MERN. 2022. Guide de préparation du plan de réaménagement et de restauration des sites miniers au Québec.
 Ministère de l'Énergie et des Ressources naturelles, Direction de la restauration des sites miniers,
 Gouvernement du Québec, ISBN: 978-2-550-92682-5 (PDF). 2022, 87 pages.
- Minière Osisko Inc. 2020. Réponses aux commentaires du MERN du 3 septembre 2020 Complément d'information au plan de restauration du site minier Windfall Lake concernant l'agrandissement de la halde imperméabilisée. N° de référence du MERN: 8341-1796. 1 page.
- Rhéaume, P., Bandyayera, D. (2006). Révision stratigraphique de la Ceinture d'Urban-Barry. Ministère des Ressources naturelles et de la Faune, Québec, RP 2006-08, 11 pages.
- WSP. 2017. Plan de restauration Travaux d'exploration. Projet lac Windfall. Préparé pour Minière Osisko inc. N° de référence : 151-11330-27. 53 pages, cartes, figures et annexes.
- WSP. 2018a. Note technique Analyses de stabilité de la halde imperméabilisée Site du Lac Windfall.
 Préparée pour Minière Osisko Inc. No de référence : 151-11330-50. 11 pages et annexes.
- WSP. 2018b. Complément d'information au plan de restauration Halde à stériles imperméabilisée. Projet
 Windfall Lake. Préparé pour Minière Osisko inc. N° de référence : 151-11330-68. 10 pages et annexes.


- WSP. 2019. Réponses aux commentaires du MERN Complément d'information au plan de restauration du site minier Windfall Lake concernant l'agrandissement de la halde imperméabilisée. Préparé pour Minière Osisko inc. N° de référence : 151-11330-68. Numéro de référence MERN : 8341-1796. 3 pages et annexes
- WSP. 2020. Complément d'information au plan de restauration Travaux d'exploration. Préparé pour Minière
 Osisko inc. N° de référence : 151-11330-82. 17 pages, cartes et annexes.
- WSP. 2022a. Plan de restauration Travaux d'exploration Projet Windfall. Préparé pour pour Minière Osisko Inc. N° de référence : 201-11330-13. 77 pages et annexes.
- WSP. 2023a. Étude d'impact sur l'environnement Site minier Windfall. Préparé pour Minière Osisko Inc. N° de référence : 201-11330-19.
- WSP. 2023b. Étude de faisabilité Conception des haldes et des infrastructures de gestion des eaux. Préparé pour Minière Osisko Inc. N° de référence : 221-11330-08.
- WSP. 2023c. Rapport sectoriel Caractérisation géochimique des matériaux miniers. Préparé pour Minière Osisko Inc. N° de référence : GAL137-2148985706. 740 pages et annexes.
- WSP. 2023d. Rapport sectoriel Évaluation des teneurs dans l'eau souterraine. Préparé pour Minière Osisko Inc. N° de référence : GAL141-2148985708. 340 pages et annexes.


CARTES






Usine de traitement de l'eau / Water treatment plant

Tailings Storage Facility

Chemin de halage / Haulage road

Route de service / Service road

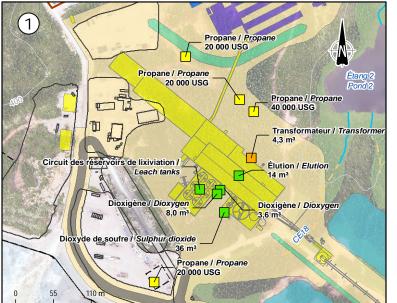
Chemin qui longe le parc à résidus / Path along the

Hydrographie / Hydrography

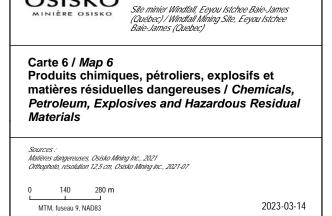
---- Canal / Canal

Hypsométrie / Hypsometry

Végétation / Vegetation


----- Fossé de drainage / Drainage ditch

Cours d'eau permanent / Permanent watercourse


Cours d'eau intermittent / Intermittent watercourse

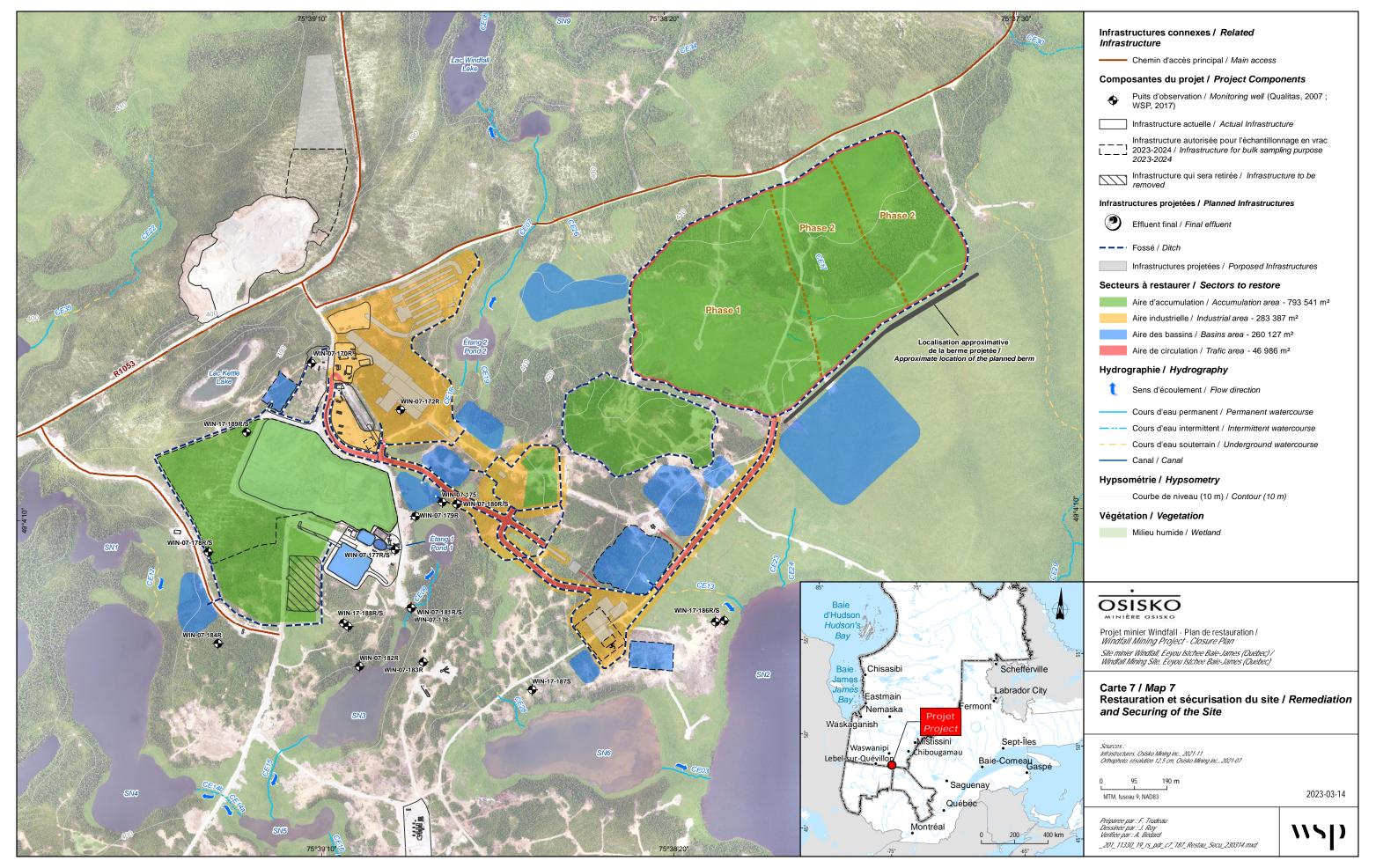
Cours d'eau souterrain / Underground watercourse

Courbe de niveau (10 m) / Contour (10 m)

Projet minier Windfall - Plan de restauration / Windfall Mining Project - Closure Plan

Préparée par : F. Trudeau Dessinée par : J. Roy Verifiée par : A. Bédard _201_11330_19_rs_pdr_c6_185_Prod_Danger_230314.mxd

OSISKO


Essence / Gasoline

20 000 USG

10 000 L

x 45 000 L

1 x 1 000 L

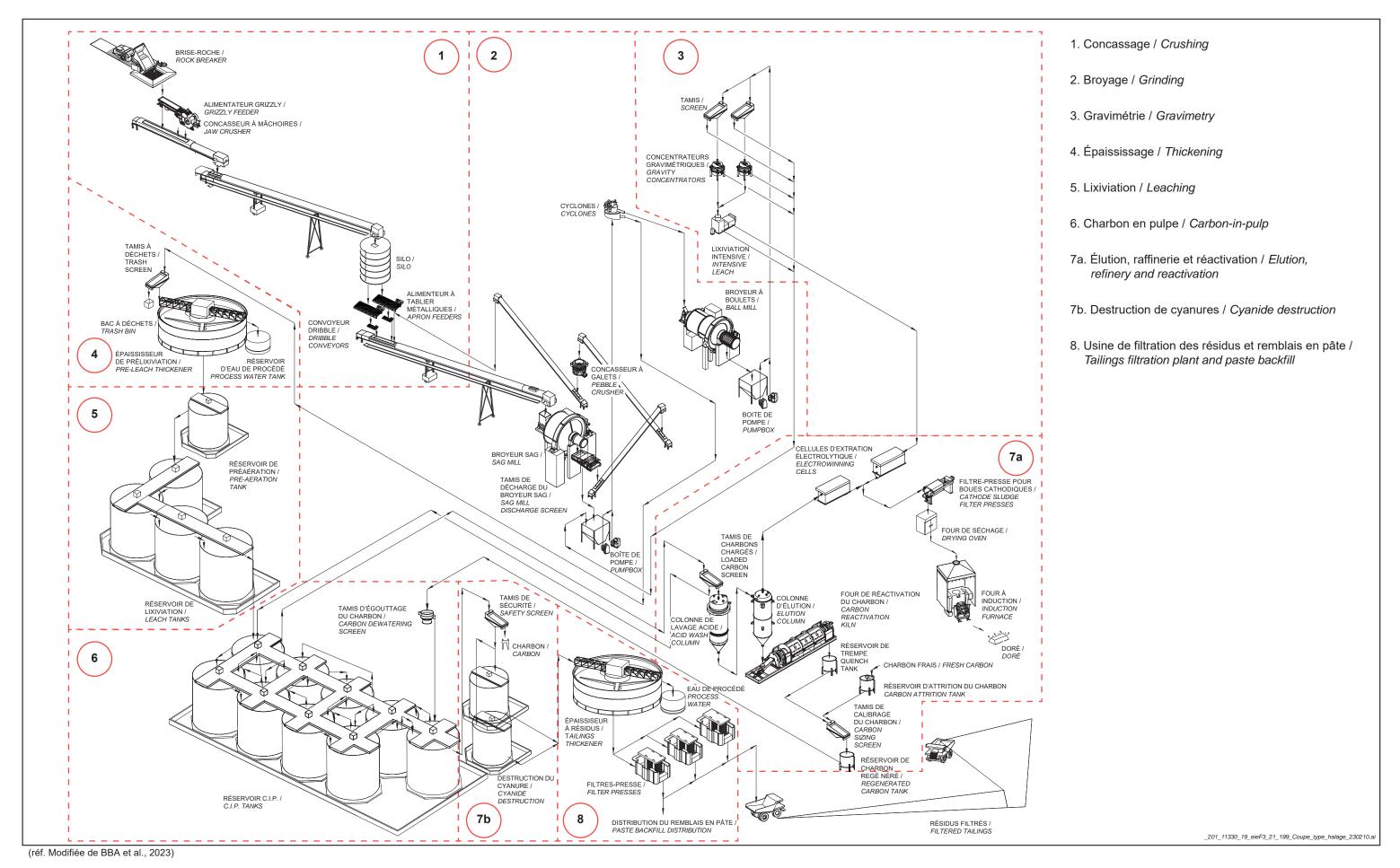
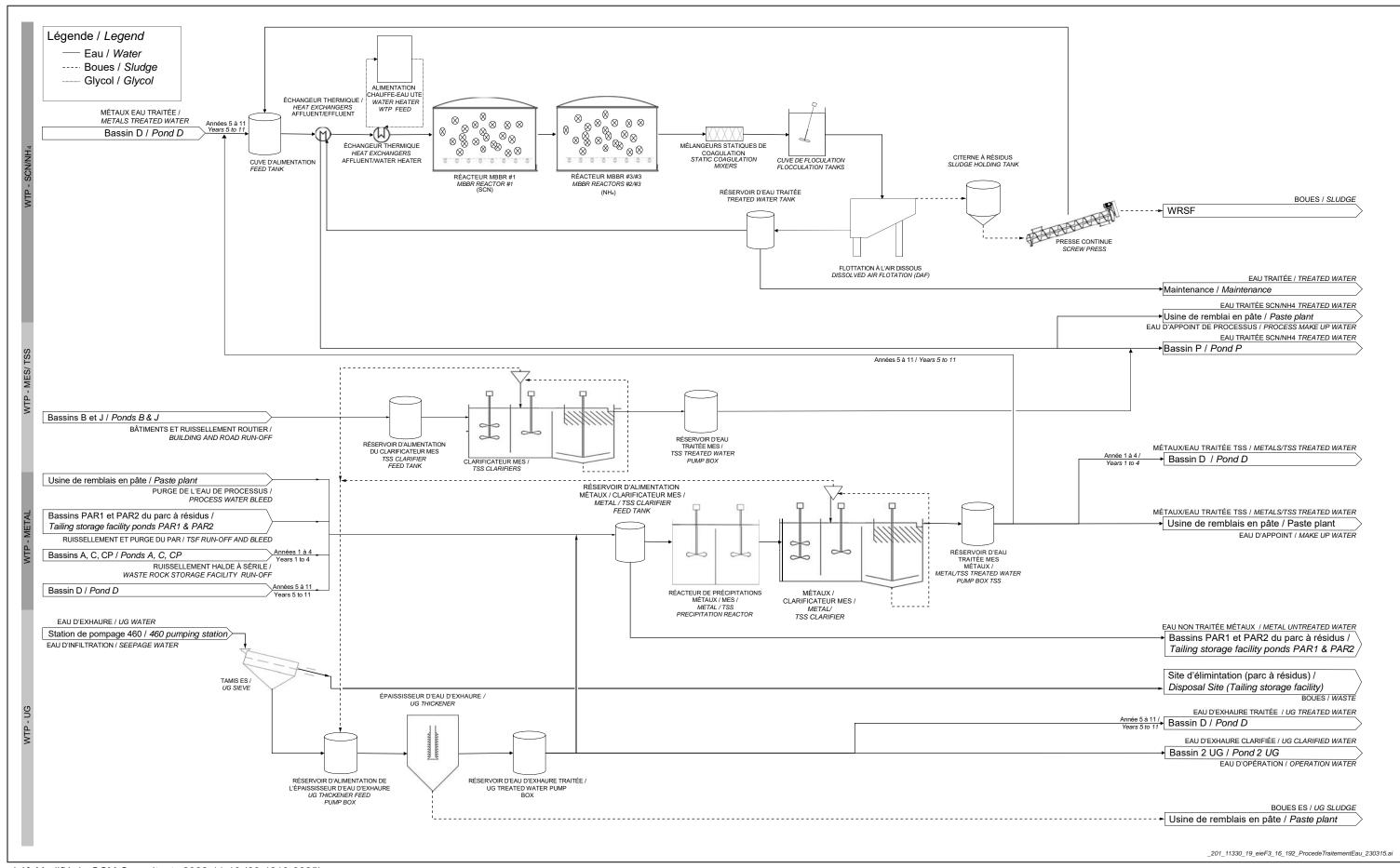



Figure 1 Diagramme du processus de traitement du minerai dans le cadre des opérations du site minier Windfall, tiré de l'étude NI 43-101 (BBA Inc. et al, 2023)

(réf. Modifié de GCM Consultants 2022-11-19 (20-1219-0625)

Figure 2 Diagramme du processus de gestion des eaux dans le cadre des opérations du site minier Windfall, tiré de l'étude NI 43-101 (BBA Inc. et al, 2023)

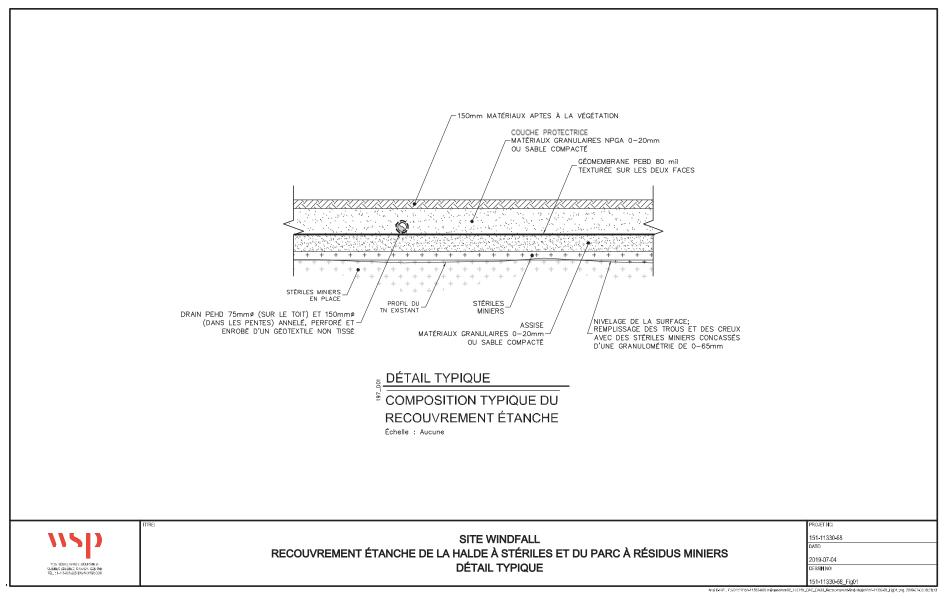
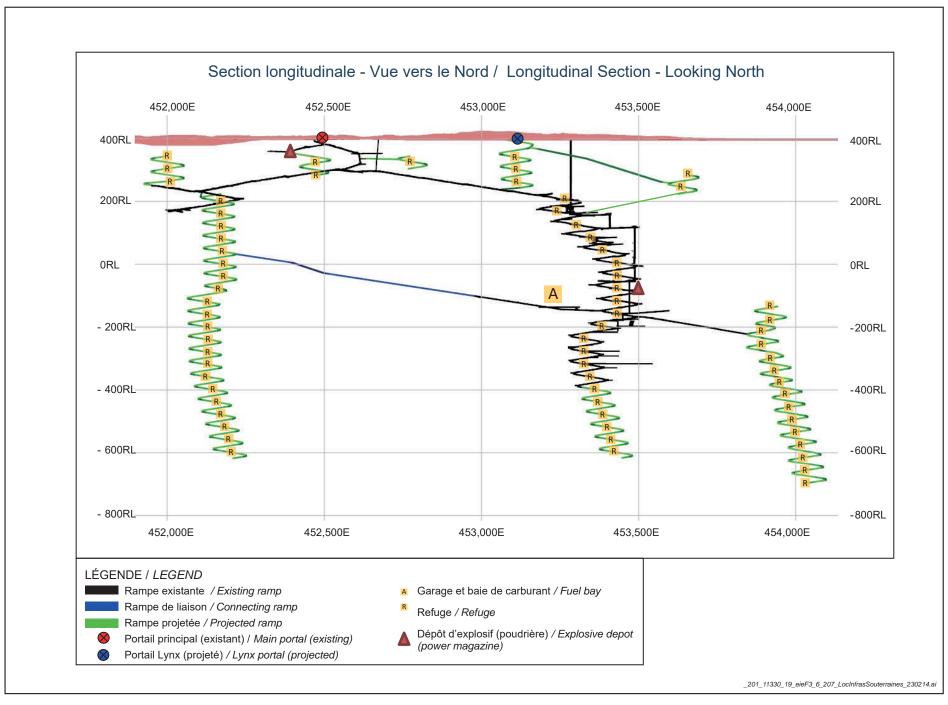



Figure 3 Coupe-type du recouvrement étanche de la halde à stériles imperméabilisée et du parc à résidus miniers

(réf. Entech)

Figure 4 Localisation souterraine des dépôts d'explosifs

ANNEXE

GRILLE DE VALIDATION

B – Projet d'exploitation minière

Projet d'exploitation minière	√ *	S.O.**	Renseignements disponibles (référence)***
Renseignements généraux			
Résumé du plan de restauration	✓		
Identification du requérant	✓		
Résolution du conseil d'administration	✓		
Emplacement du terrain avec plans annexés	✓		
Géologie et minéralogie, <u>notamment</u> :			
tests pour la teneur en métaux, le DMA et le DNC, tableaux des résultats annexés et interprétation des résultats	✓		
Historique du site visé par le plan de restauration	✓		
Autorisations diverses	✓		
Description des activités minières			
Description et nature des activités d'exploitation actuelles et à venir, <u>notamment</u> : taux moyens d'extraction et de traitement de minerai durée de vie estimée taux de production des résidus superficie des aires d'accumulation	✓		
Description des bâtiments et des infrastructures de surface et plans annexés, <u>notamment</u> : bâtiments et infrastructures d'extraction description de l'usine de traitement de minerai	✓		
Description des infrastructures électriques, de transport et de soutien	✓		
Description des autres bâtiments (bâtiments administratifs et d'hébergement, cafétéria, etc.)	✓		
Aires d'accumulation			
 description des haldes de stériles et des haldes de minerais et de mort-terrain 	✓		
description du parc à résidus miniers	✓		
Description de la gestion de l'eau sur le site, notamment : système hydrologique et bassin versant bilan hydrique des aires d'accumulation et de l'usine schéma de gestion des eaux et emplacement de l'effluent final	✓		
 qualité des eaux souterraines Description du site de traitement des eaux usées, notamment : procédés de traitement des eaux usées description des bassins de sédimentation station d'échantillonnage à l'effluent 	✓		

Projet d'exploitation minière (suite)	√ *	S.O.**	Renseignements disponibles (référence)***
Lieux d'entreposage et d'élimination			
produits chimiques, pétroliers et explosifs	✓		
matières résiduelles non dangereuses	✓		
matières résiduelles dangereuses	✓		
Mesures de protection, de réaménagement et de re	estaurati	on	
Sécurité des aires de travail, des ouvertures au jour et des piliers de surface	✓		
Démantèlement des bâtiments et des infrastructures de surface, notamment : bâtiments et infrastructures d'extraction description de l'usine de traitement de minerai	✓		
Démantèlement des infrastructures électriques, de transport et de soutien	✓		
Démantèlement des autres bâtiments (bâtiments administratifs et d'hébergement, cafétéria, etc.)	✓		
Disposition des équipements et de la machinerie lourde	✓		
Restauration des aires d'accumulation, notamment : analyse comparative des scénarios de restauration scénario de restauration choisi		S.O.	
Infrastructures de gestion des eaux	✓		
Réhabilitation du terrain (terrains contaminés)	✓		
Gestion et élimination des produits pétroliers, des produits chimiques et des matières résiduelles dangereuses et non dangereuses	✓		
Changements climatiques	✓		
Programme de suivi et d'entretien postrestauration	า		
Suivi et entretien de l'intégrité des ouvrages	✓		
Suivi environnemental	✓		
Suivi et entretien agronomique	✓		
Considérations économiques et temporelles			
Évaluation détaillée des coûts des travaux de restauration	✓		
Calendrier de réalisation des travaux de restauration	✓		
Plan d'urgence	✓		
Mesures applicables en cas de cessation temporaire des activités d'exploitation	✓		

^{*} Élément inclus

^{**} Sans objet

^{***} Si les renseignements ne sont pas inclus dans la révision du plan de restauration soumis, indiquer l'endroit où ils peuvent être trouvés (référence et page).

C – Exigences normatives du document

Formats et échelles	V
Quatre copies papier et une copie numérique du document	✓
Présentation du document sur un support papier de dimensions standard de 216 mm sur 279 mm (8,5 po sur 11 po)	✓
Présentation des plans sur un support papier de 216 mm sur 356 mm (8,5 po sur 14 po) ou de 279 mm sur 432 mm (11 po sur 17 po), ou sur un support papier plus grand, si annexé	✓
Unités de mesure des plans exprimées selon le Système international d'unités (SI)	✓
Présentations graphiques qui respectent les critères d'échelle assurant leur clarté	✓
Contenu du plan	\checkmark
Plans certifiés, datés et signés par un ingénieur	✓
Nom et coordonnées de l'entreprise, et noms, professions et fonctions des personnes ayant réalisé le document	✓
Signatures des rédacteurs et des réviseurs	✓

ANNEXE

B

RÉSOLUTION DU CONSEIL D'ADMINISTRATION

OSISKO MINING INC.

OFFICER'S CERTIFICATE

I, Lili Mance, Vice-President, Corporate Secretary of Osisko Mining Inc. (the "Corporation"), certify that the foregoing is a true and complete copy of resolutions of the director(s) of the Corporation dated August 10, 2022 and that such resolutions are in full force and effect, unamended on the date hereof.

ATTENDU QUE la Société a besoin de permis et d'autorisations pour accomplir ses activités.

WHEREAS the Corporation needs permits and authorizations to carry out its activities.

PAR CONSÉQUENT IL EST RÉSOLU d'autoriser Mathieu Savard, Andréanne Boisvert, Pascal Simard, Vanessa Millette, Isabelle Roy, Louis Grenier, Don Njegovan, Èva RoyVigneault, à agir au nom de la Société et de signer toute demande de certificat d'autorisation ou toute autre demande d'autorisation ou de permis auprès du Ministère de L'Énergie et des Ressources naturelles, auprès du Ministère du Développement durable, Environnement et Lutte contre les changements climatiques, du Ministère de la Forêt, de la Faune et des Parcs, auprès du Comité d'évaluation des répercussions sur l'environnement et le milieu social (COMEV), du Comité d'examen des répercussions sur l'environnement et le milieu social (COMEV) et auprès de l'Administration Régionale Kativik.

NOW THEREFORE IT IS HEREBY RESOLVED THAT Mathieu Savard, Andréanne Boisvert, Pascal Simard, Vanessa Millette, Isabelle Roy, Louis Grenier, Don Njegovan, Èva Roy-Vigneault are authorized to act on the behalf of the Corporation to sign any request for a certificate of authorization or any request for authorization or permits from the Ministry of Energy and Natural Resources (Québec), from the Ministry of Sustainable Development, Environment and Climate Change, from the Ministry of Forests, Wildlife and Parks, from Environmental and Social Impact Evaluating Committee (COMEV), from Environmental and Social Impact Review Committee (COMEX) and from the Kativik Regional Government.

DATED as of August 10, 2022.

OSISKO MINING INC.

Lili Mance

Vice-President, Corporate Secretary

ANNEXE

GÉOCHIMIE

MINIÈRE OSISKO INC.

PROJET N°: GAL137-2148985706

(POUR LE PROJET D'ÉTUDE D'IMPACT SUR L'ENVIRONNEMENT N° 201-11330-19)

PROJET MINIER WINDFALL

RAPPORT SECTORIEL – CARACTÉRISATION GÉOCHIMIQUE DES MATÉRIAUX MINIERS

Territoire d'Eeyou Istchee Baie-James

MARS 2023

PROJET MINIER WINDFALL

RAPPORT SECTORIEL – CARACTÉRISATION GÉOCHIMIQUE DES MATÉRIAUX MINIERS

MINIÈRE OSISKO INC.

PROJET Nº: GAL137-2148985706

DATE: MARS 2023

WSP CANADA INC. 7250, RUE DU MILE END, 3E ÉTAGE MONTRÉAL (QUÉBEC) H2R 3A4 CANADA

514 383 0990

WSP.COM

SIGNATURES

PRÉPARÉ PAR

Welips Tennant	10 mars 2023
Evelyn Tennant, M.Sc.	Date
Coordinatrice du projet	
Cligalette Court / GEOLOGIA ** ENZABETH ** ENZABETH ** ENZABETH ** OUÉBEC OUÉBEC	10 mars 2023
Elizabeth Walsh, géologue, M. Sc.	Date
Hydrogéochimiste Senior	
Gestionnaire du projet	
RÉVISÉ ET APPROUVÉ PAR	
La D-Var - No OGQ 02265	<u>10 mars 2023</u>
Ken De Vos, géologue, M. Sc.	Date
Géochimiste principal, Directeur du projet	
=	

WSP Canada Inc. (WSP) a préparé ce rapport uniquement pour son destinataire MINIÈRE OSISKO INC., conformément à la convention de consultant convenue entre les parties. Advenant qu'une convention de consultant n'ait pas été exécutée, les parties conviennent que les modalités générales à titre de consultant de WSP régiront leurs relations d'affaires, lesquelles vous ont été fournies avant la préparation de ce rapport.

Ce rapport est destiné à être utilisé dans son intégralité. Aucun extrait ne peut être considéré comme représentatif des résultats de l'évaluation.

Les conclusions présentées dans ce rapport sont basées sur le travail effectué par du personnel technique, entraîné et professionnel, conformément à leur interprétation raisonnable des pratiques d'ingénierie et techniques courantes et acceptées au moment où le travail a été effectué.

Le contenu et les opinions exprimées dans le présent rapport sont basés sur les observations et/ou les informations à la disposition de WSP au moment de sa préparation, en appliquant des techniques d'investigation et des méthodes d'analyse d'ingénierie conformes à celles habituellement utilisées par WSP et d'autres ingénieurs/techniciens travaillant dans des conditions similaires, et assujettis aux mêmes contraintes de temps, et aux mêmes contraintes financières et physiques applicables à ce type de projet.

WSP dénie et rejette toute obligation de mise à jour du rapport si, après la date du présent rapport, les conditions semblent différer considérablement de celles présentées dans ce rapport ; cependant, WSP se réserve le droit de modifier ou de compléter ce rapport sur la base d'informations, de documents ou de preuves additionnels.

WSP ne fait aucune représentation relativement à la signification juridique de ses conclusions.

La divulgation de tout renseignement faisant partie du présent rapport relève uniquement de la responsabilité de son destinataire. Si un tiers utilise, se fie, ou prend des décisions ou des mesures basées sur ce rapport, ledit tiers en est le seul responsable. WSP n'accepte aucune responsabilité quant aux dommages que pourrait subir un tiers suivant l'utilisation de ce rapport ou quant aux dommages pouvant découler d'une décision ou mesure prise basée sur le présent rapport.

WSP a exécuté ses services offerts au destinataire de ce rapport conformément à la convention de consultant convenue entre les parties tout en exerçant le degré de prudence, de compétence et de diligence dont font habituellement preuve les membres de la même profession dans la prestation des mêmes services ou de services comparables à l'égard de projets de nature analogue dans des circonstances similaires. Il est entendu et convenu entre WSP et le destinataire de ce rapport que WSP n'offre aucune garantie, expresse ou implicite, de quelque nature que ce soit. Sans limiter la généralité de ce qui précède, WSP et le destinataire de ce rapport conviennent et comprennent que WSP ne fait aucune représentation ou garantie quant à la suffisance de sa portée de travail pour le but recherché par le destinataire de ce rapport.

En préparant ce rapport, WSP s'est fié de bonne foi à l'information fournie par des tiers, tel qu'indiqué dans le rapport. WSP a raisonnablement présumé que les informations fournies étaient correctes et WSP ne peut donc être tenu responsable de l'exactitude ou de l'exhaustivité de ces informations.

WSP nie toute responsabilité financière quant aux effets du rapport sur une transaction subséquente ou sur la dépréciation de la valeur des biens qu'il peut entraîner, ou encore qui peuvent découler des mesures, des actions et des coûts qui en résultent.

Les recommandations de conception fournies dans ce rapport s'appliquent uniquement au projet et aux zones décrites dans le texte, et uniquement si elles sont construites conformément aux détails indiqués dans le présent rapport. Les commentaires fournis dans ce rapport sur les problèmes potentiels pouvant subvenir lors de la construction et sur les différentes méthodologies possibles sont uniquement destinés à guider le concepteur. Le nombre d'emplacements de prélèvement et/ou d'échantillonnage peut ne pas être suffisant pour évaluer l'ensemble des facteurs pouvant affecter la construction, les méthodologies et les coûts. WSP nie toute responsabilité pouvant découler de décisions ou actions prises découlant de ce rapport, sauf si WSP en est spécifiquement informé et y participe. Advenant une telle situation, la responsabilité de WSP sera déterminée et convenue à ce moment.

Les conditions générales d'un site ne peuvent être extrapolées au-delà des zones définies et des emplacements de prélèvement et d'échantillonnage. Les conditions d'un site entre les emplacements de prélèvement et d'échantillonnage peuvent différer des conditions réelles. La précision et l'exactitude de toute extrapolation et spéculation au-delà des emplacements des prélèvements et d'échantillonnage dépendent des conditions naturelles, de l'historique de développement du site et des changements entraînés par la construction et des autres activités sur le site. De plus, l'analyse a été effectuée pour les paramètres chimiques et physiques déterminés seulement, et il ne peut pas être présumé que d'autres substances chimiques ou conditions physiques ne sont pas présentes. WSP ne fournit aucune garantie et ne fait aucune représentation contre les risques environnementaux non décelés ou contre des effets négatifs causés à l'extérieur de la zone définie.

L'original du fichier électronique que nous vous transmettons sera conservé par WSP pour une période minimale de dix ans. WSP n'assume aucune responsabilité quant à l'intégrité du fichier qui vous est transmis et qui n'est plus sous le contrôle de WSP. Ainsi, WSP n'assume aucune responsabilité quant aux modifications faites au fichier électronique suivant sa transmission au destinataire.

Ces limitations sont considérées comme faisant partie intégrante du présent rapport.

LIMITES DE L'ÉTUDE

Les résultats des essais géochimiques présentés dans ce rapport sont issus d'essais contrôlés en laboratoire sur des échantillons sélectionnés pour représenter les différents matériaux qui pourraient être trouvés sur le site. Bien que les données de ce rapport puissent être utilisées pour en déduire la stabilité chimique des matériaux en question, la stabilité chimique réelle et la qualité de l'eau du site Windfall qui en résulte doivent être évaluées en tenant compte de toutes les conditions spécifiques au site, du plan de la mine, des divers plans de gestion (c.-à-d. le plan de gestion des déchets, le plan de gestion de l'eau), de divers facteurs d'atténuation, des conditions ambiantes et des changements prévus aux conditions du site.

La caractérisation et l'interprétation géochimiques présentées dans ce rapport sont basées uniquement sur les échantillons prélevés dans les secteurs Underdog, Lynx Main, Triple Lynx, Lynx 4, Lynx HW, Lynx SW, Zone 27, Bobcat, Mallard et Caribou. Comme dans tout système géologique, il peut y avoir des variations entre et au-delà des points de prélèvement des échantillons et/ou des limites des unités de déposition.

Les conditions environnementales, géochimiques, hydrauliques, géologiques, géotechniques ou autres qui peuvent être interprétées comme existant entre les points d'échantillonnage et au-delà, dans l'espace ou au cours du temps, peuvent varier en fonction d'un certain nombre de facteurs et différer de celles qui existent réellement. Même un programme d'échantillonnage complet respectant les normes de diligence professionnelle peut ne pas détecter certaines conditions.

Le programme géochimique est basé sur la collecte d'échantillons et de données prélevés à différentes périodes à partir de points qui peuvent varier et ne représentent pas tous les endroits ou tous les moments; les services fournis et les informations contenues dans ce document sous-entendent que Minière Osisko inc. (Osisko) assume les risques liés au sous-sol. WSP ne sera pas responsable des conclusions, interprétations ou décisions indépendantes prises par Osisko, ses agents ou des tiers. Osisko, ses agents ou les tiers assument toute la responsabilité et les risques associés aux décisions qu'ils prennent en fonction du programme réalisé et des renseignements fournis dans les présentes.

CLIENT

MINIÈRE OSISKO INC.

Vice-présidente, Environnement et Andréanne Boisvert, géographe, M. A.

Relations communautaires

Directrice environnement Vanessa Millette, géographe, M. Sc. Env

ÉQUIPE DE RÉALISATION

WSP CANADA INC. (WSP)

Directrice de projet - Environnement Marie-Hélène Brisson, biologiste

(Intégration à l'étude d'impact sur l'environnement)

Directeur de projet – Géochimie Ken De Vos, géologue, M.Sc.

Rédaction principale Elizabeth Walsh, géologue, M.Sc.

Evelyn Tennant, M.Sc.

Traitement de texte et édition Linette Poulin

Référence à citer :

WSP. 2023. PROJET MINIER WINDFALL. RAPPORT SECTORIEL – CARACTÉRISATION GÉOCHIMIQUE DES MATÉRIAUX MINIERS. RAPPORT PRODUIT POUR MINIÈRE OSISKO INC. 40 PAGES ET ANNEXES.

TABLE DES MATIÈRES

1	INTRODUCTION	1
1.1	OBJECTIFS	1
1.2	CONTEXTE	1
1.2.1	GÉOLOGIE LOCALE	
1.2.2	UNITÉS LITHOLOGIQUES	3
2	INFORMATIONS SUR LES ÉCHANTILLONS	7
2.1	STÉRILES ET MORT-TERRAIN	7
2.2	MINERAI, RÉSIDUS, ET EAU DE PROCÉDÉ	8
2.3	PROGRAMME D'ANALYSE	11
2.4	MÉTHODE DE CLASSIFICATION DES	
	MATÉRIAUX MINIERS	14
3	RÉSULTATS	17
3.1	ÉLÉMENTS MAJEURS	17
3.2	MINÉRALOGIE	17
3.3	POTENTIEL ACIDOGÈNE	20
3.4	POTENTIEL DE LIXIVIATION-MA.200, SPLP, CTEU-9	
	ET TCLP	
3.5	RÉSULTATS DES ESSAIS CINÉTIQUES	26
3.6	QUALITÉ DE L'EAU DE PROCÉDÉ	34
4	RÉSUMÉ	37
RÉFÉ	RENCES	39

TABLE DES MATIÈRES (suite)

FIGURES FIGURE 1 GÉOLOGIE RÉGIONALE DE LA SOUS-PROVINCE D'ABITIBI ET EMPLACEMENT DE LA CEINTURE DE ROCHES VERTES D'URBAN-BARRY ET DU GISEMENT WINDFALL. MODIFIÉ DE DAIGNEAULT ET AL. (2004)......2 FIGURE 2 CARTE GÉOLOGIQUE INTERPRÉTÉE DU GISEMENT D'OR DE WINDFALL AVEC LES ZONES MINÉRALISÉES PROJETÉES À LA SURFACE......3 FIGURE 3 COUPE VERTICALE NORD-OUEST / SUD-EST SIMPLIFIÉE DE LA GÉOLOGIE DE LA ZONE LYNX DU GISEMENT WINDFALL LE LONG DE LA LIGNE DE GRILLE 3675E (B-B' DE LA FIGURE 2).....4 FIGURE 4 COUPE VERTICALE NORD-OUEST /SUD-EST SIMPLIFIÉE DE LA GÉOLOGIE DE LA ZONE PRINCIPALE DU GISEMENT WINDFALL LE LONG DE LA LIGNE DE GRILLE 2500E (A-A' DANS LA FIGURE 2)......5 FIGURE 5A VUE EN COUPE VERS LE NORD (A) ET LE NORD-EST (B) MONTRANT LA RÉPARTITION DES ÉCHANTILLONS DE STÉRILES PAR RAPPORT AUX INFRASTRUCTURES SOUTERRAINES.....9 FIGURE 5B VUE EN COUPE VERS LE NORD (A) ET LE NORD-EST (B) MONTRANT LA RÉPARTITION DES ÉCHANTILLONS DE STÉRILES PAR RAPPORT AUX INFRASTRUCTURES SOUTERRAINES......10 FIGURE 6 PN BRUT EN FONCTION DU CO3-PN (À GAUCHE), ET SOUFRE TOTAL EN FONCTION DU PRN BRUT (À DROITE) POUR LES STÉRILES, LE MINERAI ET LES RÉSIDUS......22 FIGURE 7 RÉSULTATS HEBDOMADAIRES DES ESSAIS EN CELLULES HUMIDES DE STÉRILES POUR LE PH, L'ALCALINITÉ, LE SULFATE ET L'ARSENIC28 FIGURE 8 RÉSULTATS HEBDOMADAIRES DES ESSAIS EN CELLULES HUMIDES DE RÉSIDUS POUR LE PH, L'ALCALINITÉ, LE SULFATE ET L'ARSENIC29 FIGURE 9 RÉSULTATS HEBDOMADAIRES DES ESSAIS EN CELLULES HUMIDES DE MINERAI POUR LE PH, L'ALCALINITÉ, LE SULFATE ET L'ARSENIC30

TABLE DES MATIÈRES (suite)

TABLEAUX	
TABLEAU 1	CLASSIFICATION DES ZONES MINÉRALISÉES1
TABLEAU 2	TONNAGE ESTIMÉ DES MATÉRIAUX QUI SERONT GÉNÉRÉS PENDANT LA DURÉE DE VIE DE LA MINE ET NOMBRE D'ÉCHANTILLONS ANALYSÉS7
TABLEAU 3	COMPOSITION DES ÉCHANTILLONS DE RÉSIDUS ET DE MINERAI11
TABLEAU 4	PROGRAMME D'ANALYSES STATIQUE ET CINÉTIQUE13
TABLEAU 5	ÉCHANTILLONS ANALYSÉS PAR DES ESSAIS CINÉTIQUES14
TABLEAU 6	RÉSUMÉ DES ÉLÉMENTS MAJEURS PAR LITHOLOGIE ET TYPE D'ÉCHANTILLON18
TABLEAU 7	MINÉRALOGIE PAR TYPE D'ÉCHANTILLON ET LITHOLOGIE19
TABLEAU 8	RÉSULTATS DU BAB ET CLASSIFICATION DU POTENTIEL ACIDOGÈNE PAR TYPE D'ÉCHANTILLON ET LITHOLOGIE21
TABLEAU 9	RÉSUMÉ DES MÉTAUX EXTRACTIBLES ET DES RÉSULTATS DES ESSAIS DE LIXIVIATION POUR LES STÉRILES, LES RÉSIDUS, LE MORT-TERRAIN ET LE MINERAI
TABLEAU 10	DÉTAILS SUR LES ESSAIS EN CELLULES HUMIDES ET CALCULS D'ÉPUISEMENT31
TABLEAU 11	RÉSUMÉ DES ESSAIS DE FERMETURE34
TABLEAU 12	RÉSUMÉ DES DÉPASSEMENTS DE LA QUALITÉ DE L'EAU DANS L'EAU DE PROCÉDÉ DES RÉSIDUS35
TABLEAU 13	RÉSUMÉ DE LA CLASSIFICATION DES STÉRILES, DU MORT-TERRAIN ET DES RÉSIDUS SELON LES ESSAIS STATIQUES38

TABLE DES MATIÈRES (suite)

ANNEXES

- A LISTE DES ÉCHANTILLONS ET DES ANALYSES
- B RÉSULTATS DES ANALYSES GÉOCHIMIQUES
- C CERTIFICATS DE LABORATOIRE
- D ESSAIS CINÉTIQUES GRAPHIQUES DES SÉRIES CHRONOLOGIQUES

1 INTRODUCTION

Minière Osisko inc. (Osisko) a retenu les services de WSP Canada Inc. (WSP)¹ pour entreprendre l'évaluation géochimique environnementale des matériaux miniers (minerai, stériles, résidus, mort-terrain) en appui à la conception de la mine pour l'étude de faisabilité du projet minier Windfall.

1.1 OBJECTIFS

L'objectif de cette caractérisation géochimique est d'évaluer le risque de la génération d'acide et la lixiviation de métaux à partir des matériaux miniers qui seront entreposés sur le site de Windfall. Des essais statiques et cinétiques ont été réalisés pour classer des échantillons de ces matériaux selon les critères du *Guide de caractérisation des résidus miniers et du minerai* du ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP)² (MELCC, 2020; ci-après « Guide de caractérisation »).

1.2 CONTEXTE

Le projet minier Windfall est situé dans la région administrative du Nord-du-Québec, dans le territoire d'Eeyou Istchee Baie-James. Le site du projet est situé à environ 285 kilomètres (km) au nord-est de la ville de Val-d'Or et à 115 km à l'est de la ville de Lebel-sur-Quévillon. Le plan de minage actuel de l'étude de faisabilité (Osisko, 2022) inclut quatre zones minéralisées, énumérées au tableau 1, chacune avec ses secteurs associés.

Tableau 1 Classification des zones minéralisées

Zone	Secteur(s)
Lynx	Lynx Main, Lynx HW, Lynx SW, Triple Lynx, Lynx 4
Main Zone	Zone 27, Caribou 1, Caribou 2, Caribou Extension, Bobcat, Mallard, Windfall North, Zone F
Underdog	Underdog
Triple 8	Triple 8

Le futur site minier a été exploré pendant environ 17 ans par différents propriétaires. Le site contient une halde à stériles avec une géomembrane imperméable qui a été construite avec des matériaux provenant de l'exploration et du développement souterrain, les principaux travaux sous-terre ayant commencé en 2007. Les stériles de cette pile sont actuellement estimés à 1,1 Mt, dont 0,4 Mt de stériles générés par l'aménagement d'une rampe d'accès au secteur Triple Lynx. Il existe également une halde de mort-terrain sans géomembrane.

Le minerai et les futures aires, comme la halde à stériles, le parc à résidus et la halde à mort-terrain, seront gérés directement sur le site de la mine. L'infrastructure prévue comprend l'expansion de la halde de stériles existante, la relocalisation de la halde de mort-terrain existante, la construction d'une halde à minerai et l'aménagement d'un parc à résidus miniers. Windfall évalue la possibilité d'utiliser des stériles d'intrusifs mafiques (gabbro/diorite) non générateurs d'acide comme matériaux de construction sur le site (par exemple, pour la couche de roulement).

¹ Anciennement Golder pour le présent rapport

MELCCFP depuis octobre 2022.

Anciennement connu sous les appellations ministère de l'Environnement et de la Lutte contre les changements climatiques (MELCC, 2018-2022), ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC, de 2014 à 2018), ministère du Développement durable, de l'Environnement de la Faune et des Parcs (MDDEP, 2012 à 2014), ministère du Développement durable, de l'Environnement et des Parcs (MDDEP, 2005 à 2012), ministère de l'Environnement (MENV, 1998-2005) et ministère de l'Environnement et de la Faune du Québec (MEF, 1994-1998).

1.2.1 GÉOLOGIE LOCALE

La propriété Windfall est située dans la sous-province d'Abitibi de la Province archéenne du Supérieur, dans la partie centrale de la ceinture de roches vertes d'Urban-Barry (figure 1). La ceinture de roches vertes d'Urban-Barry contient des unités de roches volcaniques mafiques à felsiques et des unités sédimentaires qui sont recoupées par plusieurs zones de déformation de direction est et est-nord-est. Le gisement Windfall, un gisement d'or hydrothermal lié à une intrusion, est encaissé dans le membre Windfall de la formation Macho, composée principalement de roches volcaniques felsiques et intermédiaires, notamment des tufs et des couches de lave. Dans le secteur du gisement Windfall, la stratigraphie volcanique s'oriente principalement vers le nord et s'incline modérément vers l'est. Les roches volcaniques sont recoupées par une série de dykes porphyriques quartz-feldspath plus récents.

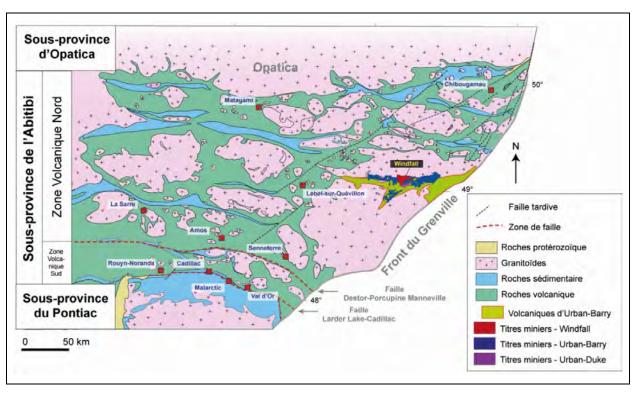


Figure 1 Géologie régionale de la sous-province d'Abitibi et emplacement de la ceinture de roches vertes d'Urban-Barry et du gisement Windfall. Modifié de Daigneault et al. (2004)

Les zones d'or les plus riches sont encaissées dans un vaste réseau anastomosé de veines de quartz et pyrite, à haute teneur en or, qui traversent des roches volcaniques fortement silicifiées au contact des dykes porphyriques et des séquences volcaniques hôtes (figure 2). La minéralisation est dans les veines de silice/pyrite associée à une enveloppe d'altération à séricite-carbonate-tourmaline zonée vers l'extérieur en halos erratiques à faible teneur en or; au-delà des épontes, l'altération devient silice-carbonate-tourmaline puis la roche devient stérile en présence d'altération à chlorite-séricite-rutile.

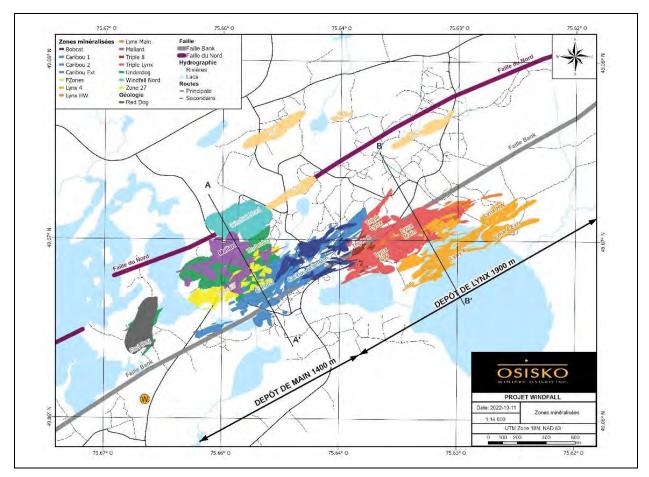


Figure 2 Carte géologique interprétée du gisement d'or de Windfall avec les zones minéralisées projetées à la surface

1.2.2 UNITÉS LITHOLOGIQUES

Les unités lithologiques des stériles sont décrites ci-dessous. Elles sont basées sur les descriptions de carottes et les analyses géochimiques effectuées par Osisko. L'emplacement des lithologies par rapport à la Zone Lynx et la Zone Main est respectivement présenté aux figures 3 et 4. Les descriptions des lithologies et les codes associés sont résumés comme suit :

- V1 : Instrusifs felsiques (Rhyolite/dacite);
- V2 : Volcaniques intermédiaires à mafiques (Basalte/andésite);
- Il Frg: Intrusifs felsiques (Granodiorite fragmentaire);
- I1P/I2P : Intrusifs felsiques (Granodiorite);
- I2F/I13 : Intrusifs felsiques (Granodiorite avec hématite);
- I3A: Intrusions mafiques (Gabbro/diorite);
- S6: Sédiments.

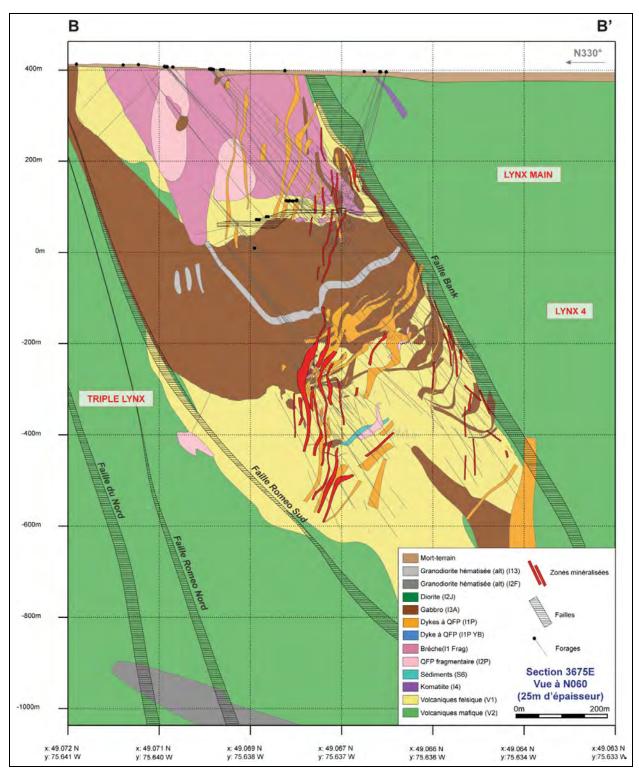


Figure 3 Coupe verticale nord-ouest / sud-est simplifiée de la géologie de la zone Lynx du gisement Windfall le long de la ligne de grille 3675E (B-B' de la figure 2)

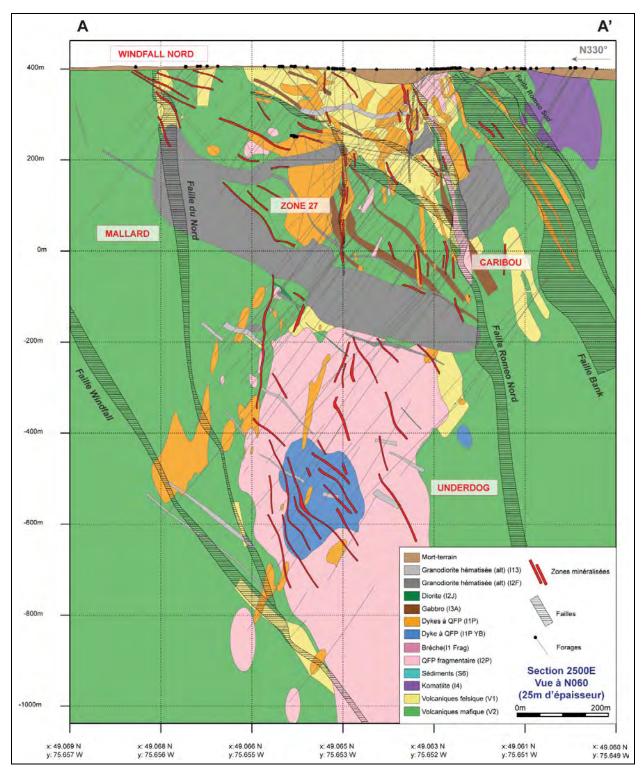


Figure 4 Coupe verticale nord-ouest /sud-est simplifiée de la géologie de la zone principale du gisement Windfall le long de la ligne de grille 2500E (A-A' dans la figure 2)

2 INFORMATIONS SUR LES ÉCHANTILLONS

Une liste complète de tous les échantillons évalués dans ce rapport, collectés par WSP et d'autres compagnies entre 2007 et 2022, est présentée à l'annexe A.

2.1 STÉRILES ET MORT-TERRAIN

En 2022, une campagne d'échantillonnage des stériles et du mort-terrain a été conduite pour combler les écarts dans la distribution et la quantité d'échantillons de stériles par rapport au plan minier actuel (Golder, 2022). De précédents programmes d'échantillonnage de stériles ont eu lieu en 2017-2018, et les échantillons ont été sélectionnés et collectés par WSP (à l'exception des échantillons I1 Frg qui ont été sélectionnés par Osisko; cependant les résultats géochimiques sont raisonnables par rapport à la gamme des valeurs attendues pour le matériau évalué) (Golder, 2021). Les échantillons des campagnes d'échantillonnage de 2020 (Golder, 2021) et de 2022 mentionnées ci-dessus ont été sélectionnés par WSP, collectés par Osisko, et un sous-ensemble représentatif a ensuite été choisi pour être inspecté par WSP; ces échantillons respectent les caractéristiques attendues et le processus d'échantillonnage semble conforme aux instructions écrites de WSP.

Au total, la base de données sur les stériles recouvre 256 échantillons de stériles (246 provenant de carottes de forage et 10 échantillons de dynamitage provenant du développement de la rampe) provenant des secteurs Bobcat, Caribou, Lynx Main, Lynx HW, Lynx SW, Lynx 4, Triple Lynx, Mallard, Underdog et Zone 27, dans des quantités qui reflètent le tonnage de chaque lithologie et le nombre d'échantillons recommandé dans le Guide de caractérisation (tableau 2). Les stériles ont été sélectionnés selon une teneur de coupure 3 g/t d'or. La teneur de coupure actuelle pour le projet est maintenant de 3,5 g/t d'or; cette différence ne devrait pas modifier de manière significative les résultats de cette étude. Les principales lithologies échantillonnées sont les suivantes : rhyolite/dacite (V1), basalte/andésite (V2), granodiorite fragmentaire (I1 Frg), granodiorite avec hématite (I2F/I13), granodiorite (I1P/I2P), sédiments (S6) et gabbro/diorite (I3A). Les unités géologiques ayant des propriétés similaires ont été combinées pour les besoins de la sélection des échantillons et selon de discussions avec les géologues d'Osisko. L'emplacement des échantillons de stériles par rapport aux infrastructures minières est illustré aux figures 5A et 5B.

Tableau 2 Tonnage estimé des matériaux qui seront générés pendant la durée de vie de la mine et nombre d'échantillons analysés

Type de matériel	Code lithologique	Code lithologique Quantité estimée % (tonnes) e		Nombre d'échantillons prélevés	% du total des échantillons de stériles
	V1	2 176 734	28	45	18
	V2	1 769 333	23	37	14
	I1 Frg	555 772	7	21	8
Stériles	I1P/I2P	1 677 114	21	77	30
Steriles	I2F/I13	528 848	7	28	11
	I3A	1 729 943	22	43	17
	S6	4 100	0,1	5	2
	Total	7 816 553ª	100	256	-

Tableau 2 (suite) Tonnage estimé des matériaux qui seront générés pendant la durée de vie de la mine et nombre d'échantillons analysés

Type de matériel	Code lithologique	Quantité estimée (tonnes)	% de la quantité estimée totale	Nombre d'échantillons prélevés	% du total des échantillons de stériles
Mort	Mort-terrain Mort-terrain		-	230	-
Ré	sidus	8,200,000°	-	7	-
Mi	nerai	12,200,000 ^d	-	21	-

Notes:

Les tonnages de stériles sont calculés d'après 20220329-Prelim FS DRAFT -Schedule Metrics by Zone Lithology, sauf indication contraire.

- a Au moment de cette étude, on estime que 1,1 Mt de stériles sont stockées dans les haldes à stériles (WRS, Waste rock stockpile). À la suite des expansions du WRS, un total cumulatif de roches stériles générées de 3,08 Mt devrait être atteint d'ici 2026, un total cumulatif de 5,38 Mt d'ici 2030, suivi d'une extension finale à un total cumulatif de 9,11 Mt de roches stériles stockées. (Osisko, 2022).
- b Le site identifié pour l'empilement du mort-terrain peut accueillir 638 100 m3 (Osisko, 2022).
- c Considérant que 40 % des résidus générés seront renvoyés sous terre comme remblai de pâte, on estime que 8,2 Mt de résidus secs seront stockées dans le parc à résidus en surface (Osisko, 2022).
- d On estime qu'environ 2,5 Mt de minerai seront récupérées par la mise en valeur et 9,7 Mt par l'abattage, avec une teneur de coupure de 1,7 g/t (Osisko, 2022).

Deux cent trois (203) échantillons de mort-terrain ont été prélevés par WSP en 2021 et en 2022 (WSP, 2023a). En 2022, Osisko a prélevé huit échantillons de mort-terrain dans la pile de mort-terrain existante et 19 échantillons dans des tranchées test à travers le site, pour un total de 230 échantillons.

2.2 MINERAI, RÉSIDUS, ET EAU DE PROCÉDÉ

Entre 2017 et 2020, 21 échantillons en composites de minerai ont été fournis par Osisko. Les échantillons proviennent de lithologies variables et sont identifiés selon la profondeur du secteur ou la teneur en minerai selon le cas (tableau 3).

Entre 2017 et 2020, sept échantillons de résidus en composites ont été fournis par Osisko à la suite d'essais pilotes pour représenter des combinaisons de minerai potentielles à traiter pendant la durée de vie de la mine. Des échantillons d'eau de procédé pour chaque mélange de résidus ont également été fournis.

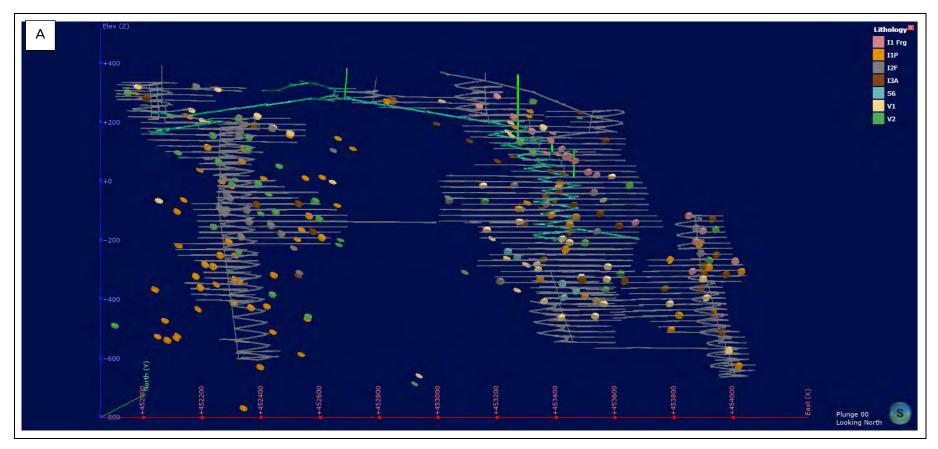


Figure 5A Vue en coupe vers le nord (A) et le nord-est (B) montrant la répartition des échantillons de stériles par rapport aux infrastructures souterraines

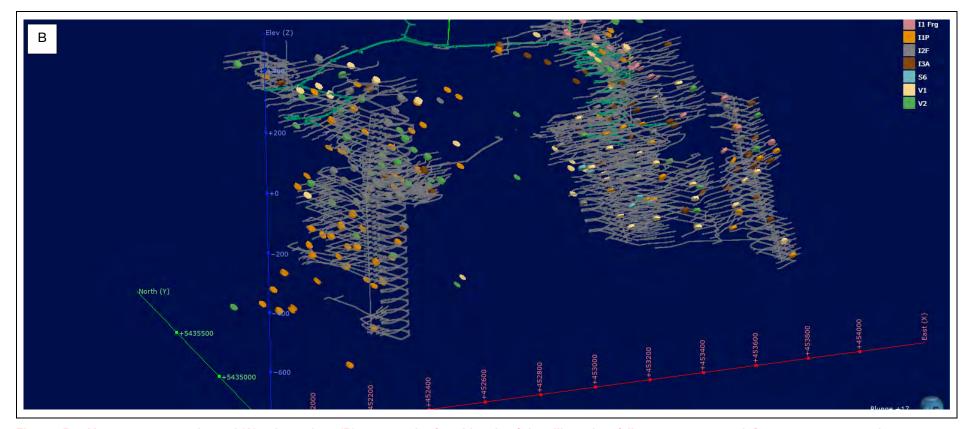


Figure 5B Vue en coupe vers le nord (A) et le nord-est (B) montrant la répartition des échantillons de stériles par rapport aux infrastructures souterraines

Tableau 3 Composition des échantillons de résidus et de minerai

Type de matériel	Nom de l'échantillon	Mélange lithologique	Secteur(s)
	CND 1	Composite	Main et Lynx Main
	CND 4	Composite	Main, Lynx, et Underdog
	CND 5	Composite	Lynx-Underdog
Résidus	CND 6	Composite	Underdog
	CIL 11 CND	Composite	Triple Lynx
	CIL 12 CND	Composite	Lynx 4 Low Part (LP)
	CIL 13 CND	Composite	Lynx 4 HP High Part (HP)
	E-27-D-H	I1P/I2P, V2	Zone 27 partie basse/haute teneur
	E-27-D-L	I1P/I2P, V2	Zone 27 partie basse/basse teneur
	E-27-U-H	V2	Zone 27 partie haute/haute élevée
	E-27-U-L	I1P/I2P, V2	Zone 27 partie haute/basse teneur
	E-CA-D-H	I1P/I2P, V2	Caribou partie basse/teneur élevée
	E-CA-D-L	I1P/I2P, V2	Caribou partie basse/basse teneur
	E-CA-U-H	I1P/I2P	Caribou partie haute /haute teneur
	E-CA-U-L	I1P/I2P	Caribou partie haute/basse teneur
	P3-I	I1P, I1 Frg, I3A, I13	Lynx Main
	P3-J	I1P, I1 Frg, I3A	Lynx Main
Minerai	P3-K	V2, I1P, I1 Frg, I3A	Lynx Main
	P3-L	V2, I2P, I1 Frg	Lynx Main
	Underdog A	I1P, I2P	Underdog
Minerai	Underdog B	I1P	Underdog
	Underdog C	V2	Underdog
	Triple Lynx LG	I1P/I2P, V2, I3A	Triple Lynx
	Lynx 4 LP-LG	I1P/I2P, V2, I3A	Lynx 4
	Lynx 4 HP-LG	I1P/I2P, V2, I3A	Lynx 4
	Triple Lynx MG/HG	I1P/I2P, V2, I3A	Triple Lynx
	Lynx 4 LP-MG/HG	I1P/I2P, V2, I3A	Lynx 4
	Lynx 4 HP-MG/HG	I1P/I2P, V2, I3A	Lynx 4

2.3 PROGRAMME D'ANALYSE

Le programme d'analyse a été principalement réalisé par le laboratoire SGS (Lakefield, Ontario). Les analyses des échantillons de mort-terrain ont été effectuées par le laboratoire AGAT (Québec, Québec). Les deux laboratoires sont accrédités par le Centre d'expertise en analyse environnementale du Québec (CEAEQ) pour les analyses qu'ils ont effectuées. L'analyse du mercure à faible teneur pour les lixiviats des essais cinétiques a été sous-traitée par SGS à Flett Research Ltd. à Winnipeg, Manitoba.

Avant 2020, les échantillons étaient analysés selon les directives de la Directive 019 (D019) sur l'industrie minière du MELCCFP (MDDEP, 2012), qui était le guide en vigueur au moment des analyses. Depuis 2020, les échantillons sont analysés selon les directives du Guide de caractérisation, qui a remplacé le guide du MELCCFP de 2012 en termes de classification des matériaux. Conformément à la D019 et aux directives du Guide de caractérisation, tous les échantillons ont été évalués pour le potentiel de génération d'acide et la composition chimique (analyse de la roche entière et/ou métaux extractibles), et certains échantillons ont été soumis à des essais de lixiviation, à des analyses de minéralogie et à des essais cinétiques en fonction des résultats des essais préliminaires.

Le programme d'essais statiques est résumé au tableau 4. Les essais comprennent :

- bilan acide-base (BAB), comprenant le soufre total, le sulfate (SO₄), le carbone total (C) et le carbonate total (CO₃), selon la norme MA.110 ACISOL 1.0 (CEAEQ, 2014) pour les échantillons de stériles, de résidus et de minerai. Pour la plupart des échantillons de mort-terrain, le BAB consistait en une analyse du soufre total et du carbone organique total, avec une analyse supplémentaire du carbone total et des sulfates sur les échantillons dont la teneur en soufre total était supérieure à 0,04 % (voir la section 2.4);
- analyse des éléments majeurs dans la roche entière par fluorescence de rayons X (XRF);
- métaux extractibles sur la fraction solide, selon MA.200-Met 1.2 (CEAEQ, 2020);
- essai CTEU-9 avec de l'eau distillée selon MA. 100-Lix.com.1.1 (CEAEQ, 2012);
- essai SPLP (Synthetic Precipitation Leaching Procedure) pour la simulation de pluies acides (solution d'acides nitrique et sulfurique) selon MA. 100-Lix.com.1.1 (CEAEQ, 2012);
- essai TCLP (*Toxicity Characteristic Leaching Procedure*) pour l'évaluation de la mobilité des espèces inorganiques dans une solution acétique selon MA.100 Lix.com 1.1 (CEAEQ, 2012);
- diffraction de rayons X (DRX) pour l'identification des phases cristallines.

Le programme d'essais cinétiques inclut 21 échantillons provenant des études de 2017-2020, comme résumé au tableau 5. Les échantillons ont été sélectionnés pour refléter la gamme des teneurs en soufre total et en métaux observées dans les résultats des essais statiques disponibles au moment de la sélection des échantillons. Les essais ont été effectués dans des cellules humides selon la méthode D5744-13 (ASTM, 2018), et les échantillons ont été analysés pour plusieurs métaux, ions majeurs, nutriments et chimie générale, ainsi qu'une analyse de mercure à basse limite de détection pour certains échantillons/lixiviats. La plupart des essais ont été terminés une fois les concentrations stabilisées après le rinçage initial (c.-à-d. 30 à 44 semaines). Quelques échantillons sélectionnés ont été soumis à des essais pendant des périodes plus longues, afin de fournir un enregistrement à plus long terme des résultats des essais.

Des essais statiques de fermeture ont été effectués sur les échantillons qui ont été soumis aux essais dans les cellules humides, après la fin des essais. Les solides ont été séchés à l'air, puis soumis à une extraction en flacon secoué (shake flask extraction, SFE) selon le NEDEM (2009) et à un essai BAB. Certains échantillons ont également été soumis à une succession d'essais de génération acide nette (GAN) basés sur Miller (1997).

Tableau 4 Programme d'analyses statique et cinétique

Туре	d'essai	BAB	FRX	Métaux extractibles (MA.200)	SPLP	CTEU-9	TCLP	DRX	Essai en cellule humide	Essais de fermeture - Essai (nombre d'échantillons)
	V1	45	45	45	25	25	33	2	2	SFE (1), GAN (1), BAB (1)
	V2	37	37	37	26	26	23	3	3	SFE (1), BAB (1)
	I1 Frg	21	21	21	14	14	13	1	1	0
Ot (village	I1P/I2P	77	77	77	50	50	39	4	4	SFE (2), GAN (2), BAB (2)
Stériles	I2F/I13	28	28	28	13	13	4	1	1	SFE (1), GAN (1), BAB (1)
	I3A	43	43	43	32	32	16	1	1	SFE (1), GAN (1), BAB (1)
	S6	5	5	5	5	5	3	0	0	0
	Total	256	256	256	168	167	131	12	12	SFE (6), GAN (5), BAB (6)
Mort-	terrain	117ª	27	230	30	29	0	0	0	0
Rés	sidus	7	7	7	7	7	7	4	7	SFE (5), GAN (3), BAB (5)
Mir	nerai	21	21	21	21	21	17	4	4	SFE (4), GAN (2), BAB (4)

Note:

a Analyse du soufre total seulement. Vingt-trois (23) échantillons ont subi une analyse supplémentaire pour le sulfate et le carbone total, et 27 échantillons ont subi une analyse supplémentaire pour BAB.

Tableau 5 Échantillons analysés par des essais cinétiques

Type de matériel	Nom de l'échantillon	Mélange lithologique	Secteur(s)	Durée des essais (semaines)
	P3-K	V2, I1P, I1 Frg, I3A	Lynx	44
Minerai	E-27-U-H	V2	Zone 27 partie haute/haute teneur	30
Milleral	E-CA-U-H	I1P/I2P	Caribou partie haute/haute teneur	(semaines) 44 te teneur 30 te teneur 44 30 44 44 44 44 44 30 200 30 30 30 44 44 44 30 40 41 41 41 41 41 41 41 41 4
	Underdog A	I1P, I2P	Underdog	30
	OSK-W-16-760_31	V1	ISA Lynx Zone 27 partie haute/haute teneur Caribou partie haute/haute teneur Underdog Triple Lynx Underdog Zone 27 Lynx Main Zone 27 Caribou Zone 27 Caribou Zone 27 Caribou Underdog Inderdog Zone 27 Caribou Lynx Main Bobcat Underdog Main et Lynx Main Main, Lynx, et Underdog Lynx-Underdog Underdog Underdog En of	30
	OSK-W-17-812_102	I1 Frg	Underdog	44
	OSK-W-17-773_41	I3A	Zone 27	30
	OSK-W-16-760_67	V2	Lynx Main	44
	OBM-16-630_61	V1	Zone 27	44
Stériles	OBM-16-580_17	V2	Caribou	44
Otornes	OBM-16-671_23	I1P/I2P	Zone 27	30
	EAG-14-538_58	I1P/I2P	Zone 27	200
	EAG-13-485_3	V2	Caribou	30
	OSK-W-17-774_44	I2F	Lynx Main	30
	OSK-W-16-743_93	I1P	Bobcat	30
	OBM-15-564_79	I2P	Underdog	44
	CND 1	Composite	Main et Lynx Main	31
	CND 4	Composite	Main, Lynx, et Underdog	31
Résidus	CND 5	Composite	Lynx-Underdog	44
	CND 6	Composite	Underdog	En cours (205)
	CIL 13	Composite	Lynx 4 HP	En cours (77)

2.4 MÉTHODE DE CLASSIFICATION DES MATÉRIAUX MINIERS

Les matériaux miniers sont classés selon les exigences du Guide de caractérisation et en utilisant les critères du sol et de l'eau du Guide d'intervention-Protection des sols et réhabilitation des terrains contaminés (Beaulieu, 2021; ciaprès le « Guide d'intervention »), et selon les résultats des essais réalisés.

Les résultats ont été utilisés pour classifier les matériaux dans les catégories applicables suivantes du Guide de caractérisation : faible risque, générateur d'acide, lixiviable, risque élevé et cyanuré. Une description des catégories applicables est incluse ci-dessous. Les autres catégories du Guide de caractérisation, incluant les matériaux radioactifs, inflammables et organiquement contaminés, ne sont pas applicables au site et n'ont donc pas été évaluées.

MATÉRIAUX À FAIBLE RISQUE

Le Guide de caractérisation indique que « les matériaux sont classés comme étant « à faible risque » s'ils ne sont pas considérés comme générateurs d'acide, lixiviables, contenant du cyanure, contaminés par des substances organiques, radioactifs, inflammables ou à haut risque ». Les matériaux dont les niveaux sont inférieurs aux critères de sol A du Guide d'intervention sont considérés comme étant à faible risque. Les critères du sol A sont des niveaux de fond pour les métaux et les métalloïdes, niveaux qui varient selon la province géologique; dans cette étude, les critères de fond de la province du Supérieur ont été utilisés.

Les échantillons qui excèdent les critères de sol A, mais dont le lixiviat présente des concentrations inférieures aux critères de qualité de l'eau applicables pour le même paramètre, sont également classés comme « à faible risque », à condition qu'ils ne soient pas générateurs d'acide.

MATÉRIAUX GÉNÉRATEURS D'ACIDE

Selon le Guide de caractérisation, les matériaux miniers sont classés comme « potentiellement générateurs d'acide » (PGA) par un essai statique si leur teneur en soufre total est supérieure à 0,04 % et si au moins une des deux conditions suivantes est remplie :

- le rapport entre le potentiel de neutralisation des acides (PN) et le potentiel d'acidification maximal (PA³)
 (PN/PA) est inférieur à 2; et/ou,
- le potentiel net de neutralisation de l'acide (PNN, où PN = PN-PA) est inférieur à 20 kg de CaCO₃/tonne.

Le potentiel de génération acide peut aussi être mesuré par des essais cinétiques.

Le PGA pour le processus de classification peut être mesuré par diverses méthodes, chacune ayant ses propres particularités. Les deux mesures utilisées dans cette étude sont les suivantes :

- le PN brut de la méthode ACISOL (PN-brut) : Cette méthode peut surestimer le PN réel, car elle inclut la contribution des minéraux silicatés qui ne sont généralement pas très réactifs;
- le PN calculé à partir de la teneur en carbonate (PN-CO₃): dans ce calcul sur le carbonate, on exclut la présence de carbone provenant du graphite, mais le PN calculé peut encore être surestimé si les carbonates ne sont pas disponibles ou ne sont pas réactifs.

Le PA pourrait également être surestimé si tous les sulfures ne sont pas disponibles pour réagir.

MATÉRIAUX LIXIVIABLES ET À HAUT RISQUE

Si un échantillon contient un paramètre qui dépasse le critère de sol A et que la concentration du même paramètre dépasse les critères de qualité de l'eau correspondants dans l'essai SPLP ou CTEU-9, l'échantillon est classé comme « lixiviable ». Par la suite, des essais cinétiques peuvent être réalisés pour confirmer ou affiner cette classification. Les critères relatifs à l'eau qui s'appliquent à ce projet sont la *résurgence dans les eaux de surface* (RES) et/ou l'eau de consommation (EC) du Guide d'intervention. Le critère RES pour certains métaux varie en fonction de la dureté de l'eau de surface dans laquelle les eaux souterraines refont surface. Une dureté de 50 mg/L a été utilisée dans cette étude pour calculer les critères pour ce paramètre.

Un échantillon est classé « à haut risque » si la concentration d'un ou plusieurs éléments dans le lixiviat TCLP dépasse les critères de classification des matériaux miniers à haut risque (annexe A du Guide de caractérisation).

MATÉRIAUX CONTENANT DES CYANURES

Les résidus sont classés comme « cyanuré » si un processus de cyanuration est utilisé pour traiter le minerai ou si un réactif contenant du cyanure est utilisé dans le processus.

PA représente la fraction de soufre total en % x 31,25 pour la conversion en unités de kg d'équivalents CaCO₃/tonne.

AUTRES CRITÈRES DE COMPARAISON

Les échantillons d'eau de traitement des résidus ainsi que les résultats des lixiviats de GAN et de SFE ont été comparés aux critères RES et EC. Les résultats de ces essais sont utilisés pour confirmer et améliorer la classification des matériaux dont il est question dans les sections précédentes. Les résultats des tests de lixiviation de mort-terrain ont été comparés à la qualité des eaux souterraines locales superficielles (WSP, 2023b).

3 RÉSULTATS

Les résultats des essais statiques sont présentés à l'annexe B. Un résumé de ces résultats et la classification des matériaux miniers selon les critères applicables sont détaillés dans les sections suivantes.

3.1 ÉLÉMENTS MAJEURS

Les analyses des éléments majeurs pour les stériles (256 échantillons), le minerai (21 échantillons) et les résidus (7 échantillons) sont rapportées au tableau A de l'annexe B et résumées au tableau 6.

STÉRILES

Les résultats des analyses sur les échantillons de stériles confirment que les lithologies de stériles felsiques (V1, I1 Frg, I1P, I2F) et sédimentaires (S6) contiennent des concentrations plus élevées de SiO₂ (moyennes de 65,6 % à 74,7 %) que leurs homologues mafiques (V2, I3A; moyennes de 41,7 % à 50,8 %). L'inverse est vrai pour les concentrations de Fe₂ O₃, MgO, et CaO, qui sont plus élevées dans les lithologies mafiques que dans les lithologies felsiques et sédimentaires. MgO et CaO sont tous deux plus importants dans la lithologie I3A (moyennes respectives de 8,1 et 8,4 %).

MINERAL

Les résultats montrent peu de différences de composition entre les échantillons de minerai. En moyenne, la teneur en SiO₂ varie de 60 % à 64 % pour les échantillons de Caribou, Zone 27 et Underdog; les échantillons de minerai de Lynx (Lynx Main, Triple Lynx, et Lynx 4) sont plus riches en SiO₂ (moyenne de 70 % à 76 %). Inversement, la teneur en Fe₂O₃ est la plus faible dans les échantillons de Lynx (moyenne de 3 à 5 %) et la plus élevée dans ceux de Caribou, Zone 27 et Underdog (moyenne de 8 à 11 %).

RÉSIDUS

Les échantillons de résidus ont des compositions en éléments majeurs relativement similaires. Les échantillons CIL 11 CND, CIL 12 CND et CIL 13 CND, constitués uniquement de résidus de Lynx 4 ou Triple Lynx, ont une teneur plus élevée en SiO₂ et plus faible en Fe₂O₃ que les autres échantillons, ce qui est cohérent avec le matériel de la zone Lynx par rapport à celui des autres zones.

3.2 MINÉRALOGIE

Les teneurs en minéraux dans les stériles (12 échantillons), le minerai (quatre échantillons) et les résidus (quatre échantillons) sont rapportées au tableau F de l'annexe B et résumées au tableau 7.

STÉRILES

Le quartz et la muscovite sont les minéraux les plus abondants dans les échantillons de stériles. La teneur en quartz est la plus élevée dans les lithologies felsiques (V1, I2P, I2F, I1P, I1 Frg) tandis que la teneur en muscovite varie entre les unités. La teneur en pyrite et en minéraux carbonatés (c.-à-d. la calcite, l'ankérite et la dolomite), qui pourrait facilement neutraliser l'acidité, varie selon les types de roches; des teneurs élevées sont observées dans les lithologies mafiques et felsiques. La sidérite (une phase carbonatée qui ne contribue pas de manière significative au PN) est observée dans un échantillon V1 et un échantillon V2. Le gypse n'est pas observé.

Tableau 6 Résumé des éléments majeurs par lithologie et type d'échantillon

	Type hantillon	Statistique	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	Na₂O	K₂O	TiO ₂	P ₂ O ₅	MnO	Cr₂O₃	V ₂ O ₅
u ec	ilantinon		%											
	V1	Moyenne	74,7	11,5	2,8	1,2	1,6	0,5	2,8	0,2	0,03	0,05	0,01	0,02
	(n=45)	Min-Max	57,2-80,7	8,93-15,1	0,7-7,2	0,32-4,3	0,18-4,8	0,24-3,2	0,53-3,9	0,11-0,45	0,01-0,11	0,01-0,13	0,01-0,03	0,01-0,02
	V2	Moyenne	50,8	14,3	11,4	3,7	5,4	1,7	1,8	1,1	0,19	0,16	0,03	0,03
	(n=37)	Min-Max	39,5-60,7	12-17,9	6,0-17,6	0,82-9,2	0,31-10,4	0,29-3,4	0,3-3,9	0,46-1,8	0,06-0,33	0,03-0,26	0,01-0,05	0,01-0,05
	I1 Frg	Moyenne	68,3	13,3	2,8	1,6	3,2	0,8	2,9	0,3	0,06	0,05	0,01	0,02
,,	(n=21)	Min-Max	55,5-74,7	11,6-15,1	1,6-5,3	0,5-4,0	0,85-6,2	0,42-2,0	1,8-3,6	0,2-0,51	0,03-0,1	0,02-0,09	0,01-0,01	0,01-0,03
Stériles	I1P/I2P	Moyenne	67,1	14,7	3,3	1,5	2,6	1,9	2,9	0,3	0,09	0,04	0,01	0,01
Sté	(n=77)	Min-Max	51,1-75,1	10,1-16,2	1,4-12,1	0,39-4,5	0,21-7,43	0,22-4,8	1,3-4,3	0,15-1,3	0,02-0,25	0,01-0,15	0,01-0,04	0,01-0,02
	I2F/I13	Moyenne	65,6	15,3	2,5	1,2	3,2	4,8	2,0	0,3	0,14	0,04	0,01	0,01
	(n=28)	Min-Max	60,8-70,7	14,8-16,8	1,4-3,2	0,58-1,7	2,06-4,5	3,8-5,1	1,78-2,3	0,22-0,34	0,06-0,66	0,01-0,06	0,01-0,01	0,01-0,01
	I3A	Moyenne	41,7	14,6	9,9	8,1	8,4	1,4	1,1	0,6	0,12	0,17	0,04	0,04
	(n=43)	Min-Max	35,7-61,4	11,1-17,5	5,7-12,9	3,6-16,5	4,2-11,1	0,17-2,4	0,01-3,4	0,31-1,13	0,05-0,2	0,08-0,23	0,02-0,11	0,01-0,06
	S6	Moyenne	69,1	13,6	3,7	1,6	2,1	0,4	3,3	0,4	0,07	0,07	<0,01	<0,01
	(n=5)	Min-Max	64-74	12,7-15,1	3,0-5,2	1,1-2,4	0,89-4,2	0,34-0,51	3,1-3,4	0,33-0,44	0,05-0,09	0,02-0,11		
	rt-terrain	Moyenne	63,6	12,2	3,0	1,1	2,6	3,7	1,4	0,3	0,09	0,06	0,03	0,01
(n=27)	Min-Max	2,48-75,1	0,64-16	0,5-5,06	0,17-1,56	1,79-4,43	0,1-5,29	0,07-2,04	0,03-0,46	0,04-0,16	0,03-0,22	0,02-0,05	0,01-0,02
R	ésidus	Moyenne	67,4	11,4	6,7	1,4	2,1	0,6	2,8	0,3	0,06	0,05	0,06	0,02
	(n=7)	Min-Max	62-72,8	10,3-12,3	4,4-9,3	0,97-1,8	1,3-2,8	0,4-0,8	2,6-3,1	0,26-0,43	0,03-0,09	0,02-0,07	0,02-0,09	0,01-0,02
N	/linerai	Moyenne	66,4	12,3	7,0	1,3	1,7	0,6	3,0	0,4	0,08	0,04	0,02	0,02
Note:	n=21)	Min-Max	50-78,5	9,2-16,1	3,0-17,1	0,61-2,1	0,76-3,5	0,34-0,99	2,34-4,0	0,17-1,3	0,03-0,3	0,02-0,08	0,01-0,03	0,01-0,04

Note:

n = nombre d'échantillons.

Tableau 7 Minéralogie par type d'échantillon et lithologie

d	Type d'échantillon		Quartz	Muscovite	Biotite	Phlogopite	Chlorite	Pyrite	Calcite	Ankérite	Dolomite	Sidérite	Albite	Anorthite	Actinolite	Épidote
	Lithologie		%													
	V1 (n=2)	Min	0,0	22,7	0,0	0,0	2,8	1,0	0,8	0,4	1,9	0,0	1,4	0,6	0,0	0,0
		Max	63,6	33,1	0,0	0,0	6,2	2,6	1,1	0,5	2,0	0,0	1,4	0,7	0,0	0,0
	V2 (n=3)	Min	16,4	4,9	0,0	5,9	3,2	1,3	2,3	0,4	0,1	0,0	2,7	1,1	4,5	4,8
ဟ		Max	30,6	38,2	0,0	6,0	16,5	15,1	6,4	0,8	7,8	0,6	31,9	3,0	4,5	4,8
Stériles	I1 Frg (n=1)	-	55,2	23,5	0,0	0,0	0,4	1,1	0,6	1,6	11,6	0,0	3,0	1,4	0,0	0,0
	I1P/I2P (n=4)	Min	29,5	21,4	0,0	0,0	2,7	0,7	0,6	0,3	0,2	0,0	2,6	0,6	0,0	0,0
		Max	53,7	36,7	0,0	0,0	12,3	2,7	5,5	1,4	7,9	0,0	27,0	1,6	0,0	0,0
	I2F/I13 (n=1)	-	25,8	17,2	0,0	0,0	4,2	0,6	4,6	0,0	0,0	0,0	45,5	1,9	0,0	0,0
	I3A (n=1)	-	28,3	19,9	0,0	0,0	28,8	0,4	11,7	1,1	7,8	0,0	0,3	1,1	0,0	0,0
R	Résidus (n=4)		28,3	19,9	0,7	0,0	28,8	0,4	11,7	1,1	7,8	0,0	0,3	1,1	0,0	0,0
			52,2	27,9	0,7	0,0	2,8	5,4	1,0	0,5	6,4	0,1	6,8	3,0	0,0	0,0
N	Minerai (n=4)		46,4	25,8	0,0	0,0	0,2	2,0	0,6	0,4	0,5	0,0	0,9	1,0	0,0	0,0
N			56,6	32,5	0,0	0,0	4,2	9,3	1,9	0,9	7,4	0,1	7,3	2,0	0,0	0,0

Note:

n = nombre d'échantillons.

MINERAI

Les échantillons de minerai ont une minéralogie semblable. Le quartz et la muscovite dominent dans tous les échantillons de minerai. La teneur en pyrite est la plus élevée dans l'échantillon de la Zone 27 et la plus faible dans l'échantillon de Lynx Main. La teneur totale en minéraux carbonatés ayant le potentiel de neutraliser facilement l'acide (c.-à-d. la calcite, l'ankérite et la dolomite) est la plus élevée dans l'échantillon de Lynx Main (9 %). Les minéraux carbonatés sont aussi présents dans les échantillons de Caribou (6 %), de Zone 27 (3 %) et d'Underdog (3 %). La teneur en sidérite est faible dans chaque échantillon. Le gypse n'a été noté dans aucun échantillon.

RÉSIDUS

Les échantillons de résidus ont une minéralogie similaire. Le quartz et la muscovite dominent dans tous les échantillons. La teneur en pyrite est relativement élevée par rapport à la moyenne des échantillons de stériles et de minerai, tandis que les teneurs totales en minéraux carbonatés qui ont le potentiel de neutraliser facilement l'acide (c.-à-d. la calcite, l'ankérite et la dolomite) sont relativement faibles. La teneur en sidérite est limitée au CND 1. Du gypse est observé dans tous les échantillons de résidus; il est possible qu'il soit généré par le processus de broyage et de détoxification du cyanure.

3.3 POTENTIEL ACIDOGÈNE

Les résultats complets de l'analyse BAB pour les stériles (256 échantillons), le mort-terrain (117 échantillons), le minerai (21 échantillons) et les résidus (sept échantillons) sont présentés dans les tableaux B à D de l'annexe B. Un résumé de ces résultats est présenté au tableau 8.

STÉRILES

La teneur moyenne en soufre total des stériles varie selon les lithologies, la plus élevée étant mesurée dans V2 (moyenne de 2,08 %, maximum de 10,9 %), suivie de I1P/I2P (moyenne de 1,27 %, maximum de 8,95 %) et de S6 (moyenne de 1,01 %). La plus grande gamme du soufre total est observée dans les échantillons de l'unité I3A, où elle passe de 0,006 à 1,35 %.

La relation entre le PN brut et le CO₃-PN est positivement corrélée aux échantillons de stériles (figure 6), ce qui indique que les carbonates neutralisant l'acide (c.-à-d. la calcite, la dolomite et l'ankérite) fournissent la majeure partie de leur potentiel de neutralisation. Les lithologies mafiques I3A et V2 ont la plus forte concentration d'éléments neutralisants et la plus grande variation de PN, car elles contiennent les plus fortes concentrations de CaO et de MgO dans la roche entière, présentées dans les matériaux sous forme de calcite et de dolomite. La tendance du CO₃-PN à se situer au-dessus de la ligne 1:1 pour ces lithologies, ainsi que pour I1 Frg, suggère la présence de minéraux carbonatés qui ne contribuent pas au PN (p. ex. la sidérite), ce qui est conforme aux analyses minéralogiques.

L'équilibre entre le PA et le PN (c.-à-d. la PNN et le PN/PA) classe les unités I1 Frg, V1, V2, I1P et S6 dans la catégorie « PGA variable » (14 à 60 % PA) (Figure 6). Les unités I2F et I3A présentent un équilibre suffisant entre AP et PN (c.-à-d. PNN et PN/PA) pour être classées comme non PGA (NPGA) selon les critères du MELCCFP (2020). La classification de ces unités est traitée plus en détail dans la section 3.5.

Résultats du BAB et classification du potentiel acidogène par type d'échantillon et lithologie Tableau 8

Time			Soufre total	PA			Nombre d'éch	antillons PGA	Classification du potentiel acidogène -		
Type d'échantillon	Lithologie	Fonction	(%)	(kg CaCO₃ /tonne)	PN/PA brut	PN/PA-CO₃ª	PN brut	PN-CO₃			
	\/4 (n=45)	Moyenne	0,82	25,77	5,74	5,21	18/45	25/45	DCA wariahla		
	V1 (n=45)	Min-Max	0,029-3,98	0,9-124	0,2-51	0,1-57	(40 %)	(56 %)	PGA variable		
	\/O (n=05)	Moyenne	2,08	65,06	12,18	12,81	16/37	18/37	DCA wariahla		
	V2 (n=35)	Min-Max	0,067-10,9	2,1-341	0,043-95,6	0,00-100	(43 %)	(49 %)	PGA variable		
	14 Fra (n=24)	Moyenne	0,69	21,63	7,22	8,68	3/21	2/21	DCA variable		
	I1 Frg (n=21)	Min-Max	0,08-2,33	2,5-72,8	0,28-23,6	0,10-41,4	(14 %)	(10 %)	PGA variable		
Stériles	MD/IOD (** 77)	Moyenne	1,27	39,70	4,56	4,22	40/77	45/77	DCA wariahla		
Stéı	I1P/I2P (n=77)	Min-Max	0,076-8,95	2,38-280	0,075-60,6	0,010-65,4	(52 %)	(58 %)	PGA variable		
••	105/140 (** 00)	Moyenne	0,14	4,45	44,84	41,75	0/28	0/28	NDOA		
	I2F/I13 (n=28)	Min-Max	0,008-0,476	0,25-14,9	4,483-250,0	4,73-201,5	(0 %)	(0 %)	NPGA		
	124 (= 42)	Moyenne	0,33	10,28	120,8	142,2	0/43	0/43	NDCA		
	I3A (n=43)	Min-Max	0,006-1,35	0,19-42,2	2,8-1221	4,2-1317	(0 %)	(0 %)	NPGA		
	CC (==E)	Moyenne	1,01	31,56	2,12	1,96	3/5 3/5		DOAiahla		
	S6 (n=5)	Min-Max	0,585-1,83	18-57,2	1,31-3,15	1,0-3,3	(60 %)	(60 %)	PGA variable		
B. 4 4 t	Mort-terrain (n=117)		0,03	1,04	54,55	89,0	0./07	0/117	NDOA		
Mort-terrain			0,005-0,56	0,16-17,5	1,97-270,7	1,8-3203	0/27	(0 %)	NPGA		
D4ataloo	/n - 7\	Moyenne	3,56	111,29	0,53	0,36	7/7	7/7	DCA.		
Résidus	(n=1)	Min-Max	2,42-4,79	75,6-150	0,22-,75	0,1-,7	(100 %)	(100 %)	PGA		
N 41: ! /	Minerai (n=21)		Movenne		4,57	142,9	0,60	0,41	21/21	21/21	DCA
Minerai (1,28-12,2	40,0-381	0,04-1,9	0,0-1,4	(100 %)	(100 %)	PGA		

a Calculé à partir du carbone inorganique total pour les échantillons de mort-terrain, et à partir de la teneur en carbonate mesurée pour tous les autres.
 b Sulfure utilisé à la place du soufre total pour les calculs des PN/PA et PRN, lorsqu'il est disponible.

n = nombre d'échantillons

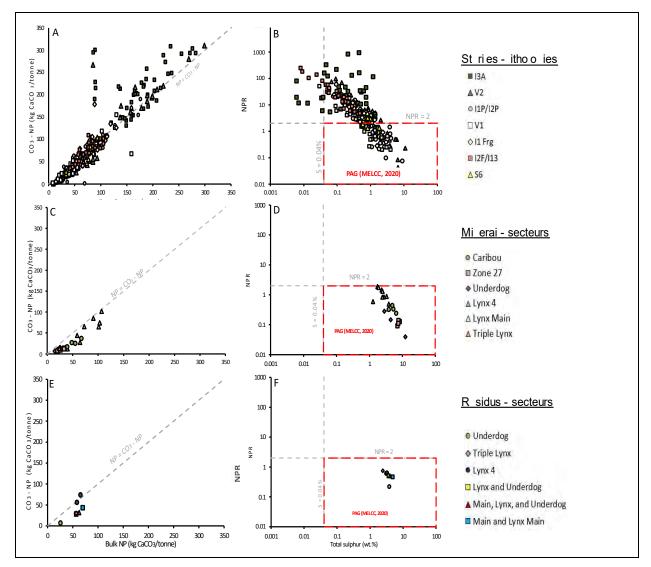


Figure 6 PN brut en fonction du CO₃-PN (à gauche), et soufre total en fonction du PRN brut (à droite) pour les stériles, le minerai et les résidus.

MORT-TERRAIN

Sur les 117 échantillons de mort-terrain analysés pour le soufre total, 108 ont des teneurs en sulfure (ou, soufre total, quand le sulfure n'a pas été mesuré) inférieures à 0,04 %, ce qui indique qu'ils sont non PGA. Pour les neuf échantillons restants, le rapport entre PA et CO₃-PN (corrigé pour la présence de carbone organique) a donné un PN/PA > 6 pour tous les échantillons, indiquant ainsi qu'ils sont également non PGA. En résumé, 100 % des échantillons de mort-terrain analysés pour les paramètres BAB sont classés comme non PGA.

MINERAI

La figure 6 compare le PN brut et le CO₃-PN. La plupart des échantillons se situent près ou en dessous de la ligne 1:1, ce qui indique que des minéraux moins réactifs (p. ex. des silicates) peuvent contribuer au potentiel de neutralisation brut.

Tous les échantillons sont considérés comme PGA en raison de la teneur en soufre total élevé et de l'équilibre entre PA et PN (c.-à-d. PNN et PN/PA), comme l'illustre la figure 6. Les échantillons du secteur Lynx ont une teneur en soufre total plus faible et un PN/PA plus élevé par rapport aux autres zones.

Les résultats du bilan BAB sont généralement conformes à la minéralogie observée et aux éléments majeurs.

RÉSIDUS

La figure 6 compare le PN brut et le CO₃-PN. La plupart des échantillons se situent en dessous de la ligne 1:1, ce qui indique que des minéraux moins réactifs (p. ex. les silicates) peuvent contribuer au potentiel de neutralisation brut. L'exception est constituée par les échantillons de résidus de Lynx 4, dont le tracé atteint presque la ligne 1:1.

Tous les échantillons sont considérés comme PGA en raison de leur teneur élevée en soufre total (entre 2,4 % et 4,8 %) et de leur faible PN, comme le montre la figure 6.

3.4 POTENTIEL DE LIXIVIATION-MA.200, SPLP, CTEU-9 ET TCLP

Un résumé des résultats des essais MA.200, SPLP, CTEU-9 et TCLP est présenté au tableau 9. La classification des paramètres lixiviables et les dépassements pour chacun des échantillons sont fournis au tableau K de l'annexe B.

Aucun des échantillons analysés ne présentait de concentrations dans le lixiviat TCLP supérieures aux critères de l'annexe A du Guide de caractérisation. Aucun des matériaux soumis aux essais n'est donc classé comme présentant un risque élevé de lixiviation de métaux.

STÉRILES

Chacune des 256 lithologies de stériles analysées pour MA.200 avait au moins un échantillon montrant des concentrations de métaux extractibles dépassant le critère A du sol. L'arsenic dépassait le critère de sol A dans toutes les lithologies, et l'argent dépassait le critère A du sol dans toutes les lithologies sauf I2F. Les autres dépassements observés affectaient le cadmium, le chrome, le cobalt, le cuivre, le plomb, le manganèse, le molybdène, le nickel et le zinc.

Chacune des lithologies de stériles analysées comportait au moins un échantillon dont les concentrations dans les lixiviats dépassaient les critères RES et/ou EC, dont 168 échantillons analysés pour le SPLP et 167 échantillons analysés pour le CTEU-9. L'arsenic a dépassé l'EC dans la plupart des échantillons. Les autres dépassements observés concernaient l'aluminium, l'antimoine, le cadmium, le cuivre, le manganèse, le mercure, le molybdène, le plomb, l'uranium et le zinc.

L'arsenic a été identifié comme lixiviable dans la plupart des échantillons de la plupart des lithologies. L'argent, le cuivre, le manganèse, le mercure et le molybdène ont également été identifiés comme lixiviables dans un nombre d'échantillons.

Afin de soutenir l'évaluation de la valorisation potentielle de l'I3A comme matériaux de construction sur le site, les résultats pour cette lithologie ont également été comparés aux teneurs de fond de qualité de l'eau souterraine locale (WSP, 2023b). Ces échantillons ont été identifiés comme lixiviables pour l'arsenic dans la plupart des échantillons en raison de dépassements du critère EC dans les essais SPLP et CTEU-9 (n=26 dépassements sur 32 essais). Les concentrations d'arsenic dans ces essais dépassent parfois les teneurs de fond de la qualité des eaux souterraines du mort-terrain (n=22 dépassements sur 32 essais) mais dépassent moins fréquemment les teneurs de fond de la qualité des eaux souterraines du socle rocheux peu profond (n=6 dépassements sur 32 essais). WSP (2023b) n'a pas évalué les teneurs de fond en argent des eaux souterraines, mais il n'a été noté comme lixiviable que dans un seul des 32 échantillons.

Tableau 9 Résumé des métaux extractibles et des résultats des essais de lixiviation pour les stériles, les résidus, le mort-terrain et le minerai

Туре		Métaux extractibles		Essais de lixiviation									
d'é	d'échantillon		metaux extractibles	SPLP				CTE	U-9		TCLP	Métaux lixiviables	
	Lithologi e	n	> Critères de sol A	n >RES >E		>EC	n	>RES	>EC	n	Échantillons à haut risque		
	V1	45	Ag (12), As (44), Cd (2), Cr (1), Cu (1), Mo (1), Ni (2), Zn (2)	25	Hg (2), Ag (7)	Al (24), Sb (4), As (18), Mn (1)	25	Hg (6), Ag (3)	Al (25), Sb (24), As (25), Mn (1)	33	0/33	Ag (3), As (24)	
	V2	37	Ag (15), As (34), Cd (2), Cr (4), Co (18), Cu (29), Mn (17), Mo (1), Ni (19), Pb (1), Zn (8)		Hg (5), Ag (4)	Al (25), Sb (2), As (18), Mn (2)	26	Hg (2), Ag (8), Cu (1)	Hg (1), Al (22), Sb (18), As (25), Mn (7), Se (1)	23	0/23	Ag (7), As (22), Cu (1), Mn (1)	
	I1 Frg	21	Ag (13), As (20)	14	Ag (2)	Al (14), As (12)	14	Hg (1), Ag (1)	Al (14), Sb (14), As (14)	13	0/13	Ag (2), As (14)	
Stériles	I1P/I2P	77	Ag (23), As (72), Ba (1), Cd (2), Co (1), Cu (30), Hg (1), Mn (1), Mo (6), Ni (1), Zn (2)	50	Hg (10), Ag (5), Cd (2), Cu (1), Zn (2)	Al (45), Sb (9), As (45), Cd (2), Mn (3), Mo (1), Pb (2), Zn (1)	50	Hg (19), Sb (1), Ag (18), Cu (6)	Al (49), Sb (49), As (50), Mn (4), Mo (5), Se (1)	39	0/39	Hg (1), Ag (10), As (45), Cu (5), Mo (4)	
	I2F/I13	28	As (4), Ba (1)	13	Hg (1), Ag (2)	Al (13), As (11)	13		Al (13), Sb (4), As (13), U (1)	4	0/4	Comme (1)	
	I3A	43	Ag (5), As (34), Cr (24), Co (25), Cu (18), Mn (29), Ni (41)	32	Ag (9)	Al (32), As (23)	32	Hg (1), Ag (1)	Al (32), Sb (13), As (32), Mo (1)	16	0/16	Ag (1), As (26)	
	S6	5	Ag (2), As (5), Cd (1), n (1)	5	Ag (3)	Al (5), Sb (5), As (2)	5	Ag (1)	Al (4), Sb (5), As (5)	3	0/3	Ag (1), As (5)	
	OVB	230	Ag (5), As (9), Cd (1), Cr (16), Co (1), Cu (1), Sn (2), Mn (4), Ni (3)	30	Ag (3)	Al (23), As (14), Mn (4)	29	Hg (8)*, Ag (2), Cu (14)	Al (29), As (29), Mn (17)	0	0/0	As (1)	
ı	Résidus		Ag (6), As (7), Cd (5), Cr (4), Cu (6), Hg (4), Mo (1), Pb (5), Zn (5)	7	Hg (1), Cu (2), Pb (2), Zn (2)	Al (3), Sb (5), As (7), Mn (1), Pb (2)	7	Ag (1), Cd (4), Cu (3)	Sb (6), As (7), Cd (2), Cu (1), Mn (6), Ni (2), Pb (2)	7	0/7	Hg (1), As (7), Cd (3), Cu (2), Pb (1), Zn (2)	
Notes:	Minerai		Ag (21), As (21), Cd (12), Co (1), Cu (14), Hg (6), Mo (2), Ni (2), Pb (2), Se (4), Zn (10)	21	Hg (1), Ag (3)	Al (19), Sb (10), As (21), Mn (7)	21	Ag (17), Cd (5), Cu (2)	Hg (1), Al (15), Sb (21), As (21), Mn (11), Se (7)	17	0/17	Hg (5), Ag (17), As (21), Cd (5), Cu (2), Se (3), Zn (1)	

Notes:

La limite de détection analytique pour certains paramètres tels que le bromure et le mercure est supérieure à la valeur du critère RES dans les essais TCLP, SPLP et CTEU-9, et pour le sélénium et l'antimoine dans les essais CTEU-9 de certains échantillons de mort-terrain sont supérieure à la valeur du critère EC. Dans ce cas, un dépassement du critère RES n'est affiché que si le résultat analytique produit une valeur supérieure à la limite de détection analytique.

n = nombre d'échantillons.

^{*}Les concentrations sont inférieures à 5 fois la limite de détection du laboratoire et peuvent ne pas être significatives.

MORT-TERRAIN

Sur les 230 échantillons de mort-terrain analysés pour MA.200, 87 % présentaient des concentrations de métaux extractibles inférieures aux critères A du sol. Des dépassements ont été observés pour l'arsenic, l'argent, le cadmium, le cobalt, le cuivre, chrome, l'étain, le manganèse et le nickel.

Les tests de lixiviation effectués sur certains échantillons de mort-terrain (30 SPLP et 29 CTEU-9) ont mesuré des concentrations d'aluminium, d'arsenic et de manganèse dépassant les critères EC et des concentrations d'argent et de cuivre dépassant les critères RES. Un échantillon est classifié comme lixiviable pour l'arsenic.

WSP (2023b) indique que les concentrations d'aluminium, d'arsenic et de manganèse dans l'eau souterraine dépassent également les critères EC et que les concentrations de cuivre sont similaires aux critères RES. WSP (2023b) n'a pas évalué l'argent, mais ces dépassements n'ont été notés que dans une minorité d'échantillons.

Dans l'ensemble, les résultats indiquent que l'unité de mort-terrain dans son ensemble ne présente pas de risque significatif de lixiviation de métaux à des concentrations supérieures aux conditions de fond existantes.

MINERAL

Chacun des 21 échantillons de minerai analysés pour MA.200 présentait des concentrations de métaux extractibles dépassant le critère de sol A pour l'arsenic. Les autres dépassements concernaient le cuivre, le cobalt, le cadmium, le plomb, le zinc, le mercure, le molybdène, le nickel et le sélénium.

Chacun des 21 échantillons de minerai comportait au moins un échantillon dont les concentrations dans les lixiviats (SPLP/CTEU-9) dépassaient les critères RES et/ou EC. Les concentrations des lixiviats de tous les échantillons dépassaient le critère EC pour l'arsenic. Les autres dépassements observés concernaient l'aluminium, l'argent, l'antimoine, le manganèse, le sélénium et le mercure.

L'argent et l'arsenic ont été identifiés comme étant lixiviables dans la plupart des échantillons de tous les secteurs. Le cadmium, le cuivre, le mercure, le sélénium et le zinc ont été identifiés comme lixiviables, le plus souvent dans les échantillons de la zone Caribou et de la Zone 27.

RÉSIDUS

Les concentrations en métaux extractibles des sept échantillons de résidus dépassaient le critère de sol A pour l'arsenic et l'argent. Les autres dépassements observés concernaient le cuivre, le cobalt, le cadmium, le plomb, le zinc, le mercure et le molybdène.

Des dépassements du critère EC ont été observés pour l'arsenic dans les sept échantillons (SPLP et CTEU-9). D'autres dépassements des critères EC et/ou RES ont également été notés pour l'aluminium, l'arsenic, l'antimoine, l'argent, le cadmium, le cuivre, le manganèse, le mercure, le nickel, le plomb et le zinc.

Le mercure, l'arsenic, le cadmium, le cuivre et le plomb ont été identifiés comme lixiviables dans les échantillons de résidus. Le plus grand nombre de paramètres lixiviables a été identifié dans l'échantillon de résidus de Lynx 4 LP.

3.5 RÉSULTATS DES ESSAIS CINÉTIQUES

Les tendances des indicateurs de drainage acide et de lixiviation des métaux dans les lixiviats des essais en cellules humides (terminés et actifs) sont examinées ci-dessous. Les graphiques de séries chronologiques pour tous les essais et paramètres sont fournis à l'annexe D, les résultats des paramètres clés étant présentés aux figures 7 à 9.

Pour estimer le temps potentiel avant le début du relâchement de l'acidité, les temps d'épuisement pour le soufre total, le CO₃-PN et le PN brut sont calculés. Les résultats de ces calculs sont utiles pour fournir une première indication du temps jusqu'au début de la production d'acide et de la lixiviation des métaux dans ces matériaux lorsqu'ils sont stockés sur le site. Si les minéraux neutralisant l'acide (p. ex. les carbonates réactifs) sont consommés avant la consommation des minéraux générant de l'acide (p. ex. les sulfures), il existe alors un potentiel de libération d'acidité (si elle n'est pas atténuée). Les résultats sont plus significatifs pour les essais en cellules humides, où des taux de réaction stables et à long terme ont été établis. Cependant, les résultats des essais à plus court terme peuvent fournir une indication initiale du potentiel de génération d'acide d'un échantillon qui peut être évalué en conjonction avec d'autres indicateurs (p. ex. les résultats BAB et GAN, l'évaluation de la minéralogie). Les calculs d'épuisement sont fournis au tableau 10, et traités ci-dessous.

STÉRILES (FIGURE 7)

L'essai en cellule humide pour l'échantillon EAG 14-538_58 (lithologie I1P/I2P) a duré pendant 200 semaines, au cours desquelles les tendances observées se sont globalement montrées conformes aux attentes basées sur les essais statiques. D'après ces essais statiques, l'échantillon a été classé PGA et lixiviable pour l'arsenic et l'argent, et des métaux comme l'aluminium, le manganèse, le plomb, l'antimoine et le sélénium ont également dépassé le RES et/ou l'EC dans les essais de lixiviation statiques (SPLP/CTEU-9).

Les concentrations d'arsenic étaient élevées et dépassaient le RES et/ou l'EC pendant le premier rinçage à l'eau de l'échantillon EAG 14-538_58. L'alcalinité a diminué régulièrement pour s'épuiser vers 80 semaines, moment où l'échantillon a alors commencé à générer un drainage acide, ce qui a été mis en évidence par une diminution du pH et une augmentation de la concentration des métaux (aluminium, baryum, cadmium, cobalt, cuivre, fer, plomb, nickel et zinc; dépassement des critères RES/EC par l'aluminium et le cuivre) et des concentrations de sulfate. Après environ 160 semaines, le pH s'est stabilisé autour de 4, et les concentrations de sulfate et de métaux se sont également stabilisées. Les concentrations en manganèse ont augmenté dès le début des essais et ont dépassé l'EC.

Les tendances observées dans l'essai en cellule humide pour EAG 14-538_58 semblent être représentatives des conditions observées pour d'autres échantillons de stériles soumis aux essais par rapport aux concentrations pendant le premier rinçage et la stabilisation ultérieure des paramètres. Dans tous les échantillons analysés, les concentrations d'arsenic dans le premier rinçage à l'eau ont dépassé les critères de qualité de l'eau. D'autres dépassements ont été observés dans plusieurs essais pour les stériles pendant cette période, notamment pour l'antimoine, l'argent, le manganèse et l'aluminium.

Les temps calculés pour l'épuisement du CO₃-PN et du PN brut par rapport à l'épuisement du soufre total (PA) sont généralement conformes aux attentes basées sur les essais statiques BAB. Les échantillons OBM-16-671_23 (I1P/I2P), OSK-W-17-774_44 (I2F/I13), OSK W-17-812_102 (I1 Frg), OSK-W-17-773_41 (I3A) ont été classés comme NPGA d'après les essais statiques, mais les calculs de déplétion indiquent que le CO₃-PN et/ou le PN brut peuvent être consommés avant le PA dans ces échantillons, ce qui suggère qu'ils peuvent avoir le potentiel de générer de l'acide. Comme noté, les calculs de déplétion sont plus utiles pour les essais en cellules humides dont les taux de réaction sont stables; les taux dans ces quatre essais en cellules humides n'étaient peut-être pas complètement stabilisés au moment de la fin de l'essai.

Afin de soutenir l'évaluation de la valorisation potentielle d'I3A comme matériaux de construction sur le site, les résultats de l'échantillon OSK-W-17-773_41 ont également été comparés aux teneurs de fond de qualité de l'eau locale (WSP, 2023b). Les résultats sont résumés comme suit :

- Les concentrations d'arsenic dans les lixiviats dépassaient initialement les teneurs de fond de la qualité des eaux souterraines du mort-terrain mais n'a pas dépassé les teneurs de fond de la qualité des eaux souterraines du socle rocheux peu profond. Après dix semaines de rinçage, les concentrations ont diminué sous les teneurs de fond de la qualité des eaux souterraines du mort-terrain. Le critère EC n'a pas été dépassé.
- La concentration d'aluminium a dépassé les teneurs de fond de la qualité des eaux souterraines du socle rocheux peu profond dans tous les échantillons de lixiviat, mais ce paramètre n'est pas considéré comme lixiviable selon la procédure du Guide de caractérisation.

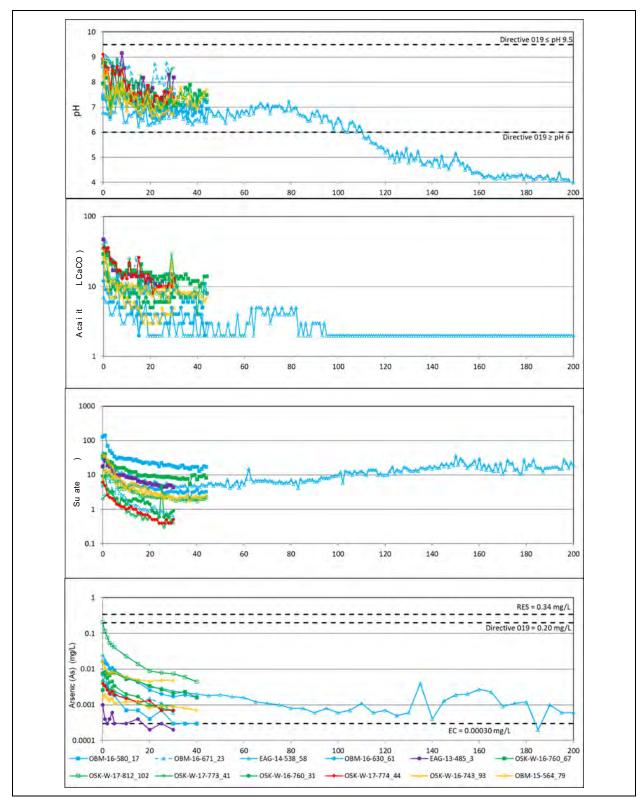


Figure 7 Résultats hebdomadaires des essais en cellules humides de stériles pour le pH, l'alcalinité, le sulfate et l'arsenic

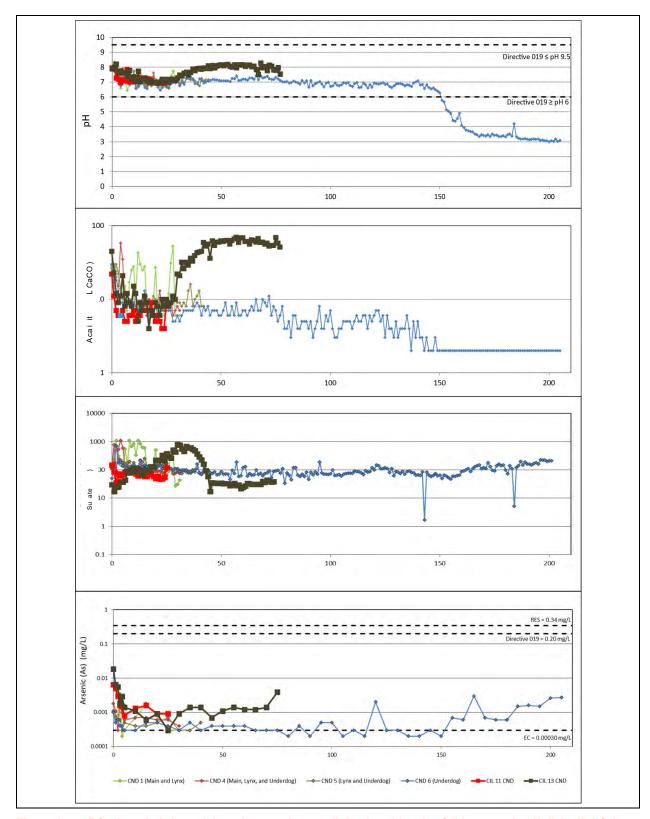


Figure 8 Résultats hebdomadaires des essais en cellules humides de résidus pour le pH, l'alcalinité, le sulfate et l'arsenic

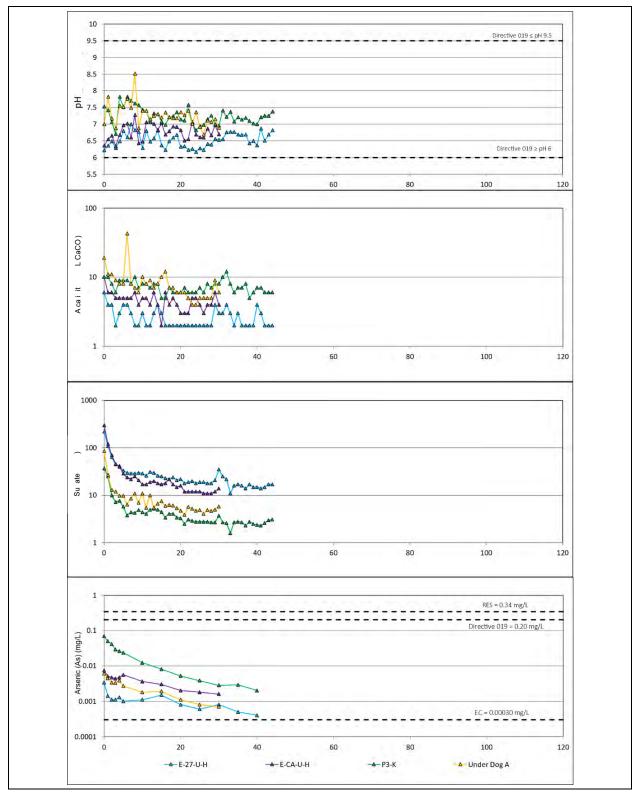


Figure 9 Résultats hebdomadaires des essais en cellules humides de minerai pour le pH, l'alcalinité, le sulfate et l'arsenic

Tableau 10 Détails sur les essais en cellules humides et calculs d'épuisement.

				Essais	s statiques		Cal	culs d'épuisen	nent		Potentiel
Type de matériel	Nom de l'échantillon	Code lithologique	Secteur	S total (%)	Potentiel acidogène basé sur le BAB	Période de calcul (semaines)	Épuisement du soufre total (années)	Épuisement du CO ₃ -PN (années)	Épuisemen t du PN brut (années)	Potentiel acidogène basé sur les temps d'épuisement	acidogène d'échantillon basé sur tous les résultats disponibles
	OBM-16-671_23	I1P/I2P	Zone 27	0,34	NPGA	25-30	286	304	284	Non concluant	Non concluant; voir discussion.
	EAG-14-538_58	I1P/I2P	Zone 27	2,88	PGA	195-200	78	-2	11	PGA	PGA
	OBM-16-630_61	V1	Zone 27	2,98	PGA	39-44	570	35	96	PGA	PGA
	OBM-16-580_17	V2	Caribou	10,9	PGA	39-44	414	46	70	PGA	PGA
	OSK-W-16- 743_93	I1P/I2P	Bobcat	2,92	PGA	25-30	735	16	62	PGA	PGA
	OBM-15-564_79	I1P/I2P	Underdog	1,16	PGA	39-44	307	40	77	PGA	PGA
Stériles	OSK-W-17- 774_44	I2F/I13	Lynx Main	0,24	NPGA	25-30	357	98	105	PGA	Non concluant, voir discussion.
st	OSK-W-17- 812_102	I1 Frg	Underdog	1,34	NPGA	39-44	414	268	278	PGA	Non concluant; voir discussion.
	OSK-W-17- 773_41	I3A	Zone 27	0,36	NPGA	25-30	547	264	293	PGA	Non concluant, voir discussion.
	OSK-W-16- 760_31	V1	Triple Lynx	0,85	PGA	25-30	383	92	138	PGA	PGA
	OSK-W-16- 760_67	V2	Lynx Main	3,18	PGA	39-44	213	50	86	PGA	PGA
	EAG-13-485_3	V2	Caribou	1,34	PGA	25-30	178	81	90	PGA	PGA
	CND 1	Composite	Main et Lynx Main	4,79	PGA	26-31	17	4	7	PGA	PGA
sn	sidus.	Composite	Main, Lynx, et Underdog	3,99	PGA	26-31	26	5	12	PGA	PGA
Résid		Composite	Lynx et Underdog	3,62	PGA	39-44	28	5	13	PGA	PGA
	CND 6	Composite	Underdog	3,79	PGA	195-200	10	-3	3	PGA	PGA
	CIL 11 CND	Composite	Triple Lynx	2,42	PGA	20-25	22	8	15	PGA	PGA
	CIL 13 CND	Composite	Lynx 4 HP	3,26	PGA	69-74	51	14	12	PGA	PGA

Tableau 10 (suite) Détails sur les essais en cellules humides et calculs d'épuisement.

				Essais	statiques		Cal	culs d'épuisem	nent		Potentiel
Type de matériel	Nom de l'échantillon	Code lithologique	Secteur	S total (%)	Potentiel acidogène basé sur le BAB	Période de calcul (semaines)	Épuisement du soufre total (années)	Épuisement du CO ₃ -PN (années)	Épuisemen t du PN brut (années)	Potentiel acidogène basé sur les temps d'épuisement	les résultats
	E-27-U-H	V2	Zone 27 partie haute/teneur élevée	7,49	PGA	39-44	309	10	32	PGA	PGA
Minerai	E-CA-U-H	I1P/I2P	Caribou haute partie/haute teneur	5,27	PGA	25-30	281	35	79	PGA	PGA
	P3-K	V2, I1P, I1 Frg, I3A	Lynx Main	2,48	PGA	39-44	603	195	306	PGA	PGA
	Underdog A	I1P/I2P	Underdog	4,39	PGA	25-30	564	23	46	PGA	PGA

RÉSIDUS (FIGURE 8)

L'essai HCT pour l'échantillon de résidus CND 6 (zone Underdog) a fonctionné pendant 205 semaines. Les tendances observées pendant cette période étaient généralement conformes à ce que laissaient anticiper les essais statiques. D'après ces essais statiques, l'échantillon a été classé comme PGA et lixiviable pour l'arsenic, le cadmium, le cuivre, le plomb, le mercure et le zinc, et pour les métaux dont l'aluminium, l'antimoine et le manganèse qui ont également dépassé le RES et/ou l'EC dans les essais statiques de lixiviation (SPLP/CTEU-9).

Les concentrations en métaux étaient élevées et dépassaient parfois les RES et/ou EC pendant le rinçage initial de l'échantillon. L'alcalinité a diminué régulièrement et a été épuisée après 150 semaines; l'échantillon a alors commencé à générer un drainage acide, ce qui a été mis en évidence par une diminution du pH et une augmentation des métaux (avec des dépassements des critères RES/EC pour l'arsenic, le cadmium, le plomb, le zinc, le fer, le cuivre, le chrome et l'aluminium, le nickel et le manganèse; des concentrations croissantes ont également été observées pour l'uranium, le thorium, le lithium, le béryllium, le cobalt et le sélénium) ainsi que des concentrations de sulfate. Après environ 190 semaines, le pH s'est stabilisé autour de 3, bien que les concentrations de sulfate et de certains métaux aient continué d'augmenter.

Les tendances observées pendant l'essai pour l'échantillon CND 6 semblent similaires aux conditions pour d'autres échantillons de stériles ayant subi les essais HCT, à l'exception des échantillons de CND 13 CIL (décrits dans le prochain paragraphe). Les concentrations en éléments dont l'ammoniac, le cyanure, l'antimoine, l'arsenic et le manganèse ont dépassé le RES et/ou l'EC pendant le premier rinçage à l'eau, puis se sont stabilisés par la suite.

L'essai en cellule humide pour l'échantillon CND 13 CIL est en cours depuis 77 semaines. Ses tendances par rapport à la production d'acidité et d'alcalinité et la lixiviation des métaux ne sont pas cohérentes avec celles des autres échantillons. Les concentrations de sulfate ont augmenté jusqu'à la semaine 30 puis ont ensuite diminué, tandis que les concentrations en alcalinité ont généralement diminué jusqu'à la semaine 30 pour ensuite augmenter. Le pH a diminué d'environ 8 à 7 entre les semaines 0 et 30, puis a ensuite augmenté autour de 8. Ces comportements anormaux peuvent résulter de la consommation initiale d'une phase de sulfure à l'état de traces, ou de la libération retardée du PN d'un autre minéral que la calcite ou la dolomite. Les concentrations en cyanure et en certains métaux (par exemple, l'arsenic, le cadmium, le cuivre, le fer, le nickel et le zinc) étaient supérieures d'un ordre de grandeur ou plus aux concentrations dans d'autres échantillons, avec des dépassements observés pour les critères EC, RES et D019. Les concentrations élevées de cyanure se sont dissipées à la semaine 15, et celles des métaux ont généralement commencé à diminuer vers la semaine 30.

Les temps calculés pour l'épuisement du CO₃-PN et du PN brut par rapport à l'épuisement du soufre total (PA) sont généralement conformes aux attentes basées sur les essais statiques BAB pour tous les échantillons essais.

MINERAI (FIGURE 9)

Les quatre essais en cellules humides sur les échantillons de minerai ont été arrêtés après que les concentrations se soient généralement stabilisées après le premier rinçage à l'eau. Des tendances similaires à celles des essais sur les résidus ont été observées pendant le démarrage des essais sur les échantillons de minerai (figure 9). Les concentrations de métaux excédant le RES et/ou de l'EC (l'antimoine, l'arsenic, le cadmium, le cuivre, le manganèse, le mercure, le nickel et le zinc) et les temps calculés jusqu'à l'épuisement du CO₃-PN et l'épuisement du PN brut par rapport au soufre total (PA) sont généralement conformes aux attentes basées sur les essais statiques BAB pour tous les échantillons essais.

RÉSULTATS DES ESSAIS DE FERMETURE

Les échantillons provenant des essais en cellules humides terminés après 30 à 44 semaines ont été par la suite soumis à des essais BAB et SFE sur tous les échantillons; des essais GAN ont aussi été faits sur quelques échantillons pour détecter les changements éventuels pouvant être occasionnés par les essais cinétiques, et pour savoir si les échantillons restants continuent à avoir un potentiel de génération d'acide. Les résultats sont présentés au tableau 11. Les résultats sont résumés comme suit :

- Bien qu'ils concordent généralement avec les résultats des lixiviats en essais en cellules humides, les dépassements par des éléments détectés dans les lixiviats SFE post essais cinétiques sont moins nombreux que dans les essais en cellules humides.
- Les résultats du BAB montrent que le rapport entre le PN et le soufre total est relativement constant dans les essais statiques avant et après la fin des essais en cellules humides. La classification de ces échantillons et leur potentiel acidogène comme étant PGA ne change pas avec les essais de fermeture.
- Les résultats des essais GAN séquentiels montrent que tous les échantillons de minerai et tous les échantillons de résidus ont des valeurs du pH < 4,5, ce qui confirme les résultats des essais BAB et cinétiques qui suggèrent que ces échantillons sont PGA. Un échantillon de stériles a un pH acide, ce qui confirme son potentiel de génération d'acide. Les cinq autres échantillons de stériles avaient des valeurs de pH > 7, ce qui n'est pas concluant (c.-à-d. que les échantillons peuvent avoir le potentiel de s'acidifier, mais qu'ils n'ont pas encore été suffisamment oxydés).

Tableau 11 Résumé des essais de fermeture

	Résultats SFE (nombre de dépassements)				Résulta	ts du GAN	Po	entiel acidogène (selon les essais BAB)	
Type de matériel	n	> RES	> EC	n	рН	Potentiel acidogène (selon les essais GAN)	n	Préfermetu re	Postfermetu re
Résidus	5	Hg (1)	As (5), Mn (5), Sb (3)	3	2,4 à 2,4	PGA (3/3)	5	PGA (5/5)	PGA (5/5)
Minerai	4	Ag (3), Cu (1), Hg (2)	Al (3), As (4), Mn (1), Sb (4)	2	2,3 à 2,6	PGA (2/2)	4	PGA (4/4)	PGA (4/4)
			AL (11) An			PGA (1/6)		PGA (7/11)	PGA (7/11)
Stériles	11	Ag (2), Hg (2)	Al (11), As (11), Sb (10)	6	2,3 à 11	Non concluant (5/6)	11	NPGA (4/11)	NPGA (4/11)

Note:

n = nombre d'échantillons

3.6 QUALITÉ DE L'EAU DE PROCÉDÉ

Les résultats de la qualité de l'eau de procédé sont présentés au tableau J. À des fins de discussion seulement, les résultats sont comparés aux critères de la D019 pour l'effluent final, l'EC et le RES. Un résumé des dépassements est présenté au tableau 12. En général, les dépassements observés sont pour les mêmes paramètres que dans d'autres essais statiques; en outre, des dépassements ont été observés dans des paramètres liés au traitement des résidus (p. ex. les nitrates et le cyanure).

Tableau 12 Résumé des dépassements de la qualité de l'eau dans l'eau de procédé des résidus

Échantillon	> D019	> RES*	> EC
CND 1	CN(T)	CNWAD, NO ₂ , Hg, Ag, Cu	Hg, Sb, As, Mn, Mo, Se, Na, NO ₂ +NO ₃
(Main, Lynx Main)			
CND 4 (Main, Lynx	pH, CN(T), Cu	CNWAD, NO ₂ , Hg, Cu	Sb, As, Cu, Mo, Ni, Se, Na
Main, Underdog)			
CND 5	pH, CN(T), Cu	CNWAD, NO₂ , Hg, Ag, Cu	Sb, As, Cu, Mo, Ni, Se, Na, NO₂ +NO₃
(Lynx Main, Underdog)			
CND 6 (Underdog)	pH, CN(T), Cu	CNWAD, Hg, Cu	Sb, As, Cu, Mo, Ni, Se, Na, NO ₂ +NO ₃
CIL 11 CND	CN(T), As, Cu	CNWAD, Hg, Ag, As, Cu	Sb, As, Mo, Se, Na
(Triple Lynx)			
CIL 12 CND	CN(T), Cu, Pb, Zn	CNWAD, Hg, Ag, Cd, Cu,	CNWAD, Hg, Sb, As, Cd, Cu, Mn, Mo,
(Lynx 4 LP)		Pb, Zn	Ni, Pb, Na
CIL 13 CND	CN(T), Cu, Fe, Pb, Zn	CNWAD, Hg, Ag, Cd, Cu,	CNWAD, Hg, Al, Sb, As, Cu, Mn, Ni,
(Lynx 4 HP)		Pb, Zn	Pb
Total	pH (3) CN(T) (7) As (1) Cu	CNWAD (7) NO2 (3)	CNWAD (2) NO ₂ (5) NO ₃ (5) NO ₂ +NO ₃
(7 échantillons)	(6) Fe (1) Pb (2) Zn (2)	Ag (5) As (1) Cd (2) Cu (7)	(3) Al (1) As (7) Cd (1)
		Hg (7) Ni (1) Pb (2) Zn (2)	Cu (7) Hg (4) Mn (3) Mo (6)
			Na (6) Ni (5) Pb (2) Sb (7) Se (5)

le nombre de dépassements est indiqué entre parenthèses pour les paramètres indiqués.

*Le RES pour NO₂ est calculé en supposant une concentration de chlorure de <0,02 mg/L dans le milieu récepteur. CN(T)-cyanure total.

CNWAD-cyanure faiblement acide dissociable.

4 RÉSUMÉ

Les résultats des essais statiques et cinétiques des échantillons de stériles, de mort-terrain, de minerai et de résidus ont été évalués selon les critères du Guide de caractérisation (MELCC, 2020). Il est entendu qu'Osisko élaborera un système de traitement de la qualité de l'eau ayant la capacité de traiter les dépassements relevés. Le tableau 13 résume les résultats des données statiques.

STÉRILES

- Les unités classées comme ayant un « PGA variable » à partir des essais statiques sont V1 (40 % PGA), V2 (43 % PGA), I1 Frg (14 % PGA), I1P/I2P (52 % PGA), et S6 (60 % PGA)⁴. Les unités I2F/I13 et I3A sont classées NPGA d'après les résultats des essais statiques. Cette classification est généralement corroborée par les résultats des essais cinétiques et des essais statiques de fermeture.
- Les calculs d'épuisement de la concentration en soufre total par rapport au CO₃ -PN et au PN brut indiquent que les échantillons de stériles PGA ont le potentiel de générer de l'acide et de lixivier les métaux en 2 à 304 ans, selon les conditions de laboratoire.
- Les résultats des compositions minéralogiques de tous les échantillons des lithologies V1, V2, I1 Frg, I1P/I2P,
 I2F/I13 et I3A indiquent que la pyrite est la principale source potentielle d'acide.
- La comparaison entre le PN brut et le CO₃-PN montre que les minéraux carbonatés sont la principale source de PN, ce qui est confirmé par la calcite et/ou la dolomite détectées dans les analyses minéralogiques des lithologies V1, V2, I1 Frg, I1P/I2P, I2F/I13 et I3A. Les lithologies V2, I3A et I1 Frg ont tendance à renfermer plus de CO₃-PN que de PN brut, ce qui suggère la présence de minéraux carbonatés qui ne contribuent pas de façon significative au PN (p. ex. la sidérite), ce qui est cohérent vis-à-vis des analyses minéralogiques.
- Selon les essais géochimiques statiques, toutes les lithologies de stériles sont classées comme potentiellement lixiviables pour l'arsenic. Pour l'argent, toutes les lithologies de stériles sont également classées comme potentiellement lixiviables, sauf I2F/I13. Un certain nombre d'échantillons ont également été classés comme potentiellement lixiviables pour le cuivre, le manganèse, le mercure et le molybdène. Des métaux tels que l'arsenic, le manganèse et l'argent ont également dépassé le RES et/ou l'EC dans des essais de lixiviation statiques (SPLP et CTEU-9) et des essais cinétiques.
- L'unité I3A est considérée comme NPGA selon la base des données disponibles et est jugée raisonnable pour une utilisation comme matériau de construction sur le site, à condition qu'une surveillance appropriée soit effectuée et que des mesures d'atténuation soient mises en place si nécessaire.

MORT-TERRAIN

Les échantillons de mort-terrain sont NPAG. Quatre-vingt-sept pour cent (87 %) des échantillons ont des teneurs en métaux extractibles inférieures aux critères du Sol A. Les dépassements de RES et EC dans les tests de lixiviation concernent généralement des paramètres qui dépassent ou sont proches des concentrations de teneurs de fond naturelles dans les eaux souterraines locales de surface. Dans l'ensemble, les résultats indiquent que l'unité de mort-terrain ne présente pas de risque significatif de lixiviation de métaux à des concentrations supérieures aux conditions de fond existantes.

⁴ Les pourcentages indiqués sont basés sur les valeurs NP en vrac.

MINERAI

- Les échantillons de minerai sont classés PGA et potentiellement lixiviables en arsenic dans tous les échantillons, et en mercure, cadmium, cuivre, plomb et zinc dans au moins un échantillon, selon les essais géochimiques statiques.
- Les calculs d'épuisement des concentrations des minéraux effectués à partir des essais cinétiques suggèrent que tous les échantillons ont le potentiel de générer de l'acide dans environ 10 à 306 ans, selon des conditions de laboratoire.

RÉSIDUS

- Les échantillons de résidus sont PGA selon les essais géochimiques statiques. Ils ont été classés comme
 potentiellement lixiviables en arsenic dans tous les échantillons, et en argent, mercure, cadmium, cuivre,
 sélénium et zinc dans au moins un échantillon.
- Les résidus sont également classés comme cyanurés, car du cyanure a été utilisé dans le traitement du minerai.
- Les calculs d'épuisement des concentrations des minéraux effectués à partir des essais cinétiques suggèrent que la plupart des échantillons ont le potentiel de générer de l'acide dans environ 1 à 15 ans, selon les conditions de laboratoire.

Tableau 13 Résumé de la classification des stériles, du mort-terrain et des résidus selon les essais statiques

Type d'échantillon	Lithologie	Classification					
	V1	PGA variable, lixiviable pour Ag et As					
	V2	PGA variable, lixiviable pour Ag, As, Cu, Mn					
	I1 Frg	PGA variable, lixiviable pour Ag et As					
Stériles	I1P/I2P	PGA variable, lixiviable pour Hg, Ag, As, Cu, Mo					
<u> </u>	I2F/I13	NPGA, lixiviable pour l'As					
	I3A	NPGA, lixiviable pour Ag et As, jugée raisonnable pour une utilisation comme matériau de co s tructio s ur e site, à co di tio qu' u e s urvei a c e appropri e soit e ectu e et qu e des es ures d'att u atio s oie t i ses e p ace si cess aire.					
	S6	PGA variable, lixiviable pour As, Ag					
Mort-ter	rain	NPGA, pas de risque significatif de lixiviation de métaux à des concentrations supérieures aux bruits de fond naturels					
Résid	us	PGA, contenant du cyanure, lixiviable pour Hg, As, Cd, Cu, Pb, Zn					
Miner	ai	PGA, lixiviable pour Hg, Ag, As, Cd, Cu, Se, Zn					

RÉFÉRENCES

- ASTM International (2018). Méthode d'essai standard pour l'altération en laboratoire de matériaux solides à l'aide d'une cellule humide. ASTM D5744-18.
- Beaulieu. (2021). Ministère de l'Environnement et de la Lutte contre les changements climatiques (MELCC), 2021. Guide d'intervention-Protection des sols et réhabilitation des terrains contaminés. Gouvernement du Québec. 340 p.
- Centre d'expertise en analyse environnementale du Québec (CEAEQ), 2012. Protocole de lixiviation des espèces inorganiques. Méthode MA. 100-Lix.com. 1.1, Rév. 1, Gouvernement du Québec. 17 p.
- Centre d'expertise en analyse environnementale du Québec (CEAEQ), 2014. Détermination du pouvoir neutralisant, du potentiel générateur d'acide et du potentiel acidogène d'un solide. Méthode MA. 110 ACISOL 1.0, Rév. 4, Gouvernement du Québec. 17 p.
- Centre d'expertise en analyse environnementale du Québec (CEAEQ), 2020. Détermination des métaux : méthode de spectrométrie de masse à source ionisante à plasma d'argon. Méthode MA. 200-Mét.1.2, Rév. 7.
 Gouvernement du Québec. 35 p.
- Daigneault, R., Mueller, W. et Chown, E.H. (2004). Abitibi greenstone belt plate-tectonics: the diachronous history of arc development, accretion and collision. In: The Precambrian Earth: Tempos and events (Eriksson, P., Altermann, W., Nelson, D., Mueller, W.U., Catuneanu, O., Strand, K. (éditeurs)). Developments in Precambrian Geology 12, Elsevier, p.88-103.
- Golder Associés Ltée (Avril 2018). Final-Caractérisation géochimique de stériles afin de déterminer leur utilité comme matériel de construction sur la propriété de Windfall Lake, Québec. GAL007-1774793-6410-MTF-Rev1 (« Golder, 2018a »).
- Golder Associates Ltd. (juin 2018). Final-Caractérisation géochimique des matériaux de minerai et de stériles pour le projet du lac Windfall. Québec. GAL064-1897250-Rev0-RE. (« Golder, 2018b »).
- Golder Associates Ltd. (avril 2021). Caractérisation géochimique du minerai, des stériles et des résidus pour le projet du lac Windfall, Québec. GAL101-20146303-21001-RA-Rev0
- Golder Associates. Ltd. (juin 2022). Windfall Geochemistry-2022 Supplementary Waste Rock Sampling Plan
 (Plan d'échantillonnage supplémentaire des stériles). GAL124-2148985706-RevA.
- Miller, S., A. Robertson, et T. Donohue. (1997). Advances in Acid Drainage Prediction using the Net Acid Generation (GAN) Essai. In: Proceedings of the Fourth International Conference on Acid Rock Drainage, Vancouver, British Columbia, May 31-June 6. Vol. 2: 533-547.
- Ministère de l'Environnement et de la Lutte contre les changements climatiques (MELCC), 2020. Guide de caractérisation des résidus et du minerai. Gouvernement du Québec. 52 p.
- Ministère du Développement durable, de l'Environnement et des Parc (MDDEP) (2012). Directive 019 sur l'industrie minière. Gouvernement du Québec, ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques. Mars 2012.

- NEDEM. (2009). Manuel de prédiction de la chimie du drainage des matériaux géologiques sulfurés. Rapport NEDEM 1.20.1. Programme de neutralisation des eaux de drainage dans l'environnement minier, Ressources naturelles Canada.
- Minière Osisko Inc. (2022). Étude de faisabilité pour le projet Windfall, Rapport technique NI 43-101.
- WSP (2023). Évaluation de la teneur de fond naturelle dans les sols. Rapport produit pour Minière Osisko Inc.
 51 pages.

ANNEXE

LISTE DES ÉCHANTILLONS ET DES ANALYSES

Tableau A : Liste des échantillons soumis aux différentes analyses statiques Tableau B : Liste des échantillons soumis aux essais cinétiques en

cellule humide et aux essais statiques de fermeture

E-27-D-H E-27-D-L E-27-U-H E-27-U-L E-CA-D-H E-CA-D-L E-CA-U-H E-CA-U-L P3-I P3-J P3-K	Minerai Minerai Minerai Minerai Minerai Minerai Minerai Minerai	- - - - - -	- - - - -	Minerai Composite Minerai Composite Minerai Composite Minerai Composite	Zone 27 low part/high grade Zone 27 low part/low grade Zone 27 high part/high grade	Golder (2018b) Golder (2018b)
E-27-U-H E-27-U-L E-CA-D-H E-CA-D-L E-CA-U-H E-CA-U-L P3-I P3-J P3-K	Minerai Minerai Minerai Minerai Minerai Minerai Minerai	- - - -		Minerai Composite	ı U	_ (/
E-27-U-L E-CA-D-H E-CA-D-L E-CA-U-H E-CA-U-L P3-I P3-J P3-K	Minerai Minerai Minerai Minerai Minerai Minerai	- - -	-	_	Zone 27 high part/high grade	O-14-5 (00405)
E-CA-D-H E-CA-D-L E-CA-U-H E-CA-U-L P3-I P3-J P3-K	Minerai Minerai Minerai Minerai Minerai		-	Minerai Composite		Golder (2018b)
E-CA-D-L E-CA-U-H E-CA-U-L P3-I P3-J P3-K	Minerai Minerai Minerai Minerai	-		Willicial Colliposite	Zone 27 high part/low grade	Golder (2018b)
E-CA-U-H E-CA-U-L P3-I P3-J P3-K	Minerai Minerai Minerai	-	_	Minerai Composite	Caribou low part/high grade	Golder (2018b)
E-CA-U-L P3-I P3-J P3-K	Minerai Minerai			Minerai Composite	Caribou low part/low grade	Golder (2018b)
P3-I P3-J P3-K	Minerai		-	Minerai Composite	Caribou high part/high grade	Golder (2018b)
P3-I P3-J P3-K	Minerai	_	-	Minerai Composite	Caribou high part/low grade	Golder (2018b)
P3-K		-	-	Minerai Composite	Lynx Main	Golder (2018b)
-	Minerai	-	-	Minerai Composite	Lynx Main	Golder (2018b)
	Minerai	-	-	Minerai Composite	Lynx Main	Golder (2018b)
P3-L	Minerai	-	-	Minerai Composite	Lynx Main	Golder (2018b)
Under Dog A	Minerai	-	-	Minerai Composite	Underdoa	Golder (2018b)
Under Dog B	Minerai	-	-	Minerai Composite	Underdog	Golder (2018b)
Under Dog C	Minerai	_	_	Minerai Composite	Underdog	Golder (2018b)
Triple Lynx LG	Minerai	-	-	Minerai Composite	Triple Lynx	Golder (2021)
Lynx 4 LP-LG	Minerai	_	_	Minerai Composite	Lynx 4	Golder (2021)
Lynx 4 HP-LG	Minerai	_	_	Minerai Composite	Lynx 4	Golder (2021)
Triple Lynx MG/HG	Minerai	_	_	Mineral Composite	Triple Lynx	Golder (2021)
Lynx 4 LP-MG/HG	Minerai	_	_	Mineral Composite	Lvnx 4	Golder (2021)
Lynx 4 HP-MG/HG	Minerai	 _	_	Mineral Composite	Lynx 4	Golder (2021)
RC-F03-21	Mort-terrain	_	_	Mort-terrain	- -	WSP (2023)
VR2-F01-21 CR-7	Mort-terrain		_	Mort-terrain	<u>-</u>	WSP (2023)
VR3-F01-21 CR-5	Mort-terrain		-	Mort-terrain	<u> </u>	WSP (2023)
HMTN-F01-21 CF-1	Mort-terrain	- HMTN-F01-21	-	Mort-terrain	-	WSP (2023)
HMBT-F01-21 CF-2	Mort-terrain	HMBT-F01-21	-	Mort-terrain		WSP (2023)
HMBT-F02-21 CF-2	Mort-terrain	HMBT-F02-21	-	Mort-terrain	<u>-</u>	WSP (2023)
HMBT-F03-21 CH3 (CF-3?)	Mort-terrain	HMBT-F03-21	-	Mort-terrain	<u> </u>	WSP (2023)
UTE-F02-21 CF-1	Mort-terrain	UTE-F02-21	-	Mort-terrain	<u> </u>	WSP (2023)
HMBT-F01-21 CF-3	Mort-terrain	HMBT-F01-21	-	Mort-terrain	<u> </u>	WSP (2023) WSP (2023)
HMBT-F01-21_CF-3	Mort-terrain	HMBT-F02-21	-	Mort-terrain	<u> </u>	WSP (2023)
			-			\ /
HMBT-F02-21_CF-6	Mort-terrain	HMBT-F02-21	_	Mort-terrain		WSP (2023)
HMBT-F03-21_CF-7	Mort-terrain	HMBT-F03-21	-	Mort-terrain	-	WSP (2023)
TU-F03-21_CF-3	Mort-terrain	TU-F03-21	-	Mort-terrain	-	WSP (2023)
TS-F02-21_CF-1	Mort-terrain	TS-F02-21	-	Mort-terrain	-	WSP (2023)
BH-F01-21_CF-1	Mort-terrain	BH-F01-21	-	Mort-terrain	-	WSP (2023)
BD-F03-21_CF-1	Mort-terrain	BD-F03-21	-	Mort-terrain	-	WSP (2023)
R-F01-21_CF-1	Mort-terrain	R-F01-21	-	Mort-terrain	-	WSP (2023)
HMBT-F01-21_CR-4	Mort-terrain	HMBT-F01-21	-	Mort-terrain	-	WSP (2023)
TU-F01-21_CR-3	Mort-terrain	TU-F01-21	-	Mort-terrain	-	WSP (2023)
TU-F02-21_CR-2	Mort-terrain	TU-F02-21	-	Mort-terrain	-	WSP (2023)
BD-F01-21_21_CR-2	Mort-terrain	BD-F01-21	-	Mort-terrain	-	WSP (2023)
BK-F01-21_CR-2	Mort-terrain	BK-F01-21	-	Mort-terrain	-	WSP (2023)
HMT-F03-21_CR-4	Mort-terrain	HMT-F03-21	-	Mort-terrain	-	WSP (2023)
CONC-F02-21_CR-3	Mort-terrain	CONC-F02-21	-	Mort-terrain	-	WSP (2023)
AHS-F02-21_CF-2	Mort-terrain	AHS-F02-21	-	Mort-terrain	-	WSP (2023)
AHS-F03-21_CF-1 AHS-F03-21 CF-2	Mort-terrain Mort-terrain	AHS-F03-21 AHS-F03-21	-	Mort-terrain Mort-terrain	-	WSP (2023) WSP (2023)

Identification de l'échantillon	Type de l'échantillon	Identification du forage	Intervalle échantillonné (m)	Code lithologique Osisko	Zone	Source de données des tests statiques
AHS-F04-21 CF-1	Mort-terrain	AHS-F04-21	-	Mort-terrain	-	WSP (2023)
AHS-F04-21 CF-3	Mort-terrain	AHS-F04-21	-	Mort-terrain	-	WSP (2023)
AHS-TR01-21-40-67	Mort-terrain	AHS-TR01-21	-	Mort-terrain	-	WSP (2023)
AHS-TR02-21-219-300	Mort-terrain	AHS-TR02-21	-	Mort-terrain	-	WSP (2023)
AHS-TR03-21-19-31	Mort-terrain	AHS-TR03-21	-	Mort-terrain	-	WSP (2023)
AHS-TR03-21-80-130	Mort-terrain	AHS-TR03-21	-	Mort-terrain	-	WSP (2023)
AHS-TR04-21-40-55	Mort-terrain	AHS-TR04-21	-	Mort-terrain	-	WSP (2023)
AHS-TR05-21-104-145	Mort-terrain	AHS-TR05-21	-	Mort-terrain	-	WSP (2023)
AHS-TR05-21-145-210	Mort-terrain	AHS-TR05-21	-	Mort-terrain	-	WSP (2023)
AHS-TR06-21-150-210	Mort-terrain	AHS-TR06-21	-	Mort-terrain	-	WSP (2023)
BAD-F01-21 CF-1	Mort-terrain	BAD-F01-21	-	Mort-terrain	-	WSP (2023)
BAD-F01-21 CF-2	Mort-terrain	BAD-F01-21	-	Mort-terrain	-	WSP (2023)
BA-F01-21 CF-2	Mort-terrain	BA-F01-21	-	Mort-terrain	-	WSP (2023)
BB-TR01-21-57-170	Mort-terrain	BB-TR01-21	-	Mort-terrain	-	WSP (2023)
BC-F01-21 CF-1B	Mort-terrain	BC-F01-21	-	Mort-terrain	-	WSP (2023)
BD-F03-21 CF-5	Mort-terrain	BD-F03-21	-	Mort-terrain	-	WSP (2023)
BD-TR01-21-46-155	Mort-terrain	BD-TR01-21	-	Mort-terrain	-	WSP (2023)
BD-TR02-21-150-170	Mort-terrain	BD-TR02-21	-	Mort-terrain	-	WSP (2023)
BD-TR03-21-120-175	Mort-terrain	BD-TR03-21	-	Mort-terrain	-	WSP (2023)
BE-F01-21 CF-2	Mort-terrain	BE-F01-21	-	Mort-terrain	-	WSP (2023)
BE-F01-21 CF-3	Mort-terrain	BE-F01-21	-	Mort-terrain	-	WSP (2023)
BE-TR01-21-40-103	Mort-terrain	BE-TR01-21	-	Mort-terrain	-	WSP (2023)
BF-TR01-21-22-54	Mort-terrain	BF-TR01-21	-	Mort-terrain	-	WSP (2023)
BF-TR02-21-40-51	Mort-terrain	BF-TR02-21	-	Mort-terrain	-	WSP (2023)
BF-TR03-21-79-139	Mort-terrain	BF-TR03-21	-	Mort-terrain	-	WSP (2023)
BH-F01-21 CF-2	Mort-terrain	BH-F01-21	-	Mort-terrain	-	WSP (2023)
BI-F03-21 CF-1A	Mort-terrain	BI-F03-21	-	Mort-terrain	-	WSP (2023)
BI-TR01-21-107-189	Mort-terrain	BI-TR01-21	-	Mort-terrain	-	WSP (2023)
BI-TR03-21-31-35	Mort-terrain	BI-TR03-21	-	Mort-terrain	-	WSP (2023)
CAMP-F02-21 CF-1	Mort-terrain	CAMP-F02-21	-	Mort-terrain	-	WSP (2023)
CAMP-TR01-21-32-63	Mort-terrain	CAMP-TR01-21	-	Mort-terrain	-	WSP (2023)
CAMP-TR02-21-73-170	Mort-terrain	CAMP-TR02-21	-	Mort-terrain	-	WSP (2023)
CAMP-TR03-21-50-84	Mort-terrain	CAMP-TR03-21	-	Mort-terrain	-	WSP (2023)
CC-TR01-21-68-134	Mort-terrain	CC-TR01-21-6	-	Mort-terrain	-	WSP (2023)
CC-TR02-21-61-174	Mort-terrain	CC-TR02-21-6	-	Mort-terrain	-	WSP (2023)
COND-TR01-21-112-181	Mort-terrain	COND-TR01-21	-	Mort-terrain	-	WSP (2023)
COND-TR02-21-42-66	Mort-terrain	COND-TR02-21	-	Mort-terrain	-	WSP (2023)
COND-TR02-21-66-110	Mort-terrain	COND-TR02-21	-	Mort-terrain	-	WSP (2023)
COND-TR03-21-34-57	Mort-terrain	COND-TR03-21	-	Mort-terrain	-	WSP (2023)
COND-TR04-21-49-140	Mort-terrain	COND-TR04-21	-	Mort-terrain	-	WSP (2023)
HMBT-F01-21 CF-1B	Mort-terrain	HMBT-F01-21	-	Mort-terrain	-	WSP (2023)
HMBT-F02-21 CF-1	Mort-terrain	HMBT-F02-21	-	Mort-terrain	-	WSP (2023)
HMBT-F03-21 CF-1C	Mort-terrain	HMBT-F03-21	-	Mort-terrain	-	WSP (2023)
HMT-F03-21 CF-2	Mort-terrain	HMT-F03-21	-	Mort-terrain	-	WSP (2023)
HS-F01-21 CF-1	Mort-terrain	HS-F01-21	-	Mort-terrain	-	WSP (2023)
HS-F01-21 CF-2	Mort-terrain	HS-F01-21	-	Mort-terrain	-	WSP (2023)
HS-TR01-21-20-41	Mort-terrain	HS-TR01-21	-	Mort-terrain	-	WSP (2023)
RC-F03-21 CF-1B	Mort-terrain	RC-F03-21	-	Mort-terrain	-	WSP (2023)

Identification de l'échantillon	Type de l'échantillon	Identification du forage	Intervalle échantillonné (m)	Code lithologique Osisko	Zone	Source de données des tests statiques
R-TR01-21-40-70	Mort-terrain	R-TR01-21	-	Mort-terrain	-	WSP (2023)
R-TR03-21-61-114	Mort-terrain	R-TR03-21	-	Mort-terrain	-	WSP (2023)
R-TR04-21-38-62	Mort-terrain	R-TR04-21	-	Mort-terrain	-	WSP (2023)
SSE-F01-21 CF-1B	Mort-terrain	SSE-F01-21	-	Mort-terrain	-	WSP (2023)
SSE-F02-21 CF-1B	Mort-terrain	SSE-F02-21	-	Mort-terrain	-	WSP (2023)
TS-F02-21 CF-3	Mort-terrain	TS-F02-21	-	Mort-terrain	-	WSP (2023)
TU-F01-21 CF-1B	Mort-terrain	TU-F01-21	-	Mort-terrain	-	WSP (2023)
TU-F03-21 CF-1	Mort-terrain	TU-F03-21	-	Mort-terrain	-	WSP (2023)
TU-F04-21 CF-1B	Mort-terrain	TU-F04-21	-	Mort-terrain	-	WSP (2023)
TU-TR01-21-52-190	Mort-terrain	TU-TR01-21	-	Mort-terrain	-	WSP (2023)
UTM-F01-21 CF-1	Mort-terrain	UTM-F01-21	-	Mort-terrain	-	WSP (2023)
UTM-F01-21 CF-3	Mort-terrain	UTM-F01-21	-	Mort-terrain	-	WSP (2023)
UTM-F02-21 CF-1D	Mort-terrain	UTM-F02-21	-	Mort-terrain	-	WSP (2023)
UTM-F03-21 CF-1B	Mort-terrain	UTM-F03-21	-	Mort-terrain	-	WSP (2023)
UTM-F05-21 CF-1A	Mort-terrain	UTM-F05-21	-	Mort-terrain	-	WSP (2023)
UTM-F06-21 CF-1C	Mort-terrain	UTM-F06-21	-	Mort-terrain	-	WSP (2023)
UTM-F07-21 CF-2	Mort-terrain	UTM-F07-21	-	Mort-terrain	-	WSP (2023)
VR1-F01-21 CF-1A	Mort-terrain	VR1-F01-21	-	Mort-terrain	-	WSP (2023)
VR6-F01-21 CF-1	Mort-terrain	VR6-F01-21	-	Mort-terrain	-	WSP (2023)
BH-22-27-CF-2	Mort-terrain	BH-22-27	-	Mort-terrain	-	WSP (2023)
CF1-F-16-22	Mort-terrain	CF1-F-16	-	Mort-terrain	-	WSP (2023)
F01-22-CF-1B	Mort-terrain	F01-22	-	Mort-terrain	-	WSP (2023)
F01-22-CF-2	Mort-terrain	F01-22	-	Mort-terrain	-	WSP (2023)
F02-22-CF-1B	Mort-terrain	F02-22	-	Mort-terrain	-	WSP (2023)
F02-22-CF-3	Mort-terrain	F02-22	-	Mort-terrain	-	WSP (2023)
F03-22-CF-1B	Mort-terrain	F03-22	-	Mort-terrain	-	WSP (2023)
F03-22-CF-3	Mort-terrain	F03-22	-	Mort-terrain	-	WSP (2023)
F04-22-CF-1	Mort-terrain	F04-22	-	Mort-terrain	-	WSP (2023)
F04-22-CF-3	Mort-terrain	F04-22	-	Mort-terrain	-	WSP (2023)
F05-22-CF-1	Mort-terrain	F05-22	-	Mort-terrain	-	WSP (2023)
F06-22-CF-2	Mort-terrain	F06-22	-	Mort-terrain	-	WSP (2023)
F06-22-CF-3	Mort-terrain	F06-22	-	Mort-terrain	-	WSP (2023)
F07-22-CF-2	Mort-terrain	F07-22	-	Mort-terrain	-	WSP (2023)
F07-22-CF-3	Mort-terrain	F07-22	-	Mort-terrain	-	WSP (2023)
F08-22-CF-1B	Mort-terrain	F08-22	-	Mort-terrain	-	WSP (2023)
F10-22-CF-1B	Mort-terrain	F10-22	-	Mort-terrain	-	WSP (2023)
F10-22-CF-3	Mort-terrain	F10-22	-	Mort-terrain	-	WSP (2023)
F15-22-CF-2	Mort-terrain	F15-22	-	Mort-terrain	-	WSP (2023)
F18-22-CF-1	Mort-terrain	F18-22	-	Mort-terrain	-	WSP (2023)
F18-22-CF-3B	Mort-terrain	F18-22	-	Mort-terrain	-	WSP (2023)
F19-22-CF-1	Mort-terrain	F19-22	-	Mort-terrain	-	WSP (2023)
F19-22-CF-3	Mort-terrain	F19-22	-	Mort-terrain	-	WSP (2023)
F20-22-CF-2	Mort-terrain	F20-22	-	Mort-terrain	-	WSP (2023)
F22-22-CF-1C	Mort-terrain	F22-22	-	Mort-terrain	-	WSP (2023)
F22-22-CF-2	Mort-terrain	F22-22	-	Mort-terrain	-	WSP (2023)
F23-22-CF-1A	Mort-terrain	F23-22	-	Mort-terrain	-	WSP (2023)
F23-22-CF-2	Mort-terrain	F23-22	-	Mort-terrain	-	WSP (2023)
F24-22-CF-1A	Mort-terrain	F24-22	-	Mort-terrain	-	WSP (2023)

Identification de l'échantillon	Type de l'échantillon	Identification du forage	Intervalle échantillonné (m)	Code lithologique Osisko	Zone	Source de données des tests statiques
F24-22-CF-4	Mort-terrain	F24-22	-	Mort-terrain	-	WSP (2023)
F28-22-CF-1	Mort-terrain	F28-22	-	Mort-terrain	-	WSP (2023)
F28-22-CF-3	Mort-terrain	F28-22	-	Mort-terrain	-	WSP (2023)
F29-22-CF-1	Mort-terrain	F29-22	-	Mort-terrain	-	WSP (2023)
F30-22-CF-1	Mort-terrain	F30-22	-	Mort-terrain	-	WSP (2023)
F31-22-CF3A	Mort-terrain	F31-22	-	Mort-terrain	-	WSP (2023)
F32-22-CF-1B	Mort-terrain	F32-22	-	Mort-terrain	-	WSP (2023)
F32-22-CF-2	Mort-terrain	F32-22	-	Mort-terrain	-	WSP (2023)
F33-22-CF1C	Mort-terrain	F33-22	-	Mort-terrain	-	WSP (2023)
F34-22-CF-2	Mort-terrain	F34-22	-	Mort-terrain	-	WSP (2023)
F35-22-CF-2B	Mort-terrain	F35-22	-	Mort-terrain	-	WSP (2023)
F35-22-CF-3	Mort-terrain	F35-22	-	Mort-terrain	-	WSP (2023)
F36-22-CF-1B	Mort-terrain	F36-22	-	Mort-terrain	-	WSP (2023)
F37-22-CF-3A	Mort-terrain	F37-22	-	Mort-terrain	-	WSP (2023)
F42-22-CF-1B	Mort-terrain	F42-22	-	Mort-terrain	-	WSP (2023)
F42-22-CF-4	Mort-terrain	F42-22	-	Mort-terrain	-	WSP (2023)
F43-22-CF-1	Mort-terrain	F43-22	-	Mort-terrain	-	WSP (2023)
F43-22-CF-2	Mort-terrain	F43-22	_	Mort-terrain	_	WSP (2023)
F44-22-CF-1A	Mort-terrain	F44-22	-	Mort-terrain	_	WSP (2023)
F44-22-CF-3	Mort-terrain	F44-22	_	Mort-terrain	_	WSP (2023)
F46-22-CF-2	Mort-terrain	F46-22	-	Mort-terrain	_	WSP (2023)
F48-22-CF-1	Mort-terrain	F48-22	-	Mort-terrain	_	WSP (2023)
F49-22-CF-2	Mort-terrain	F49-22	_	Mort-terrain	_	WSP (2023)
F49-22-CF-3	Mort-terrain	F49-22	-	Mort-terrain	_	WSP (2023)
F50-22-CF-2	Mort-terrain	F50-22	_	Mort-terrain	_	WSP (2023)
F51-22 CF1B	Mort-terrain	F51-22	-	Mort-terrain	_	WSP (2023)
F51-22 CF2B	Mort-terrain	F51-22	_	Mort-terrain	_	WSP (2023)
F52-22 CF1B	Mort-terrain	F52-22	_	Mort-terrain	_	WSP (2023)
F53-22 CF2A	Mort-terrain	F53-22	-	Mort-terrain	_	WSP (2023)
F53-22-CF-2B	Mort-terrain	F53-22	_	Mort-terrain	_	WSP (2023)
F54-22 CF2	Mort-terrain	F54-2	-	Mort-terrain	_	WSP (2023)
F55-22-CF-2A	Mort-terrain	F55-22	_	Mort-terrain	_	WSP (2023)
F56-22-CF-3	Mort-terrain	F56-22	_	Mort-terrain	_	WSP (2023)
F57-22-CF-2B	Mort-terrain	F57-22	-	Mort-terrain	_	WSP (2023)
F57-22-CF-3	Mort-terrain	F57-22	-	Mort-terrain	-	WSP (2023)
F58-22-CF-2B	Mort-terrain	F58-22	-	Mort-terrain	_	WSP (2023)
F59-22-CF-2	Mort-terrain	F59-22	_	Mort-terrain	_	WSP (2023)
F60-22-CF-2B	Mort-terrain	F60-22	_	Mort-terrain	_	WSP (2023)
F60-22-CF-3	Mort-terrain	F60-22	-	Mort-terrain	_	WSP (2023)
F61-22-CF-1	Mort-terrain	F61-22	-	Mort-terrain	-	WSP (2023)
F62-22-CF-1B	Mort-terrain	F62-22	-	Mort-terrain	_	WSP (2023)
F-63-22-CF-4A	Mort-terrain	F-63-22	-	Mort-terrain	_	WSP (2023)
F64-22-CF-2	Mort-terrain	F64-22	-	Mort-terrain	_	WSP (2023)
F64-22-CF-4	Mort-terrain	F64-22	_	Mort-terrain	_	WSP (2023)
F65-22-CF-2B	Mort-terrain	F65-22	-	Mort-terrain	_	WSP (2023)
F66-22-CF-3	Mort-terrain	F66-22	-	Mort-terrain	_	WSP (2023)
F67-22-CF-1B	Mort-terrain	F67-22	_	Mort-terrain	_	WSP (2023)
F67-22-CF-3	Mort-terrain	F67-22	_	Mort-terrain	_	WSP (2023)

Identification de l'échantillon	Type de l'échantillon	Identification du forage	Intervalle échantillonné (m)	Code lithologique Osisko	Zone	Source de données des tests statiques
F68-22-CF-1B	Mort-terrain	F68-22	-	Mort-terrain	-	WSP (2023)
F69-22-CF-2	Mort-terrain	F69-22	-	Mort-terrain	-	WSP (2023)
F69-22-CF-3	Mort-terrain	F69-22	-	Mort-terrain	-	WSP (2023)
F70-22-CF-2	Mort-terrain	F70-22	-	Mort-terrain	-	WSP (2023)
F71-22-CF-2	Mort-terrain	F71-22	_	Mort-terrain	-	WSP (2023)
F71-22-CF-4	Mort-terrain	F71-22	-	Mort-terrain	-	WSP (2023)
F72-22-CF-1B	Mort-terrain	F72-22	-	Mort-terrain	-	WSP (2023)
F73-22-CF-1A	Mort-terrain	F73-22	_	Mort-terrain	-	WSP (2023)
F74-22-CF-3A	Mort-terrain	F74-22	-	Mort-terrain	-	WSP (2023)
F75-22-CF-1B	Mort-terrain	F75-22	_	Mort-terrain	-	WSP (2023)
F75-22-CF-2	Mort-terrain	F75-22	_	Mort-terrain	-	WSP (2023)
F76-22-CF-1	Mort-terrain	F76-22	_	Mort-terrain	-	WSP (2023)
F77-22-CF-3B	Mort-terrain	F77-22	_	Mort-terrain	_	WSP (2023)
F78-22-CF-1B	Mort-terrain	F78-22	_	Mort-terrain		WSP (2023)
F79-22-CF-1B	Mort-terrain	F79-22	_	Mort-terrain	_	WSP (2023)
F80-22-CF-2	Mort-terrain	F80-22	_	Mort-terrain	_	WSP (2023)
F81-22-CF-1B	Mort-terrain	F81-22	_	Mort-terrain	_	WSP (2023)
F82-22-CF-1	Mort-terrain	F82-22	_	Mort-terrain	_	WSP (2023)
F83-22-CF-3A	Mort-terrain	F83-22	-	Mort-terrain	-	WSP (2023)
F84-22-CF-1	Mort-terrain	F84-22	-	Mort-terrain	-	WSP (2023)
F85-22-CF-2	Mort-terrain	F85-22	-	Mort-terrain	-	WSP (2023)
F86-22-CF-1	Mort-terrain	F86-22	-	Mort-terrain	-	WSP (2023)
F87-22-CF-1	Mort-terrain	F87-22	-		-	WSP (2023)
F88-22-CF-1	Mort-terrain	F88-22	-	Mort-terrain Mort-terrain	-	WSP (2023)
F88-22-CF-1		F88-22	-		-	
F88-22-CF-2 F92-22-CF-1A	Mort-terrain	F92-22	-	Mort-terrain		WSP (2023) WSP (2023)
	Mort-terrain	F92-22 F92-22		Mort-terrain		(/
F92-22-CF-2	Mort-terrain		-	Mort-terrain	-	WSP (2023)
F92-22-CF-4	Mort-terrain	F92-22	-	Mort-terrain	-	WSP (2023)
F93-22-CF-1B	Mort-terrain	F93-22	-	Mort-terrain	-	WSP (2023)
F94-22-CF-1B	Mort-terrain	F94-22	-	Mort-terrain	-	WSP (2023)
F95-22-CF-1B	Mort-terrain	F95-22	-	Mort-terrain	-	WSP (2023)
F96-22-CF-1B	Mort-terrain	F96-22	-	Mort-terrain	-	WSP (2023)
BH-22-25-CF-1	Mort-terrain	BH-22-25	-	Mort-terrain	-	WSP (2023)
BH-22-26-CF-2	Mort-terrain	BH-22-26	-	Mort-terrain	-	WSP (2023)
BH-22-28-CF-1B	Mort-terrain	BH-22-28	-	Mort-terrain	-	WSP (2023)
Tails CND 1	Résidus	-	-	Résidus Composite	Main and Lynx Main	Golder (2018b)
Tails CND 4	Résidus	-	-	Résidus Composite	Main, Lynx, and Underdog	Golder (2018b)
Tails CND 5	Résidus	-	-	Résidus Composite	Lynx and Underdog	Golder (2018b)
Tails CND 6	Résidus	-	-	Résidus Composite	Underdog	Golder (2018b)
CIL 11 CND	Résidus	-	-	Résidus Composite	Triple Lynx	Golder (2021)
CIL 12 CND	Résidus	-	-	Résidus Composite	Lynx 4	Golder (2021)
CIL 13 CND	Résidus	-	-	Résidus Composite	Lynx 4	Golder (2021)
OSK-W-18-1759-190	Stériles	OSK-W-18-1759	188.3-201	I1 Frg	Underdog	Cette étude
OSK-W-19-1857-W2-895	Stériles	OSK-W-19-1857 W2	892.4-908.7	I1 Frg	Triple Lynx	Cette étude
OSK-W-17-870-270	Stériles	OSK-W-17-870	263.2-280.1	I1 Frg	Lynx Main	Cette étude
OSK-W-19-909-W12-770	Stériles	OSK-W-19-909- W12	767.5-780.4	I1 Frg	Zone 27	Cette étude
OKS-W-21-2629-720	Stériles	OKS-W-21-2629	716.6-733.3	I1 Frg	Underdog	Cette étude
OSK-W-20-2375-W4-890	Stériles	OSK-W-20-2375 W4	887.1-900	I1 Frg	Lynx SW	Cette étude

Identification de l'échantillon	Type de l'échantillon	Identification du forage	Intervalle échantillonné (m)	Code lithologique Osisko	Zone	Source de données des tests statiques
OSK-W-19-1949-W1-635	Stériles	OSK-W-19-1949 W1	633.1-659.3	I1 Frg	Lynx 4	Cette étude
OSK-W-17-918 73	Stériles	OSK-W-17-918	241 - 246	I1 Frg	Lynx 4	Golder (2018a/b)
OSK-W-17-879 74	Stériles	OSK-W-17-879	117.8 - 122.7	I1 Frg	Zone 27	Golder (2018a/b)
OSK-W-17-1006 75	Stériles	OSK-W-17-1006	369 - 375	I1 Frg	Triple Lynx	Golder (2018a/b)
OSK-W-17-1039 76	Stériles	OSK-W-17-1039	432.9 - 436.9	I1 Frg	Caribou	Golder (2018a/b)
OSK-W-17-934 77	Stériles	OSK-W-17-934	471 - 475.9	I1 Frg	Zone 27	Golder (2018a/b)
OSK-W-17-812 101	Stériles	OSK-W-17-812	264.5 - 273.5	I1 Frg	Lynx Main	Golder (2018a/b)
OSK-W-17-812 102	Stériles	OSK-W-17-812	239.5 - 240.5	I1 Frg	Underdog	Golder (2018a/b)
GC10001	Stériles	OSK-W-17-1006	402.4 - 410.8	I1 Frg	Lynx Main	Golder (2021)
GC10002	Stériles	OSK-W-17-1104	466.5 - 475	I1 Frg	Lynx Main	Golder (2021)
GC10003	Stériles	OSK-W-17-799	303.5 - 308.9	I1 Frg	Lynx Main	Golder (2021)
GC10004	Stériles	OSK-W-17-812	319.6 - 324.6	I1 Frg	Lynx Main	Golder (2021)
GC10005	Stériles	OSK-W-17-912	410 - 415	I1 Frg	Lynx Main	Golder (2021)
GC10006	Stériles	OSK-W-17-948	475.5 - 479.5	I1 Frg	Lynx Main	Golder (2021)
GC10007	Stériles	OSK-W-18-1569-W1	393.1 - 397	I1 Frg	Lynx Main	Golder (2021)
GC10008	Stériles	OSK-W-16-750	519 - 525	I1P	Triple Lynx	Golder (2021)
GC10009	Stériles	OSK-W-17-1085	659.2 - 663.7	I1P	Triple Lynx	Golder (2021)
GC10010	Stériles	OSK-W-17-783	323 - 329	I1P	Lynx Main	Golder (2021)
GC10011	Stériles	OSK-W-17-783	424.5 - 430.5	I1P	Lvnx Main	Golder (2021)
GC10012	Stériles	OSK-W-18-1461	658 - 663	I1P	Lynx Main	Golder (2021)
GC10013	Stériles	OSK-W-19-2139-W1	962.8 - 967.7	I1P	Triple Lynx	Golder (2021)
EAG-13-485 54	Stériles	EAG-13-485	287 - 290.9	I1P	Caribou	Golder (2018a/b)
EAG-13-497 56	Stériles	EAG-13-497	317.5 - 319	I1P	Caribou	Golder (2018a/b)
OSK-W-16-713 65	Stériles	OSK-W-16-713	470.5 - 473.5	I1P	Underdog	Golder (2018a/b)
OBM-15-552-230	Stériles	OBM-15-552	225.7-243	I2F	Caribou	Cette étude
OBM-15-552-280	Stériles	OBM-15-552	277-293.9	I2F	Caribou	Cette étude
OBM-16-655-535	Stériles	OBM-16-655	531.3-548.4	I2F	Caribou	Cette étude
OBM-16-655-600	Stériles	OBM-16-655	604.7-617.7	I2F	Underdog	Cette étude
OBM-16-677-79	Stériles	OBM-16-677	78.4-91.4	I2F	Zone 27	Cette étude
OSK-W-16-309-W2-645	Stériles	OSK-W-16-309- W2	642.8-689.7	I2F	Underdog	Cette étude
OSK-W-16-309-W2-720	Stériles	OSK-W-16-309- W2	715.4-732.3	I2F	Underdog	Cette étude
OSK-W-17-1121-545	Stériles	OSK-W-17-1121	538.4-555.3	I2F	Zone 27	Cette étude
OSK-W-17-1305-261	Stériles	OSK-W-17-1305	255.5-272.3	I2F	Zone 27	Cette étude
OSK-W-19-1181-W5-705	Stériles	OSK-W-19-1181 W5	703-720	I2F	Underdog	Cette étude
OSK-W-19-1181-W5-845	Stériles	OSK-W-19-1181 W5	844.5-861.8	I2F	Lynx 4	Cette étude
OSK-W-17-864-W2-635	Stériles	OSK-W-17-864- W2	631.6-648.1	I2F	Lynx Main	Cette étude
OSK-W-21-2512-W3-550	Stériles	OSK-W-21-2512 W3	548.4-564.3	I2F	Triple Lynx	Cette étude
OSK-W-21-2512-W3-610	Stériles	OSK-W-21-2512 W3	608.4-621.2	I2F	Triple Lynx	Cette étude
WST-21-0930-195	Stériles	WST-21-0930	192.5-205	12F	Lynx Main	Cette étude
OSK-W-19-1897-610	Stériles	OSK-W-19-1897	606.5-624	I2F	Triple Lynx	Cette étude
WST-18-0024-120	Stériles	WST-18-0024	117-133	12F	Triple Lynx	Cette étude
OSK-W-20-2313-W6-983	Stériles	OSK-W-20-2313 W6	980.4-993.3	12F	Lynx SW	Cette étude Cette étude
WST-21-0647-161.5	Stériles	WST-21-0647	159.3-163.5	12F	Lynx 4	Cette étude
WST-22-1020-160	Stériles	WST-22-1020	159.4-172.3	12F	Underdoa	Cette étude
OSK-W-21-2555-728	Stériles	OSK-W-21-2555	724.7-741	I2F	Underdog	Cette étude Cette étude
OSK-W-21-2535-726	Stériles	OSK-W-21-2531	653.2-665.9	I2F	Triple Lynx	Cette étude Cette étude
WST-20-0573-367	Stériles	WST-20-0573	364.6-377.2	I2F	Lynx 4	Cette étude Cette étude
WST-20-0573-367 WST-21-0621-155	Stériles	WST-21-0621	154-166.7	I2F	Lynx 4	Cette étude

Identification de l'échantillon	Type de l'échantillon	Identification du forage	Intervalle échantillonné (m)	Code lithologique Osisko	Zone	Source de données des tests statiques
OBM-15-559 12	Stériles	OBM-15-559	840 - 843	I2F	Underdog	Golder (2018a/b)
OSK-W-17-774 44	Stériles	OSK-W-17-774	776 - 778	I2F	Lynx Main	Golder (2018a/b)
EAG-13-490 55	Stériles	EAG-13-490	341 - 342.4	I2F	Caribou	Golder (2018a/b)
OBM-16-671 63	Stériles	OBM-16-671	454.2 - 456	I2F	Zone 27	Golder (2018a/b)
08359 Down Ramp 3	Stériles	Ramp Sample	-	I1P	Triple Lynx	Cette étude
OSK-W-16-706-W2-905	Stériles	OSK-W-16-706- W2	904.8-917.7	I1P	Caribou	Cette étude
OSK-W-16-743-W1-915	Stériles	OSK-W-16-743- W1	912.6-930	I1P	Underdog	Cette étude
OSK-W-17-913-820	Stériles	OSK-W-17-913	814.5-831.5	I1P	Lynx 4	Cette étude
OSK-W-19-1181-W12-1140	Stériles	OSK-W-19-1181 W12	1137.9-1153.2	I1P	Underdog	Cette étude
OSK-W-19-1181-W5-795	Stériles	OSK-W-19-1181 W5	793.3-806.2	I1P	Lynx 4	Cette étude
OSK-W-19-1746-W1-687	Stériles	OSK-W-19-1746 W1	682.6-700	I1P	Bobcat	Cette étude
OSK-W-17-1369-365	Stériles	OSK-W-17-1369	362.1-379.2	I1P	Lynx Main	Cette étude
OSK-W-21-2605-1332	Stériles	OSK-W-21-2605	1329.6-1342.6	I1P	Lynx Main	Cette étude
OSK-W-21-2587-990	Stériles	OSK-W-21-2587	987-1004.5	I1P	Lynx 4	Cette étude
OSK-W-19-1897-760	Stériles	OSK-W-19-1897	756.6-772.7	I1P	Triple Lynx	Cette étude
OSK-W-19-1897-825	Stériles	OSK-W-19-1897	822.9-839.9	I1P	Lynx 4	Cette étude
OSK-W-19-1897-880	Stériles	OSK-W-19-1897	879-891.4	I1P	Caribou	Cette étude
OSK-W-19-1897-983	Stériles	OSK-W-19-1897	982-995	I1P	Caribou	Cette étude
OSK-W-21-2252-1013	Stériles	OSK-W-21-2252	1008.8-1026	I1P	Lynx 4	Cette étude
OSK-W-21-2444-610	Stériles	OSK-W-21-2444	611.3-624	I1P	Lynx 4	Cette étude
OSK-W-20-2350-125	Stériles	OSK-W-20-2350	124.3-137	I1P	Lynx 4	Cette étude
WST-21-0647-260	Stériles	WST-21-0647	260-272.7	I1P	Lynx Main	Cette étude
WST-22-1020-210	Stériles	WST-22-1020	206.9-224.1	I1P	Lynx 4	Cette étude
OSK-W-21-2551-W3-915	Stériles	OSK-W-21-2551 W3	911.6-928.6	I1P	Triple Lynx	Cette étude
WST-21-0992-450	Stériles	WST-21-0992	449.2-462	I1P	Triple Lynx	Cette étude
OSK-W-21-1949-W15-1080	Stériles	OSK-W-21-1949 W15	1076.8-1093.8	I1P	Lynx 4	Cette étude
WST-21-0730-500	Stériles	WST-21-0730	498.2-511.2	I1P	Lynx Main	Cette étude
OSK-W-20-2375-916	Stériles	OSK-W-20-2375	915.5-928.5	I1P	Lynx SW	Cette étude
#08354	Stériles	Ramp Sample	-	I1P	Lynx Main	Cette étude
#08355	Stériles	Ramp Sample	-	I1P	Triple Lynx	Cette étude
#08356	Stériles	Ramp Sample	-	I1P	Triple Lynx	Cette étude
OBM-15-552 103	Stériles	OBM-15-552	1144.4 - 1147	I1P	Underdog	Golder (2018a/b)
OSK-W-16-706-W2 89	Stériles	OSK-W-16-706	1173 - 1179.5	I1P	Caribou	Golder (2018a/b)
OSK-W-16-743 93	Stériles	OSK-W-16-743	1014.3 - 1021.5	I1P	Bobcat	Golder (2018a/b)
OSK-W-17-789 100	Stériles	OSK-W-17-789	972.5 - 977.7	I1P	Lynx HW	Golder (2018a/b)
OSK-W-17-773 39	Stériles	OSK-W-17-773	175.5 - 177.5	I1P	Zone 27	Golder (2018a/b)
EAG-13-490 5	Stériles	EAG-13-490	289.7 - 291.4	I1P	Caribou	Golder (2018a/b)
EAG-13-490 6	Stériles	EAG-13-490	456.1 - 459.8	I1P	Caribou	Golder (2018a/b)
OBM-16-671 23	Stériles	OBM-16-671	472.9 - 475	I1P	Zone 27	Golder (2018a/b)
OBM-16-693 25	Stériles	OBM-16-693	517.5 - 519.8	I1P	Zone 27	Golder (2018a/b)
OSK-W-16-735-W1 28	Stériles	OSK-W-16-735	407.5 - 409.8	I1P	Underdog	Golder (2018a/b)
OSK-W-17-774 43	Stériles	OSK-W-17-774	693.5 - 696.5	I1P	Underdog	Golder (2018a/b)
EAG-14-538 58	Stériles	EAG-14-538	215.5 - 217.6	I1P	Zone 27	Golder (2018a/b)
OBM-16-673 64	Stériles	OBM-16-673	469 - 471	I1P	Zone 27	Golder (2018a/b)
OBM-16-642 70	Stériles	OBM-16-642	676.3 - 677.2	I1P	Zone 27	Golder (2018a/b)
OSK-W-17-774 72	Stériles	OSK-W-17-774	737 - 738.9	I1P	Lynx Main	Golder (2018a/b)
OSK-W-17-774_72 OSK-W-17-788 50	Stériles	OSK-W-17-774	219.5 - 221.6	I1P	Underdog	Golder (2018a/b)
OSK-W-17-766_50	Stériles	OSK-W-17-788	221.6 - 223.7	I1P	Lynx Main	Golder (2018a/b)

Identification de l'échantillon	Type de l'échantillon	Identification du forage	Intervalle échantillonné (m)	Code lithologique Osisko	Zone	Source de données des tests statiques
OBM-16-580 18	Stériles	OBM-16-580	1155.5 - 1159.5	I1P	Underdog	Golder (2018a/b)
OBM-15-557 80	Stériles	OBM-15-557	1144.5 - 1153.5	I1P	Underdog	Golder (2018a/b)
OSK-W-16-706-W1 88	Stériles	OSK-W-16-706	1185.5 - 1190.1	I1P	Underdoa	Golder (2018a/b)
OSK-W-16-706-W1 86	Stériles	OSK-W-16-706	935.5 - 940.5	I1P	Underdog	Golder (2018a/b)
OSK-W-17-774 98	Stériles	OSK-W-17-774	1045 - 1050.9	I1P	Lynx Main	Golder (2018a/b)
OSK-W-16-706-W1 87	Stériles	OSK-W-16-706	1048.5 - 1055.3	I1P	Underdog	Golder (2018a/b)
OSK-W-16-735-W2 92	Stériles	OSK-W-16-735	587.5 - 594.5	I1P	Bobcat	Golder (2018a/b)
OSK-W-16-754 95	Stériles	OSK-W-16-754	1259.5 - 1267	I1P	Lynx SW	Golder (2018a/b)
OSK-W-17-789 99	Stériles	OSK-W-17-789	906.9 - 911.5	I1P	Lynx HW	Golder (2018a/b)
OSK-W-17-773 38	Stériles	OSK-W-17-773	156.7 - 159	I1P	Mallard	Golder (2018a/b)
OBM-15-557 10	Stériles	OBM-15-557	382.5 - 386.5	I1P	Caribou	Golder (2018a/b)
OSK-W-16-715 27	Stériles	OSK-W-16-715	553 - 554.5	I1P	Underdog	Golder (2018a/b)
OBM-15-559 59	Stériles	OBM-15-559	1102 - 1105.5	I1P	Underdog	Golder (2018a/b)
OSK-W-16-735-W1 66	Stériles	OSK-W-16-735	537.5 - 539.5	I1P	Underdog	Golder (2018a/b)
OBM-15-552 81	Stériles	OBM-15-552	1071.4 - 1075.5	I1P	Underdog	Golder (2018a/b)
OBM-15-564 79	Stériles	OBM-15-564	896.5 - 904.5	IIP	Underdog	Golder (2018a/b)
OSK-W-16-311-W1 83	Stériles	OSK-W-16-311	888.5 - 898.5	I1P	Underdog	Golder (2018a/b)
OSK-W-16-311-W2 84	Stériles	OSK-W-16-311	715.5 - 720.5	I1P	Underdog	Golder (2018a/b)
OSK-W-16-706-W1 85	Stériles	OSK-W-16-706	804 - 809	I1P	Underdog	Golder (2018a/b)
OSK-W-16-708-W2 91	Stériles	OSK-W-16-708	1162.4 - 1167.5	I1P	Underdog	Golder (2018a/b)
OSK-W-16-754 96	Stériles	OSK-W-16-754	1435.5 - 1441.8	I1P	Lynx Main	Golder (2018a/b)
OBM-16-619 20	Stériles	OBM-16-619	97.1 - 99.5	I1P	Zone 27	Golder (2018a/b)
OBM-15-566 60	Stériles	OBM-15-566	173 - 174.5	I1P	Zone 27	Golder (2018a/b)
OBM-16-645 69	Stériles	OBM-16-645	221.1 - 223.5	I1P	Zone 27	Golder (2018a/b)
08360 Down Ramp 4	Stériles	Ramp Sample		I3A	Triple Lvnx	Cette étude
OSK-W-17-1079-580	Stériles	OSK-W-17-1079	579-595.5	I3A	Caribou	Cette étude
OSK-W-17-1073-366 OSK-W-17-1104-665	Stériles	OSK-W-17-1073	660.1-677.7	I3A	Caribou	Cette étude
OSK-W-17-1164-665	Stériles	OSK-W-17-1164	257.9-274.5	I3A	Lynx Main	Cette étude
OSK-W-17-1303-202.3	Stériles	OSK-W-17-1303	140.4-157.3	I3A	Lynx HW	Cette étude Cette étude
OSK-W-19-1181-W5-920	Stériles	OSK-W-19-1181 W5	918.2-935.6	I3A	Lynx 4	Cette étude
OSK-W-19-1181-W5-970	Stériles	OSK-W-19-1181 W5	966-983.4	I3A	Lynx 4	Cette étude
OSK-W-19-1101-W3-970	Stériles	OSK-W-19-1101 W3	713-729.9	I3A	Lynx 4	Cette étude Cette étude
OSK-W-19-14-12-W3-7-13	Stériles	OSK-W-19-14-12-W3	253.5-270.4	I3A	Lynx Main	Cette étude Cette étude
OSK-W-17-030-237	Stériles	OSK-W-17-030	976.5-993.5	I3A	Caribou	Cette étude
OSK-W-19-1857-W2-900	Stériles	OSK-W-19-1857 W2	1104.7-1121.7	I3A	Caribou	Cette étude Cette étude
OSK-W-19-1857-W2-1110	Stériles	OSK-W-19-1857 W2	1206.9-1224	I3A	Caribou	Cette étude Cette étude
OKS-W-19-1637-W2-1216	Stériles	OKS-W-19-1637 W2	854.1-867.2	I3A	Underdog	Cette étude Cette étude
OSK-W-21-2629-845	Stériles	OSK-W-21-2629	840.3-858.8	I3A	Lynx 4	Cette étude Cette étude
OSK-W-21-2629-948	Stériles	OSK-W-21-2629	945.5-958.7	I3A	Lynx 4	Cette étude Cette étude
WST-21-0878-517	Stériles	WST-21-0878	514.2-526.9	I3A		Cette étude
WST-21-0878-517 WST-21-0879-639	Steriles	WST-21-0878 WST-21-0879	638.3-351	I3A I3A	Triple Lynx Lynx 4	Cette étude Cette étude
OSK-W-19-1949-W1-948	Stériles	OSK-W-19-1949 W1	945.7-963.2	I3A	Lynx 4	Cette étude Cette étude
OSK-W-20-2397-W1-680	Stériles	OSK-W-19-1949 W1	945.7-965.2 977.6-694.7	I3A	Lynx SW	Cette étude Cette étude
OSK-VV-20-2397-VV1-680 OSK-W-21-2606-670	Steriles	OSK-W-20-2397 W1	977.6-694.7 668.5-681.4	13A 13A	Lynx Svv Lynx 4	Cette etude Cette étude
				13A 13A		
WST-21-0666-54 WST-21-0952-32	Stériles Stériles	WST-21-0666 WST-21-0952	51.3-64.4 30.1-42.8	13A 13A	Lynx 4 Lvnx 4	Cette étude
						Cette étude
OSK-W-21-2555-590 #08351	Stériles Stériles	OSK-W-21-2555 Ramp Sample	587.4-600.3	I3A I3A	Lynx Main Triple Lynx	Cette étude Cette étude

Identification de l'échantillon	Type de l'échantillon	Identification du forage	Intervalle échantillonné (m)	Code lithologique Osisko	Zone	Source de données des tests statiques
#08353	Stériles	Ramp Sample	-	I3A	Triple Lynx	Cette étude
#08357	Stériles	Ramp Sample	-	I3A	Triple Lynx	Cette étude
#08358	Stériles	Ramp Sample	-	I3A	Triple Lynx	Golder (2018a/b)
OSK-W-16-761 33	Stériles	OSK-W-16-761	282 - 285.5	I3A	Caribou	Golder (2018a/b)
OSK-W-17-773 41	Stériles	OSK-W-17-773	341.5 - 344.5	I3A	Zone 27	Golder (2018a/b)
OSK-W-17-779 47	Stériles	OSK-W-17-779	349.5 - 354	I3A	Lynx Main	Golder (2018a/b)
OSK-W-17-783 48	Stériles	OSK-W-17-783	145.5 - 148.3	I3A	Lynx Main	Golder (2018a/b)
OSK-W-16-751 30	Stériles	OSK-W-16-751	207 - 210.5	I3A	Lynx SW	Golder (2018a/b)
OBM-15-559 13	Stériles	OBM-15-559	853.5 - 856.5	I3A	Underdog	Golder (2018a/b)
GC10014	Stériles	OSK-W-17-1085	357.5 - 363.5	I3A	Lynx Main	Golder (2021)
GC10015	Stériles	OSK-W-17-1363	369 - 373.6	I3A	Lynx Main	Golder (2021)
GC10016	Stériles	OSK-W-17-1363	465 - 470.5	I3A	Lynx Main	Golder (2021)
GC10018	Stériles	OSK-W-17-783	413.4 - 417.3	I3A	Lvnx Main	Golder (2021)
GC10019	Stériles	OSK-W-17-783	413.4 - 417.3	I3A	Lynx Main	Golder (2021)
GC10020	Stériles	OSK-W-17-783	490.5 - 496.5	I3A	Lynx Main	Golder (2021)
GC10021	Stériles	OSK-W-18-1461	603 - 609.2	I3A	Lynx Main	Golder (2021)
GC10022	Stériles	OSK-W-18-1656	585.7 - 590	I3A	Lynx Main	Golder (2021)
GC10023	Stériles	OSK-W-17-1363	518 - 522	I3A	Triple Lynx	Golder (2021)
GC10024	Stériles	OSK-W-19-2139-W1	708.9 - 714.5	I3A	Triple Lynx	Golder (2021)
OSK-W-21-2613-1042	Stériles	OSK-W-21-2613	1040.4-1053	S6	Lynx 4	Cette étude
OSK-W-20-2283-W7-888	Stériles	OSK-W-20-2283 W7	885.1-898	S6	Lynx SW	Cette étude
OSK-W-20-2256-W1-1051.7	Stériles	OSK-W-20-2256 W1	1047.7-1060.5	S6	Triple Lynx	Cette étude
WST-22-1013-345	Stériles	WST-22-1013	344.4-353	S6	Caribou	Cette étude
OSK-W-21-2544-838	Stériles	OSK-W-21-2544	834.1-851.3	S6	Triple Lynx	Cette étude
OSK-W-17-1369-219.5	Stériles	OSK-W-17-1369	215.2-232.4	V1	Underdog	Cette étude
OSK-W-19-1746-W1-765	Stériles	OSK-W-19-1746 W1	760.8-777.9	V1	Lynx 4	Cette étude
OSK-W-17-836-400	Stériles	OSK-W-17-836	397.6-414.8	V1	Lvnx Main	Cette étude
OSK-W-17-859-240	Stériles	OSK-W-17-859	235.7-253.1	V1	Caribou	Cette étude
OSK-W-19-1857-W2-1030	Stériles	OSK-W-19-1857 W2	1027.7-1044.4	V1	Triple Lynx	Cette étude
OSK-W-19-1857-W2-1310	Stériles	OSK-W-19-1857 W2	1305.5-1322.9	V1	Caribou	Cette étude
OSK-W-19-909-W12-955	Stériles	OSK-W-19-909- W12	951.3-968.4	V1	Mallard	Cette étude
OSK-W-19-934-W3-885	Stériles	OSK-W-19-934- W3	884-897.2	V1	Lynx SW	Cette étude
OSK-W-19-934-W3-940	Stériles	OSK-W-19-934- W3	936-953.2	V1	Lynx Main	Cette étude
OSK-W-21-2613-W1-1105	Stériles	OSK-W-21-2613 W1	1101.6-1119.1	V1	Lvnx 4	Cette étude
OSK-W-19-934-W3-1045	Stériles	OSK-W-19-934- W3	1044.1-1061.9	V1	Zone 27	Cette étude
OSK-W-21-2587-1060	Stériles	OSK-W-21-2587	1059.9-1072.7	V1	Underdog	Cette étude
OSK-W-19-1949-W1-1015	Stériles	OSK-W-19-1949 W1	1014.4-1027.1	V1	Triple Lynx	Cette étude
OSK-W-21-2252-W12-922	Stériles	OSK-W-21-2252 W12	918.7-936	V1	Lynx Main	Cette étude
WST-21-0647-313	Stériles	WST-21-0647	311.3-323.9	V1	Lynx 4	Cette étude
WST-22-1020-320	Stériles	WST-22-1020	317.8-330.7	V1	Triple Lynx	Cette étude
WST-21-0873-268.1	Stériles	WST-21-0873	264.3-281.2	V1	Lvnx 4	Cette étude
WST-21-0873-445	Stériles	WST-21-0873	442.3-455.1	V1	Triple Lynx	Cette étude
#08352	Stériles	Ramp Sample	-	V1	Lynx Main	Cette étude
GC10027	Stériles	OSK-W-17-1363	738.9 - 744	V1	Triple Lynx	Golder (2021)
GC10028	Stériles	OSK-W-17-1363	844.3 - 849.2	V1	Triple Lynx	Golder (2021)
GC10030	Stériles	OSK-W-19-2139-W1	894.2 - 897.8	V1	Triple Lynx	Golder (2021)
GC10025	Stériles	OSK-W-16-750	750.5 - 755.5	V1	Triple Lynx	Golder (2021)
GC10026	Stériles	OSK-W-17-1027	523 - 528	V1	Lynx Main	Golder (2021)

Identification de l'échantillon	Type de l'échantillon	Identification du forage	Intervalle échantillonné (m)	Code lithologique Osisko	Zone	Source de données des tests statiques
GC10029	Stériles	OSK-W-17-783	436.5 - 442.5	V1	Lynx Main	Golder (2021)
GC10031	Stériles	OSK-W-19-2139-W1	918 - 923	V1	Triple Lynx	Golder (2021)
GC10032	Stériles	OSK-W-19-2139-W1	1062.5 - 1067.3	V1	Triple Lynx	Golder (2021)
GC10017	Stériles	OSK-W-17-783	757.3 - 761	V1	Triple Lynx	Golder (2021)
EAG-13-485 1	Stériles	EAG-13-485	275.5 - 277	V1	Caribou	Golder (2018a/b)
EAG-13-491 7	Stériles	EAG-13-491	101 - 103.5	V1	Caribou	Golder (2018a/b)
OBM-15-559 11	Stériles	OBM-15-559	460.5 - 462.4	V1	Caribou	Golder (2018a/b)
OBM-15-565 15	Stériles	OBM-15-565	102.5 - 105.5	V1	Caribou	Golder (2018a/b)
OBM-16-609 19	Stériles	OBM-16-609	216.5 - 219	V1	Caribou	Golder (2018a/b)
EAG-13-485 53	Stériles	EAG-13-485	281 - 282.5	V1	Caribou	Golder (2018a/b)
OSK-W-16-760 31	Stériles	OSK-W-16-760	686.5 - 689.5	V1	Triple Lynx	Golder (2018a/b)
OSK-W-17-773 40	Stériles	OSK-W-17-773	271.5 - 273.5	V1	Zone 27	Golder (2018a/b)
OSK-W-17-779 45	Stériles	OSK-W-17-779	198 - 200.5	V1	Lvnx Main	Golder (2018a/b)
OSK-W-17-779 46	Stériles	OSK-W-17-779	232.5 - 235.5	<u> </u>	Lynx Main	Golder (2018a/b)
OSK-W-17-788 52	Stériles	OSK-W-17-788	254.3 - 256	V1	Lynx Main	Golder (2018a/b)
OSK-W-16-751 29	Stériles	OSK-W-16-751	119.2 - 121.8	V1	Triple Lynx	Golder (2018a/b)
EAG-14-544 8	Stériles	EAG-14-544	257.5 - 260.5	V1	Mallard	Golder (2018a/b)
OBM-15-565 16	Stériles	OBM-15-565	244.5 - 246.5	V1	Zone 27	Golder (2018a/b)
OBM-16-645 22	Stériles	OBM-16-645	192.5 - 194.4	V1 V1	Zone 27 Zone 27	Golder (2018a/b)
OSK-W-16-760 32	Stériles	OSK-W-16-760	1303 - 1305.3	V1	Lynx Main	Golder (2018a/b)
OBM-16-630 61	Stériles	OBM-16-630	234 - 236	V1 V1	Zone 27	Golder (2018a/b)
OBM-16-655-330	Stériles	OBM-16-655	329.1-3424	V2	Caribou	Cette étude
OSK-W-18-1608-805	Stériles	OSK-W-18-1608	801.4-818.6	V2 V2	Caribou	Cette étude Cette étude
OSK-W-18-1713-470	Stériles	OSK-W-18-1713	465.9-482.5	V2 V2	Caribou	Cette étude Cette étude
OSK-W-18-1744-W1-575	Stériles	OSK-W-18-1744 W1	571.5-588	V2 V2	*	
			761.4-778.2	V2 V2	Underdog	Cette étude
OSK-W-19-1412-W3-765	Stériles	OSK-W-19-1412 W3			Mallard	Cette étude
OSK-W-17-1369-315	Stériles	OSK-W-17-1369	311-327-8	V2	Lynx Main	Cette étude
OSK-W-17-663-W2-680	Stériles	OSK-W-17-663- W2	675-691.5	V2	Lynx Main	Cette étude
OSK-W-19-1897-496	Stériles	OSK-W-19-1897	495.1-507.8	V2	Caribou	Cette étude
OSK-W-20-2323-115	Stériles	OSK-W-20-2323	114.4-127.2	V2	Bobcat	Cette étude
WST-19-0160A-55	Stériles	WST-19-0160A	52.8-65.9	V2	Lynx 4	Cette étude
OSK-W-21-2606-615	Stériles	OSK-W-21-2606	612.3-929.2	V2	Lynx Main	Cette étude
WST-21-0873-330	Stériles	WST-21-0873	327.5-240.1	V2	Triple Lynx	Cette étude
WST-18-0024-50	Stériles	WST-18-0024	46-63.2	V2	Triple Lynx	Cette étude
EAG-13-485_2	Stériles	EAG-13-485	415.1 - 419	V2	Caribou	Golder (2018a/b)
EAG-13-485_3	Stériles	EAG-13-485	535 - 537	V2	Caribou	Golder (2018a/b)
OBM-16-642_21	Stériles	OBM-16-642	548 - 552.5	V2	Caribou	Golder (2018a/b)
EAG-13-513_57	Stériles	EAG-13-513	474.8 - 476.6	V2	Caribou	Golder (2018a/b)
OBM-15-557_78	Stériles	OBM-15-557	459.6 - 461.5	V2	Caribou	Golder (2018a/b)
OSK-W-16-761_34	Stériles	OSK-W-16-761	520.5 - 522.6	V2	Lynx HW	Golder (2018a/b)
OSK-W-17-773_36	Stériles	OSK-W-17-773	112.5 - 114.5	V2	Lynx Main	Golder (2018a/b)
OSK-W-17-773_37	Stériles	OSK-W-17-773	121.5 - 123.2	V2	Lynx Main	Golder (2018a/b)
OSK-W-17-773_42	Stériles	OSK-W-17-773	845.8 - 847.5	V2	Underdog	Golder (2018a/b)
OSK-W-17-783_49	Stériles	OSK-W-17-783	163.5 - 166.5	V2	Underdog	Golder (2018a/b)
OSK-W-16-760_67	Stériles	OSK-W-16-760	1339.5 - 1341.5	V2	Lynx Main	Golder (2018a/b)
EAG-13-485_4	Stériles	EAG-13-485	619.5 - 621.5	V2	Zone 27	Golder (2018a/b)
OBM-16-580_17	Stériles	OBM-16-580	681.5 - 682.8	V2	Caribou	Golder (2018a/b)
OBM-16-693 24	Stériles	OBM-16-693	507 - 508.5	V2	Zone 27	Golder (2018a/b)

Identification de l'échantillon	Type de l'échantillon	Identification du forage	Intervalle échantillonné (m)	Code lithologique Osisko	Zone	Source de données des tests statiques
OBM-16-693 26	Stériles	OBM-16-693	509.5 - 512.5	V2	Zone 27	Golder (2018a/b)
OBM-16-654 62	Stériles	OBM-16-654	211.5 - 213.5	V2	Zone 27	Golder (2018a/b)
OBM-16-580 68	Stériles	OBM-16-580	700.7 - 702.5	V2	Caribou	Golder (2018a/b)
OBM-16-640_71	Stériles	OBM-16-640	382.5 - 384.4	V2	Zone 27	Golder (2018a/b)
OBM-15-554 82	Stériles	OBM-15-554	1085.5 - 1089.5	V2	Underdog	Golder (2018a/b)
OSK-W-16-708-W1_90	Stériles	OSK-W-16-708	1153 - 1157.5	V2	Zone 27	Golder (2018a/b)
OSK-W-16-746_94	Stériles	OSK-W-16-746	787.4 - 795.3	V2	Underdog	Golder (2018a/b)
OSK-W-17-774 97	Stériles	OSK-W-17-774	988.5 - 996.2	V2	Lynx Main	Golder (2018a/b)
OSK-W-18-1386-W4-885	Stériles	OSK-W-18-1386 W4	883-900	V2	Lynx Main	Cette étude
OSK-W-21-2444-545	Stériles	OSK-W-21-2444	542.5-555.5	V2	Triple Lynx	Cette étude
OSK-W-16-309-W2-1000	Stériles	OSK-W-16-309-W2	-	-	Underdog	Cette étude
OSK-W-18-1386-W4-885	Waste rock	OSK-W-18-1386 W4	-	V2	Lynx Main	Cette étude
OSK-W-21-2444-545	Waste rock	OSK-W-21-2444	-	V2	Triple Lynx	Cette étude
OSK-W-16-309-W2-1000	Waste rock	OSK-W-16-309-W2	-	-	Underdog	Cette étude
MT-1	Mort-terrain	-	-	Mort-terrain	-	Cette étude
MT-1-DupA	Mort-terrain	-	-	Mort-terrain	-	Cette étude
MT-2	Mort-terrain	-	-	Mort-terrain	-	Cette étude
MT-3	Mort-terrain	-	-	Mort-terrain	-	Cette étude
MT-4	Mort-terrain	-	-	Mort-terrain	-	Cette étude
MT-5	Mort-terrain	-	-	Mort-terrain	-	Cette étude
MT-6	Mort-terrain	-	-	Mort-terrain	-	Cette étude
MT-7	Mort-terrain	-	-	Mort-terrain	-	Cette étude
MT-8	Mort-terrain	-	-	Mort-terrain	-	Cette étude
MT-8-DUP-S	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-1-S	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-1-TS	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-2-S	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-2-TS	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-3-S	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-3-TS	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-5-S	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-5-S-DUPA	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-5-TS	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-6-S	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-6-TS	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-7-S	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-7-TS	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-8-TS	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-9-S	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-9-TS	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-10-S	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-10-S-DUPA	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-10-TS	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-10-TS-DUPA	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-11-S	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-11-TS	Mort-terrain	-	-	Mort-terrain	-	Cette étude
TP-5-TS-DUPA	Mort-terrain	_	-	Mort-terrain	_	Cette étude

		Α	nalyses gé	ochimi	ques sta	atiques	
Identification de l'échantillon	FRX	вав	MA.200	TCLP	SPLP	CTEU-9	DRX
E-27-D-H		Х	Х	Х	Х	Х	
E-27-D-L		Х	Х	Х	Х	Х	
E-27-U-H	Х	Х	Х	Х	Х	Х	Х
E-27-U-L	Х	Х	Х	Х	Х	Х	
E-CA-D-H	Х	Х	Х	Х	Х	Х	
E-CA-D-L	Х	Х	Х	Х	Х	X	
E-CA-U-H	Х	Х	Х	Х	Х	Х	Х
E-CA-U-L	Х	Х	X	Х	Х	Х	
P3-I	Х	Х	Х		Х	Х	
P3-J	Х	Х	Х		Х	Х	
P3-K	Х	Х	Х		Х	Х	Х
P3-L	Х	Х	Х		Х	Х	
Under Dog A	Х	Х	Х	Х	Х	Х	Х
Under Dog B	Х	Х	Х	Х	Х	Х	
Under Dog C	Х	Х	Х	Х	Х	Х	
Triple Lynx LG	Х	Х	Х	Х	Х	Х	
Lynx 4 LP-LG	Х	X	Х	X	Х	Х	
Lynx 4 HP-LG	Х	Х	Х	Х	Х	Х	
Triple Lynx MG/HG	X	X	X	X	X	X	
Lynx 4 LP-MG/HG	X	X	X	X	X	X	
Lynx 4 HP-MG/HG	X	X	X	X	X	X	
RC-F03-21		X	X	 ^`	X	X	
VR2-F01-21 CR-7		X	X		X	X	
VR3-F01-21 CR-5		X	X		X	X	
HMTN-F01-21 CF-1		X	X				
HMBT-F01-21 CF-2		X	X				
HMBT-F02-21 CF-2		X	X				
HMBT-F03-21 CH3 (CF-3?)		X	X				
UTE-F02-21 CF-1		X	X				
HMBT-F01-21 CF-3		X	X	-			
HMBT-F02-21 CF-4		X	X				
HMBT-F02-21 CF-6		X	X				
HMBT-F03-21 CF-7		X	X				
TU-F03-21 CF-3		X	X				
TS-F02-21 CF-1		X	X				
BH-F01-21 CF-1		X	X				
BD-F03-21 CF-1		X	X				
R-F01-21 CF-1		X	X				
HMBT-F01-21 CR-4		X	X	-			
TU-F01-21 CR-3		X	X	-			-
TU-F02-21 CR-2		X	X				
BD-F01-21 21 CR-2		X	X	-			
							-
BK-F01-21_CR-2 HMT-F03-21_CR-4		X	X				
_							<u> </u>
CONC-F02-21_CR-3		X	X				<u> </u>
AHS-F02-21_CF-2		X	X	-			<u> </u>
AHS-F03-21_CF-1		X	X				
AHS-F03-21_CF-2		Х	Х				

		Α	nalyses gé	ochimi	ques sta	atiques	
Identification de l'échantillon	FRX	BAB	MA.200	TCLP	SPLP	CTEU-9	DRX
AHS-F04-21_CF-1		Х	Х				
AHS-F04-21_CF-3		Х	X				
AHS-TR01-21-40-67		Х	Х				
AHS-TR02-21-219-300			X				
AHS-TR03-21-19-31		Х	X				
AHS-TR03-21-80-130		Х	X				
AHS-TR04-21-40-55		Х	X				
AHS-TR05-21-104-145		Х	X				
AHS-TR05-21-145-210		Х	X				
AHS-TR06-21-150-210		Х	X				
BAD-F01-21_CF-1		Х	X				
BAD-F01-21_CF-2		Х	X				
BA-F01-21_CF-2		Х	X				
BB-TR01-21-57-170		Х	X				
BC-F01-21_CF-1B		Х	X				
BD-F03-21_CF-5		Х	X				
BD-TR01-21-46-155		Х	Х				
BD-TR02-21-150-170		Х	X		Х	X	
BD-TR03-21-120-175		Х	Х				
BE-F01-21 CF-2		Х	Х				
BE-F01-21 CF-3		Х	Х				
BE-TR01-21-40-103		Х	Х				
BF-TR01-21-22-54		Х	X				
BF-TR02-21-40-51		Х	Х				
BF-TR03-21-79-139		Х	Х				
BH-F01-21 CF-2		Х	Х				
BI-F03-21 CF-1A		Х	Х				
BI-TR01-21-107-189		Х	Х				
BI-TR03-21-31-35		Х	Х				
CAMP-F02-21 CF-1		Х	Х				
CAMP-TR01-21-32-63		Х	Х				
CAMP-TR02-21-73-170		Х	Х				
CAMP-TR03-21-50-84		Х	Х				
CC-TR01-21-68-134		Х	Х				
CC-TR02-21-61-174		Х	Х				
COND-TR01-21-112-181		Х	Х				
COND-TR02-21-42-66		Х	Х				
COND-TR02-21-66-110		Х	Х				
COND-TR03-21-34-57		X	X				
COND-TR04-21-49-140		$\frac{\hat{x}}{x}$	X				
HMBT-F01-21 CF-1B		X	X				
HMBT-F02-21 CF-1		X	X				
HMBT-F03-21 CF-1C		X	X				<u> </u>
HMT-F03-21 CF-2		X	X				
HS-F01-21 CF-1		$\frac{\hat{x}}{x}$	X				
HS-F01-21 CF-2		X	X				
HS-TR01-21-20-41		$\frac{\hat{x}}{x}$	X				
RC-F03-21 CF-1B		$\frac{\hat{x}}{x}$	X				

		Α	nalyses gé	ochimi	ques sta	atiques	
Identification de l'échantillon	FRX	BAB	MA.200	TCLP	SPLP	CTEU-9	DRX
R-TR01-21-40-70		Х	Х				
R-TR03-21-61-114		Х	Х				
R-TR04-21-38-62		Х	Х				
SSE-F01-21_CF-1B		Х	X				
SSE-F02-21_CF-1B		Х	Х				
TS-F02-21_CF-3		Х	Х		Х		
TU-F01-21_CF-1B		Х	X				
TU-F03-21_CF-1		Х	X				
TU-F04-21_CF-1B		Х	Х				
TU-TR01-21-52-190		Х	X		Х	X	
UTM-F01-21_CF-1		Х	Х				
UTM-F01-21_CF-3		Х	Х				
UTM-F02-21_CF-1D		Х	X				
UTM-F03-21_CF-1B		Х	Х				
UTM-F05-21_CF-1A		Х	X				
UTM-F06-21_CF-1C		Х	Х				
UTM-F07-21_CF-2		Х	Х				
VR1-F01-21_CF-1A		Х	X				
VR6-F01-21_CF-1		Х	Х				
BH-22-27-CF-2			X				
CF1-F-16-22			Х				
F01-22-CF-1B			X				
F01-22-CF-2			X				
F02-22-CF-1B			X				
F02-22-CF-3			Х				
F03-22-CF-1B			Х				
F03-22-CF-3			X				
F04-22-CF-1			X				
F04-22-CF-3			Х				
F05-22-CF-1			X				
F06-22-CF-2			X				
F06-22-CF-3			X				
F07-22-CF-2			X				
F07-22-CF-3			X				
F08-22-CF-1B			X				
F10-22-CF-1B			Х				
F10-22-CF-3			X				
F15-22-CF-2			X				
F18-22-CF-1			X				
F18-22-CF-3B			Χ				
F19-22-CF-1			Χ				
F19-22-CF-3			Χ				
F20-22-CF-2			Χ				
F22-22-CF-1C			Χ				
F22-22-CF-2			Χ				
F23-22-CF-1A			Χ				
F23-22-CF-2			Χ				
F24-22-CF-1A			Χ				

		Α	nalyses gé	ochimi	ques sta	atiques	
Identification de l'échantillon	FRX	ВАВ	MA.200	TCLP	SPLP	CTEU-9	DRX
F24-22-CF-4			Х				
F28-22-CF-1			Х				
F28-22-CF-3			X				
F29-22-CF-1			Х				
F30-22-CF-1			Х				
F31-22-CF3A			X				
F32-22-CF-1B			Х				
F32-22-CF-2			Х				
F33-22-CF1C			X				
F34-22-CF-2			Х				
F35-22-CF-2B			X				
F35-22-CF-3			Х				
F36-22-CF-1B			Х				
F37-22-CF-3A			X				
F42-22-CF-1B			X				
F42-22-CF-4			X				
F43-22-CF-1			X				
F43-22-CF-2			Х				
F44-22-CF-1A			X				
F44-22-CF-3			X				
F46-22-CF-2			X				
F48-22-CF-1			X				
F49-22-CF-2			X				
F49-22-CF-3			X				
F50-22-CF-2			X				
F51-22 CF1B			X				
F51-22 CF2B			X				
F52-22 CF1B			X				
F53-22 CF2A			X				
F53-22-CF-2B			X				
F54-22 CF2			Χ				
F55-22-CF-2A			Χ				
F56-22-CF-3			Χ				
F57-22-CF-2B			Х				
F57-22-CF-3			X				
F58-22-CF-2B			Х				
F59-22-CF-2			X				
F60-22-CF-2B			Χ				
F60-22-CF-3			Х				
F61-22-CF-1			X				
F62-22-CF-1B			Х				
F-63-22-CF-4A			X				
F64-22-CF-2			X				
F64-22-CF-4			X				
F65-22-CF-2B			X				
F66-22-CF-3			Х				
F67-22-CF-1B			Х				
F67-22-CF-3			Χ				

		Α	nalyses gé	ochimi	ques sta	atiques	
Identification de l'échantillon	FRX	ВАВ	MA.200	TCLP	SPLP	CTEU-9	DRX
F68-22-CF-1B			Х				
F69-22-CF-2			Х				
F69-22-CF-3			Х				
F70-22-CF-2			X				
F71-22-CF-2			X				
F71-22-CF-4			X				
F72-22-CF-1B			X				
F73-22-CF-1A			X				
F74-22-CF-3A			X				
F75-22-CF-1B			X				
F75-22-CF-2			X				
F76-22-CF-1			X				-
F70-22-CF-1 F77-22-CF-3B							
			X				
F78-22-CF-1B			X				
F79-22-CF-1B			X				
F80-22-CF-2			X				
F81-22-CF-1B			X				
F82-22-CF-1			X				
F83-22-CF-3A			Х				
F84-22-CF-1			Х				
F85-22-CF-2			Х				
F86-22-CF-1			Х				
F87-22-CF-1			X				
F88-22-CF-1			Χ				
F88-22-CF-2			X				
F92-22-CF-1A			Х				
F92-22-CF-2			X				
F92-22-CF-4			X				
F93-22-CF-1B			X				
F94-22-CF-1B			Х				
F95-22-CF-1B			Х				
F96-22-CF-1B			Х				
BH-22-25-CF-1			X				
BH-22-26-CF-2			Х				
BH-22-28-CF-1B			Х				
Tails CND 1	Х	Х	Х	Х	Х	Х	Х
Tails CND 4	X	X	X	X	X	X	X
Tails CND 5	X	X	X	X	X	X	X
Tails CND 6	X	X	X	X	X	X	X
CIL 11 CND	X	X	X	X	X	X	
CIL 12 CND	X	X	X	X	X	X	
CIL 13 CND	X	X	X	X	X	X	
OSK-W-18-1759-190	X	X	X	- ^`	X	X	
OSK-W-19-1857-W2-895	X	X	X				
OSK-W-13-1637-W2-633	X	X	X				
OSK-W-19-909-W12-770	X	X	X		Х	Х	
OKS-W-19-909-W 12-770	X	X	X				
OSK-W-20-2375-W4-890	X	X	X	Х	Х	X	
USIN-VV-20-23/3-VV4-090			^	^_	_ ^	^	

		Α	nalyses gé	ochimi	ques sta	atiques	
Identification de l'échantillon	FRX	ВАВ	MA.200	TCLP	SPLP	CTEU-9	DRX
OSK-W-19-1949-W1-635	Х	Х	Х				
OSK-W-17-918_73	Х	Х	X	Х			
OSK-W-17-879_74	Х	Х	Х	Х			
OSK-W-17-1006_75	Х	Х	Х	Х	Х	X	
OSK-W-17-1039_76	Х	Х	Х	Х			
OSK-W-17-934_77	Х	Х	Х	Х	Х	X	
OSK-W-17-812_101	Х	Х	X	Х	Х	X	
OSK-W-17-812_102	Х	Х	X	Х	Х	X	Х
GC10001	Х	Х	Х	Х	Х	X	
GC10002	Х	Х	Х	Х	Х	Х	
GC10003	Х	Х	Х	Х	Х	X	
GC10004	Х	Х	Х	Х	Х	Х	
GC10005	Х	Х	Х	Х	Х	Х	
GC10006	Х	Х	Х	Х	Х	Х	
GC10007	Х	Х	Х	Х	Х	Х	
GC10008	Х	Х	Х	Х	Х	Х	
GC10009	Х	Х	Х	Х	Х	Х	
GC10010	Х	Х	Х	Х	Х	Х	
GC10011	Х	Х	Х	Х	Х	Х	
GC10012	Х	Х	Х	Х	Х	Х	
GC10013	Х	Х	Х	Х	Х	Х	
EAG-13-485 54	Х	Х	Х	Х			
EAG-13-497 56	Х	Х	Х	Х	Х	Х	
OSK-W-16-713 65	Х	Х	Х				
OBM-15-552-230	Х	Х	Х				
OBM-15-552-280	Х	Х	Х		Х	Х	
OBM-16-655-535	Х	Х	Х				
OBM-16-655-600	Х	X	Х		Х	Х	
OBM-16-677-79	Х	Х	Х		Х	Х	
OSK-W-16-309-W2-645	Х	X	Х				
OSK-W-16-309-W2-720	Х	Х	Х				
OSK-W-17-1121-545	Х	Х	Х		Х	Х	
OSK-W-17-1305-261	Х	Х	Х		Х	Х	
OSK-W-19-1181-W5-705	Х	Х	Х				
OSK-W-19-1181-W5-845	Х	Х	Х		Х	Х	
OSK-W-17-864-W2-635	Х	Х	Х				
OSK-W-21-2512-W3-550	Х	X	Х				
OSK-W-21-2512-W3-610	Х	Х	Х		Х	Х	
WST-21-0930-195	Х	Х	Х				
OSK-W-19-1897-610	Х	Х	Х		X	Х	
WST-18-0024-120	X	X	X			-	1
OSK-W-20-2313-W6-983	X	X	X				
WST-21-0647-161.5	X	X	X		Х	Х	
WST-22-1020-160	X	X	X			-	1
OSK-W-21-2555-728	X	X	X				
OSK-W-21-2531-655	X	X	X				
WST-20-0573-367	X	X	X		X	Х	
WST-21-0621-155	X	X	X				

	Analyses géochimiques statiques						
Identification de l'échantillon	FRX	ВАВ	MA.200	TCLP	SPLP	CTEU-9	DRX
OBM-15-559_12	Х	Х	Х	Х	Х	Х	
OSK-W-17-774_44	Х	Х	Х	Х	Х	X	Х
EAG-13-490 55	Х	Х	Х	Х			
OBM-16-671 63	Х	Х	Х	Х	Х	Х	
08359 Down Ramp 3	Х	Х	Х				
OSK-W-16-706-W2-905	Х	Х	Х	Х	Х	X	
OSK-W-16-743-W1-915	Х	Х	Х	Х			
OSK-W-17-913-820	Х	Х	X				
OSK-W-19-1181-W12-1140	Х	Х	Х	Х	Х	Х	
OSK-W-19-1181-W5-795	Х	Х	X				
OSK-W-19-1746-W1-687	Х	Х	X	Х			
OSK-W-17-1369-365	Х	Х	X	Х			
OSK-W-21-2605-1332	Х	Х	Х	Х	Х	Х	
OSK-W-21-2587-990	Х	Х	Х	Х			
OSK-W-19-1897-760	Х	Х	Х				
OSK-W-19-1897-825	Х	Х	Х		Х	Х	
OSK-W-19-1897-880	Х	Х	Х	Х			
OSK-W-19-1897-983	Х	Х	Х	Х	Х	Х	
OSK-W-21-2252-1013	X	X	X		X	X	
OSK-W-21-2444-610	X	X	X	X			
OSK-W-20-2350-125	X	X	X	- ^`	X	Х	
WST-21-0647-260	X	$\frac{\hat{x}}{x}$	X	X		,,	
WST-22-1020-210	X	$\frac{\hat{x}}{x}$	X	- 			
OSK-W-21-2551-W3-915	X	X	X		Х	Х	
WST-21-0992-450	X	$\frac{\hat{x}}{x}$	X		X	X	
OSK-W-21-1949-W15-1080	X	X	X		X	X	
WST-21-0730-500	X	$\frac{\hat{x}}{x}$	X		<u> </u>	,,	
OSK-W-20-2375-916	X	$\frac{\hat{x}}{x}$	X				
#08354	X	X	X				
#08355	X	$\frac{\hat{x}}{x}$	X				
#08356	X	X	X				1
OBM-15-552 103	X	Î	X	X	X	Х	
OSK-W-16-706-W2 89	X	X	X	X	X	X	
OSK-W-16-760-W2_63	X	Î	X	X	X	X	X
OSK-W-17-789 100	X	X	X	X	X	X	 ^
OSK-W-17-703_100	X	X	X	X	X	X	
EAG-13-490 5	X	X	X	X	 ^ 		
EAG-13-490 6	X	X	X	X			
OBM-16-671 23	X	X	X	 x	X	Х	X
OBM-16-693 25	X	X	X	 x	_^		 ^
OSK-W-16-735-W1 28	X	X	X	- x			
OSK-W-17-774 43	X	X	X	 			
EAG-14-538 58	X	X	X	X	Х	Х	X
OBM-16-673 64	X	X	X	l \hat{x}	Ŷ	X	 ^
OBM-16-642 70	X	X	X	X	X	X	
OSK-W-17-774 72	X	X	X	 ^	X	X	
OSK-W-17-774_72 OSK-W-17-788 50	X	X	X	 	 ^ 	^	
OSK-W-17-788_50 OSK-W-17-788_51	X	X	X	X	X	Х	-

	Analyses géochimiques statiques						
Identification de l'échantillon	FRX	ВАВ	MA.200	TCLP	SPLP	CTEU-9	DRX
OBM-16-580_18	Χ	Х	Х	Х	Х	Х	
OBM-15-557_80	Х	Х	X	Х	Х	Х	
OSK-W-16-706-W1 88	Х	Х	X	Х	Х	Х	
OSK-W-16-706-W1 86	Х	Х	Х	Х	Х	Х	
OSK-W-17-774 98	Х	Х	Х	Х	Х	Х	
OSK-W-16-706-W1_87	Х	Х	X	Х	Х	Х	
OSK-W-16-735-W2 92	Х	Х	X	Х	Х	Х	
OSK-W-16-754 95	Х	Х	X	Х	Х	Х	
OSK-W-17-789 99	Х	Х	Х	Х	Х	Х	
OSK-W-17-773 38	Х	Х	Х	Х	Х	Х	
OBM-15-557 10	Х	Х	X	Х	Х	Х	
OSK-W-16-715 27	Х	Х	Х	Х	Х	Х	
OBM-15-559 59	Х	Х	Х	Х	Х	Х	
OSK-W-16-735-W1 66	Х	Х	Х				
OBM-15-552 81	Х	X	Х	Х	Х	Х	
OBM-15-564 79	Х	Х	Х	Х	Х	Х	Х
OSK-W-16-311-W1 83	Х	X	Х	X	Х	Х	
OSK-W-16-311-W2 84	Х	X	Х	X	Х	Х	
OSK-W-16-706-W1 85	X	X	X	X	Х	X	
OSK-W-16-708-W2 91	X	X	X	X	X	X	
OSK-W-16-754 96	X	X	X	X	X	X	
OBM-16-619 20	X	X	X	X			
OBM-15-566 60	X	X	X	X	Х	Х	
OBM-16-645 69	X	X	X	X	X	X	
08360 Down Ramp 4	X	X	X	 ^			
OSK-W-17-1079-580	X	X	X		Х	Х	
OSK-W-17-1104-665	X	X	X		X	X	
OSK-W-17-1369-262.5	X	X	X				
OSK-W-17-968-145	X	X	X		Х	Х	
OSK-W-19-1181-W5-920	X	X	X				
OSK-W-19-1181-W5-970	X	X	X		Х	Х	
OSK-W-19-1412-W3-715	X	X	X		X	X	
OSK-W-13-14-12-W3-7-13	X	X	X				
OSK-W-17-030-237	X	X	X				
OSK-W-19-1857-W2-300	X	X	X				
OSK-W-19-1857-W2-1110	X	X	X		Х	Х	
OKS-W-13-1637-W2-12-16	X	X	X		X	X	
OSK-W-21-2629-845	X	X	X		X	X	
OSK-W-21-2629-948	X	X	X		X	X	
WST-21-0878-517	X	X	X	 	_^	^	
WST-21-0676-517 WST-21-0879-639	X	X	X		Х	X	
OSK-W-19-1949-W1-948	X	X	X	 	X	X	
OSK-W-19-1949-W1-946 OSK-W-20-2397-W1-680	X	X	X	-	 ^		
OSK-VV-20-2397-VV 1-680 OSK-W-21-2606-670	X	X	X	-			
WST-21-2606-54			X	-	X	X	
	X	X	X		X	X	
WST-21-0952-32				-			
OSK-W-21-2555-590	X	X	X		X	X	
#08351	Χ	Х	Х		Х	X	

	Analyses géochimiques statiques						
Identification de l'échantillon	FRX	вав	MA.200	TCLP	SPLP	CTEU-9	DRX
#08353	Х	Х	Χ		Х	X	
#08357	Х	Х	Х				
#08358	Х	Х	Х		Х	Х	
OSK-W-16-761 33	Х	Х	Х	Х			
OSK-W-17-773 41	Х	Х	Х	Х	Х	Х	Х
OSK-W-17-779 47	Х	Х	X	Х	Х	Х	
OSK-W-17-783 48	Х	Х	Х	Х			
OSK-W-16-751 30	Х	Х	Х	Х	Х	Х	
OBM-15-559 13	Х	Х	Х	Х	Х	Х	
GC10014	Х	Х	Х	Х	Х	Х	
GC10015	Х	Х	Х	Х	Х	Х	
GC10016	Х	Х	Х	Х	Х	Х	
GC10018	Х	Х	Х	Х	Х	Х	
GC10019	X	X	X	X	Х	X	
GC10020	X	X	X	X	X	X	
GC10021	X	X	X	X	X	X	
GC10022	X	X	X	X	X	X	
GC10023	X	X	X	X	X	X	
GC10024	X	X	X	X	X	X	
OSK-W-21-2613-1042	X	$\frac{\hat{x}}{x}$	X	X	X	X	
OSK-W-20-2283-W7-888	X	X	X	X	X	X	
OSK-W-20-2256-W1-1051.7	X	$\frac{\hat{x}}{x}$	X	<u> </u>	X	X	
WST-22-1013-345	X	X	X	Х	X	X	
OSK-W-21-2544-838	X	X	X	<u> </u>	X	X	
OSK-W-17-1369-219.5	X	$\frac{\hat{x}}{x}$	X	X	X	X	
OSK-W-19-1746-W1-765	X	X	X		X	X	
OSK-W-17-836-400	X	$\frac{\hat{x}}{x}$	X				
OSK-W-17-859-240	X	X	X				
OSK-W-19-1857-W2-1030	X	X	X		Х	Х	
OSK-W-19-1857-W2-1310	X	X	X				
OSK-W-19-909-W12-955	X	X	X	Х			
OSK-W-19-934-W3-885	X	X	X	X			
OSK-W-19-934-W3-940	X	X	X	_^	Х	Х	
OSK-W-21-2613-W1-1105	X	Ŷ	X	Х		^	
OSK-W-19-934-W3-1045	X	X	X	X	Х	Х	
OSK-W-21-2587-1060	X	X	X		X	X	
OSK-W-19-1949-W1-1015	X	X	X				
OSK-W-21-2252-W12-922	X	X	X	X	Х	Х	
WST-21-0647-313	X	X	X		X	X	
WST-22-1020-320	X	X	X				
WST-21-0873-268.1	X	X	X	Х			
WST-21-0873-208.1	X	X	X	 ^			
#08352	X	X	X		Х	Х	
GC10027	X	X	X	Х	X	X	
GC10027 GC10028	X	X	X	X	X	X	
GC10028 GC10030	X	X	X	X	X	X	
GC10030 GC10025	X		X	X		X	
	X	X	X	X	X	X	
GC10026	^	_ ^_	^	^_	_ ^	^	

	Analyses géochimiques statiques						
Identification de l'échantillon	FRX	вав	MA.200	TCLP	SPLP	CTEU-9	DRX
GC10029	Х	Х	Х	Х	Х	X	
GC10031	Х	Х	Х	Х	Х	Х	
GC10032	Х	Х	X	Х	Х	Х	
GC10017	Х	Х	X	Х	Х	Х	
EAG-13-485 1	Х	Х	Х	Х			
EAG-13-491 7	Х	Х	Х	Х			
OBM-15-559 11	Х	Х	Х	Х	Х	Х	
OBM-15-565 15	Х	Х	Х	Х			
OBM-16-609 19	Х	Х	Х	Х			
EAG-13-485 53	Х	Х	Х	Х	Х	Х	
OSK-W-16-760 31	Х	Х	Х	Х	Х	Х	Х
OSK-W-17-773 40	Х	X	Х	Х			
OSK-W-17-779 45	Х	Х	Х	Х			
OSK-W-17-779 46	X	X	X	X	Х	Х	
OSK-W-17-788 52	X	X	X	X			
OSK-W-16-751 29	X	X	X	X	X	Х	
EAG-14-544 8	X	X	X	X			
OBM-15-565 16	X	X	X	X			
OBM-16-645 22	X	X	X	X	Х	Х	
OSK-W-16-760 32	X	X	X	X		,	
OBM-16-630 61	X	X	X	X	X	Х	X
OBM-16-655-330	X	X	X	<u> </u>	X	X	
OSK-W-18-1608-805	X	X	X		X	X	
OSK-W-18-1713-470	X	X	X		X	X	
OSK-W-18-1744-W1-575	X	X	X		<u> </u>		
OSK-W-19-1412-W3-765	X	X	X		X	Х	
OSK-W-17-1369-315	X	X	X		<u> </u>		
OSK-W-17-663-W2-680	X	X	X	Х	Х	Х	
OSK-W-19-1897-496	X	X	X	X	X	X	
OSK-W-20-2323-115	X	X	X	 ^	X	X	
WST-19-0160A-55	X	X	X	Х	X	X	
OSK-W-21-2606-615	X	X	X	X	X	X	
WST-21-0873-330	X	X	X		<u> </u>	^	
WST-18-0024-50	X	X	X	X	Х	X	
EAG-13-485 2	X	X	X	X	X	X	
EAG-13-485_2 EAG-13-485_3	X	X	X	X	Ŷ	X	Х
OBM-16-642 21	X	X	X	X	-	^	
EAG-13-513 57	X		X	X	Х	Х	
	X	X		X		^	
OBM-15-557_78		X	X				
OSK-W-16-761_34	X	X	X	X			
OSK-W-17-773_36	X	X	X	X			
OSK-W-17-773_37	X	X	X	X	X	X	
OSK-W-17-773_42	X	X	X	X	Х	Х	
OSK-W-17-783_49	X	X	X	X			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
OSK-W-16-760_67	X	X	X	X	X	X	Х
EAG-13-485_4	X	X	X	X	Х	X	\
OBM-16-580_17	X	X	X	X	Х	Х	Х
OBM-16-693_24	Х	Х	Х	Х			

	Analyses géochimiques statiques						
Identification de l'échantillon	FRX	ВАВ	MA.200	TCLP	SPLP	CTEU-9	DRX
OBM-16-693 26	Х	Х	Х	Х			
OBM-16-654 62	Х	Х	Х	Х	Х	Х	
OBM-16-580 68	Х	Х	Х	Х	Х	Х	
OBM-16-640 71	Х	Х	Х	Х			
OBM-15-554 82	Х	Х	Х	Х	Х	Х	
OSK-W-16-708-W1 90	Х	Х	X	Х	Х	Х	
OSK-W-16-746 94	Х	Х	Х	Х	Х	Х	
OSK-W-17-774 97	Х	Х	Х	Х	Х	Х	
OSK-W-18-1386-W4-885	Х	Х	X		Х	Х	
OSK-W-21-2444-545	Х	Х	Х		Х	Х	
OSK-W-16-309-W2-1000	Х	Х	Х	Х	Х	Х	
OSK-W-18-1386-W4-885	Х	Х	Х		Х	Х	
OSK-W-21-2444-545	Х	Х	Х		Х	Х	
OSK-W-16-309-W2-1000	Х	Х	Х	Х	Х	Х	
MT-1	Х	Х	Х		Х	Х	
MT-1-DupA	Х	Х	Х		Х	Х	
MT-2	Х	Х	Х		Х	Х	
MT-3	Х	Х	Х		Х	Х	
MT-4	Х	Х	Х		Х	Х	
MT-5	Х	Х	Х		Х	Х	
MT-6	Х	Х	Х		Х	Х	
MT-7	Х	Х	Х		Х	Х	
MT-8	Х	Х	Х		Х	Х	
MT-8-DUP-S	Х	Х	X		Х	Х	
TP-1-S	Х	Х	Х		Х	Х	
TP-1-TS	Х	Х	X		Х	X	
TP-2-S	Х	Х	X		Х	Х	
TP-2-TS	Х	Х	X		Х	Х	
TP-3-S	Х	Х	X		Х	Х	
TP-3-TS	Х	Х	X		Х	Х	
TP-5-S	Х	Х	X		Х	Х	
TP-5-S-DUPA	Х	Х	X		Х	X	
TP-5-TS	Χ	Х	X		Х	X	
TP-6-S	Χ	Х	X		Х	X	
TP-6-TS	Χ	Х	X		Х	X	
TP-7-S	Х	Х	X		Х	X	
TP-7-TS	Х	Х	X		Х	X	
TP-8-TS	Χ	Х	X		Х	Χ	
TP-9-S	Х	Х	X		Х	X	
TP-9-TS	Х	Х	Х		Х	X	
TP-10-S	Х	Х	Х		Х	X	
TP-10-S-DUPA	Х	Х	Χ		Х	X	
TP-10-TS	Х	Х	Х		Х	X	
TP-10-TS-DUPA	Х	Х	Х		Х	X	
TP-11-S	Χ	Х	Х		Х	X	
TP-11-TS	Х	Х	X		Х	X	
TP-5-TS-DUPA	Х	Х	Х		Х	Х	

Identification de la colonne	Type de	Code lithologique Osisko	Zone	Essais s	Essais statiques de fermeture			
	l'échantillon			SFE	BAB	NAG		
E-27-U-H	Minerai	Minerai Composite	Zone 27 high part/high grade					
E-CA-U-H	Minerai	Minerai Composite	Caribou high part/high grade	Х	Х	Х		
P3-K	Minerai	Minerai Composite	Lynx Main					
Under Dog A	Minerai	Minerai Composite	Underdog	Х	Х	Х		
OBM-16-671_23	Stériles	I1P	Zone 27	Х	Х	Х		
EAG-14-538_58	Stériles	I1P	Zone 27					
OBM-16-630_61	Stériles	V1	Zone 27					
OBM-16-580_17	Stériles	V2	Caribou					
OSK-W-16-743_93	Stériles	I1P	Bobcat	X	Х	Х		
OBM-15-564_79	Stériles	I1P	Underdog					
OSK-W-17-774_44	Stériles	I2F	Lynx Main	Х	Х	Х		
OSK-W-17-812_102	Stériles	I1 Frg	Underdog					
OSK-W-17-773_41	Stériles	I3A	Zone 27	X	Х	Х		
OSK-W-16-760_31	Stériles	V1	Triple Lynx	X	Х	Х		
OSK-W-16-760_67	Stériles	V2	Lynx Main					
EAG-13-485_3	Stériles	V2	Caribou	Х	Х	Х		
Tails CND 1	Résidus	Résidus Composite	Main and Lynx Main			Х		
Tails CND 4	Résidus	Résidus Composite	Main, Lynx, and Underdog	Х		Х		
Tails CND 5	Résidus	Résidus Composite	Lynx and Underdog					
Tails CND 6	Résidus	Résidus Composite	Underdog					
CIL 11 CND	Résidus	Résidus Composite	Triple Lynx					
CIL 13 CND	Résidus	Résidus Composite	Lynx 4					

ANNEXE

B

RÉSULTATS DES ANALYSES GÉOCHIMIQUES

- Tableau A: R su tat s de 'a a yse des et s aj eurs roche tota e)
- Tableau B: Résultats du bilan acide base (BAB) du minerai, des résidus et des
 - stériles miniers
- Tableau C : Calculs du bilan acide base (BAB) du minerai, des résidus et des
 - stériles miniers
- Tableau D: Résultats du bilan acide base (BAB) du mort-terrain
- Tableau E: R su tat s de 'a a yse MA.200
- Tableau F: Résultats de l'analyse par diffraction des rayons X
- Tableau G: Résultats du test de lixiviation TCLP Tableau H: Résultats du test de lixiviation SPLP
- Tableau I: Résultats du test de lixiviation CTEU-9
- Tableau J: Résultats des eaux de procédés/traitement des résidus
- Tableau K: Résumé des dépassements selon les critères des Guides de
 - Caractérisation (2020) et d'Intervention (2021)
- Tableau L : Calculs de l'épuisement des cellules humides
- Tableau M: Résultats du bilan acide base (BAB) de fermeture
- Tableau N: R su tat s de 'a a yse SFE de fermeture
- Tableau O: Résultats du test GAN de fermeture
- Tableau P: Résultats de la fermeture du GAN lixiviat

Identification de l'échantillon	Type de	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	Na ₂ O	K₂O	TiO ₂	P ₂ O ₅	MnO	Cr ₂ O ₃	V ₂ O ₅	PAF
	l'échantillon							%						
E-27-D-H	Minerai	59.8	12.8	12.2	0.79	1.23	0.51	3.3	0.47	0.12	0.03	< 0.01	0.01	8.18
E-27-D-L	Minerai	62.8	12.6	11	0.96	0.8	0.46	3.04	0.68	0.15	0.03	< 0.01	0.02	6.63
E-27-U-H	Minerai	62.4	12.9	10.7	0.77	0.77	0.5	3.23	0.4	0.09	0.02	0.01	< 0.01	7.4
E-27-U-L	Minerai	55.9	16.1	11.2	1.38	0.87	0.56	4.03	0.65	0.1	0.03	0.03	0.03	8.07
E-CA-D-H	Minerai	61.5	11.4	10.9	1.87	2.02	0.51	2.63	0.47	0.09	0.05	0.02	0.01	6.51
E-CA-D-L	Minerai	59.5	13.9	9.37	2.06	2.24	0.64	3.18	0.76	0.16	0.06	0.02	0.02	6.03
E-CA-U-H	Minerai	64.9	12.5	7.62	1.32	1.57	0.58	2.94	0.27	0.07	0.04	0.01	0.01	6.02
E-CA-U-L	Minerai	71.9	11.7	4.78	0.77	0.99	0.67	2.88	0.19	0.04	0.02	0.01	< 0.01	4.42
Under Dog A	Minerai	68.7	13.7	6.5	0.78	0.9	0.83	3.42	0.35	0.08	< 0.01	0.02	< 0.01	4.74
Under Dog B	Minerai	71.1	13.7	3.86	0.96	1.27	0.82	3.44	0.24	0.07	< 0.01	0.02	< 0.01	3.62
Under Dog C	Minerai	50	14.1	17.1	1.14	1.1	0.99	3	1.31	0.3	0.02	0.02	0.02	10.1
P3-I	Minerai	68.1	12.7	3.98	1.7	2.71	0.89	2.73	0.33	0.07	0.06	0.01	0.01	4.85
P3-J	Minerai	67.6	11.2	4.55	2.07	3.51	0.58	2.62	0.29	0.05	0.06	0.01	0.01	5.66
P3-K	Minerai	71.6	10.7	4.17	1.57	2.41	0.52	2.42	0.23	0.05	0.04	0.02	< 0.01	4.82
P3-L	Minerai	72.5	10.7	3.45	1.49	2.43	0.52	2.45	0.2	0.04	0.05	< 0.01	0.01	4.35
Triple Lynx LG	Minerai	78.5	10.2	2.97	0.61	0.76	0.34	2.63	0.17	0.03	0.02	0.01	0.01	3.29
Lynx 4 LP-LG	Minerai	72.5	9.23	4	1.56	2.79	0.34	2.34	0.19	0.03	0.05	0.01	0.01	4.8
Lynx 4 HP-LG	Minerai	70	12.6	5.03	0.65	0.79	0.42	3.27	0.34	0.06	0.02	0.02	0.02	4.86
Triple Lynx MG/HG	Minerai	72.5	11.4	3.67	0.95	1.36	0.38	2.97	0.27	0.03	0.02	0.01	0.01	4.34
Lynx 4 LP-MG/HG	Minerai	69.4	10.9	5.49	1.35	2.04	0.37	2.74	0.27	0.04	0.05	0.02	0.02	5.41
Lvnx 4 HP-MG/HG	Minerai	63.5	12.3	5.28	2.02	3.51	0.44	3.02	0.34	0.05	0.08	0.03	0.04	6.05
Tails CND 1	Résidus	62	11.8	9.26	1.81	2.5	0.54	2.73	0.32	0.07	0.07	0.08	0.01	6.41
Tails CND 4	Résidus	64.3	12	8.22	1.52	2.35	0.67	2.92	0.43	0.09	0.06	0.09	0.02	5.37
Tails CND 5	Résidus	65.5	11.9	7.27	1.38	2.17	0.75	2.86	0.34	0.07	0.04	0.08	0.01	5
Tails CND 6	Résidus	68.4	12.3	7.04	1	1.27	0.8	3.1	0.29	0.07	0.02	0.07	< 0.01	4.49
CIL 11 CND	Résidus	72.8	10.8	4.41	0.97	1.34	0.4	2.77	0.26	0.04	0.03	0.03	< 0.01	4.29
CIL 12 CND	Résidus	70.9	10.3	5.11	1.38	2.23	0.41	2.63	0.27	0.03	0.05	0.02	< 0.01	5.25
CIL 13 CND	Résidus	68	10.6	5.88	1.67	2.75	0.4	2.6	0.3	0.05	0.06	0.03	0.02	5.68
OSK-W-17-859-240	Stériles	57.2	13	7.19	4.35	4.62	1.22	1.86	0.43	0.09	0.13	0.03	0.02	9.03
EAG-13-490 5	Stériles	74.5	15.1	1.82	0.41	0.28	0.54	3.91	0.32	0.1	< 0.01	< 0.01	< 0.01	2.93
EAG-13-490 6	Stériles	68.2	15.1	2.48	1.55	2.45	3.6	2.37	0.26	0.06	0.04	< 0.01	< 0.01	3.73
#08352	Stériles	63.3	15.1	4.19	1.76	3.5	1.1	2.63	0.45	0.11	0.06	0.01	0.01	7.37
GC10017	Stériles	64.8	11.1	4.5	2.3	4.75	0.62	2.48	0.33	0.06	0.07	< 0.01	< 0.01	7.57
OBM-15-557 10	Stériles	63.9	14.8	2.99	1.9	3.81	1.95	2.89	0.33	0.09	0.07	< 0.01	< 0.01	5.98
OBM-15-559 12	Stériles	65.1	15.5	2.68	1.24	3.37	4.83	2.11	0.31	0.14	0.04	< 0.01	< 0.01	3.76
OBM-15-559 13	Stériles	43.8	15.1	11	6.84	7.35	2.23	1.46	0.97	0.09	0.15	0.03	0.03	10.3
GC10029	Stériles	68	13.2	4.05	1.78	2.32	1.01	2.8	0.35	0.07	0.03	< 0.01	< 0.01	5.04
OBM-15-565 15	Stériles	69.7	14.3	2.28	1.14	2.12	0.89	3.8	0.26	0.07	0.04	< 0.01	< 0.01	4.32
OBM-16-580 18	Stériles	68.8	15.9	2.11	1.51	2.36	3.32	2.8	0.24	0.07	0.02	< 0.01	< 0.01	2.73
GC10026	Stériles	70.6	11.2	3.68	1.5	2.75	0.43	2.86	0.32	0.06	0.05	< 0.01	< 0.01	5.22
OBM-16-619 20	Stériles	70.6	16.1	3.13	0.64	0.64	0.53	4.2	0.43	0.1	0.02	< 0.01	< 0.01	3.81
OSK-W-17-788 52	Stériles	71.4	13.6	4.07	0.89	1.09	0.48	3.35	0.16	0.02	0.07	< 0.01	< 0.01	3.86
OBM-16-671 23	Stériles	51.9	13.7	6.61	4.54	7.43	1.57	2.44	0.68	0.25	0.15	0.04	0.02	10.2
OBM-16-693_25	Stériles	70.8	14.7	1.95	0.99	1.58	0.48	4.22	0.27	0.09	0.02	< 0.01	< 0.01	3.98
OSK-W-16-715 27	Stériles	62.1	14.4	3.95	2	4.12	0.83	3.58	0.4	0.11	0.08	< 0.01	< 0.01	6.44
OSK-W-16-735-W1 28	Stériles	69.6	15.8	3.81	0.57	0.76	0.61	4.22	0.34	0.11	0.01	< 0.01	< 0.01	4.05
GC10028	Stériles	71.4	11.1	3.73	1.54	2.26	0.43	2.67	0.18	0.02	0.12	< 0.01	< 0.01	4.72
OSK-W-16-751 30	Stériles	41.4	15.6	9.94	8.34	8.32	1.22	0.67	0.72	0.13	0.15	0.04	0.04	13.3
EAG-13-485 1	Stériles	72.2	12	2.57	1.58	2.35	0.4	3.1	0.2	0.03	0.05	< 0.01	< 0.01	4.6

PAF = Perte Au Feu Page 1 of 7

Identification de l'échantilles	Type de	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	Na ₂ O	K₂O	TiO ₂	P ₂ O ₅	MnO	Cr ₂ O ₃	V ₂ O ₅	PAF
Identification de l'échantillon	l'échantillon							<u> </u> %						
OSK-W-16-761 33	Stériles	43.7	15.6	10.1	8.85	7.59	1.97	0.56	0.7	0.13	0.16	0.03	0.04	10.7
OSK-W-17-773 38	Stériles	67.1	14.7	2.57	1.25	3.45	1.22	2.57	0.31	0.08	0.05	< 0.01	< 0.01	5.57
OSK-W-17-773 39	Stériles	61.2	15.6	3.05	1.87	4.59	0.94	3.28	0.53	0.15	0.08	< 0.01	< 0.01	7.77
GC10025	Stériles	72.6	10.8	1.7	1.94	3.03	0.29	2.88	0.14	0.01	0.06	< 0.01	< 0.01	6.01
OSK-W-17-773 41	Stériles	42.3	14.6	10.9	7.33	9.15	0.27	1.73	0.74	0.13	0.16	0.03	0.05	12.6
OSK-W-17-774 43	Stériles	70.2	14.6	2.37	1.29	1.71	0.9	3.82	0.25	0.07	0.02	< 0.01	< 0.01	3.94
OSK-W-17-774 44	Stériles	65.6	15.7	2.8	1.38	3.35	4.89	1.85	0.32	0.15	0.04	< 0.01	< 0.01	3.35
GC10027	Stériles	72.6	14.3	1.82	0.89	1.25	0.5	3.92	0.35	0.03	0.02	0.01	< 0.01	3.8
EAG-13-491 7	Stériles	72.9	8.93	4.36	1.94	2.59	0.27	2.1	0.16	0.01	0.08	< 0.01	< 0.01	4.51
OSK-W-17-779 47	Stériles	44.6	12.2	12.9	5.83	10.8	1.66	0.06	1.13	0.2	0.22	0.02	0.06	11
OSK-W-17-783 48	Stériles	39.3	14.4	10.4	6.41	9.47	1.03	1.42	0.81	0.16	0.2	0.02	0.03	16.2
OSK-W-17-788 50	Stériles	67.4	14.4	2.33	1.18	3.19	2.96	2.38	0.27	0.07	0.04	< 0.01	< 0.01	5
OSK-W-17-788 51	Stériles	69.7	14.7	2.1	0.89	2.47	3.16	2.43	0.26	0.06	0.04	< 0.01	< 0.01	3.99
OSK-W-17-773 40	Stériles	74.4	11.7	2.7	1.05	1.85	0.44	2.97	0.19	0.02	0.05	< 0.01	< 0.01	3.96
OSK-W-19-1857-W2-1030	Stériles	74.6	11.6	2.8	1.23	1.73	0.5	2.71	0.13	0.02	0.03	0.01	< 0.01	3.82
EAG-13-485 54	Stériles	65.4	14.9	2.71	1.54	3.28	1.78	3.27	0.3	0.07	0.07	< 0.01	< 0.01	5.48
EAG-13-490 55	Stériles	64.4	14.9	2.61	1.64	3.6	4.22	2.2	0.31	0.14	0.06	< 0.01	0.01	5.37
EAG-13-497 56	Stériles	72.9	12.5	4.38	0.63	0.73	0.46	3.25	0.25	0.05	0.02	< 0.01	< 0.01	4.26
EAG-14-538 58	Stériles	71.9	14.9	3.86	0.42	0.21	0.58	3.93	0.31	0.05	< 0.01	< 0.01	0.02	3.93
OBM-15-559 59	Stériles	62.4	14.8	7.19	2.98	3.44	2.47	1.39	0.63	0.11	0.04	0.01	0.01	3.74
OBM-15-566 60	Stériles	60.4	12.9	2.74	3.39	6.06	0.37	3.55	0.22	0.06	0.1	< 0.01	< 0.01	9.77
GC10030	Stériles	74.8	11.4	3.35	1.33	1.58	0.31	2.9	0.23	0.02	0.1	< 0.01	< 0.01	4.18
OBM-16-671 63	Stériles	63.6	15.2	3.08	1.65	3.86	4.52	2.13	0.34	0.16	0.06	< 0.01	< 0.01	4.63
OBM-16-673 64	Stériles	60.1	13.6	11.5	0.88	0.83	0.98	3.25	0.26	0.07	0.01	< 0.01	< 0.01	7.86
OSK-W-16-713 65	Stériles	67.4	16.1	5.49	0.42	0.29	0.66	4.18	0.38	0.09	< 0.01	< 0.01	< 0.01	4.71
OSK-W-16-735-W1 66	Stériles	72.3	15.5	2.82	0.39	0.36	0.83	3.82	0.39	0.09	< 0.01	< 0.01	< 0.01	3.28
OBM-16-645 69	Stériles	51.9	13.7	12.1	2.57	4.32	0.93	2.73	1.26	0.22	0.15	< 0.01	0.02	6.55
OBM-16-642 70	Stériles	51.1	14	7.15	3.46	6.22	0.72	3.91	0.72	0.06	0.07	0.01	0.02	7.98
OSK-W-17-774 72	Stériles	65	14.1	2.48	2.08	3.68	3.18	2.68	0.26	0.06	0.03	< 0.01	< 0.01	5.43
OSK-W-17-918 73	Stériles	68.7	12.6	2.36	1.92	3.25	0.42	3.25	0.22	0.03	0.07	< 0.01	< 0.01	6.22
OSK-W-17-879 74	Stériles	63	13.9	3.13	2.14	4.43	0.81	3.05	0.4	0.08	0.09	< 0.01	< 0.01	7.64
OSK-W-17-1006 75	Stériles	65.3	12	3.71	2.24	4.23	0.5	2.92	0.27	0.05	0.09	< 0.01	< 0.01	6.83
OSK-W-17-1039 76	Stériles	69.1	13	2.2	1.76	3.2	0.54	3.2	0.28	0.05	0.07	< 0.01	< 0.01	6.24
OSK-W-17-934 77	Stériles	69.2	13.9	2.05	1.54	2.69	0.64	3.34	0.31	0.06	0.04	< 0.01	< 0.01	5.31
GC10001	Stériles	67.8	13.4	3.15	1.56	3.05	0.72	2.93	0.3	0.05	0.03	< 0.01	< 0.01	6.17
GC10002	Stériles	70.2	12.9	2.5	1.46	2.59	0.59	3.13	0.24	0.04	0.04	< 0.01	< 0.01	5.7
GC10003	Stériles	55.5	13.9	5.28	3.96	6.22	1.42	1.82	0.51	0.1	0.08	0.01	0.03	10.8
GC10004	Stériles	65.4	13	3.69	2.03	3.81	0.43	3.26	0.33	0.07	0.08	< 0.01	< 0.01	7.01
GC10005	Stériles	71.5	11.8	3.98	1.12	1.95	0.53	2.83	0.33	0.06	0.04	< 0.01	< 0.01	5.15
GC10006	Stériles	68.1	13.6	2.65	1.06	3.8	0.79	3.13	0.3	0.06	0.06	< 0.01	< 0.01	5.95
GC10007	Stériles	71	11.6	2.23	1.65	3.41	0.89	2.21	0.26	0.05	0.06	< 0.01	< 0.01	6.41
GC10008	Stériles	70.5	14.5	1.6	0.68	2.4	4.65	1.82	0.22	0.06	0.02	< 0.01	< 0.01	3.3
GC10009	Stériles	66.3	14.7	2.3	1.9	3.27	0.72	3.63	0.25	0.07	0.1	< 0.01	< 0.01	6.22
GC10010	Stériles	68.6	15.4	2.34	1.17	2.52	1.61	2.21	0.26	0.08	0.03	< 0.01	< 0.01	5.12
GC10011	Stériles	71.5	16.2	1.61	0.78	1.03	1.29	3.42	0.27	0.08	< 0.01	< 0.01	< 0.01	3.23
GC10012	Stériles	69.1	14.8	2.69	1.69	3.11	1.94	1.72	0.26	0.07	0.04	< 0.01	< 0.01	4.05
GC10013	Stériles	66.9	13.5	2.25	1.81	3.88	0.39	3.61	0.23	0.06	0.05	< 0.01	< 0.01	7.06
GC10014	Stériles	42	16.1	10.4	6.88	8.32	2.36	1.05	0.67	0.17	0.16	0.03	0.05	10.8
GC10015	Stériles	43.7	12.8	11.9	6.01	9.48	2.02	0.41	0.97	0.17	0.21	0.02	0.05	11.8

PAF = Perte Au Feu Page 2 of 7

Identification de l'échantilles	Type de	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	Na ₂ O	K₂O	TiO ₂	P ₂ O ₅	MnO	Cr ₂ O ₃	V ₂ O ₅	PAF
Identification de l'échantillon	l'échantillon							<u> </u> %						
GC10016	Stériles	39.8	15.3	8.6	10.3	8.82	1.04	0.8	0.41	0.09	0.15	0.05	0.03	13.6
OSK-W-19-934-W3-940	Stériles	75.4	10.7	2.49	1.47	1.87	0.32	2.59	0.15	0.01	0.06	< 0.01	< 0.01	4.14
GC10018	Stériles	40.2	12.5	8.78	5.58	11.1	1.17	1.97	0.61	0.11	0.19	0.02	0.03	15.4
GC10019	Stériles	40.3	14.6	11.2	8.22	9.79	0.83	0.79	0.6	0.1	0.19	0.02	0.03	12.1
GC10020	Stériles	41.4	14.5	8.62	10.6	7.21	0.85	1.12	0.46	0.1	0.16	0.07	0.03	14
GC10020 GC10021	Stériles	39	17.5	8.86	9.37	7.54	0.74	1.83	0.49	0.1	0.17	0.07	0.03	12.8
GC10021 GC10022	Stériles	43.2	14.2	11.6	6.43	8.48	0.64	1.41	0.43	0.14	0.17	0.05	0.03	10.6
GC10022	Stériles	35.7	15.2	10.7	5.97	10.1	0.43	2.97	0.72	0.08	0.10	0.03	0.04	16.7
GC10024	Stériles	40.5	14.7	9.79	11.7	7.85	1.91	0.03	0.72	0.00	0.25	0.07	0.04	12.2
WST-21-0873-445	Stériles	75.7	11.7	1.17	1.57	1.49	0.38	2.95	0.18	0.02	0.02	< 0.01	< 0.01	4.08
OSK-W-17-836-400	Stériles	75.7	11.6	2.63	1.01	1.36	0.51	2.65	0.19	0.02	0.05	< 0.01	< 0.01	3.54
EAG-14-544 8	Stériles	76	11.8	1.65	1.09	1.87	0.52	2.86	0.16	0.02	0.05	< 0.01	< 0.01	3.8
OSK-W-21-2613-W1-1105	Stériles	76.2	10.9	2.82	1.1	1.1	0.31	2.83	0.17	0.02	0.05	0.01	< 0.01	3.33
OSK-W-17-779 46	Stériles	76.3	11.4	1.47	0.98	1.9	0.38	2.95	0.17	< 0.02	0.03	< 0.01	< 0.01	4.18
GC10031	Stériles	76.6	11.3	1.26	0.83	1.31	0.33	3.1	0.12	0.02	0.03	< 0.01	< 0.01	3.59
EAG-13-485 53	Stériles	76.9	9.38	5.38	0.57	0.6	0.31	2.42	0.12	< 0.01	0.02	< 0.01	< 0.01	4.11
#08351	Stériles	39.7	14.2	8.87	10.5	9.03	1.73	0.07	0.39	0.07	0.16	0.06	0.03	15.1
OSK-W-17-779 45	Stériles	77	9.25	5.53	1.06	0.86	0.24	2.01	0.16	0.02	0.08	< 0.01	< 0.01	3.32
#08353	Stériles	38.9	14.8	8.76	9.93	8.14	1.6	0.56	0.45	0.08	0.14	0.06	0.03	15.9
#08354	Stériles	64.5	15	3.95	1.8	3.49	1.33	2.36	0.37	0.1	0.07	0.01	< 0.01	5.67
#08355	Stériles	65.1	15	2.79	2.06	3.24	0.83	3.31	0.32	0.11	0.09	< 0.01	< 0.01	5.91
#08356	Stériles	65.2	15.3	3.08	1.69	3.2	0.72	3.47	0.31	0.1	0.06	< 0.01	< 0.01	5.59
#08357	Stériles	39.5	15.1	9.37	9.69	8.12	1.23	0.87	0.51	0.1	0.15	0.05	0.03	14.7
#08358	Stériles	42.4	13.7	10.8	14.6	5.13	0.25	0.02	0.55	0.14	0.11	0.11	0.03	11.4
WST-21-0647-161.5	Stériles	69.1	15.1	1.56	0.6	2.45	4.92	1.96	0.23	0.06	0.02	< 0.01	< 0.01	3.37
WST-21-0647-260	Stériles	74.9	13.4	2.36	0.48	0.47	0.48	3.5	0.22	0.04	< 0.01	< 0.01	0.01	3.39
OSK-W-21-2252-W12-922	Stériles	77	12.4	2.89	0.45	0.31	0.46	3.03	0.34	0.06	< 0.01	< 0.01	< 0.01	3.21
OSK-W-21-2606-670	Stériles	41.8	14.9	11	8.51	8.89	2.3	0.22	0.62	0.1	0.18	0.04	0.04	10.2
WST-22-1020-160	Stériles	66.5	16.8	1.75	0.69	2.74	5.04	1.94	0.26	0.07	0.02	< 0.01	< 0.01	3.14
WST-21-0666-54	Stériles	38.7	14.2	10.7	7.24	8.91	1.27	1.18	0.65	0.12	0.2	0.04	0.04	14.8
WST-22-1020-210	Stériles	68.8	14.6	2.22	1.94	2.62	1.35	2.43	0.25	0.07	0.04	< 0.01	< 0.01	4.97
OSK-W-19-1746-W1-765	Stériles	77.1	12.2	2.2	0.75	0.72	0.44	2.94	0.18	0.02	0.05	< 0.01	< 0.01	2.89
WST-22-1013-345	Stériles	70.1	15.1	3.29	1.45	1.04	0.49	3.42	0.44	0.08	0.02	< 0.01	< 0.01	3.73
OSK-W-21-2551-W3-915	Stériles	69.5	15.1	2.47	1.1	2.65	2.11	1.73	0.31	0.11	0.02	< 0.01	< 0.01	4.56
OSK-W-16-751_29	Stériles	77.2	8.96	2.32	1.22	2.33	0.4	2.14	0.14	0.02	0.04	< 0.01	< 0.01	4.25
WST-21-0992-450	Stériles	66.2	14.8	2.53	1.86	2.73	1.95	2.83	0.3	0.08	0.03	< 0.01	< 0.01	5.36
WST-21-0952-32	Stériles	39.3	14.7	9.91	10.9	7.31	1.02	0.68	0.47	0.09	0.14	0.07	0.02	13.1
OSK-W-21-1949-W15-1080	Stériles	70.9	13.5	2.18	1.35	2.13	0.48	3.49	0.24	0.06	0.04	< 0.01	< 0.01	4.58
OSK-W-16-760_31	Stériles	77.2	9.84	3.54	1.03	1.25	0.3	2.3	0.14	0.01	0.04	< 0.01	< 0.01	3.16
OSK-W-21-2555-590	Stériles	39.6	12.5	11.3	10.8	9	1.5	0.14	0.75	0.16	0.22	0.04	0.03	13.7
OSK-W-21-2555-728	Stériles	63.4	15	3.15	1.33	4.51	4.65	1.87	0.3	0.14	0.05	< 0.01	< 0.01	4.64
OSK-W-21-2544-838	Stériles	68.2	13.1	3.35	1.79	2.71	0.37	3.35	0.33	0.05	0.11	< 0.01	< 0.01	5.84
OSK-W-21-2531-655	Stériles	63.8	15.3	3.05	1.35	3.59	5.06	1.9	0.31	0.14	0.04	< 0.01	< 0.01	5.11
WST-21-0730-500	Stériles	66.6	14.5	2.89	1.83	2.95	1.09	2.77	0.3	0.08	0.06	< 0.01	< 0.01	6.82
WST-20-0573-367	Stériles	64.5	15.3	2.53	1.39	3.2	4.2	2.24	0.32	0.14	0.05	< 0.01	< 0.01	5.53
WST-21-0621-155	Stériles	69.9	15.2	1.65	0.61	2.06	5.06	1.89	0.23	0.06	0.02	< 0.01	< 0.01	3.01
OSK-W-19-1949-W1-635	Stériles	68.1	13.7	2.57	1.51	2.86	0.47	3.48	0.3	0.07	0.03	< 0.01	< 0.01	5.92
OSK-W-20-2375-916	Stériles	67.2	15.5	2.74	1.41	2.37	0.77	3.46	0.44	0.12	0.05	< 0.01	0.01	5.39
OSK-W-21-2613-1042	Stériles	69.4	13.4	5.21	1.51	1.47	0.4	3.17	0.39	0.05	0.09	< 0.01	< 0.01	3.8

PAF = Perte Au Feu Page 3 of 7

	Type de	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P ₂ O ₅	MnO	Cr ₂ O ₃	V ₂ O ₅	PAF
Identification de l'échantillon	l'échantillon			- 0			-	<u> </u>	_				"	
OSK-W-21-2587-990	Stériles	72.1	15.1	1.44	0.85	1.14	0.51	3.93	0.26	0.08	0.03	< 0.01	< 0.01	3.51
OSK-W-21-2567-990 OSK-W-19-1857-W2-1310	Stériles	77.2	11.1	2.54	0.65	1.14	0.51	2.7	0.26	0.08	0.03	< 0.01	< 0.01	2.92
						0.40								
WST-21-0878-517	Stériles	41.8	14.6	9.2	4.22	9.19	0.49	3.38	0.62	0.14	0.16	0.04	0.04 0.04	14.1
WST-21-0879-639	Stériles	42.8	15.3	9.67	6.69	7.99	1.64	1.36	0.68	0.15	0.16			12.9
OSK-W-19-1897-610	Stériles	64.2	15.2	2.86	1.42	3.47	4.67	2.16	0.33	0.16	0.05	< 0.01	< 0.01	4.58
OSK-W-19-1897-760	Stériles	70.2	14.7	2.22	1.07	2.25	3.85	1.88	0.27	0.07	0.03	< 0.01	< 0.01	3.05
OSK-W-19-1897-825	Stériles	66.3	14.4	3.7	1.56	3.24	3.82	1.67	0.4	0.1	0.04	< 0.01	0.02	4.11
OSK-W-19-1897-880	Stériles	69.4	15.1	2.76	0.92	1.98	2.98	2.46	0.3	0.08	0.02	< 0.01	< 0.01	3.27
OSK-W-19-1897-983	Stériles	70.5	14	2.75	1.12	2.06	1.45	3.15	0.25	0.07	0.01	< 0.01	< 0.01	3.79
WST-18-0024-120	Stériles	63.7	15.2	2.8	1.68	3.38	4.52	2.22	0.32	0.14	0.05	< 0.01	0.01	5.4
OSK-W-19-1949-W1-948	Stériles	40.1	14.6	9.91	6.43	9.05	0.65	2.18	0.62	0.1	0.16	0.03	0.04	14.7
OSK-W-21-2587-1060	Stériles	77.3	11	1.79	1.03	1.32	0.36	2.88	0.16	0.01	0.05	< 0.01	< 0.01	3.41
OSK-W-17-1369-219.5	Stériles	77.3	12.7	1.76	0.72	0.41	0.34	3.52	0.21	0.03	0.02	0.01	< 0.01	2.94
OSK-W-21-2252-1013	Stériles	66	14	2.81	1.68	3.34	0.51	3.71	0.26	0.07	0.05	< 0.01	< 0.01	6.28
OSK-W-20-2283-W7-888	Stériles	74	12.7	3.62	1.05	0.89	0.34	3.06	0.33	0.06	0.04	< 0.01	< 0.01	3.14
OSK-W-20-2397-W1-680	Stériles	40.3	15.1	9.71	9.22	8.49	2.34	0.37	0.51	0.1	0.16	0.04	0.04	12.3
OSK-W-20-2256-W1-1051.7	Stériles	64	13.7	2.97	2.36	4.24	0.51	3.25	0.35	0.09	0.07	< 0.01	< 0.01	7.42
OSK-W-20-2313-W6-983	Stériles	60.8	16.5	2.8	1.68	3.86	5	2.2	0.34	0.16	0.06	< 0.01	< 0.01	5.95
OSK-W-20-2375-W4-890	Stériles	71.9	15.1	2.71	0.5	0.85	0.69	3.58	0.42	0.1	0.02	< 0.01	< 0.01	3.56
OSK-W-21-2444-610	Stériles	68.1	15.5	2.24	1.37	2.33	3.21	2.47	0.25	0.07	0.01	< 0.01	< 0.01	3.63
OSK-W-20-2350-125	Stériles	63.3	14.9	3.45	1.71	3.6	3.18	2.22	0.36	0.12	0.06	< 0.01	0.01	6.3
OSK-W-19-1746-W1-687	Stériles	67	14.3	2.77	1.17	1.71	0.65	3.39	0.33	0.09	0.04	< 0.01	< 0.01	7.26
WST-21-0647-313	Stériles	77.5	11.4	1.57	0.8	1.07	0.38	3	0.18	0.02	0.03	< 0.01	< 0.01	3.39
OSK-W-19-1857-W2-895	Stériles	68	15.1	2.26	1.06	3.77	1.54	2.39	0.27	0.08	0.03	< 0.01	< 0.01	5.15
OSK-W-17-1369-365	Stériles	68.1	15	2.09	1.33	2.04	2.75	2.79	0.24	0.07	0.02	< 0.01	< 0.01	3.75
OSK-W-17-836-257	Stériles	42.6	13.8	8.48	5.36	8.97	0.89	2.36	0.6	0.13	0.16	0.04	0.03	15
GC10032	Stériles	78.1	11.6	2	0.84	0.91	0.35	3.02	0.18	0.01	0.02	< 0.01	< 0.01	3.04
OSK-W-19-934-W3-1045	Stériles	78.1	11.2	1.42	0.77	1.05	0.25	3.18	0.12	0.02	0.03	< 0.01	< 0.01	3.19
OSK-W-17-864-W2-635	Stériles	65.7	15.6	2.64	1.19	2.96	4.96	1.98	0.3	0.15	0.04	0.01	< 0.01	4.24
OSK-W-17-870-270	Stériles	72.3	12.6	1.64	1.31	2.38	0.47	3.2	0.26	0.04	0.05	< 0.01	< 0.01	5.16
OSK-W-19-1857-W2-980	Stériles	45	15.9	9.75	3.64	9.77	2.23	1.14	0.89	0.09	0.19	0.04	0.04	10.6
OSK-W-19-1949-W1-1015	Stériles	78.4	11.5	1.44	0.72	0.79	0.33	3.04	0.17	0.02	0.01	< 0.01	< 0.01	2.88
OSK-W-19-1857-W2-1110	Stériles	39.5	15.2	9.92	9.32	8.11	2.21	0.56	0.58	0.13	0.14	0.05	0.04	13.7
OSK-W-19-1857-W2-1210	Stériles	61.4	12.1	5.73	5.02	4.15	1.07	1.54	0.31	0.05	0.08	0.03	0.01	7.65
WST-21-0873-268.1	Stériles	78.5	12.4	0.7	0.45	0.52	0.45	3.18	0.18	0.03	0.01	< 0.01	< 0.01	2.6
OSK-W-19-909-W12-770	Stériles	71.9	12.7	2.49	1.18	2.38	1.01	2.35	0.10	0.04	0.03	< 0.01	< 0.01	4.73
WST-22-1020-320	Stériles	78.6	11.1	1.06	0.77	1.14	0.43	2.76	0.23	0.04	0.03	< 0.01	< 0.01	3.21
OSK-W-19-909-W12-955	Stériles	78.7	11.1	1.61	0.67	0.81	0.45	2.75	0.11	0.02	0.03	0.01	< 0.01	2.8
OBM-15-559 11	Stériles	78.9	11	1.54	0.67	0.81	0.43	3.08	0.10	0.01	0.02	< 0.01	< 0.01	2.52
OBM-16-609 19	Stériles	80.1	10.2	2.85	0.03	0.76	0.29	2.79	0.13	0.01	< 0.02	< 0.01	< 0.01	2.95
OBM-16-609_19 OBM-15-565_16	Stériles	80.6	11.2	1.66	0.30	0.25	0.31	3.09	0.14	0.02	< 0.01	< 0.01	< 0.01	2.95
OSK-W-21-2512-W3-550	Stériles	64.9	15.1	2.67	1.37	3.26	4.94	1.92	0.13	0.01	0.05	< 0.01	< 0.01	4.65
OSK-W-21-2512-W3-550	Stériles	64.8	15.7	2.63	1.37	3.42	5.09	1.92	0.31	0.15	0.03	0.01	0.01	3.88
OKS-W-21-2512-W3-610 OKS-W-21-2613-W1-855	Stériles	38.2	11.1	10.4	16.5	6.64	0.17	0.01	0.31	0.14	0.03	0.01	0.01	15.8
OKS-W-21-2629-720	Stériles	65	14.8	3.56	1.41	4.19	1.97	1.93	0.3	0.09	0.06	< 0.01	0.01	6.37
WST-21-0930-195	Stériles	69.8	15	1.57	0.58	2.41	5	1.87	0.23	0.07	0.02	0.01	< 0.01	3.1
OSK-W-21-2629-845	Stériles	40.1	14.2	9.62	7.85	8.81	1.15	1.17	0.67	0.12	0.15	0.03	0.03	15.4
OSK-W-21-2605-1332	Stériles	73.4	10.1	5.84	1.36	1.62	0.39	2.14	0.15	0.02	0.1	< 0.01	< 0.01	3.36
OSK-W-21-2629-948	Stériles	46.2	15.8	10.2	4.55	6.39	0.82	2.61	0.89	0.1	0.16	0.04	0.04	11

PAF = Perte Au Feu Page 4 of 7

	Type de	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	Na₂O	K₂O	TiO ₂	P ₂ O ₅	MnO	Cr ₂ O ₃	V ₂ O ₅	PAF
Identification de l'échantillon	l'échantillon		7 4203	1 0203	90	Jus	11020	%	1102	1 205		0.203	1205	174
OBM-15-552-230	Stériles	64.6	150	2.74	1.36	2 24	4.68	2.04	0.32	0.15	0.05	0.01	< 0.01	5.26
			15.2	2.74		3.34		1.98					< 0.01	
OBM-15-552-280	Stériles	63.9	15.1		1.46	3.47	4.74		0.32	0.15	0.04	< 0.01 < 0.01		5.45
OBM-16-655-535	Stériles	64 64.9	15.2	2.64	1.29	3.69	4.8	2.11	0.32	0.66	0.04	< 0.01	< 0.01 < 0.01	4.43
OBM-16-655-600	Stériles		15.3	2.55	1.24	3.24	4.79	2.1	0.3	0.15	0.04			4.99
OBM-16-677-79	Stériles	64.2	15.2	2.67	1.5	3.36	4.53	2.15	0.31	0.14	0.05	< 0.01	< 0.01	5.94
OSK-W-16-309-W2-645	Stériles	64.4	15.4	2.89	1.39	3.45	4.7	2.09	0.32	0.15	0.05	0.01	< 0.01	4.61
OSK-W-16-309-W2-720	Stériles	65.3	15.3	2.59	1.23	3.16	5	2.05	0.29	0.15	0.04	0.01	< 0.01	4.7
OSK-W-16-706-W2-905	Stériles	65.7	15.1	4.26	1.86	3.35	2.97	2.15	0.4	0.09	0.04	0.01	< 0.01	3.95
OSK-W-16-743-W1-915	Stériles	67.7	16	3.17	1.84	1.82	0.98	3.56	0.38	0.13	0.04	< 0.01	< 0.01	4.19
OSK-W-17-1079-580	Stériles	44.9	14.4	9.52	5.89	8.62	1.73	1.81	0.6	0.06	0.19	0.04	0.04	11.7
OSK-W-17-1104-665	Stériles	41.1	15.1	9.63	8.32	9.64	2.35	0.05	0.58	0.12	0.17	0.02	0.04	13
OSK-W-17-1121-545	Stériles	69.9	14.9	1.43	0.62	2.43	5.14	1.78	0.22	0.06	0.01	0.01	< 0.01	3.23
OSK-W-17-1305-261	Stériles	64.2	15.2	2.62	1.59	3.51	4.47	2.17	0.33	0.15	0.05	< 0.01	< 0.01	5.74
OSK-W-17-1369-262.5	Stériles	39.9	14.7	10.4	7.85	8.42	2.24	0.97	0.67	0.15	0.19	0.03	0.04	13.2
OSK-W-19-934-W3-885	Stériles	80.7	10.4	0.94	0.66	0.77	0.32	2.72	0.12	0.02	0.02	0.01	< 0.01	2.63
OSK-W-17-913-820	Stériles	67.2	15	2.04	2.1	2.55	1.12	3.56	0.23	0.06	0.03	< 0.01	< 0.01	5.36
OSK-W-17-968-145	Stériles	42.3	16.4	8.68	7.85	7.38	0.98	1.61	0.58	0.12	0.22	0.03	0.03	12.7
OSK-W-18-1759-190	Stériles	74.7	13.6	2.15	0.96	1.15	0.49	3.35	0.28	0.06	0.03	< 0.01	< 0.01	3.61
OSK-W-19-1181-W12-1140	Stériles	75.1	13.7	1.79	0.84	0.97	0.52	3.34	0.23	0.06	0.01	< 0.01	< 0.01	3
OSK-W-19-1181-W5-705	Stériles	69.9	15.1	1.61	0.59	2.06	4.82	1.98	0.24	0.06	0.03	< 0.01	< 0.01	3.49
OSK-W-19-1181-W5-845	Stériles	70.7	14.8	1.61	0.6	2.24	3.78	2.26	0.22	0.06	0.02	< 0.01	< 0.01	3.59
OSK-W-19-1181-W5-795	Stériles	65	16.2	4.82	1.03	3.57	3.24	1.32	0.5	0.12	0.07	0.01	< 0.01	3.9
OSK-W-19-1181-W5-920	Stériles	39.9	14.8	9.52	8.56	8.58	1.53	0.8	0.6	0.12	0.15	0.05	0.04	15
OSK-W-19-1181-W5-970	Stériles	43.5	14.6	9.56	7.23	7.55	1.98	1.04	0.65	0.1	0.15	0.03	0.04	13.2
OSK-W-19-1412-W3-715	Stériles	39.1	15	9.76	7.39	8.57	1.16	1.6	0.61	0.12	0.16	0.04	0.04	15.7
08359 Down Ramp 3	Stériles	63.8	14.8	3.39	2.26	3.53	2.13	2.35	0.36	0.11	0.05	< 0.01	< 0.01	6.39
08360 Down Ramp 4	Stériles	42.4	14.2	9.6	7.7	7.98	1.4	1.09	0.6	0.11	0.16	0.04	0.04	13.4
OBM-15-564 79	Stériles	66.2	15.1	3.79	1.88	2.6	2.27	2.17	0.4	0.1	0.05	0.01	0.01	3.15
OBM-15-557 80	Stériles	65.4	15.2	3.7	2.01	3.1	0.22	4.33	0.33	0.13	0.03	< 0.01	0.01	4.1
OBM-15-552 81	Stériles	66.5	14.6	4.6	1.48	1.96	4.84	1.44	0.36	0.09	0.03	< 0.01	0.02	3.11
OSK-W-16-311-W2 84	Stériles	67.1	15.1	3.38	1.34	2.92	3.15	2.11	0.38	0.1	0.04	< 0.01	0.01	3.53
OSK-W-16-706-W1 85	Stériles	66.1	14.3	3.62	1.23	2.82	3.91	1.88	0.38	0.09	0.03	< 0.01	< 0.01	3.59
OSK-W-16-706-W1 86	Stériles	67.8	15	2.82	1.16	2.4	3.07	2.64	0.26	0.07	0.03	< 0.01	< 0.01	3.3
OSK-W-16-706-W1 87	Stériles	68.3	15	2.27	0.95	2.97	4.16	1.87	0.25	0.07	0.03	< 0.01	0.02	3.58
OSK-W-16-706-W1 88	Stériles	68.3	14.9	2.78	1.01	2.2	3.66	2.25	0.29	0.07	0.02	< 0.01	< 0.01	3.04
OSK-W-16-706-W2 89	Stériles	68	14.5	3.37	1.12	2.38	2.97	2.39	0.27	0.07	0.02	< 0.01	< 0.01	3.29
OSK-W-16-708-W2_91	Stériles	65.1	14.6	4.51	1.47	3.05	3.7	1.86	0.41	0.11	0.02	< 0.01	0.01	3.54
OSK-W-16-735-W2 92	Stériles	68.8	15.2	1.69	1.01	2.59	3.98	2.15	0.25	0.08	0.03	< 0.01	< 0.01	3.39
OSK-W-16-743 93	Stériles	69.8	14.5	3.77	0.97	0.78	0.61	3.79	0.23	0.08	0.03	< 0.01	< 0.01	3.94
OSK-W-16-754 95	Stériles	68.3	15.2	2.33	0.92	2.2	4.74	1.92	0.30	0.08	0.01	< 0.01	< 0.01	2.31
OSK-W-16-754_95	Stériles	65.3	14.6	3.88	2.69	2.61	1.29	3.4	0.24	0.08	0.02	< 0.01	< 0.01	3.67
OSK-W-17-774_98	Stériles	67.7	15.4	2.15	1.17	2.01	3.63	2.58	0.4	0.09	0.03	< 0.01	0.01	2.82
OSK-W-17-774_98	Stériles	69.8	16.2	2.13	1.34	0.77	1.52	3.7	0.23	0.07	0.03	< 0.01	< 0.01	2.02
OSK-W-17-789_99 OSK-W-17-789_100	Stériles	70.5	14.6	2.53	1.05	1.5	1.13	3.55	0.24	0.06	0.02	< 0.01	< 0.01	3.11
OSK-W-17-789_100 OSK-W-17-812_101	Stériles	69.9	14.6	1.69	0.92	2.83	0.86	3.08	0.24	0.06	0.02	< 0.01	< 0.01	4.51
OSK-W-17-812_101 OSK-W-17-812_102	Stériles	67.7	11.8	3.29	1.89	3.78	0.86	2.22	0.29	0.06	0.05	< 0.01	< 0.01	5.49
OSK-W-17-812_102 OBM-15-552_103	Stériles	61.6	14.2	5.24			2.82	2.22	0.2	0.06	0.09	< 0.01	0.01	4.39
					2.32	3.34	_			• • • •				
OSK-W-16-311-W1_83	Stériles	68.2	15.6	3.51	1.4	2.15	1.74	2.7	0.41	0.1	0.03	< 0.01	0.02	2.95
EAG-13-485_2	Stériles	44.3	14	8.56	9.15	7.21	3.05	0.37	0.46	0.11	0.19	0.04	0.02	11.9

PAF = Perte Au Feu Page 5 of 7

Identification de l'échantillon	Type de	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P ₂ O ₅	MnO	Cr ₂ O ₃	V ₂ O ₅	PAF
identification de l'échantifion	l'échantillon							<u> </u> %					<u> </u>	
EAG-13-485 3	Stériles	53.5	15.8	12.2	3.04	4.42	1.64	2.34	1.05	0.15	0.16	0.03	0.03	5.34
EAG-13-485 4	Stériles	52.7	14.8	7.61	5.14	5.85	2.79	1.97	0.81	0.33	0.13	0.03	0.02	6.68
OBM-16-645_22	Stériles	67.9	12.9	7.15	1.96	1.43	0.33	2.84	0.35	0.07	0.13	< 0.01	< 0.01	4.2
OBM-16-580 17	Stériles	42.1	14.3	17.6	2.47	3.37	0.46	3.86	0.89	0.06	0.06	0.03	0.03	12.8
OBM-16-642 21	Stériles	54.9	13.6	13.7	3.29	3.93	1.96	0.94	1.36	0.19	0.17	< 0.01	0.02	5.2
OBM-16-693 24	Stériles	50.1	13.3	6.01	4.04	8.25	1.11	3.34	0.75	0.1	0.12	0.03	0.02	11.6
OBM-16-693 26	Stériles	47.7	12.7	8.88	5.24	8.19	1.41	2.18	0.76	0.18	0.13	0.04	0.02	11.5
OBM-16-630 61	Stériles	71.8	12.9	5.07	0.86	0.58	0.4	3.32	0.23	0.03	0.05	< 0.01	< 0.01	3.97
OSK-W-16-761 34	Stériles	44	14.6	11.7	5.64	6.98	0.32	2.27	1.27	0.18	0.2	0.02	0.03	11.2
OSK-W-17-773 36	Stériles	47.1	14.3	12	2.87	7.09	1.93	0.96	1.07	0.14	0.21	< 0.01	0.03	11
OSK-W-17-773 37	Stériles	46.8	12.2	15.2	2.57	7.25	1.85	0.81	1.84	0.24	0.24	< 0.01	0.03	10.9
OSK-W-17-773 42	Stériles	45.7	13.7	10.4	6.11	7.32	2.22	1.23	1.07	0.16	0.13	0.03	0.02	9.89
OSK-W-17-783 49	Stériles	39.5	14.1	9.86	5.47	10.4	1.2	1.52	0.67	0.12	0.17	0.03	0.04	16.7
EAG-13-513 57	Stériles	60.5	13.1	11.5	1.12	1.14	0.5	3.19	1.14	0.17	0.05	< 0.01	0.02	6.46
OBM-16-654 62	Stériles	60.7	13.6	12.7	0.82	0.31	0.35	3.23	1.3	0.22	0.05	< 0.01	0.02	6.45
OSK-W-16-760 67	Stériles	47.9	15	12.9	4.53	7.03	2.71	0.67	1.22	0.11	0.2	0.03	0.04	4.24
OBM-16-580 68	Stériles	56.7	16.7	8.05	3.61	4.44	2.56	1.58	1.11	0.11	0.08	0.02	0.04	4.03
OBM-16-640 71	Stériles	58.3	13.8	10.6	2.33	3.54	1.39	2.22	1.36	0.3	0.12	< 0.01	0.01	4.2
OBM-15-557 78	Stériles	55.7	13	14.4	2.84	3.74	1.17	1.31	1.18	0.26	0.25	< 0.01	< 0.01	4.14
OSK-W-16-760 32	Stériles	76.5	10.7	3.42	1.23	2.44	3.18	0.53	0.36	0.04	0.03	0.02	< 0.01	1.98
WST-19-0160A-55	Stériles	53.1	14.2	15.5	3.05	3.09	1.82	1.46	1.22	0.18	0.2	< 0.01	0.03	5.12
OSK-W-21-2606-615	Stériles	55.8	13.5	12.2	2.52	4.21	1.18	1.8	1.36	0.3	0.13	< 0.01	< 0.01	5.13
WST-21-0873-330	Stériles	44.5	15.4	8.72	3.43	8.11	0.43	3.61	0.81	0.18	0.17	0.03	0.05	13.2
WST-18-0024-50	Stériles	58.1	15.5	10.3	1.82	1.54	0.93	3.22	1.44	0.27	0.03	< 0.01	0.02	5.78
OSK-W-20-2323-115	Stériles	57.6	13.6	12.4	2.2	3.59	2.43	1.34	1.22	0.2	0.11	< 0.01	0.03	3.97
OSK-W-21-2444-545	Stériles	43.9	14.2	10.4	7.63	7.56	3.33	0.3	0.85	0.17	0.19	0.03	0.03	10.9
OSK-W-17-1369-315	Stériles	53.5	14.1	10.3	2.9	5.96	2.64	1.19	1.16	0.17	0.23	< 0.01	0.02	6.72
OSK-W-17-663-W2-680	Stériles	57	13.4	13.4	2.11	3.27	1.81	1.77	1.36	0.29	0.09	0.01	0.02	4.6
OSK-W-19-1897-496	Stériles	57.3	13.2	14.3	3.23	2.15	0.5	1.58	1.18	0.23	0.23	< 0.01	0.01	4.5
OBM-16-655-330	Stériles	53.3	12.4	12.9	2.47	5.38	0.29	2.17	1.21	0.33	0.25	< 0.01	< 0.01	8.2
OSK-W-16-309-W2-1000	Stériles	67	14.6	4	1.68	3.07	2.95	1.86	0.37	0.09	0.02	0.02	< 0.01	4.18
OSK-W-18-1386-W4-885	Stériles	47.2	16.3	7.46	3.24	6.77	1.24	2.87	0.88	0.11	0.22	0.04	0.04	10.7
OSK-W-18-1608-805	Stériles	46.1	17.9	10.1	4.07	5.42	0.53	3.48	0.74	0.15	0.15	0.05	0.05	10.4
OSK-W-18-1713-470	Stériles	53.9	14.9	9.62	4.82	4.79	1.37	1.83	1.03	0.26	0.2	0.02	0.03	6.59
OSK-W-18-1744-W1-575	Stériles	40.6	14.2	12.8	4.22	8.92	2.4	0.92	1.16	0.22	0.26	< 0.01	0.04	14.4
OSK-W-19-1412-W3-765	Stériles	49.9	14.4	12.6	2.61	5.91	1.98	1.04	1.42	0.21	0.2	< 0.01	0.02	9.21
OBM-15-554_82	Stériles	54.8	16.7	10.2	2.51	4.24	3.18	1.59	1.27	0.09	0.1	< 0.01	0.05	4.13
OSK-W-16-708-W1_90	Stériles	45.3	15.2	11.9	4.02	6.5	3.35	1.49	1.12	0.1	0.1	0.02	0.04	6.57
OSK-W-16-746_94	Stériles	52.4	14.4	11.2	3.71	5.26	2.44	1.38	1.26	0.24	0.11	< 0.01	0.03	4.6
OSK-W-17-774_97	Stériles	46.5	12	13.4	5.72	5.94	1.83	0.98	1.14	0.13	0.14	0.02	0.03	6.07
MT-1	Mort-terrain	66.7	12.6	3.18	1.12	2.36	3.82	1.38	0.37	0.09	0.04	0.05	< 0.01	7.37
MT-1-DupA	Mort-terrain	67.1	13	3.17	1.08	2.4	3.75	1.37	0.38	0.09	0.04	0.03	0.02	7.26
MT-2	Mort-terrain	64.5	12	2.99	1.1	2.14	3.39	1.33	0.36	0.1	0.04	0.03	< 0.01	11.8
MT-3	Mort-terrain	67.7	11.7	2.74	0.81	2.03	3.41	1.25	0.33	0.08	0.03	0.04	< 0.01	9.64
MT-4	Mort-terrain	67.2	13.3	3.18	0.98	2.16	3.94	1.56	0.37	0.09	0.04	0.03	0.01	6.88
MT-5	Mort-terrain	66.6	12.3	3	0.96	2.25	3.56	1.36	0.35	0.09	0.04	0.04	0.01	9.28
MT-6	Mort-terrain	67.4	10.6	2.9	0.84	2.09	2.97	1.2	0.39	0.07	0.03	0.03	0.01	11.2
MT-7	Mort-terrain	67.2	12.4	3.1	1.03	2.39	3.51	1.46	0.37	0.09	0.04	0.04	< 0.01	8.21
MT-8	Mort-terrain	64.6	12.8	3.04	0.95	2.23	3.51	1.91	0.35	0.09	0.04	0.04	0.01	10.1

PAF = Perte Au Feu Page 6 of 7

Identification de l'échantillon	Type de	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	Na ₂ O	K₂O	TiO ₂	P ₂ O ₅	MnO	Cr ₂ O ₃	V ₂ O ₅	PAF
	l'échantillon							<u></u> %			<u> </u>			
MT-8-DUP-S	Mort-terrain	64.8	13.4	3.17	1.16	2.96	3.7	1.32	0.38	0.11	0.04	0.04	< 0.01	8.61
TP-1-S	Mort-terrain	73.9	12.4	2.58	1.08	2.34	4.16	1.46	0.29	0.07	0.03	0.03	< 0.01	1.37
TP-1-TS	Mort-terrain	65.8	10	2.33	0.65	1.79	3.01	1.17	0.42	0.07	0.04	0.05	0.01	14.4
TP-2-S	Mort-terrain	68.3	15.2	3.31	1.5	2.86	5.21	1.59	0.33	0.09	0.05	0.03	0.01	1.2
TP-2-TS	Mort-terrain	64.3	15.3	3.73	1.1	2.4	4.18	1.38	0.37	0.11	0.03	0.03	0.02	6.56
TP-3-S	Mort-terrain	68.9	15.1	3.16	1.45	2.72	5.14	1.62	0.32	0.07	0.05	0.03	< 0.01	1.21
TP-3-TS	Mort-terrain	65.4	14.2	3.7	0.9	2.13	3.65	1.3	0.41	0.11	0.04	0.04	0.01	7.78
TP-5-S	Mort-terrain	66.8	15.6	3.54	1.56	2.99	5.29	1.57	0.36	0.1	0.05	0.03	< 0.01	1.89
TP-5-S-DUPA	Mort-terrain	68	15.3	3.22	1.44	2.62	5.21	1.69	0.33	0.1	0.05	0.03	0.01	1.75
TP-5-TS	Mort-terrain	66.5	14.8	3.9	1.52	2.63	4.85	1.5	0.41	0.11	0.05	0.03	0.01	3.55
TP-6-S	Mort-terrain	73.1	12.8	2.83	1.18	2.75	4.22	1.45	0.34	0.08	0.04	0.03	0.01	1.17
TP-6-TS	Mort-terrain	45.8	7.51	1.9	0.7	4.43	1.98	0.83	0.3	0.09	0.07	0.03	< 0.01	36.3
TP-7-S	Mort-terrain	75.1	12	2.16	0.75	2.22	3.41	2.04	0.22	0.07	0.22	0.03	< 0.01	1.82
TP-7-TS	Mort-terrain	50.7	10.4	3.49	1.24	3.92	2.72	0.94	0.38	0.16	0.09	0.03	0.01	25.8
TP-8-TS	Mort-terrain	62.5	12.3	5.06	1.22	2.95	3.69	1.19	0.35	0.08	0.14	0.05	< 0.01	10.5
TP-9-S	Mort-terrain	73.9	11.7	3.23	1.23	2.77	3.57	1.5	0.39	0.11	0.08	0.03	0.01	1.46
TP-9-TS	Mort-terrain	53.6	11.5	2.69	1.05	2.7	3.63	1.54	0.31	0.14	0.09	0.04	< 0.01	22.7
TP-10-S	Mort-terrain	74.8	11.9	2.48	1.19	3.08	3.77	1.23	0.35	0.08	0.03	0.03	< 0.01	1
TP-10-S-DUPA	Mort-terrain	73.7	12	2.72	1.26	3.24	3.8	1.21	0.39	0.1	0.03	0.04	< 0.01	1.05
TP-10-TS	Mort-terrain	2.48	0.64	0.5	0.17	2.16	0.1	0.07	0.03	0.04	0.03	< 0.01	< 0.01	93.2
TP-10-TS-DUPA	Mort-terrain	3.39	0.77	0.47	0.16	2	0.14	0.1	0.04	0.03	0.02	< 0.01	< 0.01	92.6
TP-11-S	Mort-terrain	72.6	12.7	2.99	1.1	2.85	3.99	1.35	0.39	0.09	0.04	0.02	0.01	1.87
TP-11-TS	Mort-terrain	61	16	4.55	1.46	2.64	4.19	1.32	0.46	0.1	0.05	0.04	0.02	8.05
TP-5-TS-DUPA	Mort-terrain	65.1	15.2	3.79	1.41	2.77	4.73	1.52	0.37	0.12	0.04	0.03	< 0.01	4.66

PAF = Perte Au Feu Page 7 of 7

Pechantillon Pech	Identification de	Type de	Poids de	pH de la pâte	pH initial	PN	S Total	S-SO ₄	Sulfure	C Total	CO₃	сот	СІТ
P3-H Mineral 1-9 9-76 103 1.75 0.08 1.67 10.5 4.43 - 0.89	l'echantillon	l'echantillon				Isa CaCO / tampa	0/	0/	0/	0/	0/	0/	0/
E-CA-LI-H Minerai	D2 I	Minoroi											
E-CA-LI-L				***	• • • •								
Under Dog A Mineral -			+										
E-27-D-H Mineral													
E-27-O-L Mineral				0.40									
E-27-U-L E-CA-O-H Minerai			.										
E-CA-D-H Minerai													
E-CA-D-L Mineral													
Triple Lymx LG													
Lynx 4 LP-LG				 									
Limx 4 HP-LG	<u> </u>		_									_	
Triple Lymx MG/HG													
Lynx 4 LP-MG/HG Mineral 2 - 9.62 58.8 3.83 0.18 3.65 0.774 2.62 - 0.52													
Lynx + HP-MG/HG Mineral 1.99				+									
P3-J Mineral 2.02 9.08 9.88 107 2.34 < 0.02 2.33 1.4 6.1 . 1.22				 									
Under Dog B				9.08								_	
E-27-U-H Mineral -													
Under Dog C Mineral - 7.49 9.43 15 12.2 0.67 11.5 0.136 0.39 - 0.08 P3-K Mineral 2 9.15 9.82 101 2.48 < 0.02 2.46 1 3.87 - 0.78 P3-K Mineral 2 9.15 9.82 101 2.48 < 0.02 2.46 1 3.87 - 0.78 P3-K Mineral 2.03 9.19 9.84 103 1.88 0.13 1.75 1.01 4.44 - 0.89 T3-K Mineral 2.03 9.19 9.84 103 1.88 0.13 1.75 1.01 4.44 - 0.89 T3-K Mineral 2.03 9.19 9.84 103 1.88 0.13 1.75 1.01 4.44 - 0.89 T3-K Mineral 2.06 8.1 9.11 70 4.79 < 0.02 4.77 0.976 2.57 - 0.51 1.01 1.01 1.01 1.01 1.01 1.01 1.01													
P3-K Minerai 2 9.15 9.82 101 2.48 <0.02 2.46 1 3.87 - 0.78													
P3-L Mineral 2.03 9.19 9.84 103 1.88 0.13 1.75 1.01 4.44 - 0.89										1			
Tails CND 1 Résidus 1.96 8.1 9.11 70 4.79 < 0.02 4.77 0.976 2.57 - 0.51 Tails CND 4 Résidus 2.06 8.1 9.11 63 3.99 0.11 3.88 0.791 1.9 - 0.34 Tails CND 6 Résidus 2.05 8.12 9.01 26 3.79 0.14 3.65 0.247 0.41 - 0.08 CIL 11 CND Résidus 2.02 - 9.36 56.9 2.42 <0.04										1 01		_	
Tails CND 4 Résidus 2.06 8.1 9.11 63 3.99 0.11 3.88 0.791 1.9 - 0.38 Tails CND 5 Résidus 1.99 8.15 9.15 57 3.62 < 0.02 3.61 0.704 1.67 - 0.34 Tails CND 6 Résidus 2.05 8.12 9.01 26 3.79 0.14 3.65 0.247 0.41 - 0.08 CIL 11 CND Résidus 2.02 - 9.36 56.9 2.42 < 0.04 2.45 0.461 1.78 - 0.36 CIL 11 CND Résidus 2.02 - 9.36 56.9 2.42 < 0.04 2.45 0.461 1.78 - 0.36 CIL 12 CND Résidus 1.97 - 9.41 58.4 3.06 < 0.04 3.15 0.847 3.36 - 0.67 CIL 13 CND Résidus 1.99 - 9.35 65.3 3.26 < 0.04 3.15 0.847 3.36 - 0.67 CIL 13 CND Résidus 1.99 - 9.35 65.3 3.26 < 0.04 3.32 1.08 4.41 - 0.88 0.95 CIL 13 CND Résidus 1.99 - 9.35 65.3 3.26 < 0.04 3.32 1.08 4.41 - 0.88 0.95 CIL 13 CND Résidus 1.99 - 9.35 65.3 3.26 < 0.04 3.32 1.08 4.41 - 0.88 0.95 CIL 13 CND Résidus 1.99 - 9.35 65.3 3.26 < 0.04 3.32 1.08 4.41 - 0.88 0.95 CIL 13 CND Résidus 1.99 - 9.35 65.3 3.26 < 0.04 3.32 1.08 4.41 - 0.88 0.95 CIL 13 CND Résidus 1.99 - 9.35 65.3 3.26 < 0.04 3.32 1.08 4.41 - 0.88 0.95 CIL 13 CND Résidus 1.99 - 9.35 65.3 3.26 < 0.04 3.32 1.08 4.41 - 0.88 0.95 CIL 13 CND Résidus 1.99 - 9.35 65.3 3.26 < 0.04 3.32 1.08 4.41 - 0.88 0.95 CIL 13 CND Résidus 1.99 - 9.35 65.3 3.26 < 0.04 3.32 1.08 4.41 - 0.88 0.95 CIL 13 CND Résidus 1.99 - 9.96 0.61 0.12 0.49 1.41 5.93 - 1.19 CND Résidus 1.99 - 0.96 0.61 0.12 0.49 1.41 5.93 - 1.19 CND Résidus 1.98 0.79 1.19 0.733 0.1 0.63 1.84 8.08 - 1.62 CND Résidus 1.99 0.79 1.19 0.733 0.1 0.63 1.84 8.08 - 1.62 CND Résidus 1.97 9.62 9.43 91 0.324 0.12 0.2 1.33 5.91 - 1.18 CND Résidus 1.99 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0												_	
Tails CND 5 Résidus 1.99 8.15 9.15 57 3.62 <0.02 3.61 0.704 1.67 - 0.34 Tails CND 6 Résidus 2.05 8.12 9.01 26 3.79 0.14 3.65 0.247 O.36 CIL 11 CND Résidus 2.02 - 9.36 56.9 2.42 <0.04 2.45 0.481 1.78 - 0.36 CIL 12 CND Résidus 1.97 - 9.41 58.4 3.06 <0.04 3.15 0.847 3.36 - 0.67 CIL 13 CND Résidus 1.99 - 9.35 66.3 3.26 <0.04 3.25 0.847 3.36 - 0.67 CIL 13 CND Résidus 1.99 - 9.35 66.3 3.26 <0.04 3.35 0.847 3.36 - 0.67 CIL 13 CND Résidus 1.99 - 9.41 58.4 3.06 <0.04 3.15 0.847 3.36 - 0.67 CIL 13 CND Résidus 1.99 - 9.41 58.4 3.06 <0.04 3.15 0.847 3.36 - 0.67 CIL 13 CND Résidus 1.99 - 9.41 58.4 3.06 <0.04 3.15 0.847 3.36 - 0.67 CIL 13 CND Résidus 1.99 - 9.41 58.4 3.06 O.40 3.15 0.847 3.36 - 0.67 CIL 13 CND Résidus 1.99 - 9.41 58.4 3.06 O.40 3.15 0.847 3.36 - 0.67 O.41 0.41 0.41 0.41 1.67 0.88 O.41 0.41 0.41 0.41 0.41 1.67 0.88 O.42 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41													
Tails CND 6 Résidus 2.05 8.12 9.01 26 3.79 0.14 3.65 0.247 0.41 - 0.08 CIL 11 CND Résidus 2.02 - 9.36 56.9 2.42 < 0.04 2.45 0.481 1.78 - 0.36 CIL 12 CND Résidus 1.97 - 9.41 56.4 3.06 < 0.04 3.15 0.847 3.36 - 0.67 CIL 12 CND Résidus 1.99 - 9.41 56.4 3.06 < 0.04 3.15 0.847 3.36 - 0.67 CIL 13 CND Résidus 1.99 - 9.35 66.3 3.26 < 0.04 3.22 1.08 4.41 - 0.88 CIL 13 CND Résidus 1.99 - 9.35 66.3 3.26 < 0.04 3.32 1.08 4.41 - 0.88 CIL 13 CND Résidus 1.99 - 9.35 66.3 3.26 < 0.04 3.32 1.08 4.41 - 0.88 CIL 13 CND Résidus 1.99 - 1.08													
CIL 11 CND Résidus 2.02 - 9.36 56.9 2.42 < 0.04 2.45 0.481 1.78 - 0.36 CIL 12 CND Résidus 1.97 - 9.41 58.4 3.06 < 0.04 3.15 0.847 3.36 - 0.67 CIL 13 CND Résidus 1.99 - 9.35 65.3 3.26 < 0.04 3.32 1.08 4.41 - 0.88 OSK-W-17-918 73 Stériles 1.98 9.39 9.49 96 0.61 0.12 0.49 1.41 5.93 - 1.19 OSK-W-17-1007 75 Stériles 2.01 9.46 9.79 119 0.733 0.1 0.63 1.84 8.08 - 1.62 OSK-W-17-1009 76 Stériles 1.97 9.62 9.43 91 0.324 0.12 0.2 1.33 5.91 - 1.18 OSK-W-17-934 77 Stériles 1.95 - 9.61 93.6 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
CIL 12 CND Résidus 1.97 - 9.41 58.4 3.06 < 0.04 3.15 0.847 3.36 - 0.67 CIL 13 CND Résidus 1.99 - 9.35 65.3 3.26 < 0.04 3.15 0.847 3.36 - 0.67 CSK-W-17-918 73 Stériles 1.98 9.39 9.49 96 0.61 0.12 0.49 1.41 5.93 - 1.19 OSK-W-17-879 74 Stériles 2.01 9.46 9.79 119 0.733 0.1 0.63 1.84 8.08 - 1.62 OSK-W-17-1039 76 Stériles 1.96 9.49 9.47 130 1.35 0.31 1.04 1.76 7.56 - 1.51 OSK-W-17-1039 76 Stériles 1.95 9.62 9.43 91 0.324 0.12 0.2 1.33 5.91 - 1.18 OSK-W-17-934 77 Stériles 1.95 9.68 9.48 76								• • • • • • • • • • • • • • • • • • • •				_	
CIL 13 CND Résidus 1.99 - 9.35 65.3 3.26 < 0.04 3.32 1.08 4.41 - 0.88 OSK-W-17-879 74 Stériles 1.98 9.39 9.49 96 0.61 0.12 0.49 1.41 5.93 - 1.19 OSK-W-17-1006 75 Stériles 1.96 9.49 9.47 130 1.35 0.31 1.04 1.76 7.56 - 1.51 OSK-W-17-1039 76 Stériles 1.96 9.49 9.47 130 1.35 0.31 1.04 1.76 7.56 - 1.51 OSK-W-17-1039 76 Stériles 1.95 9.68 9.48 76 0.536 0.13 0.41 1.1 4.72 - 0.95 GC10001 Stériles 1.95 9.68 9.48 76 0.536 0.13 0.41 1.1 4.72 - 0.95 GC10001 Stériles 1.95 9.61 93.6 0.903 <				_								_	
OSK-W-17-918 73 Stériles 1.98 9.39 9.49 96 0.61 0.12 0.49 1.41 5.93 - 1.19 OSK-W-17-7006 75 Stériles 2.01 9.46 9.79 119 0.733 0.1 0.63 1.84 8.08 - 1.62 OSK-W-17-1039 76 Stériles 1.96 9.49 9.47 130 1.35 0.31 1.04 1.76 7.56 - 1.51 OSK-W-17-934 77 Stériles 1.95 9.68 9.48 76 0.536 0.13 0.41 1.1 4.72 - 0.95 GC10001 Stériles 1.95 - 9.61 93.6 0.903 < 0.04				_								_	
OSK-W-17-879 74 Stériles 2.01 9.46 9.79 119 0.733 0.1 0.63 1.84 8.08 - 1.62 OSK-W-17-1006 75 Stériles 1.96 9.49 9.47 130 1.35 0.31 1.04 1.76 7.56 - 1.51 OSK-W-17-1039 76 Stériles 1.97 9.62 9.43 91 0.324 0.12 0.2 1.33 5.91 - 1.18 OSK-W-17-934 77 Stériles 1.95 9.68 9.48 76 0.536 0.13 0.41 1.1 4.72 - 0.95 GC10001 Stériles 1.98 - 9.61 93.6 0.903 < 0.04				9 39								_	
OSK-W-17-1006 75 Stériles 1.96 9.49 9.47 130 1.35 0.31 1.04 1.76 7.56 - 1.51 OSK-W-17-1039 76 Stériles 1.97 9.62 9.43 91 0.324 0.12 0.2 1.33 5.91 - 1.18 OSK-W-17-934 77 Stériles 1.95 9.68 9.48 76 0.536 0.13 0.41 1.1 4.72 - 0.95 GC10001 Stériles 1.95 - 9.61 93.6 0.903 < 0.04													
OSK-W-17-1039 76 Stériles 1.97 9.62 9.43 91 0.324 0.12 0.2 1.33 5.91 - 1.18 OSK-W-17-934 77 Stériles 1.95 9.68 9.48 76 0.536 0.13 0.41 1.1 4.72 - 0.95 GC10001 Stériles 1.95 - 9.61 93.6 0.903 < 0.04												_	
OSK-W-17-934 77 Stériles 1.95 9.68 9.48 76 0.536 0.13 0.41 1.1 4.72 - 0.95 GC10001 Stériles 1.95 - 9.61 93.6 0.903 < 0.04												_	
GC10001 Stériles 1.95 - 9.61 93.6 0.903 < 0.04 0.9 1.19 4.58 - 0.92 GC10002 Stériles 1.98 - 9.62 85.9 0.882 < 0.04								-				-	
GC10002 Stériles 1.98 - 9.62 85.9 0.882 < 0.04 0.9 1.04 4.02 - 0.80 GC10003 Stériles 1.99 - 9.57 88.4 0.138 < 0.04												-	
GC10003 Stériles 1.99 - 9.57 88.4 0.138 < 0.04 0.12 2.32 10.7 - 2.14 GC10004 Stériles 1.98 - 9.53 112 0.802 < 0.04				-				< 0.04				_	0.80
GC10004 Stériles 1.98 - 9.53 112 0.802 < 0.04 0.81 1.52 6.37 - 1.28 GC10005 Stériles 2.02 - 9.45 65.6 2.33 < 0.04				-								-	
GC10005 Stériles 2.02 - 9.45 65.6 2.33 < 0.04 2.46 0.78 2.43 - 0.49 GC10006 Stériles 1.97 - 9.58 96.4 0.644 < 0.04				-								-	
GC10006 Stériles 1.97 - 9.58 96.4 0.644 < 0.04 0.62 1.17 4.95 - 0.99 GC10007 Stériles 2 - 9.69 109 0.292 < 0.04				-				< 0.04	2.46		2.43	-	
GC10007 Stériles 2 - 9.69 109 0.292 < 0.04 0.27 1.34 5.82 - 1.16 OSK-W-19-1949-W1-635 Stériles 2.01 - 9.7 74.6 0.322 0.06 0.26 1.1 5.32 0.106 < 0.05				-								-	
OSK-W-19-1949-W1-635 Stériles 2.01 - 9.7 74.6 0.322 0.06 0.26 1.1 5.32 0.106 < 0.05 OSK-W-20-2375-W4-890 Stériles 1.98 - 8.88 13.9 1.57 < 0.04				-				< 0.04				_	
OSK-W-20-2375-W4-890 Stériles 1.98 - 8.88 13.9 1.57 < 0.04 1.62 0.081 0.3 0.04 < 0.05 OSK-W-19-1857-W2-895 Stériles 1.99 - 9.7 59 0.08 < 0.04				-									
OSK-W-19-1857-W2-895 Stériles 1.99 - 9.7 59 0.08 < 0.04 0.05 0.864 4.18 0.075 < 0.05 OSK-W-17-870-270 Stériles 2 - 9.43 60 0.229 0.05 0.18 0.97 4.72 0.129 < 0.05				-									
OSK-W-17-870-270 Stériles 2 - 9.43 60 0.229 0.05 0.18 0.97 4.72 0.129 < 0.05 OSK-W-19-909-W12-770 Stériles 2.02 - 9.45 58.2 0.564 0.18 0.38 0.887 4.26 0.207 < 0.05				-									
OSK-W-19-909-W12-770 Stériles 2.02 - 9.45 58.2 0.564 0.18 0.38 0.887 4.26 0.207 < 0.05 OKS-W-21-2629-720 Stériles 2 - 9.65 83.8 0.15 0.07 0.08 1.3 6.31 0.11 < 0.05				-									
OKS-W-21-2629-720 Stériles 2 - 9.65 83.8 0.15 0.07 0.08 1.3 6.31 0.11 < 0.05 OSK-W-18-1759-190 Stériles 1.97 - 9.37 34.3 0.481 0.11 0.37 0.447 2.12 0.083 < 0.05				-									
OSK-W-18-1759-190 Stériles 1.97 - 9.37 34.3 0.481 0.11 0.37 0.447 2.12 0.083 < 0.05 OBM-15-559_12 Stériles 2 8.77 9.92 61 0.051 0.03 0.02 0.832 3.48 - 0.697	OKS-W-21-2629-720	Stériles	2	-	9.65	83.8	0.15	0.07	0.08	1.3	6.31	0.11	< 0.05
OBM-15-559_12 Stériles 2 8.77 9.92 61 0.051 0.03 0.02 0.832 3.48 - 0.697				-									
_	OBM-15-559 12		2	8.77	9.92		0.051	0.03	0.02	0.832	3.48	-	0.697
	OSK-W-17-774_44	Stériles	1.93	9.55	9.75	45	0.242	0.04	0.2	0.619	2.54	-	0.508

Identification de	Type de	Poids de	I				0.00	2 15				
l'échantillon	l'échantillon	l'échantillon	pH de la pâte	pH initial	PN	S Total	S-SO₄	Sulfure	C Total	CO₃	СОТ	CIT
		g	unité de pH	unité de pH	kg CaCO ₃ / tonne	%	%	%	%	%	%	%
EAG-13-490_55	Stériles	1.98	9.5	9.82	105	0.192	0.06	0.13	1.32	5.4	-	1.08
OBM-16-671_63	Stériles	1.97	8.52	9.53	99	0.096	0.04	0.06	1.18	4.8	-	0.961
WST-21-0647-161.5	Stériles	1.98	-	9.81	53	0.087	< 0.04	0.06	0.634	3.05	0.131	< 0.05
WST-22-1020-160	Stériles	2.01	-	9.69	34.8	0.155	0.08	0.08	0.391	1.8	0.064	< 0.05
OSK-W-21-2555-728	Stériles	2.02	-	9.5	56.9	0.331	0.09	0.24	0.83	3.95	0.122	< 0.05
OSK-W-21-2531-655	Stériles	1.99	-	9.25	71.6	0.476	0.17	0.31	0.876	4.22	0.119	< 0.05
WST-20-0573-367	Stériles	2.01	-	9.66	77.1	0.057	< 0.04	0.04	1.14	5.53	0.116	< 0.05
WST-21-0621-155	Stériles	2	-	9.77	51.2	0.009	< 0.04	< 0.04	0.553	2.62	0.066	< 0.05
OSK-W-19-1897-610	Stériles	2	-	9.78	83.8	0.214	< 0.04	0.2	0.967	4.71	0.149	< 0.05
WST-18-0024-120	Stériles	2.01	-	9.79	92	0.036	<0.04	< 0.04	1.21	5.9	0.154	< 0.05
OSK-W-20-2313-W6-983	Stériles	2.01	-	9.68	94.5	0.052	0.05	< 0.04	1.25	6.11	0.138	< 0.05
OSK-W-17-864-W2-635	Stériles	1.99	-	9.66	66.6	0.057	< 0.04	0.04	0.821	3.96	0.121	< 0.05
OSK-W-21-2512-W3-550	Stériles	2	-	9.53	76.2	0.181	0.11	0.07	0.999	4.89	0.124	< 0.05
OSK-W-21-2512-W3-610	Stériles	2	-	9.51	60	0.143	0.1	0.04	0.764	3.66	0.069	< 0.05
WST-21-0930-195	Stériles	1.99	-	9.64	50.3	0.056	<0.04	< 0.04	0.557	2.65	0.065	< 0.05
OBM-15-552-230	Stériles	1.99	-	9.76	84.2	0.147	0.07	0.08	1.17	5.73	0.201	< 0.05
OBM-15-552-280	Stériles	1.98	-	9.72	98.5	0.159	0.06	0.1	1.24	6.11	0.24	< 0.05
OBM-16-655-535	Stériles	2.02	-	9.54	59.4	0.424	0.09	0.33	0.943	4.61	0.078	< 0.05
OBM-16-655-600	Stériles	2.01	-	9.75	84.6	0.198	0.05	0.15	1.03	5.03	0.223	< 0.05
OBM-16-677-79	Stériles	1.98	-	9.69	105	0.024	<0.04	< 0.04	1.24	6.08	0.173	< 0.05
OSK-W-16-309-W2-645	Stériles	2	-	9.5	77.5	0.278	0.16	0.12	0.843	4.14	0.156	< 0.05
OSK-W-16-309-W2-720	Stériles	1.99	-	9.69	80.4	0.045	0.05	< 0.04	0.954	4.62	0.18	< 0.05
OSK-W-17-1121-545	Stériles	2	-	9.65	46.2	0.014	<0.04	< 0.04	0.469	2.27	0.053	< 0.05
OSK-W-17-1305-261	Stériles	2	-	9.47	76.2	0.109	0.05	0.06	1.33	6.56	0.108	< 0.05
OSK-W-19-1181-W5-705	Stériles	1.96	-	9.82	62.5	0.008	< 0.04	< 0.04	0.625	3.02	0.134	< 0.05
OSK-W-19-1181-W5-845	Stériles	2.02	-	9.74	58.2	0.149	< 0.04	0.11	0.64	3.07	0.122	< 0.05
EAG-13-490_5	Stériles	1.98	8.76	9.38	8.8	1.09	0.08	1.01	0.054	0.105	-	0.021
EAG-13-490 6	Stériles	2.02	9.4	9.89	54	0.425	0.04	0.39	0.746	2.84	-	0.569
OBM-15-557 10	Stériles	2.03	9.14	9.92	96	0.535	0.06	0.47	1.34	5.87	-	1.17
OBM-16-580 18	Stériles	1.99	9.42	9.93	39	0.384	0.07	0.31	0.349	1.38	-	0.276
OBM-16-619 20	Stériles	2.01	9.14	9.38	22	1.96	0.18	1.78	0.193	0.59	-	0.118
OBM-16-671_23	Stériles	2.01	9.04	9.62	159	0.339	< 0.02	0.32	2.21	10.2	-	2.04
OBM-16-693_25	Stériles	2.03	9.38	9.53	48	0.317	0.08	0.24	0.582	2.24	-	0.45
OSK-W-16-715_27	Stériles	2.02	9.27	9.65	81	1.1	0.09	1.01	1.52	6.32	-	1.26
OSK-W-16-735-W1_28	Stériles	2.01	9.08	9.59	21	2.6	< 0.02	2.74	0.158	0.425	-	0.09
OSK-W-17-773_38	Stériles	1.93	9.42	9.8	89	1.06	0.11	0.95	1.18	4.85	-	0.97
OSK-W-17-773_39	Stériles	1.99	9.41	9.76	127	0.307	< 0.02	0.29	1.79	7.87	-	1.58
OSK-W-17-774_43	Stériles	2.03	9.4	9.75	57	1.46	< 0.02	1.55	0.497	2.01	-	0.40
OSK-W-17-788_50	Stériles	2.09	9.39	9.81	84	0.113	0.03	0.08	1.15	4.74	-	0.95
OSK-W-17-788_51	Stériles	2.06	9.45	9.81	68	0.209	0.07	0.14	0.873	3.4	-	0.68
EAG-13-485_54	Stériles	1.98	9.41	9.78	101	0.196	0.09	0.11	1.25	5.17	-	1.03
EAG-13-497_56	Stériles	1.96	8.91	9.4	28	3.48	< 0.02	3.62	0.268	0.629	-	0.13
EAG-14-538_58	Stériles	1.97	8.77	9.34	8.9	2.88	0.12	2.76	0.041	0.055	-	0.01
OBM-15-559_59	Stériles	2.05	8.82	9.6	28	2.5	< 0.02	2.49	0.184	0.6	-	0.12
OBM-15-566_60	Stériles	1.96	9.45	9.66	176	0.093	0.03	0.06	2.5	11.4	-	2.27
OBM-16-673_64	Stériles	2.02	8.07	9.23	21	8.95	1.39	7.56	0.187	0.36	-	0.07
OSK-W-16-713_65	Stériles	2.03	8.39	9.41	69	4.1	0.47	3.63	0.042	0.075	-	0.02
OSK-W-16-735-W1_66	Stériles	2.02	9.17	9.5	12	1.8	< 0.02	1.86	0.051	0.105	-	0.02
OBM-16-645_69	Stériles	2.01	8.9	9.48	96	3.84	0.14	3.7	1.42	5.14	-	1.03

Identification de	Type de	Poids de	pH de la pâte	pH initial	PN	S Total	S-SO₄	Sulfure	C Total	CO ₃	СОТ	СІТ
l'échantillon	l'échantillon	l'échantillon	' '	•			•					
		g	unité de pH	unité de pH	kg CaCO ₃ / tonne	%	%	%	%	%	%	%
OBM-16-642_70	Stériles	2.02	9.46	9.65	172	3.75	0.67	3.08	2.39	9.28	-	1.86
OSK-W-17-774_72	Stériles	2.04	9.54	9.56	93	0.516	0.1	0.42	1.3	5.44	-	1.09
GC10008	Stériles	1.99	-	9.63	46.5	0.255	< 0.04	0.23	0.468	1.97	-	0.39
GC10009	Stériles	2.04	-	9.69	91.9	0.564	< 0.04	0.57	1.2	5.22	-	1.04
GC10010	Stériles	2	-	9.53	75	0.842	< 0.04	0.83	0.851	3.2	-	0.64
GC10011	Stériles	1.95	-	9.46	28.2	0.296	< 0.04	0.28	0.208	0.789	-	0.16
GC10012	Stériles	2	-	9.51	55	1.01	< 0.04	1.02	0.561	2.16	-	0.43
GC10013	Stériles	1.96	-	9.61	110	0.324	< 0.04	0.29	1.46	6.35	-	1.27
#08354	Stériles	1.99	-	9.71	91.7	0.859	0.06	8.0	1.03	4.94	0.263	< 0.05
#08355	Stériles	2.01	-	9.74	93.3	0.901	0.08	0.82	1.04	4.94	0.246	< 0.05
#08356	Stériles	1.98	-	9.69	89.6	1	0.06	0.94	0.965	4.62	0.242	< 0.05
WST-21-0647-260	Stériles	2	-	9.28	27.5	1.35	0.05	1.3	0.282	1.29	0.079	< 0.05
WST-22-1020-210	Stériles	1.98	-	9.7	49.2	0.512	0.15	0.36	0.67	3.2	0.098	< 0.05
OSK-W-21-2551-W3-915	Stériles	1.99	-	9.61	54	0.168	< 0.04	0.13	0.659	3.16	0.107	< 0.05
WST-21-0992-450	Stériles	2.02	-	9.7	84.2	0.679	0.12	0.56	1.06	5.15	0.17	0.08
OSK-W-21-1949-W15-1080	Stériles	2.02	-	9.45	48.3	0.577	0.1	0.48	0.793	3.81	0.104	< 0.05
WST-21-0730-500	Stériles	2.02	-	9.48	70.5	0.985	0.1	0.88	1.03	5.02	0.121	< 0.05
OSK-W-20-2375-916	Stériles	2.01	-	9.71	63.4	0.669	0.12	0.55	0.837	4.04	0.105	< 0.05
OSK-W-21-2587-990	Stériles	2	-	9.54	33.8	0.469	0.08	0.39	0.321	1.48	0.067	< 0.05
OSK-W-19-1897-760	Stériles	2	-	9.72	43.8	0.481	0.07	0.41	0.417	1.97	0.113	< 0.05
OSK-W-19-1897-825	Stériles	2	-	9.75	71.2	0.544	0.09	0.45	0.78	3.76	0.155	< 0.05
OSK-W-19-1897-880	Stériles	1.99	-	9.78	44	0.88	0.22	0.66	0.39	1.81	0.088	< 0.05
OSK-W-19-1897-983	Stériles	1.99	-	9.77	45.2	1.46	0.27	1.19	0.476	2.2	0.109	< 0.05
OSK-W-21-2252-1013	Stériles	2.01	-	9.67	78.4	0.461	0.04	0.42	1.2	5.84	0.156	< 0.05
OSK-W-21-2444-610	Stériles	1.99	-	9.67	51.5	1.35	0.2	1.15	0.587	2.78	0.091	< 0.05
OSK-W-20-2350-125	Stériles	1.99	-	9.65	104	0.137	< 0.04	0.12	1.36	6.61	0.171	< 0.05
OSK-W-19-1746-W1-687	Stériles	2	-	9.55	46.2	0.964	< 0.04	0.96	0.732	3.55	0.133	< 0.05
OSK-W-17-1369-365	Stériles	2.01	-	9.69	52.2	1.04	0.1	0.94	0.635	3.06	0.103	< 0.05
OSK-W-21-2605-1332	Stériles	2	-	9.52	47.5	1.68	0.33	1.35	0.538	2.56	0.139	< 0.05
OSK-W-16-706-W2-905	Stériles	1.99	-	9.6	28.9	1.17	0.12	1.05	0.482	2.3	0.122	< 0.05
OSK-W-16-743-W1-915	Stériles	2	-	9.56	32.5	1.15	0.25	0.9	0.264	1.21	0.046	< 0.05
OSK-W-17-913-820	Stériles	2	-	9.58	73.8	0.731	0.07	0.66	0.898	4.4	0.133	< 0.05
OSK-W-19-1181-W12-1140	Stériles	1.97	-	9.72	27.9	0.603	0.07	0.53	0.273	1.27	0.055	< 0.05
OSK-W-19-1181-W5-795	Stériles	1.99	-	9.68	50.3	0.076	< 0.04	0.04	0.548	2.63	0.058	< 0.05
08359 Down Ramp 3	Stériles	1.99	-	9.72	104	0.492	< 0.04	0.48	1	4.86	0.03	< 0.05
OBM-15-559 13	Stériles	2.02	8.91	9.82	142	0.369	0.08	0.29	1.98	8.94	-	1.79
OSK-W-16-751 30	Stériles	2.09	9.03	9.5	203	0.183	0.07	0.11	2.65	12.5	_	2.51
OSK-W-16-761 33	Stériles	2.07	8.87	9.8	120	0.118	0.04	0.08	1.76	8.23	-	1.65
OSK-W-17-773 41	Stériles	1.96	8.96	9.73	207	0.361	0.02	0.34	2.42	11.2	_	2.24
OSK-W-17-779 47	Stériles	1.97	8.44	9.4	150	0.157	0.05	0.11	2.25	10.2	-	2.04
OSK-W-17-783 48	Stériles	2.04	9.23	9.62	282	0.041	< 0.02	0.03	3.81	17.6	-	3.53
GC10014	Stériles	1.99	- 9.23	9.45	158	0.411	0.02	0.03	1.82	8.65	-	1.7313851
GC10014 GC10015	Stériles	1.96	-	9.52	191	0.411	< 0.04	< 0.04	2.26	10.4	-	2.0816653
GC10013 GC10016	Stériles	1.98	-	9.57	88.1	0.036	< 0.04	0.09	2.32	11.4	-	2.2818255
GC10018	Stériles	2.01	-	9.67	234	1.35	0.18	1.17	3.94	18.5	-	3.7029624
GC10018 GC10019	Stériles	2.01	-	9.59	182	0.507	< 0.04	0.54	2.1	10.1	-	2.0216173
GC10019 GC10020	Stériles	2	-	9.57	165	0.307	< 0.04	0.34	2.61	12.6	-	2.5220176
GC10020 GC10021	Stériles	2	-	9.68	159	0.741	0.05	0.24	2.36	11	-	2.3220170
GC10021 GC10022	Stériles	2.02	-	9.56	162	1.18	< 0.03	1.19	2.01	9.24	-	1.85
GC 10022	Steriles	2.02	_	9.50	102	1.10	< 0.04	1.19	2.01	9.24		1.00

Identification de	Type de	Poids de	pH de la pâte	pH initial	PN	S Total	S-SO₄	Sulfure	C Total	CO ₃	СОТ	СІТ
l'échantillon	l'échantillon	l'échantillon					•					
004000	0.7.11	g	unité de pH	unité de pH	kg CaCO ₃ / tonne	%	%	%	%	%	%	%
GC10023	Stériles	1.98	-	9.6	89.1	0.267	< 0.04	0.27	3.91	18	-	3.60
GC10024	Stériles	2	-	9.39	149	0.036	< 0.04	< 0.04	1.76	8.54	-	1.71
#08351	Stériles	2.02	-	9.55	215	0.034	< 0.04	< 0.04	2.63	12.9	0.166	< 0.05
#08353	Stériles	2.03	-	9.61	236	0.095	< 0.04	0.08	3.03	14.9	0.357	< 0.05
#08357	Stériles	1.99	-	9.63	229	0.006	< 0.04	< 0.04	3	14.8	0.246	< 0.05
#08358	Stériles	1.98	-	9.29	149	0.21	0.1	0.11	1.61	7.84	0.148	< 0.05
OSK-W-21-2606-670	Stériles	1.98	-	9.64	146	0.104	< 0.04	0.08	1.79	8.8	0.094	< 0.05
WST-21-0666-54	Stériles	2	-	9.59	85.5	0.89	0.34	0.55	3.57	17.7	0.29	< 0.05
WST-21-0952-32	Stériles	2	-	9.49	90	1.04	0.26	0.78	2.62	12.9	0.156	< 0.05
OSK-W-21-2555-590	Stériles	2.01	-	9.43	168	0.061	< 0.04	0.04	2.47	12.2	0.081	< 0.05
WST-21-0878-517	Stériles	2.01	-	9.73	271	0.733	0.11	0.62	3.55	17.6	0.378	0.07
WST-21-0879-639	Stériles	2.01	-	9.76	203	0.333	< 0.04	0.32	2.84	14	0.229	< 0.05
OSK-W-19-1949-W1-948	Stériles	2.01	-	9.69	255	0.411	0.05	0.36	3.54	17.5	0.223	< 0.05
OSK-W-20-2397-W1-680	Stériles	2.01	-	9.6	159	0.031	<0.04	< 0.04	1.9	9.32	0.04	< 0.05
OSK-W-17-836-257	Stériles	1.99	-	9.62	276	0.451	0.06	0.39	3.66	18.2	0.507	< 0.05
OSK-W-19-1857-W2-980	Stériles	2.01	-	9.63	163	0.111	< 0.04	0.08	2.43	12	0.192	< 0.05
OSK-W-19-1857-W2-1110	Stériles	2	-	9.52	134	0.013	<0.04	< 0.04	2.66	13.1	0.351	< 0.05
OSK-W-19-1857-W2-1210	Stériles	2.02	-	9.58	182	0.007	<0.04	< 0.04	2.65	13.1	< 0.025	< 0.05
OKS-W-21-2613-W1-855	Stériles	1.98	-	9.38	178	0.006	<0.04	< 0.04	2.76	13.6	0.092	< 0.05
OSK-W-21-2629-845	Stériles	1.99	-	9.66	224	0.147	0.08	0.07	3.32	16.4	0.158	< 0.05
OSK-W-21-2629-948	Stériles	1.99	-	9.56	166	0.458	0.16	0.3	2.44	12.1	0.185	< 0.05
OSK-W-17-1079-580	Stériles	1.99	-	9.6	171	0.487	0.15	0.34	2.44	12.1	0.222	< 0.05
OSK-W-17-1104-665	Stériles	2	-	9.38	190	0.052	0.05	< 0.04	2.43	12	0.119	< 0.05
OSK-W-17-1369-262.5	Stériles	1.99	-	9.55	187	0.625	0.1	0.52	2.84	14.1	0.243	< 0.05
OSK-W-17-968-145	Stériles	2.01	-	9.49	137	0.734	0.14	0.59	2.57	12.8	0.176	< 0.05
OSK-W-19-1181-W5-920	Stériles	1.97	-	9.71	188	0.175	0.08	0.09	3.13	15.5	0.111	< 0.05
OSK-W-19-1181-W5-970	Stériles	2.01	-	9.6	183	0.047	0.05	< 0.04	2.69	13.3	0.105	< 0.05
OSK-W-19-1412-W3-715	Stériles	2.03	-	9.56	220	0.209	0.06	0.15	3.48	17.3	0.186	< 0.05
08360 Down Ramp 4	Stériles	2.02	-	9.55	89.4	0.526	< 0.04	0.5	2.78	13.7	0.035	< 0.05
WST-22-1013-345	Stériles	2.01	-	9.44	33.6	0.818	0.21	0.61	0.364	1.61	0.097	< 0.05
OSK-W-21-2544-838	Stériles	1.99	-	9.15	80.4	0.817	0.09	0.73	1.07	5.02	0.169	< 0.05
OSK-W-21-2613-1042	Stériles	2	-	9.68	76.2	1.83	0.58	1.25	0.716	3.32	0.241	< 0.05
OSK-W-20-2283-W7-888	Stériles	2.02	-	9.55	33.4	0.585	0.1	0.48	0.31	1.28	0.072	< 0.05
OSK-W-20-2256-W1-1051.7	Stériles	2.01	-	9.55	93.3	0.999	0.14	0.86	1.29	6.22	0.207	< 0.05
EAG-13-485_1	Stériles	2.01	9.21	9.81	65	0.513	0.07	0.44	1	4.07	-	0.814
EAG-13-491_7	Stériles	2.01	8.82	9.8	159	1.38	0.16	1.22	1.12	4.06	-	0.812
EAG-14-544_8	Stériles	1.99	9.35	9.85	52	0.171	0.04	0.13	0.745	3.04	-	0.609
OBM-15-559_11	Stériles	2.02	9.23	9.77	20	0.654	0.09	0.56	0.329	1.18	-	0.236
OBM-15-565_15	Stériles	1.96	9.24	9.81	60	0.51	0.12	0.39	0.878	3.39	-	0.678
OBM-15-565_16	Stériles	1.95	9.15	9.71	7.7	0.915	0.04	0.87	0.055	0.125	-	0.025
OBM-16-609_19	Stériles	1.99	8.83	9.16	14	2.2	0.15	2.05	0.104	0.21	-	0.04
OBM-16-645_22	Stériles	1.98	9.07	9.26	46	1.36	0.18	1.18	0.537	1.94	-	0.39
OSK-W-16-751_29	Stériles	1.96	9.61	9.64	87	0.875	0.1	0.78	1	3.93	-	0.79
OSK-W-16-760_31	Stériles	2	9.33	9.6	39	0.85	< 0.02	0.86	0.46	1.57	-	0.31
OSK-W-16-760_32	Stériles	2.03	8.57	9.62	23	0.933	0.04	0.89	0.195	0.58	-	0.12
OSK-W-17-773_40	Stériles	2	9.38	9.63	73	1.11	< 0.02	1.13	0.744	2.75	-	0.55
OSK-W-17-779_45	Stériles	2.03	8.92	9.46	35	2.06	0.09	1.97	0.343	1.03	-	0.21
OSK-W-17-779_46	Stériles	1.98	9.45	9.67	64	0.102	0.06	0.04	0.812	3.25	-	0.65
OSK-W-17-788_52	Stériles	1.98	9.14	9.58	39	2.15	0.08	2.07	0.434	1.3		0.26

Identification de	Type de	Poids de	pH de la pâte	pH initial	PN	S Total	S-SO₄	Sulfure	C Total	CO ₃	СОТ	СІТ
l'échantillon	l'échantillon	l'échantillon		•			-	%	%	%	%	%
FAC 42 405 52	Ctfuiles	g 4.07	unité de pH	unité de pH	kg CaCO₃/ tonne	%	%			0.47	%	
EAG-13-485_53	Stériles	1.97	8.68	9.47	25	3.98	< 0.02	4.12	0.253			0.09
OBM-16-630_61	Stériles	2.15	8.96	9.39	23	2.98	0.02	2.96	0.208	0.51		0.10
GC10017	Stériles	1.99	-	9.78	127	1.02	< 0.04	1.06	1.76	7.6	-	1.52
GC10025	Stériles	1.97	-	9.59	91.4	0.229	< 0.04	0.22	1.26	5.5	-	1.10
GC10026	Stériles	2	-	9.53	73.8	1.63	< 0.04	1.66	1.08	4.03	-	0.81
GC10027	Stériles	2	-	9.53	46.2	0.455	< 0.04	0.48	0.441	1.4	-	0.28
GC10028	Stériles	1.99	-	9.57	71.6	0.179	< 0.04	0.16	0.849	3.05	-	0.61
GC10029	Stériles	1.99	-	9.57	65.3	1.64	0.19	1.45	0.824	2.75	-	0.55
GC10030	Stériles	2.01	-	9.51	54.7	0.613	0.07	0.54	0.658	2.22	-	0.44
GC10031	Stériles	1.99	-	9.52	49	0.05	0.05	< 0.04	0.529	1.92	-	0.38
GC10032	Stériles	2	-	9.44	31.2	0.204	< 0.04	0.17	0.321	1.1	-	0.22
#08352	Stériles	2.03	-	9.65	97.3	0.774	0.07	0.7	1.04	4.96	0.255	< 0.05
WST-21-0647-313	Stériles	1.98	-	9.44	41.7	0.602	0.04	0.56	0.559	2.68	0.105	< 0.05
WST-22-1020-320	Stériles	2	-	9.28	33.8	0.246	0.05	0.2	0.405	1.87	0.076	< 0.05
WST-21-0873-268.1	Stériles	2	-	9.15	17.5	0.094	< 0.04	0.06	0.16	0.66	0.038	< 0.05
WST-21-0873-445	Stériles	1.99	-	9.18	46.5	0.029	< 0.04	0.05	0.648	3.12	0.056	< 0.05
OSK-W-21-2587-1060	Stériles	2.01	-	9.67	43.5	0.695	0.1	0.59	0.46	2.17	0.133	< 0.05
OSK-W-19-1949-W1-1015	Stériles	2.01	-	9.49	32.3	0.363	0.04	0.32	0.36	1.69	0.088	< 0.05
OSK-W-21-2252-W12-922	Stériles	1.99	-	9.04	15.1	0.986	< 0.04	0.99	0.091	0.32	0.046	< 0.05
OSK-W-19-1746-W1-765	Stériles	2	-	9.37	25	0.089	< 0.04	0.06	0.289	1.35	0.09	< 0.05
OSK-W-17-836-400	Stériles	2.01	-	9.52	42.3	0.457	0.06	0.4	0.538	2.56	0.13	< 0.05
OSK-W-17-859-240	Stériles	2	-	9.55	130	0.232	< 0.04	0.2	1.88	9.29	0.345	< 0.05
OSK-W-19-1857-W2-1030	Stériles	2.02	-	9.48	47	0.46	0.1	0.36	0.582	2.82	0.05	< 0.05
OSK-W-19-1857-W2-1310	Stériles	2.01	-	9.56	102	0.353	0.07	0.28	1.45	7.11	0.314	< 0.05
OSK-W-19-909-W12-955	Stériles	1.99	-	9.19	30.2	0.589	0.19	0.4	0.314	1.41	0.041	< 0.05
OSK-W-19-934-W3-885	Stériles	2	-	9.05	25	0.195	0.1	0.09	0.303	1.41	0.068	< 0.05
OSK-W-19-934-W3-940	Stériles	1.99	-	9.26	55.3	0.449	0.15	0.3	0.757	3.64	0.161	< 0.05
OSK-W-21-2613-W1-1105	Stériles	1.99	-	9.21	35.2	0.745	0.12	0.62	0.451	2.15	0.105	< 0.05
OSK-W-19-934-W3-1045	Stériles	2	-	9.25	33.8	0.46	0.18	0.28	0.441	2.06	0.076	< 0.05
OSK-W-17-1369-219.5	Stériles	2.01	-	9.16	24.9	0.525	0.16	0.37	0.174	0.75	0.069	< 0.05
EAG-13-485_2	Stériles	2.02	8.85	9.82	189	0.257	0.03	0.23	2.62	11.9	-	2.39
EAG-13-485_3	Stériles	1.98	9.05	9.86	63	1.34	0.04	1.3	0.867	3.43	-	0.686
EAG-13-485_4	Stériles	2	9.21	9.92	109	0.623	0.09	0.53	1.49	6.43	-	1.29
OBM-16-580_17	Stériles	1.99	8.37	9.77	78	10.9	1.46	9.5	1.15	3.09	-	0.619
OBM-16-642_21	Stériles	2.02	8.89	9.58	70	0.887	0.06	0.83	0.737	3.01	-	0.603
OBM-16-693_24	Stériles	1.95	9.11	9.72	220	1.4	< 0.02	1.42	3.13	13.2	-	2.63
OBM-16-693_26	Stériles	2.06	8.98	9.62	208	1.14	0.07	1.07	2.96	12.7	-	2.55
OSK-W-16-761_34	Stériles	2.04	9	9.73	189	1.26	0.04	1.22	2.59	11.1	-	2.23
OSK-W-17-773_36	Stériles	2.08	9.05	9.63	198	0.843	0.08	0.76	2.81	11.6	-	2.31
OSK-W-17-773_37	Stériles	1.95	8.73	9.52	199	0.095	0.06	0.04	2.74	11.8	-	2.36
OSK-W-17-773_42	Stériles	2.08	8.92	9.64	178	0.873	< 0.02	0.91	2.36	10.2	-	2.05
OSK-W-17-783_49	Stériles	1.93	9.18	9.64	299	0.137	0.06	0.08	4.12	18.6	-	3.72
EAG-13-513_57	Stériles	2.01	8.43	9.28	17	6.55	0.95	5.6	0.216	0.485	-	0.097
OBM-16-654_62	Stériles	1.97	7.99	8	8.9	6.61	0.75	5.86	0.014	0.025	-	0.005
OSK-W-16-760_67	Stériles	1.99	8.56	9.59	85	3.18	0.15	3.03	0.842	2.96	-	0.592
OBM-16-580_68	Stériles	2.04	9.18	9.64	45	2.33	0.05	2.28	0.384	1.33	-	0.267
OBM-16-640_71	Stériles	2.03	9.38	9.42	71	1.04	0.14	0.91	0.948	3.6	-	0.721
OBM-15-557_78	Stériles	2.05	8.86	9.32	74	1.87	0.34	1.53	0.707	2.52	-	0.504
WST-19-0160A-55	Stériles	1.99	-	9.55	57.8	1.34	0.05	1.29	0.741	3.61	0.161	< 0.05

Identification de	Type de	Poids de			D.1	07.11	0.00	0.16	0.7.1		007	0.17
l'échantillon	l'échantillon	l'échantillon	pH de la pâte	pH initial	PN	S Total	S-SO₄	Sulfure	C Total	CO₃	СОТ	CIT
		g	unité de pH	unité de pH	kg CaCO₃/ tonne	%	%	%	%	%	%	%
OSK-W-21-2606-615	Stériles	2.01	-	9.63	64.7	1.48	0.23	1.25	0.741	3.57	0.127	< 0.05
WST-21-0873-330	Stériles	2	-	9.5	85	0.496	0.08	0.42	3.22	16	0.319	< 0.05
WST-18-0024-50	Stériles	2.02	-	9.4	34.7	3.77	0.35	3.42	0.293	1.33	0.072	< 0.05
OSK-W-20-2323-115	Stériles	2	-	9.67	62.5	0.69	0.07	0.62	0.618	2.97	0.11	< 0.05
OSK-W-17-1369-315	Stériles	1.99	-	9.62	103	0.332	0.05	0.28	1.24	6.09	0.279	< 0.05
OSK-W-17-663-W2-680	Stériles	2.01	-	9.57	29.9	3.73	< 0.04	3.88	0.277	1.25	0.073	< 0.05
OSK-W-19-1897-496	Stériles	2	-	9.42	36.2	2.03	0.11	1.92	0.343	1.52	0.056	< 0.05
OBM-16-655-330	Stériles	1.99	-	9.53	137	0.666	0.08	0.59	1.81	8.93	0.337	< 0.05
OSK-W-18-1608-805	Stériles	1.98	-	9.36	139	0.42	0.13	0.29	2.12	10.5	0.25	< 0.05
OSK-W-18-1713-470	Stériles	2.02	-	9.72	85.4	0.544	0.04	0.5	0.965	4.67	0.079	< 0.05
OSK-W-18-1744-W1-575	Stériles	2	-	9.59	269	0.09	0.05	0.04	3.38	16.8	0.242	< 0.05
OSK-W-19-1412-W3-765	Stériles	2.02	-	9.63	157	0.198	0.07	0.13	1.96	9.66	0.215	< 0.05
OSK-W-21-2444-545	Stériles	2.01	-	9.45	159	0.067	0.07	< 0.04	2.07	10.2	1.76	< 0.05
OSK-W-18-1386-W4-885	Stériles	2	-	9.57	166	2.02	< 0.04	2	2.63	13	0.468	< 0.05
OBM-15-564_79	Stériles	2.05	9.22	9.68	29	1.16	0.39	0.77	0.241	0.919	-	-
OBM-15-557 80	Stériles	2	9.2	9.71	61	2.09	0.52	1.57	0.64	2.59	-	-
OBM-15-552_81	Stériles	2	9.1	9.68	34	2.09	0.62	1.47	0.297	0.919	-	-
OBM-15-554_82	Stériles	2.05	8.92	9.53	22	2.58	0.62	1.96	0.097	0.33	-	-
OSK-W-16-311-W2 84	Stériles	2.03	9.39	9.63	55	0.588	0.09	0.5	0.5	1.94	-	-
OSK-W-16-706-W1_85	Stériles	1.99	9.24	9.69	58	1.03	0.32	0.71	0.592	2.04	-	-
OSK-W-16-706-W1 86	Stériles	2.04	9.29	9.61	49	1.49	0.51	0.98	0.484	1.73	-	-
OSK-W-16-706-W1_87	Stériles	2.05	9.43	9.68	54	0.623	0.19	0.43	0.541	2.08	-	-
OSK-W-16-706-W1 88	Stériles	2.05	8.68	9.62	35	1.79	0.34	1.45	0.323	0.979	-	-
OSK-W-16-706-W2 89	Stériles	2	9.2	9.58	40	2.3	0.5	1.8	0.372	1.08	-	-
OSK-W-16-708-W1_90	Stériles	1.99	8.81	9.5	93	6.05	0.54	5.51	1.02	3.46	-	-
OSK-W-16-708-W2_91	Stériles	2.02	9.06	9.57	45	2.51	0.7	1.81	0.427	1.19	-	-
OSK-W-16-735-W2_92	Stériles	1.99	9.4	9.39	69	0.228	0.04	0.19	0.674	2.56	-	-
OSK-W-16-743_93	Stériles	1.97	-	9.36	35.5	2.92	-	1.95	0.265	0.28	-	0.056
OSK-W-16-746 94	Stériles	2.04	8.67	9.32	53	3.71	0.55	3.16	0.488	1.52	-	-
OSK-W-16-754_95	Stériles	1.98	9.1	9.51	38	1.23	0.33	0.9	0.366	1.17	-	-
OSK-W-16-754 96	Stériles	2	9.34	9.58	52	1.49	1.11	0.38	0.516	1.95	-	-
OSK-W-17-774_97	Stériles	2.05	8.57	8.54	85	5.48	1.84	3.64	0.981	3.34	-	-
OSK-W-17-774_98	Stériles	1.99	9.09	9.32	50	0.485	0.06	0.42	0.522	2.06	-	-
OSK-W-17-789 99	Stériles	2.03	9.18	9.26	17	1.09	0.38	0.71	0.102	0.32	-	-
OSK-W-17-789_100	Stériles	2.02	9.27	9.08	33	1.43	0.45	0.98	0.319	1.06	-	-
OSK-W-17-812 101	Stériles	2.02	9.16	8.96	79	0.256	0.08	0.18	0.959	4.05	-	-
OSK-W-17-812_102	Stériles	2.01	9.21	8.84	112	1.34	0.41	0.93	1.59	6.49	-	-
OBM-15-552 103	Stériles	2.04	9.08	9.27	65	3.18	0.85	2.33	0.694	2.36	-	-
OSK-W-16-311-W1 83	Stériles	2.01	9.1	9.23	22	1.42	0.36	1.06	0.164	0.57	-	-
OSK-W-17-774_98	Stériles	1.99	9.09	9.32	50	0.485	0.06	0.42	0.522	2.06	-	-
OSK-W-17-789 99	Stériles	2.03	9.18	9.26	17	1.09	0.38	0.71	0.102	0.32	-	-
OSK-W-17-789 100	Stériles	2.02	9.27	9.08	33	1.43	0.45	0.98	0.319	1.06	-	-
OSK-W-17-812 101	Stériles	2.02	9.16	8.96	79	0.256	0.08	0.18	0.959	4.05	-	-
OSK-W-17-812 102	Stériles	2.01	9.21	8.84	112	1.34	0.41	0.93	1.59	6.49	-	-
OBM-15-552 103	Stériles	2.04	9.08	9.27	65	3.18	0.85	2.33	0.694	2.36	-	-
OSK-W-16-311-W1 83	Stériles	2.01	9.1	9.23	22	1.42	0.36	1.06	0.164	0.57	-	-

Identification de l'échantillon	Type de l'échantillon	PN-CO3	PA (S TOTAL)	PNN (S TOTAL)	RPN - S TOTAL	PNN-CO ₃ (S TOTAL)	RPN-CO ₃ (S TOTAL)	Classification	Classification
		kg CaCO3/ tonne	kg CaCO3/ tonne	kg CaCO3/ tonne	(PN/PA)	kg CaCO3/ tonne	(PN-CO ₃ /PA)	PGA	PGA CO3
P3-I	Minerai	73.9	54.7	48.3	1.9	19.2	1.4	PGA	PGA
E-CA-U-H	Minerai	25.0	164.7	-109.7	0.3	-139.7	0.2	PGA	PGA
E-CA-U-L	Minerai	16.7	119.7	-80.7	0.3	-103.0	0.1	PGA	PGA
Under Dog A	Minerai	10.1	137.2	-117.2	0.1	-127.1	0.1	PGA	PGA
E-27-D-H	Minerai	13.6	258.8	-225.8	0.1	-245.2	0.1	PGA	PGA
E-27-D-L	Minerai	6.9	218.8	-198.8	0.1	-211.8	0.0	PGA	PGA
E-27-U-L	Minerai	11.9	237.5	-204.5	0.1	-225.6	0.1	PGA	PGA
E-CA-D-H	Minerai	26.7	200.6	-152.6	0.2	-173.9	0.1	PGA	PGA
E-CA-D-L	Minerai	36.5	152.8	-85.8	0.4	-116.3	0.2	PGA	PGA
Triple Lynx LG	Minerai	12.7	40.0	-16.2	0.6	-27.3	0.3	PGA	PGA
Lynx 4 LP-LG	Minerai	65.0	86.3	-13.4	0.8	-21.2	0.8	PGA	PGA
Lynx 4 HP-LG	Minerai	11.8	117.8	-77.8	0.3	-106.0	0.1	PGA	PGA
Triple Lynx MG/HG	Minerai	27.2	76.9	-12.5	0.8	-49.7	0.4	PGA	PGA
Lynx 4 LP-MG/HG	Minerai	43.7	119.7	-60.9	0.5	-76.0	0.4	PGA	PGA
Lynx 4 HP-MG/HG	Minerai	85.1	103.1	-12.6	0.9	-18.1	0.8	PGA	PGA
P3-J	Minerai	101.7	73.1	33.9	1.5	28.6	1.4	PGA	PGA
Under Dog B	Minerai	14.9	88.1	-63.1	0.3	-73.2	0.2	PGA	PGA
E-27-U-H	Minerai	9.2	234.1	-208.1	0.1	-224.9	0.0	PGA	PGA
Under Dog C	Minerai	6.5	381.3	-366.3	0.0	-374.7	0.0	PGA	PGA
P3-K	Minerai	64.5	77.5	23.5	1.3	-13.0	0.8	PGA	PGA
P3-L	Minerai	74.1	58.8	44.3	1.8	15.3	1.3	PGA	PGA
Tails CND 1	Résidus	42.9	149.7	-79.7	0.5	-106.8	0.3	PGA	PGA
Tails CND 4	Résidus	31.7	124.7	-61.7	0.5	-93.0	0.3	PGA	PGA
Tails CND 5	Résidus	27.9	113.1	-56.1	0.5	-85.3	0.2	PGA	PGA
Tails CND 6	Résidus	6.8	118.4	-92.4	0.2	-111.6	0.1	PGA	PGA
CIL 11 CND	Résidus	29.7	75.6	-18.7	0.8	-45.9	0.4	PGA	PGA
CIL 12 CND	Résidus	56.0	95.6	-37.2	0.6	-39.6	0.6	PGA	PGA
CIL 13 CND	Résidus	73.6	101.9	-36.6	0.6	-28.3	0.7	PGA	PGA
OSK-W-17-918_73	Stériles	98.9	19.1	76.9	5.0	79.8	5.2	NPGA	NPGA
OSK-W-17-879_74	Stériles	134.8	22.9	96.1	5.2	111.9	5.9	NPGA	NPGA
OSK-W-17-1006_75	Stériles	126.1	42.2	87.8	3.1	83.9	3.0	NPGA	NPGA
OSK-W-17-1039_76	Stériles	98.6	10.1	80.9	9.0	88.4	9.7	NPGA	NPGA
OSK-W-17-934_77	Stériles	78.7	16.8	59.3	4.5	62.0	4.7	NPGA	NPGA
GC10001	Stériles	76.4	28.2	65.4	3.3	48.2	2.7	NPGA	NPGA
GC10002	Stériles	67.1	27.6	58.3	3.1	39.5	2.4	NPGA	NPGA
GC10003	Stériles	178.5	4.3	84.1	20.5	174.2	41.4	NPGA	NPGA
GC10004 PN = Potentiel de Neutralisation	Stériles	106.2	25.1	86.9	4.5	81.2	4.2	NPGA	NPGA

PA = Potentiel d'Acidification

PNN = Potentiel Net de Neutralisation

RPN = Ratio de Potentiel de Neutralisation

PGA = Potentiellement Générateur d'Acide

Identification de l'échantillon	Type de l'échantillon	PN-CO3	PA (S TOTAL)	PNN (S TOTAL)	RPN - S TOTAL	PNN-CO ₃ (S TOTAL)	RPN-CO ₃ (S TOTAL)	Classification	Classification
		kg CaCO3/ tonne	kg CaCO3/ tonne	kg CaCO3/ tonne	(PN/PA)	kg CaCO3/ tonne	(PN-CO ₃ /PA)	PGA	PGA CO3
GC10005	Stériles	40.5	72.8	-7.2	0.9	-32.3	0.6	PGA	PGA
GC10006	Stériles	82.6	20.1	76.3	4.8	62.4	4.1	NPGA	NPGA
GC10007	Stériles	97.1	9.1	99.9	11.9	87.9	10.6	NPGA	NPGA
OSK-W-19-1949-W1-635	Stériles	88.7	10.1	64.5	7.4	78.7	8.8	NPGA	NPGA
OSK-W-20-2375-W4-890	Stériles	5.0	49.1	-35.2	0.3	-44.1	0.1	PGA	PGA
OSK-W-19-1857-W2-895	Stériles	69.7	2.5	56.5	23.6	67.2	27.9	NPGA	NPGA
OSK-W-17-870-270	Stériles	78.7	7.2	52.8	8.4	71.6	11.0	NPGA	NPGA
OSK-W-19-909-W12-770	Stériles	71.1	17.6	40.6	3.3	53.4	4.0	NPGA	NPGA
OKS-W-21-2629-720	Stériles	105.2	4.7	79.1	17.9	100.6	22.5	NPGA	NPGA
OSK-W-18-1759-190	Stériles	35.4	15.0	19.3	2.3	20.3	2.4	PGA	NPGA
OBM-15-559 12	Stériles	58.0	1.6	59.4	38.3	56.4	36.4	NPGA	NPGA
OSK-W-17-774 44	Stériles	42.4	7.6	37.4	6.0	34.8	5.6	NPGA	NPGA
EAG-13-490_55	Stériles	90.1	6.0	99.0	17.5	84.1	15.0	NPGA	NPGA
OBM-16-671_63	Stériles	80.1	3.0	96.0	33.0	77.1	26.7	NPGA	NPGA
WST-21-0647-161.5	Stériles	50.9	2.7	50.3	19.5	48.2	18.7	NPGA	NPGA
WST-22-1020-160	Stériles	30.0	4.8	30.0	7.2	25.2	6.2	NPGA	NPGA
OSK-W-21-2555-728	Stériles	65.9	10.3	46.6	5.5	55.5	6.4	NPGA	NPGA
OSK-W-21-2531-655	Stériles	70.4	14.9	56.7	4.8	55.5	4.7	NPGA	NPGA
WST-20-0573-367	Stériles	92.2	1.8	75.3	43.3	90.5	51.8	NPGA	NPGA
WST-21-0621-155	Stériles	43.7	0.3	50.9	182.0	43.4	155.4	NPGA	NPGA
OSK-W-19-1897-610	Stériles	78.6	6.7	77.1	12.5	71.9	11.7	NPGA	NPGA
WST-18-0024-120	Stériles	98.4	1.1	90.9	81.8	97.3	87.5	NPGA	NPGA
OSK-W-20-2313-W6-983	Stériles	101.9	1.6	92.9	58.2	100.3	62.7	NPGA	NPGA
OSK-W-17-864-W2-635	Stériles	66.0	1.8	64.8	37.4	64.3	37.1	NPGA	NPGA
OSK-W-21-2512-W3-550	Stériles	81.6	5.7	70.5	13.5	75.9	14.4	NPGA	NPGA
OSK-W-21-2512-W3-610	Stériles	61.0	4.5	55.5	13.4	56.6	13.7	NPGA	NPGA
WST-21-0930-195	Stériles	44.2	1.8	48.6	28.7	42.4	25.3	NPGA	NPGA
OBM-15-552-230	Stériles	95.6	4.6	79.6	18.3	91.0	20.8	NPGA	NPGA
OBM-15-552-280	Stériles	101.9	5.0	93.5	19.8	96.9	20.5	NPGA	NPGA
OBM-16-655-535	Stériles	76.9	13.3	46.2	4.5	63.6	5.8	NPGA	NPGA
OBM-16-655-600	Stériles	83.9	6.2	78.4	13.7	77.7	13.6	NPGA	NPGA
OBM-16-677-79	Stériles	101.4	0.8	104.3	140.0	100.7	135.2	NPGA	NPGA
OSK-W-16-309-W2-645	Stériles	69.1	8.7	68.8	8.9	60.4	7.9	NPGA	NPGA
OSK-W-16-309-W2-720	Stériles	77.1	1.4	79.0	57.2	75.7	54.8	NPGA	NPGA
OSK-W-17-1121-545	Stériles	37.9	0.4	45.8	105.6	37.4	86.5	NPGA	NPGA
OSK-W-17-1305-261 PN = Potentiel de Neutralisatio	Stériles n	109.4	3.4	72.8	22.4	106.0	32.1	NPGA	NPGA

PA = Potentiel d'Acidification

PNN = Potentiel Net de Neutralisation

RPN = Ratio de Potentiel de Neutralisation

PGA = Potentiellement Générateur d'Acide

Identification de l'échantillon	Type de l'échantillon	PN-CO3	PA (S TOTAL)	PNN (S TOTAL)	RPN - S TOTAL	PNN-CO ₃ (S TOTAL)	RPN-CO ₃ (S TOTAL)	Classification	Classification
		kg CaCO3/ tonne	kg CaCO3/ tonne	kg CaCO3/ tonne	(PN/PA)	kg CaCO3/ tonne	(PN-CO ₃ /PA)	PGA	PGA CO3
OSK-W-19-1181-W5-705	Stériles	50.4	0.3	62.3	250.0	50.1	201.5	NPGA	NPGA
OSK-W-19-1181-W5-845	Stériles	51.2	4.7	53.5	12.5	46.5	11.0	NPGA	NPGA
EAG-13-490 5	Stériles	1.8	34.1	-25.3	0.3	-32.3	0.1	PGA	PGA
EAG-13-490_6	Stériles	47.4	13.3	40.7	4.1	34.1	3.6	NPGA	NPGA
OBM-15-557_10	Stériles	97.9	16.7	79.3	5.7	81.2	5.9	NPGA	NPGA
OBM-16-580 18	Stériles	23.0	12.0	27.0	3.3	11.0	1.9	NPGA	PGA
OBM-16-619 20	Stériles	9.8	61.3	-39.3	0.4	-51.4	0.2	PGA	PGA
OBM-16-671 23	Stériles	170.1	10.6	148.4	15.0	159.5	16.1	NPGA	NPGA
OBM-16-693_25	Stériles	37.4	9.9	38.1	4.8	27.5	3.8	NPGA	NPGA
OSK-W-16-715_27	Stériles	105.4	34.4	46.6	2.4	71.0	3.1	NPGA	NPGA
OSK-W-16-735-W1_28	Stériles	7.1	81.3	-60.3	0.3	-74.2	0.1	PGA	PGA
OSK-W-17-773_38	Stériles	80.9	33.1	55.9	2.7	47.8	2.4	NPGA	NPGA
OSK-W-17-773_39	Stériles	131.3	9.6	117.4	13.2	121.7	13.7	NPGA	NPGA
OSK-W-17-774_43	Stériles	33.5	45.6	11.4	1.2	-12.1	0.7	PGA	PGA
OSK-W-17-788_50	Stériles	79.1	3.5	80.5	23.8	75.5	22.4	NPGA	NPGA
OSK-W-17-788_51	Stériles	56.7	6.5	61.5	10.4	50.2	8.7	NPGA	NPGA
EAG-13-485_54	Stériles	86.2	6.1	94.9	16.5	80.1	14.1	NPGA	NPGA
EAG-13-497_56	Stériles	10.5	108.8	-80.8	0.3	-98.3	0.1	PGA	PGA
EAG-14-538_58	Stériles	0.9	90.0	-81.1	0.1	-89.1	0.0	PGA	PGA
OBM-15-559_59	Stériles	10.0	78.1	-50.1	0.4	-68.1	0.1	PGA	PGA
OBM-15-566_60	Stériles	190.1	2.9	173.1	60.6	187.2	65.4	NPGA	NPGA
OBM-16-673_64	Stériles	6.0	279.7	-258.7	0.1	-273.7	0.0	PGA	PGA
OSK-W-16-713_65	Stériles	1.3	128.1	-59.1	0.5	-126.9	0.0	PGA	PGA
OSK-W-16-735-W1_66	Stériles	1.8	56.3	-44.3	0.2	-54.5	0.0	PGA	PGA
OBM-16-645_69	Stériles	85.7	120.0	-24.0	0.8	-34.3	0.7	PGA	PGA
OBM-16-642_70	Stériles	154.8	117.2	54.8	1.5	37.6	1.3	PGA	PGA
OSK-W-17-774_72	Stériles	90.7	16.1	76.9	5.8	74.6	5.6	NPGA	NPGA
GC10008	Stériles	32.9	8.0	38.5	5.8	24.9	4.1	NPGA	NPGA
GC10009	Stériles	87.1	17.6	74.3	5.2	69.4	4.9	NPGA	NPGA
GC10010	Stériles	53.4	26.3	48.7	2.9	27.1	2.0	NPGA	NPGA
GC10011	Stériles	13.2	9.3	19.0	3.0	3.9	1.4	PGA	PGA
GC10012	Stériles	36.0	31.6	23.4	1.7	4.5	1.1	PGA	PGA
GC10013	Stériles	105.9	10.1	99.9	10.9	95.8	10.5	NPGA	NPGA
#08354	Stériles	82.4	26.8	64.9	3.4	55.6	3.1	NPGA	NPGA
#08355	Stériles	82.4	28.2	65.1	3.3	54.2	2.9	NPGA	NPGA
#08356	Stériles	77.1	31.3	58.4	2.9	45.8	2.5	NPGA	NPGA
WST-21-0647-260 PN = Potentiel de Neutralisatio	Stériles n	21.5	42.2	-14.7	0.7	-20.7	0.5	PGA	PGA

PA = Potentiel d'Acidification

PNN = Potentiel Net de Neutralisation

RPN = Ratio de Potentiel de Neutralisation

PGA = Potentiellement Générateur d'Acide

Identification de l'échantillon	Type de l'échantillon	PN-CO3	PA (S TOTAL)	PNN (S TOTAL)	RPN - S TOTAL	PNN-CO ₃ (S TOTAL)	RPN-CO ₃ (S TOTAL)	Classification	Classification
		kg CaCO3/ tonne	kg CaCO3/ tonne	kg CaCO3/ tonne	(PN/PA)	kg CaCO3/ tonne	(PN-CO ₃ /PA)	PGA	PGA CO3
WST-22-1020-210	Stériles	53.4	16.0	33.2	3.1	37.4	3.3	NPGA	NPGA
OSK-W-21-2551-W3-915	Stériles	52.7	5.3	48.8	10.3	47.5	10.0	NPGA	NPGA
WST-21-0992-450	Stériles	85.9	21.2	63.0	4.0	64.7	4.0	NPGA	NPGA
OSK-W-21-1949-W15-1080	Stériles	63.5	18.0	30.3	2.7	45.5	3.5	NPGA	NPGA
WST-21-0730-500	Stériles	83.7	30.8	39.7	2.3	52.9	2.7	NPGA	NPGA
OSK-W-20-2375-916	Stériles	67.4	20.9	42.5	3.0	46.5	3.2	NPGA	NPGA
OSK-W-21-2587-990	Stériles	24.7	14.7	19.1	2.3	10.0	1.7	PGA	PGA
OSK-W-19-1897-760	Stériles	32.9	15.0	28.8	2.9	17.8	2.2	NPGA	PGA
OSK-W-19-1897-825	Stériles	62.7	17.0	54.2	4.2	45.7	3.7	NPGA	NPGA
OSK-W-19-1897-880	Stériles	30.2	27.5	16.5	1.6	2.7	1.1	PGA	PGA
OSK-W-19-1897-983	Stériles	36.7	45.6	-0.4	1.0	-8.9	0.8	PGA	PGA
OSK-W-21-2252-1013	Stériles	97.4	14.4	64.0	5.4	83.0	6.8	NPGA	NPGA
OSK-W-21-2444-610	Stériles	46.4	42.2	9.3	1.2	4.2	1.1	PGA	PGA
OSK-W-20-2350-125	Stériles	110.2	4.3	99.7	24.3	106.0	25.8	NPGA	NPGA
OSK-W-19-1746-W1-687	Stériles	59.2	30.1	16.1	1.5	29.1	2.0	PGA	PGA
OSK-W-17-1369-365	Stériles	51.0	32.5	19.7	1.6	18.5	1.6	PGA	PGA
OSK-W-21-2605-1332	Stériles	42.7	52.5	-5.0	0.9	-9.8	0.8	PGA	PGA
OSK-W-16-706-W2-905	Stériles	38.4	36.6	-7.7	0.8	1.8	1.0	PGA	PGA
OSK-W-16-743-W1-915	Stériles	20.2	35.9	-3.4	0.9	-15.8	0.6	PGA	PGA
OSK-W-17-913-820	Stériles	73.4	22.8	51.0	3.2	50.5	3.2	NPGA	NPGA
OSK-W-19-1181-W12-1140	Stériles	21.2	18.8	9.1	1.5	2.3	1.1	PGA	PGA
OSK-W-19-1181-W5-795	Stériles	43.9	2.4	47.9	21.2	41.5	18.5	NPGA	NPGA
08359 Down Ramp 3	Stériles	81.1	15.4	88.6	6.8	65.7	5.3	NPGA	NPGA
OBM-15-559 13	Stériles	149.1	11.5	130.5	12.3	137.6	12.9	NPGA	NPGA
OSK-W-16-751 30	Stériles	208.5	5.7	197.3	35.5	202.8	36.5	NPGA	NPGA
OSK-W-16-761_33	Stériles	137.3	3.7	116.3	32.5	133.6	37.2	NPGA	NPGA
OSK-W-17-773_41	Stériles	186.8	11.3	195.7	18.3	175.5	16.6	NPGA	NPGA
OSK-W-17-779_47	Stériles	170.1	4.9	145.1	30.6	165.2	34.7	NPGA	NPGA
OSK-W-17-783_48	Stériles	293.6	1.3	280.7	220.1	292.3	229.1	NPGA	NPGA
GC10014	Stériles	144.3	12.8	145.2	12.3	131.4	11.2	NPGA	NPGA
GC10015	Stériles	173.5	1.2	189.8	160.8	172.3	146.1	NPGA	NPGA
GC10016	Stériles	190.1	3.9	84.2	22.4	186.2	48.3	NPGA	NPGA
GC10018	Stériles	308.6	42.2	191.8	5.5	266.4	7.3	NPGA	NPGA
GC10019	Stériles	168.5	15.8	166.2	11.5	152.6	10.6	NPGA	NPGA
GC10020	Stériles	210.2	8.5	156.5	19.5	201.7	24.8	NPGA	NPGA

PA = Potentiel d'Acidification

PNN = Potentiel Net de Neutralisation

RPN = Ratio de Potentiel de Neutralisation

PGA = Potentiellement Générateur d'Acide

Identification de l'échantillon	Type de l'échantillon	PN-CO3	PA (S TOTAL)	PNN (S TOTAL)	RPN - S TOTAL	PNN-CO ₃ (S TOTAL)	RPN-CO ₃ (S TOTAL)	Classification	Classification
		kg CaCO3/ tonne	kg CaCO3/ tonne	kg CaCO3/ tonne	(PN/PA)	kg CaCO3/ tonne	(PN-CO ₃ /PA)	PGA	PGA CO3
GC10021	Stériles	183.5	23.2	135.8	6.9	160.3	7.9	NPGA	NPGA
GC10022	Stériles	154.1	36.9	125.1	4.4	117.2	4.2	NPGA	NPGA
GC10023	Stériles	300.2	8.3	80.8	10.7	291.9	36.0	NPGA	NPGA
GC10024	Stériles	142.4	1.1	147.9	132.4	141.3	126.6	NPGA	NPGA
#08351	Stériles	215.2	1.1	213.9	202.4	214.1	202.5	NPGA	NPGA
#08353	Stériles	248.5	3.0	233.0	79.5	245.6	83.7	NPGA	NPGA
#08357	Stériles	246.9	0.2	228.8	1221.3	246.7	1316.5	NPGA	NPGA
#08358	Stériles	130.8	6.6	142.4	22.7	124.2	19.9	NPGA	NPGA
OSK-W-21-2606-670	Stériles	146.8	3.3	142.8	44.9	143.5	45.2	NPGA	NPGA
WST-21-0666-54	Stériles	295.2	27.8	57.7	3.1	267.4	10.6	NPGA	NPGA
WST-21-0952-32	Stériles	215.2	32.5	57.5	2.8	182.7	6.6	NPGA	NPGA
OSK-W-21-2555-590 WST-21-0878-517	Stériles Stériles	203.5 293.6	1.9 22.9	166.1 248.1	88.1 11.8	201.6 270.6	106.7 12.8	NPGA NPGA	NPGA NPGA
WST-21-0879-639	Stériles	233.5	10.4	192.6	19.5	223.1	22.4	NPGA NPGA	NPGA NPGA
OSK-W-19-1949-W1-948	Stériles	291.9	12.8	242.2	19.9	279.0	22.7	NPGA	NPGA
OSK-W-20-2397-W1-680	Stériles	155.4	1.0	158.0	164.1	154.5	160.5	NPGA	NPGA
OSK-W-17-836-257	Stériles	303.6	14.1	261.9	19.6	289.5	21.5	NPGA	NPGA
OSK-W-19-1857-W2-980	Stériles	200.1	3.5	159.5	47.0	196.7	57.7	NPGA	NPGA
OSK-W-19-1857-W2-1110	Stériles	218.5	0.4	133.6	329.8	218.1	537.8	NPGA	NPGA
OSK-W-19-1857-W2-1210	Stériles	218.5	0.2	181.8	832.0	218.3	998.8	NPGA	NPGA
OKS-W-21-2613-W1-855	Stériles	226.8	0.2	177.8	949.3	226.6	1209.8	NPGA	NPGA
OSK-W-21-2629-845	Stériles	273.5	4.6	219.4	48.8	268.9	59.5	NPGA	NPGA
OSK-W-21-2629-948	Stériles	201.8	14.3	151.7	11.6	187.5	14.1	NPGA	NPGA
OSK-W-17-1079-580	Stériles	201.8	15.2	155.8	11.2	186.6	13.3	NPGA	NPGA
OSK-W-17-1104-665	Stériles	200.1	1.6	188.4	116.9	198.5	123.2	NPGA	NPGA
OSK-W-17-1369-262.5	Stériles	235.2	19.5	167.5	9.6	215.6	12.0	NPGA	NPGA
OSK-W-17-968-145	Stériles	213.5	22.9	114.1	6.0	190.6	9.3	NPGA	NPGA
OSK-W-19-1181-W5-920	Stériles	258.5	5.5	182.5	34.4	253.1	47.3	NPGA	NPGA
OSK-W-19-1181-W5-970	Stériles	221.8	1.5	181.5	124.6	220.4	151.0	NPGA	NPGA
OSK-W-19-1412-W3-715	Stériles	288.5	6.5	213.5	33.7	282.0	44.2	NPGA	NPGA
08360 Down Ramp 4	Stériles	228.5	16.4	73.0	5.4	212.1	13.9	NPGA	NPGA
WST-22-1013-345	Stériles	26.9	25.6	8.0	1.3	1.3	1.1	PGA	PGA
OSK-W-21-2544-838	Stériles	83.7	25.5	54.9	3.1	58.2	3.3	NPGA	NPGA
OSK-W-21-2613-1042	Stériles	55.4	57.2	19.0	1.3	-1.8	1.0	PGA	PGA

PA = Potentiel d'Acidification

PNN = Potentiel Net de Neutralisation

RPN = Ratio de Potentiel de Neutralisation

PGA = Potentiellement Générateur d'Acide

Identification de l'échantillon	Type de l'échantillon	PN-CO3	PA (S TOTAL)	PNN (S TOTAL)	RPN - S TOTAL	PNN-CO ₃ (S TOTAL)	RPN-CO ₃ (S TOTAL)	Classification	Classification
		kg CaCO3/ tonne	kg CaCO3/ tonne	kg CaCO3/ tonne	(PN/PA)	kg CaCO3/ tonne	(PN-CO ₃ /PA)	PGA	PGA CO3
OSK-W-20-2283-W7-888	Stériles	21.3	18.3	15.1	1.8	3.1	1.2	PGA	PGA
OSK-W-20-2256-W1-1051.7	Stériles	103.7	31.2	62.1	3.0	72.5	3.3	NPGA	NPGA
EAG-13-485 1	Stériles	67.9	16.0	49.0	4.1	51.9	4.2	NPGA	NPGA
EAG-13-491 7	Stériles	67.7	43.1	115.9	3.7	24.6	1.6	NPGA	PGA
EAG-14-544 8	Stériles	50.7	5.3	46.7	9.7	45.4	9.5	NPGA	NPGA
OBM-15-559 11	Stériles	19.7	20.4	-0.4	1.0	-0.8	1.0	PGA	PGA
OBM-15-565 15	Stériles	56.5	15.9	44.1	3.8	40.6	3.5	NPGA	NPGA
OBM-15-565 16	Stériles	2.1	28.6	-20.9	0.3	-26.5	0.1	PGA	PGA
OBM-16-609_19	Stériles	3.5	68.8	-54.8	0.2	-65.2	0.1	PGA	PGA
OBM-16-645_22	Stériles	32.4	42.5	3.5	1.1	-10.1	0.8	PGA	PGA
OSK-W-16-751_29	Stériles	65.5	27.3	59.7	3.2	38.2	2.4	NPGA	NPGA
OSK-W-16-760_31	Stériles	26.2	26.6	12.4	1.5	-0.4	1.0	PGA	PGA
OSK-W-16-760_32	Stériles	9.7	29.2	-6.2	0.8	-19.5	0.3	PGA	PGA
OSK-W-17-773_40	Stériles	45.9	34.7	38.3	2.1	11.2	1.3	NPGA	PGA
OSK-W-17-779_45	Stériles	17.2	64.4	-29.4	0.5	-47.2	0.3	PGA	PGA
OSK-W-17-779_46	Stériles	54.2	3.2	60.8	20.1	51.0	17.0	NPGA	NPGA
OSK-W-17-788_52	Stériles	21.7	67.2	-28.2	0.6	-45.5	0.3	PGA	PGA
EAG-13-485_53	Stériles	7.8	124.4	-99.4	0.2	-116.5	0.1	PGA	PGA
OBM-16-630_61	Stériles	8.5	93.1	-70.1	0.2	-84.6	0.1	PGA	PGA
GC10017	Stériles	126.8	31.9	95.1	4.0	94.9	4.0	NPGA	NPGA
GC10025	Stériles	91.7	7.2	84.2	12.8	84.6	12.8	NPGA	NPGA
GC10026	Stériles	67.2	50.9	22.9	1.4	16.3	1.3	PGA	PGA
GC10027	Stériles	23.4	14.2	32.0	3.2	9.1	1.6	NPGA	PGA
GC10028	Stériles	50.9	5.6	66.0	12.8	45.3	9.1	NPGA	NPGA
GC10029	Stériles	45.9	51.3	14.1	1.3	-5.4	0.9	PGA	PGA
GC10030	Stériles	37.0	19.2	35.5	2.9	17.9	1.9	NPGA	PGA
GC10031	Stériles	32.0	1.6	47.4	31.4	30.5	20.5	NPGA	NPGA
GC10032	Stériles	18.3	6.4	24.8	4.9	12.0	2.9	NPGA	NPGA
#08352	Stériles	82.7	24.2	73.1	4.0	58.5	3.4	NPGA	NPGA
WST-21-0647-313	Stériles	44.7	18.8	22.9	2.2	25.9	2.4	NPGA	NPGA
WST-22-1020-320	Stériles	31.2	7.7	26.1	4.4	23.5	4.1	NPGA	NPGA
WST-21-0873-268.1	Stériles	11.0	2.9	14.6	6.0	8.1	3.7	NPGA	NPGA
WST-21-0873-445	Stériles	52.0	0.9	45.6	51.3	51.1	57.4	NPGA	NPGA
OSK-W-21-2587-1060	Stériles	36.2	21.7	21.8	2.0	14.5	1.7	NPGA	PGA
OSK-W-19-1949-W1-1015	Stériles	28.2	11.3	21.0	2.8	16.8	2.5	NPGA	PGA
OSK-W-21-2252-W12-922 PN = Potentiel de Neutralisatio	Stériles	5.3	30.8	-15.7	0.5	-25.5	0.2	PGA	PGA

PA = Potentiel d'Acidification

PNN = Potentiel Net de Neutralisation

RPN = Ratio de Potentiel de Neutralisation

PGA = Potentiellement Générateur d'Acide

Identification de l'échantillon	Type de l'échantillon	PN-CO3	PA (S TOTAL)	PNN (S TOTAL)	RPN - S TOTAL	PNN-CO ₃ (S TOTAL)	RPN-CO ₃ (S TOTAL)	Classification	Classification
		kg CaCO3/ tonne	kg CaCO3/ tonne	kg CaCO3/ tonne	(PN/PA)	kg CaCO3/ tonne	(PN-CO ₃ /PA)	PGA	PGA CO3
OSK-W-19-1746-W1-765	Stériles	22.5	2.8	22.2	9.0	19.7	8.1	NPGA	PGA
OSK-W-17-836-400	Stériles	42.7	14.3	28.0	3.0	28.4	3.0	NPGA	NPGA
OSK-W-17-859-240	Stériles	154.9	7.3	122.8	17.9	147.7	21.4	NPGA	NPGA
OSK-W-19-1857-W2-1030	Stériles	47.0	14.4	32.6	3.3	32.7	3.3	NPGA	NPGA
OSK-W-19-1857-W2-1310	Stériles	118.6	11.0	91.0	9.2	107.6	10.8	NPGA	NPGA
OSK-W-19-909-W12-955	Stériles	23.5	18.4	11.8	1.6	5.1	1.3	PGA	PGA
OSK-W-19-934-W3-885	Stériles	23.5	6.1	18.9	4.1	17.4	3.9	PGA	PGA
OSK-W-19-934-W3-940	Stériles	60.7	14.0	41.3	3.9	46.7	4.3	NPGA	NPGA
OSK-W-21-2613-W1-1105	Stériles	35.9	23.3	11.9	1.5	12.6	1.5	PGA	PGA
OSK-W-19-934-W3-1045	Stériles	34.4	14.4	19.4	2.4	20.0	2.4	PGA	PGA
OSK-W-17-1369-219.5	Stériles	12.5	16.4	8.5	1.5	-3.9	0.8	PGA	PGA
EAG-13-485 2	Stériles	198.5	8.0	181.0	23.5	190.5	24.7	NPGA	NPGA
EAG-13-485_3	Stériles	57.2	41.9	21.1	1.5	15.3	1.4	PGA	PGA
EAG-13-485 4	Stériles	107.2	19.5	89.5	5.6	87.8	5.5	NPGA	NPGA
OBM-16-580 17	Stériles	51.5	340.6	-262.6	0.2	-289.1	0.2	PGA	PGA
OBM-16-642 21	Stériles	50.2	27.7	42.3	2.5	22.5	1.8	NPGA	PGA
OBM-16-693 24	Stériles	220.2	43.8	176.3	5.0	176.4	5.0	NPGA	NPGA
OBM-16-693 26	Stériles	211.8	35.6	172.4	5.8	176.2	5.9	NPGA	NPGA
OSK-W-16-761 34	Stériles	185.1	39.4	149.6	4.8	145.8	4.7	NPGA	NPGA
OSK-W-17-773 36	Stériles	193.5	26.3	171.7	7.5	167.1	7.3	NPGA	NPGA
OSK-W-17-773 37	Stériles	196.8	3.0	196.0	67.0	193.8	66.3	NPGA	NPGA
OSK-W-17-773 42	Stériles	170.1	27.3	150.7	6.5	142.8	6.2	NPGA	NPGA
OSK-W-17-783_49	Stériles	310.2	4.3	294.7	69.8	306.0	72.5	NPGA	NPGA
EAG-13-513_57	Stériles	8.1	204.7	-187.7	0.1	-196.6	0.0	PGA	PGA
OBM-16-654_62	Stériles	0.4	206.6	-197.7	0.0	-206.1	0.0	PGA	PGA
OSK-W-16-760_67	Stériles	49.4	99.4	-14.4	0.9	-50.0	0.5	PGA	PGA
OBM-16-580_68	Stériles	22.2	72.8	-27.8	0.6	-50.6	0.3	PGA	PGA
OBM-16-640_71	Stériles	60.0	32.5	38.5	2.2	27.5	1.8	NPGA	PGA
OBM-15-557_78	Stériles	42.0	58.4	15.6	1.3	-16.4	0.7	PGA	PGA
WST-19-0160A-55	Stériles	60.2	41.9	15.9	1.4	18.3	1.4	PGA	PGA
OSK-W-21-2606-615	Stériles	59.5	46.3	18.5	1.4	13.3	1.3	PGA	PGA
WST-21-0873-330	Stériles	266.9	15.5	69.5	5.5	251.4	17.2	NPGA	NPGA
WST-18-0024-50	Stériles	22.2	117.8	-83.1	0.3	-95.6	0.2	PGA	PGA
OSK-W-20-2323-115	Stériles	49.5	21.6	40.9	2.9	28.0	2.3	NPGA	NPGA
OSK-W-17-1369-315	Stériles	101.6	10.4	92.6	9.9	91.2	9.8	NPGA	NPGA
OSK-W-17-663-W2-680 PN = Potentiel de Neutralisatio	Stériles n	20.8	116.6	-86.7	0.3	-95.7	0.2	PGA	PGA

PA = Potentiel d'Acidification

PNN = Potentiel Net de Neutralisation

RPN = Ratio de Potentiel de Neutralisation

PGA = Potentiellement Générateur d'Acide

Identification de l'échantillon	Type de l'échantillon	PN-CO3	PA (S TOTAL)	PNN (S TOTAL)	RPN - S TOTAL	PNN-CO ₃ (S TOTAL)	RPN-CO₃ (S TOTAL)	Classification	Classification
		kg CaCO3/ tonne	kg CaCO3/ tonne	kg CaCO3/ tonne	(PN/PA)	kg CaCO3/ tonne	(PN-CO ₃ /PA)	PGA	PGA CO3
OSK-W-19-1897-496	Stériles	25.4	63.4	-27.2	0.6	-38.1	0.4	PGA	PGA
OBM-16-655-330	Stériles	148.9	20.8	116.2	6.6	128.1	7.2	NPGA	NPGA
OSK-W-18-1608-805	Stériles	175.1	13.1	125.9	10.6	162.0	13.3	NPGA	NPGA
OSK-W-18-1713-470	Stériles	77.9	17.0	68.4	5.0	60.9	4.6	NPGA	NPGA
OSK-W-18-1744-W1-575	Stériles	280.2	2.8	266.2	95.6	277.4	99.6	NPGA	NPGA
OSK-W-19-1412-W3-765	Stériles	161.1	6.2	150.8	25.4	154.9	26.0	NPGA	NPGA
OSK-W-21-2444-545	Stériles	170.1	2.1	156.9	75.9	168.0	81.3	NPGA	NPGA
OSK-W-18-1386-W4-885	Stériles	216.8	63.1	102.9	2.6	153.7	3.4	NPGA	NPGA
OBM-15-564 79	Stériles	15.3	36.3	-7.3	0.8	-20.9	0.4	PGA	PGA
OBM-15-557 80	Stériles	43.2	65.3	-4.3	0.9	-22.1	0.7	PGA	PGA
OBM-15-552_81	Stériles	15.3	65.3	-31.3	0.5	-50.0	0.2	PGA	PGA
OBM-15-554_82	Stériles	5.5	80.6	-58.6	0.3	-75.1	0.1	PGA	PGA
OSK-W-16-311-W2_84	Stériles	32.4	18.4	36.6	3.0	14.0	1.8	NPGA	PGA
OSK-W-16-706-W1_85	Stériles	34.0	32.2	25.8	1.8	1.8	1.1	PGA	PGA
OSK-W-16-706-W1_86	Stériles	28.9	46.6	2.4	1.1	-17.7	0.6	PGA	PGA
OSK-W-16-706-W1_87	Stériles	34.7	19.5	34.5	2.8	15.2	1.8	NPGA	PGA
OSK-W-16-706-W1_88	Stériles	16.3	55.9	-20.9	0.6	-39.6	0.3	PGA	PGA
OSK-W-16-706-W2_89	Stériles	18.0	71.9	-31.9	0.6	-53.9	0.3	PGA	PGA
OSK-W-16-708-W1_90	Stériles	57.7	189.1	-96.1	0.5	-131.4	0.3	PGA	PGA
OSK-W-16-708-W2_91	Stériles	19.8	78.4	-33.4	0.6	-58.6	0.3	PGA	PGA
OSK-W-16-735-W2_92	Stériles	42.7	7.1	61.9	9.7	35.6	6.0	NPGA	NPGA
OSK-W-16-743_93	Stériles	4.7	91.3	-55.8	0.4	-86.6	0.1	PGA	PGA
OSK-W-16-746_94	Stériles	25.4	115.9	-62.9	0.5	-90.6	0.2	PGA	PGA
OSK-W-16-754_95	Stériles	19.5	38.4	-0.4	1.0	-18.9	0.5	PGA	PGA
OSK-W-16-754_96	Stériles	32.5	46.6	5.4	1.1	-14.0	0.7	PGA	PGA
OSK-W-17-774_97	Stériles	55.7	171.3	-86.3	0.5	-115.5	0.3	PGA	PGA
OSK-W-17-774_98	Stériles	34.4	15.2	34.8	3.3	19.2	2.3	NPGA	PGA
OSK-W-17-789_99	Stériles	5.3	34.1	-17.1	0.5	-28.7	0.2	PGA	PGA
OSK-W-17-789_100	Stériles	17.7	44.6875	-11.7	0.7	-27.0	0.4	PGA	PGA
OSK-W-17-812_101	Stériles	67.6	8.0	71.0	9.9	59.6	8.4	NPGA	NPGA
OSK-W-17-812_102	Stériles	108.2	41.9	70.1	2.7	66.4	2.6	NPGA	NPGA
OBM-15-552_103	Stériles	39.4	99.4	-34.4	0.7	-60.0	0.4	PGA	PGA
OSK-W-16-311-W1_83	Stériles	9.5	44.4	-22.4	0.5	-34.9	0.2	PGA	PGA

PA = Potentiel d'Acidification

PNN = Potentiel Net de Neutralisation

RPN = Ratio de Potentiel de Neutralisation

PGA = Potentiellement Générateur d'Acide

Identification de l'échantillon	S Total	Sulfure	S-SO ₄	C Total	сот	CIT	PN CIT	PA (S _{TOTAL})	PNN CIT (S	RPN CIT -	PN Bulk	RPN Bulk -	Classification
identification de l'échantifion	%		%	%	%	%	kg CaCO3/ tonne	kg CaCO3/ tonne	kg CaCO3/ tonne	(S TOTAL)	kg CaCO3/ tonne	Sulfure	PGA
HMBT-F01-21_CF-2	0.031	-	<0.0007	1	1	<0.3	<25.0	1.0	24.0	25.7	-	-	NPGA
HMBT-F02-21 CF-2	<0.02	-	<0.0007	<0.1	< 0.3	<0.3	<25.0	<0.6	24.4	40.0	-	-	NPGA
HMBT-F03-21_CH3 (CF-3?)	<0.02	-	<0.0007	<0.1	<0.3	<0.3	<25.0	<0.6	24.4	40.0	-	-	NPGA
HMTN-F01-21_CF-1	<0.02	-	<0.0007	0.2	<0.3	<0.3	<25.0	<0.6	24.4	40.0	-	-	NPGA
UTE-F02-21_CF-1	0.114	-	0.020	18.4	17.6	0.8	66.7	3.6	63.2	18.7	-	-	NPGA
AHS-TR03-21-19-31	0.061	-	0.002	1.4	1.5	<0.3	<25.0	1.9	23.1	13.1	-	-	NPGA
BI-TR01-21-107-189	0.131	-	0.088	<0.1	<0.3	<0.3	<25.0	4.1	20.9	6.1	-	-	NPGA
TU-F01-21_CF-1B	0.072	-	0.001	0.2	0.3	<0.3	<25.0	2.3	22.8	11.1	-	-	NPGA
TU-F03-21_CF-1	<0.02	-	0.001	2.4	2.3	<0.3	<25.0	<0.6	24.4	40.0	-	-	NPGA
BD-TR02-21-150-170	<0.02	-	-	0.1	<0.3	<0.3	<25.0	<0.6	24.4	40.0	-	-	NPGA
TU-TR01-21-52-190	<0.02	-	-	<0.1	<0.3	<0.3	<25.0	<0.6	24.4	40.0	-	-	NPGA
HMBT-F01-21_CF-3	<0.02	-	<0.0007	1.1	1.1	<0.3	<25.0	<0.6	24.4	40.0	-	-	NPGA
HMBT-F02-21_CF-4	<0.02	-	0.00080	<0.1	<0.3	<0.3	<25.0	<0.6	24.4	40.0	-	-	NPGA
HMBT-F02-21_CF-6	<0.02	-	0.00083	<0.1	<0.3	<0.3	<25.0	<0.6	24.4	40.0	-	-	NPGA
HMBT-F03-21_CF-7	<0.02	-	<0.0007	<0.1	<0.3	<0.3	<25.0	<0.6	24.4	40.0	-	-	NPGA
TU-F03-21_CF-3	<0.02	-	<0.0007	<0.1	<0.3	<0.3	<25.0	<0.6	24.4	40.0	-	-	NPGA
TS-F02-21_CF-1	0.0338	-	0.021	10.1	9	1.1	91.7	1.1	90.7	86.9	-	-	NPGA
BH-F01-21_CF-1	<0.02	-	0.002	3.1	2.3	0.8	66.7	<0.6	66.1	106.8	-	-	NPGA
BD-F03-21_CF-1	0.0415	-	0.009	42.2	41	1.2	100.1	1.3	98.8	77.2	-	-	NPGA
R-F01-21 CF-1	<0.02	-	0.0056	32.2	8.2	24	2002	<0.6	2001.0	3202.6	-	-	NPGA
HMBT-F01-21_CR-4	0.152	-	0.00026	1.2	<0.3	1.2	100.1	4.75	95.3	21.1	-	-	NPGA
TU-F01-21_CR-3	0.56	-	0.00149	5	<0.3	5	417	17.5	399.5	23.8	-	-	NPGA
TU-F02-21_CR-2	<0.02	-	0.00036	0.5	<0.3	0.5	41.7	<0.6	41.1	66.7	-	-	NPGA
BD-F01-21_21_CR-2	0.0504	-	0.00058	2	<0.3	2	166.8	1.6	165.2	105.9	-	-	NPGA
BK-F01-21_CR-2	0.244	-	0.00053	1.1	<0.3	1.1	91.7	7.6	84.1	12.0	-	-	NPGA
HMT-F03-21_CR-4	0.247	-	0.00075	1	<0.3	1	83.4	7.7	75.7	10.8	-	-	NPGA
CONC-F02-21_CR-3	0.0483	-	0.00024	2.1	<0.3	2.1	175.1	1.5	173.6	116.0	-	-	NPGA
AHS-F02-21_CF-2	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
AHS-F03-21_CF-1	<0.02	-	-	-	1.4	-	-	<0.6	-	-	-	-	NPGA
AHS-F04-21_CF-1	<0.02	-	-	-	1.6	-	-	<0.6	-	-	-	-	NPGA
AHS-F04-21_CF-3	<0.02	-	-	-	0.4	-	-	<0.6	-	-	-	-	NPGA
AHS-TR01-21-40-67	<0.02	-	-	-	0.8	-	-	<0.6	-	-	-	-	NPGA
AHS-TR03-21-80-130	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	•	NPGA
AHS-TR04-21-40-55	0.0216	-	-	-	0.7	-	-	0.7	-	-	-	-	NPGA
AHS-TR05-21-104-145	<0.02	-	-	-	0.5	-	-	<0.6	-	-	-	-	NPGA
AHS-TR05-21-145-210	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
AHS-TR06-21-150-210	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
BAD-F01-21_CF-1	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
BAD-F01-21_CF-2	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
BA-F01-21_CF-2	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
BB-TR01-21-57-170	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
BC-F01-21_CF-1B	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
BD-F03-21_CF-5	0.0343	-	-	-	<0.3	-	-	1.1	-	-	-	-	NPGA
BD-TR01-21-46-155 PN = Potentiel de Neutralisat	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA

PA = Potentiel d'Acidification

PNN = Potentiel Net de Neutralisation

RPN = Ratio de Potentiel de Neutralisation

PGA = Potentiellement Générateur d'Acide

Identification de l'échantillon	S Total	Sulfure	S-SO ₄	C Total	сот	СІТ	PN CIT	PA (S _{TOTAL})	PNN CIT (S	RPN CIT -	PN Bulk	RPN Bulk -	Classification
	%		%	%	%	%	kg CaCO3/ tonne	kg CaCO3/ tonne	kg CaCO3/ tonne	(S TOTAL)	kg CaCO3/ tonne	Sulfure	PGA
BD-TR03-21-120-175	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
BE-F01-21 CF-2	<0.02	-	-	-	< 0.3	-	-	<0.6	-	-	-	-	NPGA
BE-F01-21_CF-3	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
BE-TR01-21-40-103	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
BF-TR01-21-22-54	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
BF-TR02-21-40-51	0.0217	-	-	-	0.4	-	-	0.7	-	-	-	-	NPGA
BF-TR03-21-79-139	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
BH-F01-21_CF-2	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
BI-F03-21_CF-1A	<0.02	-	-	-	2.4	-	-	<0.6	-	-	-	-	NPGA
BI-TR03-21-31-35	<0.02	-	-	-	2.6	-	-	<0.6	-	-	-	-	NPGA
CAMP-F02-21_CF-1	<0.02	-	-	-	12.5	-	-	<0.6	-	-	-	-	NPGA
CAMP-TR01-21-32-63	<0.02	-	-	-	0.8	-	-	<0.6	-	-	-	-	NPGA
CAMP-TR02-21-73-170	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	•	NPGA
CAMP-TR03-21-50-84	<0.02	-	-	-	0.6	-	-	<0.6	-	-	-	-	NPGA
CC-TR01-21-68-134	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
CC-TR02-21-61-174	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
COND-TR01-21-112-181	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
COND-TR02-21-42-66	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	•	NPGA
COND-TR02-21-66-110	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
COND-TR03-21-34-57	<0.02	-	-	-	0.7	-	-	<0.6	-	-	-	-	NPGA
COND-TR04-21-49-140	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
HMBT-F01-21_CF-1B	<0.02	-	-	-	2.6	-	-	<0.6	-	-	-	-	NPGA
HMBT-F02-21_CF-1	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	•	NPGA
HMBT-F03-21_CF-1C	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
HMT-F03-21_CF-2	<0.02	-	-	-	0.8	-	-	<0.6	-	-	-	-	NPGA
HS-F01-21_CF-1	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
HS-F01-21_CF-2	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
HS-TR01-21-20-41	<0.02	-	-	-	1	-	-	<0.6	-	-	-	-	NPGA
RC-F03-21_CF-1B	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
R-TR01-21-40-70	<0.02	-	-	-	0.8	-	-	<0.6	-	-	-	-	NPGA
R-TR03-21-61-114	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
R-TR04-21-38-62	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
SSE-F01-21_CF-1B	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
SSE-F02-21_CF-1B	<0.02	-	-	-	0.9	-	-	<0.6	-	-	-	-	NPGA
TS-F02-21_CF-3	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
TU-F04-21_CF-1B	0.0211	-	-	-	0.5	-	-	0.7	-	-	-	-	NPGA
UTM-F01-21_CF-1	<0.02	-	-	-	2.1	-	-	<0.6	-	-	-	-	NPGA
UTM-F01-21_CF-3	<0.02	-	-	-	<0.3	-	-	<0.6	-	-	-	-	NPGA
UTM-F02-21_CF-1D	<0.02	-	-	-	0.9	-	-	<0.6	-	-	-	-	NPGA
UTM-F03-21_CF-1B	<0.02	-	-	-	0.3	-	-	<0.6	-	-	-	-	NPGA
UTM-F05-21_CF-1A	<0.02	-	-	-	3.6	-	-	<0.6	-	-	-	-	NPGA
UTM-F06-21_CF-1C	<0.02	-	-	-	2.3	-	-	<0.6	-	-	-	-	NPGA
UTM-F07-21_CF-2	<0.02	-	-	-	0.7	-	-	<0.6	-	-	-	-	NPGA
VR1-F01-21_CF-1A PN = Potentiel de Neutralisati	<0.02	-	-	-	2.9	-	-	<0.6	-	-	-	-	NPGA

PA = Potentiel d'Acidification

PNN = Potentiel Net de Neutralisation

RPN = Ratio de Potentiel de Neutralisation

PGA = Potentiellement Générateur d'Acide

Identification de l'échantillon		Sulfure	S-SO ₄	C Total	СОТ	CIT	PN CIT	PA (S _{TOTAL})	PNN CIT (S TOTAL)	RPN CIT -	PN Bulk	RPN Bulk -	Classification
	%		%	%	%	%	kg CaCO3/ tonne	kg CaCO3/ tonne	kg CaCO3/ tonne	(S TOTAL)	kg CaCO3/ tonne	Sulfure	PGA
VR6-F01-21_CF-1	<0.02	-	-	-	1.4	-	-	<0.6	-	-	-	-	NPGA
MT-1	0.011	< 0.04	<0.04	3.57	3.56	-	-	0.34375	0.32	1.94	8.2	5.6	NPGA
MT-1-DupA	0.009	< 0.04	<0.04	3.08	3.07	-	-	0.28125	0.39	2.37	10.3	7.2	NPGA
MT-2	0.008	< 0.04	<0.04	4.37	4.36	-	-	0.25	0.58	3.34	10.0	7.04	NPGA
MT-3	0.01	< 0.04	<0.04	3.67	3.65	-	-	0.3125	1.19	4.80	12.6	8.8	NPGA
MT-4	0.009	< 0.04	<0.04	2.98	2.96	-	-	0.28125	1.05	4.74	9.5	6.56	NPGA
MT-5	0.016	< 0.04	<0.04	3.02	3.01	-	-	0.5	0.50	2.00	10.9	7.68	NPGA
MT-6	0.009	< 0.04	<0.04	3.47	3.42	-	-	0.28125	3.89	14.83	14.0	10.4	NPGA
MT-7	0.014	< 0.04	<0.04	3.75	3.73	-	-	0.4375	1.06	3.43	13.6	9.6	NPGA
MT-8	0.012	< 0.04	<0.04	5.66	5.65	-	-	0.375	0.29	1.78	10.8	7.68	NPGA
MT-8-DUP-S	0.009	< 0.04	<0.04	4.22	4.21	-	-	0.28125	0.72	3.56	13.7	9.6	NPGA
TP-1-S	< 0.005	< 0.04	<0.04	0.163	0.154	-	-	<0.2	0.51	4.27	9.0	6.24	NPGA
TP-1-TS	0.014	< 0.04	<0.04	10.7	10.7	-	-	0.4375	0.90	3.05	12.3	8.8	NPGA
TP-2-S	< 0.005	< 0.04	<0.04	0.069	0.065	-	-	<0.2	0.51	4.27	7.7	5.12	NPGA
TP-2-TS	0.01	< 0.04	<0.04	1.51	1.5	-	-	0.3125	0.69	3.20	26.9	20.8	NPGA
TP-3-S	< 0.005	< 0.04	<0.04	0.058	0.054	-	-	<0.2	0.51	4.27	9.3	6.4	NPGA
TP-3-TS	0.014	< 0.04	<0.04	2.14	2.13	-	-	0.4375	0.90	3.05	27.6	20.8	NPGA
TP-5-S	< 0.005	< 0.04	<0.04	0.285	0.282	-	-	<0.2	0.51	4.27	10.1	7.04	NPGA
TP-5-S-DUPA	< 0.005	< 0.04	<0.04	0.186	0.182	-	-	<0.2	0.51	4.27	11.4	8	NPGA
	< 0.005	< 0.04	<0.04	0.771	0.765	-	-	<0.2	0.51	4.27	8.9	6.08	NPGA
TP-6-S	< 0.005	< 0.04	<0.04	0.101	0.098	-	-	<0.2	0.51	4.27	10.0	7.04	NPGA
TP-6-TS	< 0.005	< 0.04	<0.04	26.4	25.7	-	-	<0.2	54.4	349.1	42.3	32.8	NPGA
TP-7-S	< 0.005	< 0.04	<0.04	0.291	0.287	-	-	<0.2	0.51	4.27	10.3	7.2	NPGA
TP-7-TS	0.037	< 0.04	<0.04	9.47	9.37	-	-	1.15625	7.52	7.50	34.1	26.4	NPGA
TP-8-TS	0.025	< 0.04	<0.04	4.37	4.35	-	-	0.78125	1.39	2.78	16.5	12	NPGA
TP-9-S	< 0.005	< 0.04	<0.04	0.204	0.198	-	-	<0.2	0.51	4.27	8.3	5.6	NPGA
TP-9-TS	0.032	< 0.04	<0.04	14.2	14.1	-	-	1	7.01	8.01	31.4	24	NPGA
TP-10-S	< 0.005	< 0.04	<0.04	0.199	0.194	-	-	<0.2	0.51	4.27	6.2	4	NPGA
TP-10-S-DUPA	< 0.005	< 0.04	<0.04	0.201	0.195	-	-	<0.2	0.51	4.27	8.8	6.08	NPGA
TP-10-TS	0.218	0.04	0.18	42.5	42.3	-	-	6.8125	10.03	2.47	13.4	9.6	NPGA
TP-10-TS-DUPA	0.283	0.11	0.17	45.5	45.3	-	-	8.84375	5.33	1.60	16.0	0.81	PGA
	< 0.005	< 0.04	<0.04	0.208	0.2	-	-	<0.2	0.51	4.27	11.3	8	NPGA
TP-11-TS	0.01	< 0.04	<0.04	1.85	1.84	-	- 1	0.3125	0.35	2.13	27.6	20.8	NPGA
TP-5-TS-DUPA	0.005	< 0.04	<0.04	1.13	1.12	-	- 1	0.15625	0.68	5.34	20.6	15.2	NPGA

PA = Potentiel d'Acidification

PNN = Potentiel Net de Neutralisation

RPN = Ratio de Potentiel de Neutralisation

PGA = Potentiellement Générateur d'Acide

Identification de l'échantillon	Type de l'échantillon	F µg/g	Br µg/g	Hg ug/g	Si %	Ag µg/g	Al μg/g	As μg/g	B µg/g	Ba µg/g	Be µg/g	Bi µg/g	Ca µg/g
PSRTC-A (Province du Supérior "S")		<u> </u>	F-9-9	0.3	,,,	0.5	F9: 9	5	F9:9	240	F5/5	F9:9	F-9-9
E-27-D-H	Minerai	-	-	0.08	-	12	3300	350	< 1	16	0.1	19	8500
E-27-D-L	Minerai	-	-	< 0.05	-	2.8	6800	420	< 1	19	0.1	15	5500
E-27-U-H	Minerai	-	-	0.26	-	6.7	3600	250	< 1	24	0.1	10	5600
E-27-U-L	Minerai	-	-	0.31	-	5.5	4100	250	< 1	24	0.1	7	6200
E-CA-D-H	Minerai	-	-	0.33	-	4.8	7700	1100	< 1	18	0.2	11	14000
E-CA-D-L	Minerai	-	-	0.13	-	2.8	7500	260	< 1	20	0.2	5.6	16000
E-CA-U-H	Minerai	-	-	1.34	-	28	2400	230	2	27	0.1	11	11000
E-CA-U-L	Minerai	-	-	2.85	-	12	2400	110	< 1	25	0.1	2.7	7300
Under Dog A	Minerai	1.4	< 1.5	0.28	29.8	2	1600	72	< 1	9.1	0.1	4.3	5400
Under Dog B	Minerai	1.3	< 1.5	< 0.05	31.4	1.7	1700	33	1	7.4	0.1	18	7700
Under Dog C	Minerai	1.4	< 1.5	0.06	22.1	2.8	2000	160	2	4.8	0.2	16	6300
P3-I	Minerai	1.8	< 1.5	< 0.05	31.8	2.3	3200	98	1	32	0.1	0.15	18000
P3-J	Minerai	1.5	< 1.5	< 0.05	31.3	8.6	2700	96	< 1	38	0.1	0.14	23000
P3-K	Minerai	1.6	< 1.5	< 0.05	32.5	9.5	2500	82	< 1	52	0.1	0.17	16000
P3-L	Minerai	1.6	< 1.5	0.25	33.8	32	2300	72	< 1	48	0.1	0.17	15000
Triple Lvnx LG	Minerai	-	-	< 0.05	-	0.89	2600	90	< 1	43	0.12	0.17	5800
Lvnx 4 LP-LG	Minerai		_	0.41	_	4.6	2200	150	< 1	26	0.1	0.18	23000
Lynx 4 HP-LG	Minerai	_	_	0.14		1	2700	190	< 1	27	0.1	0.21	6700
Triple Lynx MG/HG	Minerai		_	0.08		1.8	2900	170	< 1	38	0.11	0.23	11000
Lynx 4 LP-MG/HG	Minerai		_	0.46		4.2	2800	190	< 1	26	0.14	0.35	17000
Lynx 4 HP-MG/HG	Minerai		_	0.26		3.9	2900	160	< 1	30	0.14	0.26	27000
RC-F03-21	Mort-terrain	< 1	< 1.5	< 0.05	3300	< 0.5	13000	2.4	< 1	14	0.06	0.16	42000
VR2-F01-21 CR-7	Mort-terrain	1	< 1.5	< 0.05	4200	< 0.5	13000	18	< 1	18	0.14	1.4	33000
VR3-F01-21_CR-5	Mort-terrain	< 1	< 1.5	< 0.05	6100	< 0.5	27000	1	< 1	7.1	< 0.02	< 0.09	43000
HMTN-F01-21 CF-1	Mort-terrain	-	- 1.5	<0.03	594	<0.5	6640	<1	<20	<20	<1	<15	1380
HMBT-F01-21 CF-2	Mort-terrain		-	<0.2	262	<0.5	9420	<1	<20	<20	<1	<15	1950
HMBT-F02-21 CF-2	Mort-terrain	<u> </u>	_	<0.2	340	<0.5	4810	<1	<20	<20	<1	<15	1920
HMBT-F03-21 CH3 (CF-3?)	Mort-terrain		_	<0.2	373	<0.5	4110	<1	<20	<20	<1	<15	1650
UTE-F02-21 CF-1	Mort-terrain	-	-	<0.2	294	<0.5	6070	2	<20	47	<1	<15	8400
HMBT-F01-21 CF-3	Mort-terrain		-	<0.2	427	<0.5	9890	<1	<20	<20	<1	<15	1540
HMBT-F02-21 CF-4	Mort-terrain		-	0.2	318	4	4090	<1	<20	<20	<1	<15	1530
HMBT-F02-21_CF-4	Mort-terrain		-	<0.2	302	2.5	3720	<1	<20	<20	<1	<15	1410
HMBT-F03-21 CF-7	Mort-terrain			<0.2	435	2.6	4630	<1	<20	<20	<1	<15	2010
TU-F03-21 CF-3	Mort-terrain	<u>-</u>	-	<0.2	357	<0.5	4210	<1	<20	25	<1	<15	1880
TS-F02-21_CF-3		-	-	<0.2	658	0.8	8030	2	<20	24	<1	<15	3930
_	Mort-terrain			<0.2		<0.5	10900	<1		45	<1	<15	
BH-F01-21_CF-1	Mort-terrain	-	-	<0.2	302 225	<0.5 <0.5	445	<1	<20 <20	61	<1	<15 <15	2250 12500
BD-F03-21_CF-1	Mort-terrain	-	-		429		2610	1	<20 <20	58	<1	<15 <15	9050
R-F01-21_CF-1	Mort-terrain	-	-	<0.2		<0.5							
HMBT-F01-21_CR-4	Mort-terrain	-	-	<0.2	1640	<0.5	18700	< 5.0	<20	<20	<1	<15	29300
TU-F01-21_CR-3	Mort-terrain	-	-	<0.2	1670	< 0.5	13100	24.4	<20	<20	<1	<15	78800
TU-F02-21_CR-2	Mort-terrain	-	-	<0.2	632	< 0.5	1240	<5.0	<20	<20	<1	<15	14100
BD-F01-21_21_CR-2	Mort-terrain	-	-	<0.2	618	<0.5	1010	8.6	<20	<20	<1	<15	28700
BK-F01-21_CR-2	Mort-terrain	-	-	<0.2	397	<0.5	705	<5.0	<20	<20	<1	<15	13100
HMT-F03-21_CR-4	Mort-terrain	-	-	<0.2	1050	< 0.5	6440	23.3	<20	<20	<1	<15	19600
CONC-F02-21_CR-3	Mort-terrain	-	-	<0.2	2660	<0.5	22800	<5.0	<20	<20	<1	<15	33400

Identification de l'échantillon	Type de l'échantillon	F	Br	Hg	Si	Ag	Al	As	В	Ва	Ве	Bi	Са
ALIO 500 04 05 0	NA - mt. t - mm - in-	μg/g	μg/g	ug/g	%	μg/g	µg/g	µg/g	μg/g	µg/g	µg/g	μg/g	µg/g
AHS-F02-21_CF-2	Mort-terrain	-	-	<0.2	-	<0.5	3730	<1	-	<20	<1	-	1040
AHS-F03-21_CF-1	Mort-terrain	-	-	<0.2	-	<0.5	8070	1	-	<20	<1	-	1080
AHS-F03-21_CF-2	Mort-terrain	-	-	<0.2	-	<0.5	4370	<1	-	<20	<1	-	1730
AHS-F04-21_CF-1	Mort-terrain	-	-	<0.2	-	< 0.5	7460	<1	-	<20	<1	-	1410
AHS-F04-21_CF-3	Mort-terrain	-	-	<0.2	-	<0.5	4360	<1	-	<20	<1	-	1770
AHS-TR01-21-40-67	Mort-terrain	-	-	<0.2	-	<0.5	11200	<1	-	<20	<1	-	646
AHS-TR02-21-219-300	Mort-terrain	-	-	<0.2	-	<0.5	3010	<1	-	<20	<1	-	934
AHS-TR03-21-19-31	Mort-terrain	-	-	<0.2	-	<0.5	21300	<1	-	<20	<1	-	562
AHS-TR03-21-80-130	Mort-terrain	-	-	<0.2	-	<0.5	5130	<1	-	<20	<1	-	1160
AHS-TR04-21-40-55	Mort-terrain	-	-	<0.2	-	<0.5	13300	<1	-	<20	<1	-	1190
AHS-TR05-21-104-145	Mort-terrain	-	-	<0.2	-	<0.5	4260	<1	-	<20	<1	-	1760
AHS-TR05-21-145-210	Mort-terrain	-	-	<0.2	-	<0.5	3480	<1	-	<20	<1	-	2310
AHS-TR06-21-150-210	Mort-terrain	-	-	<0.2	-	<0.5	4230	<1	-	<20	<1	-	1470
BAD-F01-21_CF-1	Mort-terrain	-	-	<0.2	-	<0.5	5390	<1	-	<20	<1	-	669
BAD-F01-21_CF-2	Mort-terrain	-	-	<0.2	-	<0.5	2770	<1	-	<20	<1	-	909
BA-F01-21_CF-2	Mort-terrain	-	-	<0.2	-	<0.5	3970	<1	-	<20	<1	-	1270
BB-TR01-21-57-170	Mort-terrain	-	-	<0.2	-	<0.5	2380	<1	-	<20	<1	-	841
BC-F01-21_CF-1B	Mort-terrain	-	-	<0.2	-	<0.5	4990	<1	-	<20	<1	-	976
BD-F03-21 CF-5	Mort-terrain	-	-	<0.2	-	<0.5	2490	<1	-	<20	<1	-	1260
BD-TR01-21-46-155	Mort-terrain	-	-	<0.2	-	<0.5	2310	<1	-	<20	<1	-	1100
BD-TR02-21-150-170	Mort-terrain	-	-	<0.2	-	<0.5	2670	<1	-	<20	<1	-	1300
BD-TR03-21-120-175	Mort-terrain	-	-	<0.2	-	<0.5	2270	<1	-	<20	<1	-	1410
BE-F01-21 CF-2	Mort-terrain	-	-	<0.2	-	<0.5	4190	<1	-	<20	<1	-	1020
BE-F01-21 CF-3	Mort-terrain	-	-	<0.2	-	<0.5	4380	<1	-	<20	<1	-	1810
BE-TR01-21-40-103	Mort-terrain	-	-	<0.2	-	<0.5	4080	<1	-	<20	<1	-	1320
BF-TR01-21-22-54	Mort-terrain	_	-	<0.2	-	<0.5	3890	2	-	<20	<1	_	822
BF-TR02-21-40-51	Mort-terrain	_	-	<0.2	-	<0.5	9310	2	_	<20	<1	-	605
BF-TR03-21-79-139	Mort-terrain	_	_	<0.2	_	<0.5	4400	<u>-</u> <1	_	<20	<1	_	750
BH-F01-21 CF-2	Mort-terrain	_	_	<0.2	_	<0.5	3220	<1	_	<20	<1	_	1550
BI-F03-21 CF-1A	Mort-terrain	_	_	<0.2	_	<0.5	7580	<1	_	<20	<1	_	669
BI-TR01-21-107-189	Mort-terrain	_	_	<0.2	_	<0.5	2090	3	-	<20	<1		992
BI-TR03-21-31-35	Mort-terrain	_		<0.2	_	<0.5	17100	<u><</u> 1	_	<20	<1	_	386
CAMP-F02-21 CF-1	Mort-terrain	_	_	<0.2	_	<0.5	4630	<1	-	23	<1	-	1370
CAMP-TR01-21-32-63	Mort-terrain			<0.2	_	<0.5	9650	<1		<20	<1	-	616
CAMP-TR02-21-73-170	Mort-terrain		-	<0.2	-	<0.5	2730	<1	-	<20	<1		863
CAMP-TR03-21-50-84	Mort-terrain		-	<0.2	-	<0.5	6360	<1	-	<20	<1		488
CC-TR01-21-68-134	Mort-terrain		-	<0.2	-	<0.5	3550	<1	-	<20	<1	-	816
		-		<0.2	-	<0.5	2780	<1		<20	<1		
CC-TR02-21-61-174	Mort-terrain		-	-	-				-		<1	-	936
COND-TR01-21-112-181 COND-TR02-21-42-66	Mort-terrain	-	-	<0.2		<0.5	3190 9950	<1 <1	-	<20 <20			1160
	Mort-terrain	-	-	<0.2	-	<0.5			-		<1	-	490
COND-TR02-21-66-110	Mort-terrain	-	-	<0.2	-	<0.5	2660	<1	-	<20	<1	-	1160
COND-TR03-21-34-57	Mort-terrain	-	-	<0.2	-	<0.5	1170	<1	-	<20	<1	-	181
COND-TR04-21-49-140	Mort-terrain	-	-	<0.2	-	<0.5	3520	<1	-	<20	<1	-	1640
HMBT-F01-21_CF-1B	Mort-terrain	-	-	<0.2	-	<0.5	8250	<1	-	<20	<1	<u> </u>	626
HMBT-F02-21_CF-1	Mort-terrain	-	-	<0.2	-	<0.5	5030	<1	-	<20	<1	-	729
HMBT-F03-21_CF-1C	Mort-terrain	-	-	<0.2	-	<0.5	5630	<1	-	<20	<1	-	904
HMT-F03-21_CF-2	Mort-terrain	-	-	<0.2	-	<0.5	6590	7	-	<20	<1	-	1170

Identification de l'échantillon	Type de l'échantillon	F	Br	Hg	Si	Ag	Al	As	В	Ва	Be	Bi	Са
110 504 04 05 4	Mant tannain	μg/g	μg/g	ug/g	%	μg/g	µg/g	μg/g	μg/g	µg/g	μg/g	μg/g	µg/g
HS-F01-21_CF-1	Mort-terrain	-	-	<0.2	-	<0.5	5370	<1	-	<20	<1	-	773
HS-F01-21_CF-2	Mort-terrain	-	-	<0.2	-	<0.5	3530	<1	-	<20	<1	-	1170
HS-TR01-21-20-41	Mort-terrain	-	-	<0.2	-	<0.5	16800	<1	-	<20	<1	-	990
RC-F03-21_CF-1B	Mort-terrain	-	-	<0.2	-	<0.5	4160	<1	-	<20	<1	-	840
R-TR01-21-40-70	Mort-terrain	-	-	<0.2	-	<0.5	6600	<1	-	<20	<1	-	2400
R-TR03-21-61-114	Mort-terrain	-	-	<0.2	-	<0.5	4300	<1	-	<20	<1	-	1480
R-TR04-21-38-62	Mort-terrain	-	-	<0.2	-	<0.5	5360	<1	-	<20	<1	-	1140
SSE-F01-21_CF-1B	Mort-terrain	-	-	<0.2	-	<0.5	5150	1	-	<20	<1	-	1750
SSE-F02-21_CF-1B	Mort-terrain	-	-	<0.2	-	<0.5	10800	<1	-	<20	<1	-	1310
TS-F02-21_CF-3	Mort-terrain	-	-	<0.2	-	<0.5	4660	11	-	<20	<1	-	2170
TU-F01-21_CF-1B	Mort-terrain	-	-	<0.2	-	<0.5	3490	2	-	<20	<1	-	2490
TU-F03-21_CF-1	Mort-terrain	-	-	<0.2	-	<0.5	4210	<1	-	<20	<1	-	1890
TU-F04-21_CF-1B	Mort-terrain	-	-	<0.2	-	<0.5	12200	<1	-	<20	<1	-	942
TU-TR01-21-52-190	Mort-terrain	-	-	<0.2	-	<0.5	3040	<1	-	<20	<1	-	1360
UTM-F01-21_CF-1	Mort-terrain	-	-	<0.2	-	<0.5	4240	<1	-	<20	<1	-	2680
UTM-F01-21_CF-3	Mort-terrain	-	-	<0.2	-	<0.5	3470	1	-	<20	<1	-	2270
UTM-F02-21_CF-1D	Mort-terrain	-	-	<0.2	-	<0.5	4790	<1	-	<20	<1	-	2170
UTM-F03-21_CF-1B	Mort-terrain	-	-	<0.2	-	<0.5	3040	<1	-	<20	<1	-	2260
UTM-F05-21_CF-1A	Mort-terrain	-	-	<0.2	-	<0.5	10400	<1	-	<20	<1	-	731
UTM-F06-21_CF-1C	Mort-terrain	-	-	<0.2	-	<0.5	3070	<1	-	<20	<1	-	616
UTM-F07-21_CF-2	Mort-terrain	-	-	<0.2	•	<0.5	4420	<1	-	<20	<1	-	2180
VR1-F01-21_CF-1A	Mort-terrain	-	-	<0.2	•	<0.5	8530	<1	-	<20	<1	-	1240
VR6-F01-21_CF-1	Mort-terrain	-	-	<0.2	•	<0.5	4060	<1	-	<20	<1	-	2070
BH-22-27-CF-2	Mort-terrain	-	-	<0.2	-	<0.5	19300	<1	-	<20	<1	-	1190
CF1-F-16-22	Mort-terrain	-	-	<0.2	ı	<0.5	5990	<1	-	<20	<1	-	1210
F01-22-CF-1B	Mort-terrain	-	-	<0.2	•	<0.5	6720	<1	-	<20	<1	-	1050
F01-22-CF-2	Mort-terrain	-	-	<0.2	ı	<0.5	4410	<1	-	<20	<1	-	1680
F02-22-CF-1B	Mort-terrain	-	-	<0.2	-	<0.5	6880	<1	-	<20	<1	-	1360
F02-22-CF-3	Mort-terrain	-	-	<0.2	-	<0.5	4590	<1	-	<20	<1	-	1810
F03-22-CF-1B	Mort-terrain	-	-	<0.2	-	<0.5	5180	<1	-	<20	<1	-	1110
F03-22-CF-3	Mort-terrain	-	-	<0.2	-	<0.5	4120	<1	-	<20	<1	-	1410
F04-22-CF-1	Mort-terrain	-	-	<0.2	-	<0.5	4980	<1	-	<20	<1	-	2100
F04-22-CF-3	Mort-terrain	-	-	<0.2	-	<0.5	4390	<1	-	<20	<1	-	1690
F05-22-CF-1	Mort-terrain	-	-	<0.2	-	<0.5	5040	3	-	26	<1	-	2140
F06-22-CF-2	Mort-terrain	-	-	<0.2	-	<0.5	3070	<1	-	<20	<1	-	1410
F06-22-CF-3	Mort-terrain	-	-	<0.2	-	<0.5	3550	<1	-	<20	<1	-	1310
F07-22-CF-2	Mort-terrain	-	-	<0.2	-	<0.5	3000	<1	-	<20	<1	-	1170
F07-22-CF-3	Mort-terrain	-	-	<0.2	-	<0.5	5970	<1	-	<20	<1	-	1760
F08-22-CF-1B	Mort-terrain	-	-	<0.2	-	<0.5	12600	<1	-	<20	<1	-	1190
F10-22-CF-1B	Mort-terrain	-	-	<0.2	-	<0.5	19500	1	-	<20	<1	-	1100
F10-22-CF-3	Mort-terrain	-	-	<0.2	-	<0.5	5270	<1	-	<20	<1	-	1750
F15-22-CF-2	Mort-terrain	-	-	<0.2	-	<0.5	3840	2	-	<20	<1	-	2250
F18-22-CF-1	Mort-terrain	_	-	<0.2	_	-	781	<5.0	-	31	<1	_	3050
F18-22-CF-3B	Mort-terrain	_	_	<0.2	_	<0.5	4300	<5.0	-	<20	<1	_	1650
F19-22-CF-1	Mort-terrain	_	-	<0.2	_	-	1240	<5.0	-	21	<1	-	23200
F19-22-CF-3	Mort-terrain	_	_	<0.2	_	<0.5	4330	<5.0	-	<20	<1	_	1620
F20-22-CF-2	Mort-terrain			<0.2		<0.5	6180	2	_	<20	<1		1380

Identification de l'échantillon	Type de l'échantillon	F	Br	Hg	Si	Ag	Al	As	В	Ва	Be	Bi	Са
500.00.05.40		μg/g	μg/g	ug/g	%	μg/g	µg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g
F22-22-CF-1C	Mort-terrain	-	-	<0.2	-	<0.5	6830	<1	-	<20	<1	-	930
F22-22-CF-2	Mort-terrain	-	-	<0.2	-	<0.5	8550	<1	-	21	<1	-	1780
F23-22-CF-1A	Mort-terrain	-	-	<0.2	-	<0.5	7570	<1	-	<20	<1	-	761
F23-22-CF-2	Mort-terrain	-	-	<0.2	-	< 0.5	3080	<1	-	<20	<1	-	1410
F24-22-CF-1A	Mort-terrain	-	-	<0.2	-	<0.5	1870	<1	-	28	<1	-	408
F24-22-CF-4	Mort-terrain	-	-	<0.2	-	<0.5	4880	<1	-	<20	<1	-	1940
F28-22-CF-1	Mort-terrain	-	-	<0.2	-	-	1420	<5.0	-	35	<1	-	26000
F28-22-CF-3	Mort-terrain	-	-	<0.2	-	<0.5	2710	<5.0	-	<20	<1	-	1860
F29-22-CF-1	Mort-terrain	-	-	<0.2	-	<0.5	4890	<1	-	<20	<1	-	1840
F30-22-CF-1	Mort-terrain	-	-	<0.2	-	<0.5	5790	<1	-	22	<1	-	5670
F31-22-CF3A	Mort-terrain	-	-	<0.2	-	<0.5	4380	<1	-	<20	<1	-	1920
F32-22-CF-1B	Mort-terrain	-	-	<0.2	-	<0.5	6040	<1	-	<20	<1	-	1900
F32-22-CF-2	Mort-terrain	-	-	<0.2	-	<0.5	3980	<1	-	<20	<1	-	1920
F33-22-CF1C	Mort-terrain	-	-	<0.2	-	<0.5	5720	<1	-	<20	<1	-	1480
F34-22-CF-2	Mort-terrain	-	-	<0.2	-	<0.5	5340	<1	-	<20	<1	-	1210
F35-22-CF-2B	Mort-terrain	-	-	<0.2	-	<0.5	4620	2	-	<20	<1	-	2300
F35-22-CF-3	Mort-terrain	-	-	<0.2	-	<0.5	3780	31	-	<20	<1	-	1900
F36-22-CF-1B	Mort-terrain	-	-	<0.2	•	<0.5	4850	<1	-	<20	<1	-	2300
F37-22-CF-3A	Mort-terrain	-	-	<0.2	ı	<0.5	3460	<5.0	-	<20	<1	-	1270
F42-22-CF-1B	Mort-terrain	-	-	<0.2	-	<0.5	4710	<1	-	<20	<1	-	2350
F42-22-CF-4	Mort-terrain	-	-	<0.2	-	<0.5	3930	24	-	<20	<1	-	2400
F43-22-CF-1	Mort-terrain	-	-	<0.2	•	<0.5	5250	<1	-	22	<1	-	2440
F43-22-CF-2	Mort-terrain	-	-	<0.2	-	<0.5	6730	<1	-	27	<1	-	2670
F44-22-CF-1A	Mort-terrain	-	-	<0.2	-	<0.5	4240	<1	-	<20	<1	-	2380
F44-22-CF-3	Mort-terrain	-	-	<0.2	-	<0.5	3960	<1	-	24	<1	-	2620
F46-22-CF-2	Mort-terrain	-	-	<0.2	-	<0.5	6100	<1	-	<20	<1	-	951
F48-22-CF-1	Mort-terrain	-	-	<0.2	-	<0.5	4840	<1	-	<20	<1	-	1390
F49-22-CF-2	Mort-terrain	-	-	<0.2	-	<0.5	3660	<1	-	<20	<1	-	1260
F49-22-CF-3	Mort-terrain	-	-	<0.2	-	<0.5	5910	<1	-	30	<1	-	1720
F50-22-CF-2	Mort-terrain	-	-	<0.2	-	<0.5	5970	<1	-	<20	<1	-	1840
F51-22 CF1B	Mort-terrain	-	-	<0.2	-	<0.5	2830	<1	-	<20	<1	-	1290
F51-22 CF2B	Mort-terrain	-	-	<0.2	-	<0.5	4850	<1	-	<20	<1	-	2040
F52-22 CF1B	Mort-terrain	-	-	<0.2	-	<0.5	3020	<1	-	<20	<1	-	875
F53-22 CF2A	Mort-terrain	-	-	<0.2	-	<0.5	2560	<1	-	<20	<1	-	1420
F53-22-CF-2B	Mort-terrain	-	-	<0.2	-	<0.5	7640	<1	-	38	<1	-	3370
F54-22 CF2	Mort-terrain	-	-	<0.2	-	<0.5	4320	<1	-	<20	<1	-	2560
F55-22-CF-2A	Mort-terrain	-	-	<0.2	-	<0.5	6150	<1	-	<20	<1	-	1680
F56-22-CF-3	Mort-terrain	_	-	<0.2	_	<0.5	4590	<1	-	<20	<1	_	2070
F57-22-CF-2B	Mort-terrain	_	-	<0.2	_	<0.5	3510	<1	-	<20	<1	-	2100
F57-22-CF-3	Mort-terrain	_	_	<0.2	_	<0.5	3110	<1	-	<20	<1	-	2120
F58-22-CF-2B	Mort-terrain	-	-	<0.2	_	<0.5	6090	<1	-	<20	<1	-	1630
F59-22-CF-2	Mort-terrain	_	_	<0.2	_	<0.5	5400	<1	-	<20	<1	-	1970
F60-22-CF-2B	Mort-terrain		_	<0.2	_	<0.5	4060	<1	_	<20	<1		2000
F60-22-CF-3	Mort-terrain		_	<0.2		<0.5	3080	<1		<20	<1		1990
F61-22-CF-1	Mort-terrain		-	<0.2		<0.5	6710	2	-	<20	<1	-	1560
F62-22-CF-1B	Mort-terrain		-	<0.2		<0.5	8210	<1	-	<20	<1	-	950
F-63-22-CF-4A	Mort-terrain		-	<0.2		<0.5	3750	<1	-	24	<1	-	3480

Identification de l'échantillon	Type de l'échantillon	F	Br	Hg	Si %	Ag	Al	As	В	Ba	Be	Bi	Ca
F64-22-CF-2	Mort-terrain	μ <u>g</u> /g -	μg/g -	ug/g <0.2	-	μ g/g <0.5	µg/g 3910	μ g/g <1	μg/g -	μ g/g <20	μ g/g <1	μg/g -	μ g/g 2240
F64-22-CF-2 F64-22-CF-4	Mort-terrain		-	<0.2	-	<0.5	4240	<1	-	<20	<1	-	1700
F65-22-CF-2B	Mort-terrain	<u> </u>	-	<0.2		<0.5	4200	5	-	<20	<1	-	2460
F66-22-CF-3	Mort-terrain		-	<0.2	-	<0.5	3140	2	-	<20	<1	-	2410
F67-22-CF-1B	Mort-terrain		-	<0.2		0.8	7670	7	-	70	<1	-	10100
F67-22-CF-3	Mort-terrain	-	-	<0.2		<0.5	4440	4		<20	<1	-	2890
F68-22-CF-1B	Mort-terrain		-	<0.2		<0.5	1470	<1	-	<20	<1	-	1110
F69-22-CF-2	Mort-terrain	 -		<0.2		<0.5	4760	<1		<20	<1		1600
F69-22-CF-3	Mort-terrain			<0.2		<0.5	4610	<1		<20	<1	-	1960
F70-22-CF-2	Mort-terrain			<0.2		<0.5	2420	<1		133	<1	-	35000
F71-22-CF-2	Mort-terrain	-		<0.2		<0.5	5000	<1		<20	<1	-	1950
F71-22-CF-4	Mort-terrain	<u> </u>	-	<0.2		<0.5	13100	2	_	27	<1	-	2590
F72-22-CF-1B	Mort-terrain		_	<0.2		<0.5	13000	<1	_	<20	<1	-	711
F73-22-CF-1A	Mort-terrain		-	<0.2		<0.5	702	1	_	52	<1	-	3610
F74-22-CF-3A	Mort-terrain		-	<0.2		<0.5	3970	<1		<20	<1	-	1540
F75-22-CF-1B	Mort-terrain		_	<0.2		<0.5	15700	<1		<20	<1		807
F75-22-CF-2	Mort-terrain		_	<0.2		<0.5	6980	<1	_	<20	<1		821
F76-22-CF-1	Mort-terrain		_	<0.2		<0.5	3950	<1		31	<1	-	2800
F77-22-CF-3B	Mort-terrain		_	<0.2		<0.5	4160	<1	_	<20	<1	-	2360
F78-22-CF-1B	Mort-terrain		-	<0.2		<0.5	11800	<1	_	<20	<1	-	1530
F79-22-CF-1B	Mort-terrain		_	<0.2		<0.5	6640	<1		<20	<1		1340
F80-22-CF-2	Mort-terrain		-	<0.2	_	<0.5	20300	5	_	82	<1	-	1600
F81-22-CF-1B	Mort-terrain		_	<0.2	_	<0.5	4540	1		<20	<1		2460
F82-22-CF-1	Mort-terrain		-	<0.2		<0.5	3750	<u>'</u> <1	_	<20	<1		2030
F83-22-CF-3A	Mort-terrain		_	<0.2		<0.5	4580	<1	_	<20	<1		2310
F84-22-CF-1	Mort-terrain	_	-	<0.2	-	<0.5	9180	1	-	26	<1	-	8830
F85-22-CF-2	Mort-terrain		_	<0.2	_	<0.5	5260	<1	_	<20	<1		1630
F86-22-CF-1	Mort-terrain		_	<0.2	_	<0.5	8970	<1	_	<20	<1		413
F87-22-CF-1	Mort-terrain		-	<0.2	_	<0.5	7650	<1	_	<20	<1	_	928
F88-22-CF-1	Mort-terrain		_	<0.2	_	<0.5	5780	<1	_	<20	<1	_	1050
F88-22-CF-2	Mort-terrain	_	-	<0.2	-	<0.5	3730	<1	_	<20	<1	-	1220
F92-22-CF-1A	Mort-terrain		_	<0.2	_	<0.5	4770	<1	_	<20	<1		454
F92-22-CF-2	Mort-terrain		_	-	_	-	-	-	_	-		_	
F92-22-CF-4	Mort-terrain		-	<0.2	_	<0.5	16100	3	_	30	<1	_	1400
F93-22-CF-1B	Mort-terrain	-	-	<0.2	_	<0.5	4750	<1	_	<20	<1	-	1060
F94-22-CF-1B	Mort-terrain	_	-	<0.2	-	<0.5	4020	<1	-	<20	<1	-	2760
F95-22-CF-1B	Mort-terrain	_	-	<0.2	_	<0.5	6180	4	_	<20	<1	-	1730
F96-22-CF-1B	Mort-terrain	_	-	<0.2	_	<0.5	6420	- <1	_	<20	<1	-	713
BH-22-25-CF-1	Mort-terrain	_	-	<0.2	_	<0.5	7940	1	_	22	<1	_	2640
BH-22-26-CF-2	Mort-terrain	_	-	<0.2	_	<0.5	4580	<1	_	<20	<1	-	1850
BH-22-28-CF-1B	Mort-terrain	_	-	<0.2	_	<0.5	17200	2	_	<20	<1	-	2260
Tails CND 1	Résidus	_	-	0.57	_	1.5	3200	158	< 1	41	0.07	10	18000
Tails CND 4	Résidus	_	-	0.31	_	1.4	3800	157	< 1	30	0.11	15	16000
Tails CND 5	Résidus	_	_	0.1	_	1.1	3300	122	< 1	25	0.1	22	14000
Tails CND 6	Résidus	_	-	0.11	_	1.3	3600	82	< 1	22	0.1	37	8500
CIL 11 CND	Résidus	_	-	0.08	-	0.05	1200	210	< 1	38	0.07	0.27	9800
CIL 12 CND	Résidus	_	-	0.7	_	0.89	860	170	< 1	8	0.06	0.25	17000

Identification de l'échantillon	Type de l'échantillon	F	Br	Hg	Si %	Ag	Al	As	B	Ba	Be	Bi	Ca
CIL 13 CND	Résidus	μ <u>g</u> /g -	μg/g -	ug/g 0.44	-	μg/g 0.51	μ g/g 1000	μg/g 200	μ g/g < 1	μ g/g 7.4	μ g/g 0.06	μ g/g 0.31	μ g/g 21000
EAG-13-485 1	Stériles	<u>-</u> <1	< 1.5	< 0.05	31.6	0.36	3500	14	<1	28	0.00	0.31	16000
EAG-13-465_1	Stériles	10	< 1.5	< 0.05	20.1	0.36	19000	33	<1	5.5	0.14	0.43	48000
EAG-13-465_2 EAG-13-485_3	Stériles	2	< 1.5	< 0.05	23.8	0.16	24000	10	<1	18	0.11	1.4	29000
EAG-13-485 4	Stériles	1	< 1.5	< 0.05	23.4	0.48	20000	37	< 1	55	0.20	2.4	33000
EAG-13-490 5	Stériles	2	< 1.5	0.08	31.3	1.1	3000	34	<1	22	0.33	1.2	2100
EAG-13-490_5	Stériles	2	< 1.5	< 0.05	29.1	0.13	5200	6.9	< 1	23	0.12	1.1	15000
EAG-13-491 7	Stériles	<u>- </u>	< 1.5	< 0.05	30.9	0.38	5900	27	< 1	56	0.12	0.71	19000
EAG-14-544 8	Stériles	2	< 1.5	< 0.05	32.4	0.04	3600	5.6	< 1	44	0.22	0.71	13000
OBM-15-557 10	Stériles	2	< 1.5	< 0.05	26.7	0.18	5500	12	< 1	61	0.12	0.21	30000
OBM-15-559 11	Stériles	2	< 1.5	< 0.05	34.2	0.10	2600	15	< 1	81	0.12	0.46	5700
OBM-15-559 12	Stériles	2	< 1.5	< 0.05	28.9	0.01	4600	2.6	< 1	57	0.13	< 0.09	23000
OBM-15-559 13	Stériles	2	< 1.5	< 0.05	20.2	0.04	25000	6.3	< 1	16	0.35	0.81	53000
OBM-15-565 15	Stériles	2	< 1.5	< 0.05	31.1	0.18	3000	15	< 1	40	0.12	0.9	15000
OBM-15-565_16	Stériles	2	< 1.5	0.06	35.2	0.78	3000	23	< 1	34	0.12	2.6	1200
OBM-16-580 17	Stériles	2	< 1.5	0.08	17.7	8.3	6400	330	1	17	0.17	36	25000
OBM-16-580 18	Stériles	2	< 1.5	< 0.05	27	0.13	6200	6.1	< 1	32	0.1	0.68	12000
OBM-16-609 19	Stériles	2	< 1.5	0.07	33.3	2.8	2900	40	< 1	37	0.1	3.1	1900
OBM-16-619 20	Stériles	1	< 1.5	< 0.05	29.4	0.72	3900	61	< 1	23	0.08	4.4	4500
OBM-16-642 21	Stériles	1	< 1.5	< 0.05	24.3	0.1	32000	8.5	< 1	13	0.19	0.78	26000
OBM-16-645 22	Stériles	2	< 1.5	< 0.05	28.4	0.54	14000	130	< 1	25	0.16	1.4	10000
OBM-16-671 23	Stériles	2	< 1.5	< 0.05	22.4	0.42	14000	20	< 1	83	0.38	2.1	50000
OBM-16-693 24	Stériles	2	< 1.5	< 0.05	22.4	0.85	4200	41	< 1	26	0.28	3	57000
OBM-16-693 25	Stériles	3	< 1.5	< 0.05	30.4	0.14	3800	6.5	< 1	35	0.23	0.49	11000
OBM-16-693 26	Stériles	2	< 1.5	< 0.05	20.9	0.47	14000	32	1	29	0.4	2.5	55000
OSK-W-16-715 27	Stériles	2	< 1.5	< 0.05	26	0.31	5000	34	< 1	37	0.16	0.83	29000
OSK-W-16-735-W1 28	Stériles	2	< 1.5	< 0.05	28.5	0.85	4000	96	< 1	20	0.12	2.5	5500
OSK-W-16-751 29	Stériles		< 1.5	< 0.05	33.4	0.42	2800	13	< 1	60	0.12	< 0.09	17000
OSK-W-16-751 30	Stériles	< 1	< 1.5	< 0.05	18.8	0.09	26000	9.5	< 1	7.7	0.03	< 0.09	61000
OSK-W-16-760 31	Stériles	2	< 1.5	0.2	33.4	0.6	7400	26	< 1	34	0.15	0.71	8900
OSK-W-16-760 32	Stériles		3	< 0.05	33.1	0.75	8300	12	< 1	13	0.13	2.7	7600
OSK-W-16-761 33	Stériles	< 1	< 1.5	< 0.05	20	0.09	30000	12	< 1	8.1	0.13	< 0.09	53000
OSK-W-16-761 34	Stériles	2	< 1.5	< 0.05	19.6	0.17	25000	51	< 1	40	0.24	0.12	49000
OSK-W-17-773 36	Stériles	1	< 1.5	< 0.05	21.1	0.15	17000	23	1	13	0.1	< 0.09	50000
OSK-W-17-773 37	Stériles	1	< 1.5	< 0.05	21.9	0.03	15000	8.1	1	23	0.17	< 0.09	51000
OSK-W-17-773 38	Stériles	1	< 1.5	< 0.05	29.2	0.19	3700	34	1	23	0.08	< 0.09	25000
OSK-W-17-773 39	Stériles	2	< 1.5	< 0.05	32.7	0.84	3700	26	2	26	0.15	< 0.09	32000
OSK-W-17-773 40	Stériles	2	< 1.5	< 0.05	32.6	0.75	3100	54	< 1	70	0.18	0.11	13000
OSK-W-17-773 41	Stériles	< 1	< 1.5	< 0.05	19	0.49	28000	36	< 1	26	0.14	< 0.09	64000
OSK-W-17-773 42	Stériles	1	< 1.5	< 0.05	20	0.07	24000	14	< 1	12	0.27	0.29	49000
OSK-W-17-774 43	Stériles	2	< 1.5	0.21	29.2	2.5	3800	47	< 1	23	0.1	4	12000
OSK-W-17-774 44	Stériles	3	< 1.5	< 0.05	28.5	0.04	8200	4.3	< 1	46	0.17	0.18	21000
OSK-W-17-779 45	Stériles	1	< 1.5	< 0.05	32	0.55	9200	35	< 1	42	0.12	< 0.09	6400
OSK-W-17-779 46	Stériles	2	< 1.5	< 0.05	32.5	0.52	3100	98	< 1	32	0.19	< 0.09	14000
OSK-W-17-779_47	Stériles	< 1	< 1.5	< 0.05	20	0.24	29000	6.7	< 1	2.8	0.1	< 0.09	71000
OSK-W-17-783_48	Stériles	< 1	< 1.5	< 0.05	18.5	0.04	19000	31	2	19	0.06	< 0.09	65000
OSK-W-17-783 49	Stériles	< 1	< 1.5	< 0.05	17.8	0.02	13000	6	2	28	0.04	< 0.09	70000

Identification de l'échantillon	Type de l'échantillon	F	Br µg/g	Hg ug/g	Si %	Ag µg/g	Al ug/g	As	B µg/g	Ba	Be µg/g	Bi µg/g	Ca µg/g
OSK-W-17-788 50	Stériles	<u>μg/g</u> 1	μ y/y < 1.5	< 0.05	28.2	<u>μy/y</u> 0.16	μ g/g 3800	μg/g 17	μ μ 9/ 9 1	μ g/g 30	0.09	49/9	22000
OSK-W-17-766_50	Stériles	 	< 1.5	< 0.05	30.1	0.10	3800	24	1	32	0.03	< 0.09	17000
OSK-W-17-766_51 OSK-W-17-788 52	Stériles	2	< 1.5	< 0.05	30.7	0.36	3900	35	2	38	0.00	< 0.09	7800
EAG-13-485 53	Stériles	2	< 1.5	0.07	33.3	0.20	3400	72	< 1	23	0.22	1.4	4500
EAG-13-485_54	Stériles	2	< 1.5	< 0.05	31.5	0.16	4300	11	< 1	38	0.1	0.25	23000
EAG-13-490 55	Stériles	2	< 1.5	0.05	29	0.05	3900	5.8	< 1	40	0.09	< 0.09	26000
EAG-13-497 56	Stériles	2	< 1.5	0.94	28.2	3.8	3300	75	< 1	42	0.08	2.2	5600
EAG-13-513 57	Stériles	2	< 1.5	0.09	26.1	1.7	10000	220	< 1	21	0.15	3.2	8400
EAG-14-538 58	Stériles	2	< 1.5	0.00	30.6	4.5	3800	54	< 1	22	0.1	6.7	1600
OBM-15-559 59	Stériles	2	< 1.5	< 0.05	27.4	0.4	18000	8.5	< 1	24	0.17	2.7	9600
OBM-15-566 60	Stériles	1	< 1.5	< 0.05	26.9	0.21	3100	9	< 1	39	0.17	1.9	44000
OBM-16-630 61	Stériles		< 1.5	< 0.05	31.6	3.6	5600	44	< 1	42	0.16	28	4400
OBM-16-654 62	Stériles	2	< 1.5	< 0.05	26.5	1.3	12000	150	< 1	14	0.11	8.3	3000
OBM-16-671 63	Stériles	2	< 1.5	< 0.05	27.7	0.04	4900	4.9	< 1	51	0.19	0.13	26000
OBM-16-673 64	Stériles	2	< 1.5	< 0.05	26.4	1.2	4400	59	< 1	34	0.16	7.8	5800
OSK-W-16-713 65	Stériles	2	< 1.5	0.06	29.1	2.2	4000	56	< 1	28	0.12	5.9	2300
OSK-W-16-735-W1 66	Stériles	2	< 1.5	< 0.05	31.1	0.83	4400	43	< 1	25	0.14	1	2500
OSK-W-16-760 67	Stériles		< 1.5	0.11	21.2	7.9	26000	41	< 1	18	0.17	24	30000
OBM-16-580 68	Stériles	2	< 1.5	< 0.05	24.8	1.6	21000	16	< 1	26	0.12	15	15000
OBM-16-645 69	Stériles	2	< 1.5	< 0.05	22.1	1.2	12000	150	< 1	17	0.32	4.8	30000
OBM-16-642 70	Stériles	3	< 1.5	< 0.05	21.7	0.4	3700	19	< 1	31	0.29	2.9	45000
OBM-16-640 71	Stériles	2	< 1.5	< 0.05	24.6	0.45	14000	19	< 1	30	0.32	1.1	21000
OSK-W-17-774 72	Stériles	3	< 1.5	< 0.05	28.2	0.27	3100	10	< 1	550	0.13	1.6	25000
OSK-W-17-918 73	Stériles	1	< 1.5	< 0.05	30.4	1.3	2700	40	< 1	32	0.1	< 0.09	23000
OSK-W-17-879 74	Stériles	< 1	< 1.5	< 0.05	27.9	0.61	2600	38	< 1	28	0.07	< 0.09	31000
OSK-W-17-1006 75	Stériles	2	< 1.5	< 0.05	29	0.54	3000	71	1	24	0.11	< 0.09	30000
OSK-W-17-1039 76	Stériles		< 1.5	< 0.05	30.4	0.22	2900	19	1	21	0.12	< 0.09	23000
OSK-W-17-934 77	Stériles	1	< 1.5	< 0.05	30.7	0.9	3000	18	1	42	0.1	< 0.09	19000
OBM-15-557 78	Stériles	1	< 1.5	< 0.05	25	0.51	23000	21	< 1	16	0.35	1.1	22000
GC10001	Stériles	-	-	< 0.05	-	0.84	4700	40	2	39	0.18	0.22	23000
GC10002	Stériles	-	-	< 0.05	-	0.44	4000	30	1	89	0.15	0.15	20000
GC10003	Stériles	-	-	< 0.05	-	0.68	9800	21	1	20	0.1	< 0.09	46000
GC10004	Stériles	-	-	< 0.05	-	1.9	4100	49	1	48	0.13	< 0.09	28000
GC10005	Stériles	-	-	0.05	-	0.94	3400	120	1	32	0.15	0.16	15000
GC10006	Stériles	-	-	< 0.05	-	1.6	4300	33	2	31	0.19	0.19	28000
GC10007	Stériles	-	-	< 0.05	-	0.12	4400	19	2	33	0.15	< 0.09	25000
GC10008	Stériles	-	-	< 0.05	-	0.13	4200	10	< 1	34	0.13	0.1	17000
GC10009	Stériles	-	-	0.08	-	0.48	3800	49	< 1	29	0.1	0.16	24000
GC10010	Stériles	-	-	< 0.05	-	0.2	4700	26	2	38	0.12	0.09	17000
GC10011	Stériles	-	-	< 0.05	-	0.13	5000	24	1	40	0.14	< 0.09	6100
GC10012	Stériles	-	-	< 0.05	-	0.2	5700	15	< 1	24	0.07	0.11	13000
GC10013	Stériles	-	-	< 0.05	-	0.23	3300	19	< 1	47	0.15	0.11	29000
GC10014	Stériles	-	-	< 0.05	-	0.47	31000	43	< 1	44	0.14	< 0.09	65000
GC10015	Stériles	-	-	< 0.05	-	0.04	29000	11	< 1	17	0.13	< 0.09	72000
GC10016	Stériles	-	-	< 0.05	-	1.1	25000	17	< 1	7.5	0.04	< 0.09	66000
GC10017	Stériles	-	-	< 0.05	-	0.21	5000	71	< 1	25	0.13	< 0.09	35000
GC10018	Stériles	-	-	< 0.05	-	0.41	9000	96	< 1	20	0.07	0.13	82000

Identification de l'échantillon	Type de l'échantillon	F	Br	Hg	Si	Ag	Al	As	В	Ва	Be	Bi	Ca
0040040	Ot (vil	μg/g	μg/g	ug/g	%	µg/g	µg/g	μg/g	μg/g	μg/g	μg/g	µg/g	µg/g
GC10019 GC10020	Stériles	-	-	< 0.05 < 0.05	-	0.23	32000 22000	43	< 1 < 1	18	0.08	< 0.09 0.23	74000 53000
	Stériles	-	-		-	0.33		18		12	0.05		
GC10021	Stériles	-	-	0.06	-	1	23000	74	<1	17	0.04	< 0.09	56000
GC10022	Stériles	-	-	0.06	-	3.2	30000	120	< 1 < 1	19	0.08	< 0.09	64000
GC10023	Stériles	-	-	< 0.05	-	0.63	19000	120		17	0.21	< 0.09	82000
GC10024	Stériles	-	-	< 0.05 0.07	-	0.12	31000	3.6	<1	1.2	0.07	< 0.09	61000
GC10025	Stériles	-	-		-	1.1	2600	73	<1	31	0.17	0.92	24000
GC10026	Stériles	-	-	< 0.05	-	0.72	3200	110	< 1	23	0.15	0.13	21000
GC10027	Stériles	-	-	< 0.05	-	0.36	4600	81	1	40	0.19	0.13	9200
GC10028	Stériles	-	-	0.28	-	0.32	8700	5.3	< 1	31	0.26	< 0.09	17000
GC10029	Stériles	-	-	< 0.05	-	0.35	6400	64	11	35	0.13	0.36	17000
GC10030	Stériles	-	-	< 0.05	-	0.23	6400	170	< 1	46	0.19	0.11	12000
GC10031	Stériles	-	-	< 0.05	-	0.06	3800	9.4	1	53	0.15	< 0.09	9500
GC10032	Stériles	<u>-</u> .	-	< 0.05	-	0.13	4900	8.2	< 1	51	0.16	0.14	6400
#08351	Stériles	< 1	< 1.5	< 0.05	2700	< 0.5	39000	2.6	< 1	2.9	0.03	< 0.09	63000
#08352	Stériles	11	< 1.5	< 0.05	730	< 0.5	12000	13	1	37	0.15	< 0.09	21000
#08353	Stériles	< 1	< 1.5	< 0.05	3300	< 0.5	35000	4.4	< 1	11	0.05	< 0.09	58000
#08354	Stériles	< 1	< 1.5	< 0.05	680	< 0.5	11000	13	1	37	0.13	< 0.09	20000
#08355	Stériles	2	< 1.5	< 0.05	440	0.6	8200	48	< 1	36	0.14	< 0.09	19000
#08356	Stériles	2	< 1.5	< 0.05	530	< 0.5	8100	62	< 1	49	0.16	0.11	18000
#08357	Stériles	< 1	< 1.5	< 0.05	3600	< 0.5	28000	3.5	< 1	9.2	0.06	< 0.09	52000
#08358	Stériles	< 1	< 1.5	< 0.05	2900	< 0.5	34000	19	< 1	10	0.17	< 0.09	39000
WST-21-0647-161.5	Stériles	2	< 1.5	< 0.05	490	< 0.5	2200	2.4	< 1	28	0.07	0.13	14000
WST-21-0647-260	Stériles	11	< 1.5	< 0.05	550	1.1	2100	65	< 1	28	0.05	< 0.09	4800
WST-21-0647-313	Stériles	1	< 1.5	< 0.05	470	< 0.5	1700	40	< 1	19	0.08	0.28	8600
WST-19-0160A-55	Stériles	1	< 1.5	< 0.05	2800	0.7	19000	14	< 1	11	0.17	2.9	15000
OSK-W-21-2606-615	Stériles	1	< 1.5	< 0.05	2700	< 0.5	17000	160	< 1	17	0.23	1	24000
OSK-W-21-2606-670	Stériles	< 1	< 1.5	< 0.05	1800	< 0.5	18000	12	< 1	9.7	0.05	0.18	50000
WST-22-1020-160	Stériles	1	< 1.5	< 0.05	640	< 0.5	3400	6.6	< 1	26	0.07	0.09	12000
WST-21-0666-54	Stériles	1	< 1.5	< 0.05	2800	< 0.5	16000	27	< 1	14	0.06	0.42	56000
WST-22-1020-210	Stériles	< 1	< 1.5	< 0.05	730	< 0.5	4400	25	< 1	19	0.05	< 0.09	14000
WST-22-1020-320	Stériles	1	< 1.5	< 0.05	610	< 0.5	1800	19	< 1	44	0.08	< 0.09	6500
WST-22-1013-345	Stériles	1	< 1.5	< 0.05	870	< 0.5	6700	45	1	29	0.22	0.13	6300
OSK-W-21-2551-W3-915	Stériles	< 1	< 1.5	< 0.05	740	< 0.5	5200	19	1	15	0.06	< 0.09	14000
WST-21-0873-268.1	Stériles	1	< 1.5	< 0.05	600	< 0.5	2000	7.3	< 1	25	0.11	0.16	2600
WST-21-0992-450	Stériles	1	< 1.5	< 0.05	530	< 0.5	3700	47	< 1	20	0.08	0.21	18000
WST-21-0952-32	Stériles	< 1	< 1.5	< 0.05	2200	< 0.5	17000	37	< 1	5.6	< 0.02	< 0.09	45000
OSK-W-21-1949-W15-1080	Stériles	1	< 1.5	< 0.05	540	< 0.5	2600	38	< 1	14	0.08	< 0.09	13000
WST-21-0873-330	Stériles	1	< 1.5	< 0.05	1200	< 0.5	6400	68	< 1	14	0.21	< 0.09	51000
WST-18-0024-50	Stériles	1	< 1.5	< 0.05	1200	< 0.5	6200	70	< 1	13	0.2	< 0.09	50000
WST-21-0873-445	Stériles	< 1	< 1.5	< 0.05	560	< 0.5	2300	5.9	< 1	13	0.07	< 0.09	9900
OSK-W-21-2555-590	Stériles	< 1	< 1.5	< 0.05	1800	< 0.5	18000	9.2	< 1	15	0.09	1.7	50000
OSK-W-21-2555-728	Stériles	2	< 1.5	< 0.05	670	< 0.5	5300	3.7	< 1	270	0.24	0.71	27000
OSK-W-21-2544-838	Stériles	2	< 1.5	0.08	950	0.6	4100	150	< 1	26	0.22	0.35	17000
OSK-W-21-2531-655	Stériles	2	< 1.5	< 0.05	650	< 0.5	3900	1.7	< 1	39	0.19	0.63	21000
WST-21-0730-500	Stériles		< 1.5	< 0.05	710	< 0.5	2900	43	< 1	21	0.06	1	18000
WST-20-0573-367	Stériles	2	< 1.5	< 0.05	490	< 0.5	2500	3.2	< 1	44	0.08	< 0.09	20000

Identification de l'échantillon	Type de l'échantillon	F	Br ug/g	Hg ug/g	Si %	Ag µg/g	Al ug/g	As	B µg/g	Ba	Be µg/g	Bi µg/g	Ca
WST-21-0621-155	Stériles	<u>μg/g</u> 2	μ g/g < 1.5	< 0.05	540	μ g/g < 0.5	μ g/g 2200	μ g/g 1.6	μ y/y <1	μ g/g 26	0.06	μy / y < 0.09	μ g/g 13000
OSK-W-19-1949-W1-635	Stériles	2	< 1.5	< 0.05	580	< 0.5	2600	1.0	< 1	16	0.00	0.09	17000
OSK-W-19-1949-W1-033	Stériles	1	< 1.5	< 0.05	680	< 0.5	3700	15	1	15	0.09	< 0.09	14000
OSK-W-21-2613-1042	Stériles	2	< 1.5	< 0.05	700	0.6	9100	1091	< 1	66	0.07	0.4	12000
OSK-W-21-2613-1042 OSK-W-21-2587-990	Stériles	1	< 1.5	< 0.05	410	< 0.5	3600	32	<1	53	0.21	0.4	6200
OSK-W-21-2587-1060	Stériles	2	< 1.5	< 0.05	440	< 0.5	3800	75	<1	40	0.09	0.09	7700
WST-21-2387-1000 WST-21-0878-517	Stériles	2	< 1.5	< 0.05	1400	< 0.5	9200	40	<1	21	0.13	0.09	56000
WST-21-0879-639	Stériles	1	< 1.5	< 0.05	3100	< 0.5	19000	24	<1	13	0.16	0.20	46000
			< 1.5	< 0.05	560	< 0.5	4200	2.9	<1	61	0.05	0.44	21000
OSK-W-19-1897-610 OSK-W-19-1897-760	Stériles	3		< 0.05	780	< 0.5	5500		<1	34		0.2	9500
OSK-W-19-1697-760 OSK-W-19-1897-825	Stériles Stériles	3	< 1.5 < 1.5	< 0.05	860	< 0.5	8700	8.8 5.2	<1	25	0.08 0.18	0.73	19000
				< 0.05	590		6000		<1	25	0.18	2.3	12000
OSK-W-19-1897-880	Stériles	2	< 1.5			< 0.5		17					1-000
OSK-W-19-1897-983	Stériles	2	< 1.5	< 0.05	600	1	4000	13	< 1	20	0.09	7.2	13000
OSK-W-20-2323-115	Stériles	2	< 1.5	< 0.05	1900	< 0.5	18000	7.4	< 1	17	0.15	1.5	18000
WST-18-0024-120	Stériles	3	< 1.5	< 0.05	510	< 0.5	3200	1.7	< 1	67	0.11	< 0.09	21000
OSK-W-19-1949-W1-948	Stériles	< 1	< 1.5	< 0.05	2500	< 0.5	17000	37	< 1	17	0.06	< 0.09	60000
OSK-W-19-1949-W1-1015	Stériles	< 1	< 1.5	< 0.05	560	< 0.5	3500	40	< 1	18	0.1	< 0.09	5600
OSK-W-21-2252-W12-922	Stériles	1	< 1.5	< 0.05	590	0.5	5100	94	1	36	0.17	< 0.09	1900
OSK-W-21-2252-1013	Stériles	2	< 1.5	< 0.05	560	< 0.5	3400	29	< 1	36	0.11	< 0.09	20000
OSK-W-20-2283-W7-888	Stériles	11	< 1.5	< 0.05	610	< 0.5	5600	151	< 1	30	0.19	0.17	5300
OSK-W-20-2397-W1-680	Stériles	< 1	< 1.5	< 0.05	2800	< 0.5	27000	5.6	< 1	8.2	0.07	< 0.09	48000
OSK-W-20-2256-W1-1051.7	Stériles	2	< 1.5	0.11	600	< 0.5	4400	45	< 1	27	0.21	0.41	22000
OSK-W-20-2313-W6-983	Stériles	3	< 1.5	< 0.05	610	< 0.5	4400	1.8	< 1	52	0.1	< 0.09	22000
OSK-W-20-2375-W4-890	Stériles	1	< 1.5	0.05	600	0.6	4400	58	1	19	0.15	< 0.09	2300
OSK-W-21-2444-610	Stériles	11	< 1.5	< 0.05	670	< 0.5	4700	10	< 1	26	0.07	5.3	16000
OSK-W-20-2350-125	Stériles	2	< 1.5	< 0.05	590	< 0.5	5300	8	< 1	34	0.08	0.2	24000
OSK-W-21-2444-545	Stériles	2	< 1.5	< 0.05	2500	< 0.5	24000	5.8	< 1	10	0.11	0.12	46000
OSK-W-19-1746-W1-687	Stériles	11	< 1.5	0.06	370	0.9	2800	68	< 1	35	0.07	0.18	13000
OSK-W-19-1746-W1-765	Stériles	2	< 1.5	< 0.05	360	< 0.5	4800	4.6	< 1	24	0.15	< 0.09	4700
OSK-W-19-1857-W2-895	Stériles	< 1	< 1.5	< 0.05	360	< 0.5	4600	4	< 1	23	0.07	< 0.09	19000
OSK-W-17-1369-315	Stériles	< 1	< 1.5	< 0.05	1400	< 0.5	18000	5.5	< 1	16	0.19	0.9	36000
OSK-W-17-1369-365	Stériles	1	< 1.5	< 0.05	380	0.7	2500	15	< 1	22	0.05	1.3	12000
OSK-W-17-663-W2-680	Stériles	1	< 1.5	< 0.05	910	0.7	14000	12	< 1	22	0.18	8.3	12000
OSK-W-17-836-257	Stériles	< 1	< 1.5	< 0.05	950	< 0.5	10000	39	< 1	17	0.07	0.11	59000
OSK-W-17-836-400	Stériles	< 1	< 1.5	< 0.05	550	< 0.5	4600	26	< 1	27	0.12	< 0.09	9200
OSK-W-17-859-240	Stériles	< 1	< 1.5	< 0.05	1400	< 0.5	16000	81	< 1	11	0.09	0.15	32000
OSK-W-17-864-W2-635	Stériles	2	< 1.5	< 0.05	430	< 0.5	5000	2.6	< 1	27	0.11	0.17	18000
OSK-W-17-870-270	Stériles	< 1	< 1.5	< 0.05	480	1	2100	18	< 1	38	0.1	< 0.09	16000
OSK-W-19-1857-W2-980	Stériles	< 1	< 1.5	< 0.05	1300	< 0.5	14000	14	< 1	18	< 0.02	< 0.09	48000
OSK-W-19-1857-W2-1030	Stériles	< 1	< 1.5	< 0.05	400	< 0.5	4500	23	< 1	11	0.12	0.1	11000
OSK-W-19-1857-W2-1110	Stériles	< 1	< 1.5	< 0.05	1500	< 0.5	21000	1.3	< 1	3.9	0.03	< 0.09	47000
OSK-W-19-1857-W2-1210	Stériles	< 1	< 1.5	< 0.05	2200	< 0.5	30000	1.6	< 1	5.2	0.04	< 0.09	48000
OSK-W-19-1857-W2-1310	Stériles	< 1	< 1.5	< 0.05	1200	< 0.5	15000	23	< 1	9.1	0.07	< 0.09	28000
OSK-W-19-1897-496	Stériles	< 1	< 1.5	< 0.05	3100	0.7	28000	140	< 1	14	0.26	1.9	13000
OSK-W-19-909-W12-770	Stériles	< 1	< 1.5	< 0.05	540	< 0.5	3300	21	< 1	22	0.14	0.13	16000
OSK-W-19-909-W12-955	Stériles	2	< 1.5	0.07	530	< 0.5	3100	64	< 1	30	0.13	< 0.09	5400
OSK-W-19-934-W3-885	Stériles	<u>-</u> <1	< 1.5	< 0.05	570	< 0.5	2200	21	< 1	16	0.09	< 0.09	5100

OSK-W-19-934-W3-940	Identification de l'échantillon	Type de l'échantillon	F	Br	Hg	Si %	Ag	Al	As	В	Ba	Be	Bi	Ca
SSKW-21-2813-W1-1105 Sterlies 2	OSK W 10 024 W2 040	Stárilos	μg/g 1	μg/g	ug/g		µg/g	μ g/g	μg/g	μg/g	μg/g	μ g/g	μg/g	μg/g
OSK-W-19-834-W3-1045 Stériles			<u> </u>											
OSK-W-21-2512-W-3-50 Stefries 2													_	
OSK-W-21-2612-W3-610 Stefries														
OKS-W-21-2013-W1-956 Sletines														
OSS-W-21-2629-1720 Steriles														
WST-21-0930-1995														
OSK-W-21-2629-845														
OSK-W-21-2605-1332			•				***							
OSK-W-21-2629-948											_			
OBM-15-552-280 Steriles 3			-										_	
OBM-15-552-280														
CBM-16-655-535 Steriles														
DBM-16-655-600 Steriles 2 <1.5 <0.05 1800 <0.5 4700 3.5 <1 555 0.14 0.16 20000 DBM-16-655-330 Steriles 2 <1.5 <0.05 4800 <0.5 23000 4.3 <1 38 0.55 0.2 35000 DBM-16-677-79 Steriles 2 <1.5 <0.05 970 <0.5 4100 1.8 <1 116 0.12 <0.09 21000 DSK-W-16-309-W2-616 Steriles 2 <1.5 <0.05 1100 <0.5 7100 2.3 <1 67 0.16 0.19 21000 DSK-W-16-309-W2-700 Steriles 2 <1.5 <0.05 1100 <0.5 5400 2 <1 61 0.17 0.24 19000 DSK-W-16-309-W2-700 Steriles 3 <1.5 <0.05 1100 <0.5 5400 2 <1 61 0.17 0.24 19000 DSK-W-16-309-W2-1000 Steriles 2 <1.5 <0.05 1100 <0.5 5400 2 <1 61 0.17 0.24 19000 DSK-W-16-309-W2-1000 Steriles 2 <1.5 <0.05 13000 <0.5 9500 7 <1 22 0.14 3.6 12000 DSK-W-17-1079-S80 Steriles 4 <1.5 <0.05 13000 <0.5 9500 7 <1 22 0.14 3.6 12000 DSK-W-17-1079-S80 Steriles 4 <1.5 <0.05 1300 <0.5 23000 24 <1 27 0.1 2.2 9300 DSK-W-17-1079-S80 Steriles 4 <1.5 <0.05 4600 <0.5 23000 24 <1 27 0.7 0.27 1.8 60000 DSK-W-17-1121-546 Steriles 2 <1.5 <0.05 4600 <0.5 5300 0.9 <1 31 0.1 <0.09 15000 DSK-W-17-1369-280 Steriles 4 <1.5 <0.05 8100 <0.5 5300 0.9 <1 31 0.1 <0.09 15000 DSK-W-17-1369-280 Steriles 4 <1.5 <0.05 8100 <0.5 5300 0.9 <1 31 0.1 <0.09 15000 DSK-W-17-1369-280 Steriles 4 <1.5 <0.05 8100 <0.5 5300 0.9 <1 31 0.1 <0.09 15000 DSK-W-17-1369-280 Steriles 4 <1.5 <0.05 8100 <0.5 5300 0.9 <1 31 0.1 <0.09 15000 DSK-W-17-1369-280 Steriles 4 <1.5 <0.05 8100 <0.5 5300 0.9 <1 31 0.1 <0.09 15000 DSK-W-17-1369-280 Steriles 4 <1.5 <0.05 8100 <0.5 5300 0.9 <1 31 0.1 <0.09 15000 DSK-W-17-1369-280 Steriles 4 <1.5 <0.05 20000 DSK-W-17-1369-280 Steriles														
OBM-16-655-330 Stériles 2 < 1.5 < 0.05 4800 < 0.5 23000 4.3 < 1 38 0.55 0.2 35000														
OBM-16-677-79														
OSK-W-16-309-W2-645 Steriles 2 < 1.5 < 0.05 1100 < 0.5 7100 < 2.3 < 1 677 0.16 0.19 21000 OSK-W-16-309-W2-7200 Stériles 2 < 1.5 < 0.05 1000 < 0.5 5400 2 < 1 61 0.17 0.24 19000 OSK-W-16-309-W2-7200 Stériles 3 < 1.5 < 0.05 1900 < 0.5 3900 7 < 1 22 0.14 3.8 14000 OSK-W-16-730W-1915 Stériles 1 < 1.5 < 0.05 9800 < 0.5 9900 56 < 1 27 0.1 2.2 9300 OSK-W-17-1079-580 Stériles < 1 < 1.5 < 0.05 3100 < 0.5 23000 24 < 1 12 0.27 1.8 60000 OSK-W-17-1104-655 Stériles < 1 < 1.5 < 0.05 4100 < 0.5 27000 2.6 < 1 0.7 0.1 0.0 0.0 <td></td> <td>_</td> <td></td>													_	
OSK-W-16-309-W2-720 Stériles 2 < 1.5 < 0.05 1000 < 0.5 5400 2 < 1 61 0.17 0.24 19000 OSK-W-16-706-W2-900 Stériles 3 < 1.5 < 0.05 1100 < 0.5 13000 6.2 < 1 27 0.16 1.8 14000 OSK-W-16-743-W1-915 Stériles < 1 < 1.5 < 0.05 9800 < 0.5 9800 7 < 1 22 0.14 3.6 12000 OSK-W-17-1079-580 Stériles < 1 < 1.5 < 0.05 3100 < 0.5 23000 24 < 1 12 0.27 1.8 6000 OSK-W-17-1107-580 Stériles < 1 < 1.5 < 0.05 3100 < 0.5 23000 24 < 1 12 0.27 1.8 6000 OSK-W-17-1107-685 Stériles < 1 < 1.5 < 0.05 4900 < 0.5 5300 0.9 < 1 31 0.0 0.0 0.0														
OSK-W-16-709-W2-905 Stériles 3 < 1.5 < 0.05 1100 < 0.5 13000 6.2 < 1 27 0.16 1.8 14000 OSK-W-16-309-W2-1000 Stériles 2 < 1.5														
OSK-W-16-309-W2-1000 Stérilies 2 < 1.5 < 0.05 980 < 0.5 9500 7 < 1 22 0.14 3.6 12000 OSK-W-16-743-W1-915 Stériles < 1 < 1.5 < 0.05 3100 < 0.5 9600 56 < 1 27 0.1 2.2 9300 OSK-W-17-1079-580 Stériles < 1 < 1.5 < 0.05 3100 < 0.5 23000 24 < 1 12 0.27 1.8 60000 OSK-W-17-1104-665 Stériles < 1 < 1.5 < 0.05 4600 < 0.5 27000 2.6 < 1 0.78 < 0.02 < 0.09 61000 OSK-W-17-1305-261 Stériles < 1 < 1.5 < 0.05 810 < 0.5 1600 2.7 < 1 61 0.07 < 0.09 23000 OSK-W-17-1305-261 Stériles < 1 < 1.5 < 0.05 810 < 0.5 1600 2.7 < 1 61 0.07 200											_		_	
OSK-W-17-1079-580														
OSK-W-17-1079-580														
OSK.W-17-1104-665 Stériles < 1 < 1.5 < 0.05 4600 < 0.5 27000 2.6 < 1 0.78 < 0.02 < 0.09 61000 OSK-W-17-1121-545 Stériles 2 < 1.5												***		
OSK-W-17-1121-545 Stériles 2 < 1.5 < 0.05 910 < 0.5 5300 0.9 < 1 31 0.1 < 0.09 15000 OSK-W-17-1305-261 Stériles < 1 < 1.5 < 0.05 810 < 0.5 1600 2.7 < 1 61 0.07 < 0.09 23000 OSK-W-17-1305-262.5 Stériles < 1 < 1.5 < 0.05 4300 < 0.5 25000 10 < 1 7.8 0.06 1.9 54000 OSK-W-17-1369-219.5 Stériles 1 < 1.5 < 0.05 1100 < 0.5 6500 11 < 1 31 0.17 1.3 2700 OSK-W-17-918-20 Stériles 1 < 1.5 < 0.05 820 < 0.5 5400 13 < 1 26 0.1 3.1 16000 OSK-W-18-1388-4-885 Stériles 1 < 1.5 < 0.05 21000 0.7 21000 161 < 1 5.4 0.04 4.0 4.0														
OSK-W-17-1305-261 Stériles < 1 < 1.5 < 0.05 810 < 0.5 1600 2.7 < 1 61 0.07 < 0.09 23000 OSK-W-17-1369-262.5 Stériles < 1 < 1.5 < 0.05 4300 < 0.5 25000 10 < 1 7.8 0.06 1.9 54000 OSK-W-17-1369-262.5 Stériles 1 < 1.5 < 0.05 1100 < 0.5 6500 11 < 1 31 0.07 1.9 54000 OSK-W-17-913-820 Stériles 1 < 1.5 < 0.05 820 < 0.5 5400 13 < 1 26 0.1 3.1 16000 OSK-W-17-913-820 Stériles < 1 < 1.5 < 0.05 21000 0.7 21000 13 < 1 26 0.1 3.1 16000 OSK-W-18-1386-W-4885 Stériles < 1 < 1.5 < 0.05 20000 0.9 20000 55 1 26 0.19 < 0.05 20000 <td></td>														
OSK-W-17-1369-262.5 Stériles < 1 < 1.5 < 0.05 4300 < 0.5 25000 10 < 1 7.8 0.06 1.9 54000 OSK-W-17-1369-219.5 Stériles 1 < 1.5														
OSK-W-17-1369-219.5 Stériles 1 < 1.5 < 0.05 1100 < 0.5 6500 11 < 1 31 0.17 1.3 2700 OSK-W-17-98-320 Stériles 1 < 1.5														
OSK-W-17-913-820 Stériles 1 < 1.5 < 0.05 820 < 0.5 5400 13 < 1 26 0.1 3.1 16000 OSK-W-17-968-145 Stériles < 1 < 1.5 < 0.05 21000 0.7 21000 161 < 1 5.4 0.04 6.6 45000 OSK-W-18-1386-W4-885 Stériles 1 < 1.5 < 0.05 9300 0.5 9300 146 1 15 0.08 < 0.09 51000 OSK-W-18-1608-805 Stériles < 1 < 1.5 < 0.05 20000 0.9 20000 55 1 26 0.19 < 0.09 37000 OSK-W-18-1734-W1-575 Stériles < 1 < 1.5 < 0.05 26000 < 0.5 26000 23 < 1 15 0.09 37000 OSK-W-18-1759-190 Stériles < 1 < 1.5 < 0.05 4700 1.3 4700 128 < 1 15 0.13 < 0.09 7200														
OSK-W-17-968-145 Stériles < 1 < 1.5 < 0.05 21000 0.7 21000 161 < 1 5.4 0.04 6.6 45000 OSK-W-18-1386-W4-885 Stériles 1 < 1.5														
OSK-W-18-1386-W4-885 Stériles 1 < 1.5 < 0.05 9300 0.5 9300 146 1 15 0.08 < 0.09 51000 OSK-W-18-1608-805 Stériles < 1			•										_	
OSK-W-18-1608-805 Stériles < 1 < 1.5 < 0.05 20000 0.9 20000 55 1 26 0.19 < 0.09 37000 OSK-W-18-1713-470 Stériles < 1			-											
OSK-W-18-1713-470 Stériles < 1 < 1.5 < 0.05 26000 < 0.5 26000 23 < 1 10 0.19 1.5 27000 OSK-W-18-1744-W1-575 Stériles < 1														
OSK-W-18-1744-W1-575 Stériles < 1 < 1.5 < 0.05 21000 < 0.5 21000 12 < 1 15 0.13 < 0.09 61000 OSK-W-18-1759-190 Stériles < 1														0.000
OSK-W-18-1759-190 Stériles < 1 < 1.5 < 0.05 4700 1.3 4700 128 < 1 30 0.1 < 0.09 7200 OSK-W-19-1181-W12-1140 Stériles < 1														
OSK-W-19-1181-W5-705 Stériles 2 <1.5 <0.05 3400 <0.5 3400 <1.1 <1 41 0.11 <0.09 12000 OSK-W-19-1181-W5-705 Stériles 2 <1.5														
OSK-W-19-1181-W5-705 Stériles 2 < 1.5 < 0.05 3400 < 0.5 3400 1.1 < 1 41 0.11 < 0.09 12000 OSK-W-19-1181-W5-845 Stériles 2 < 1.5														
OSK-W-19-1181-W5-845 Stériles 2 < 1.5 < 0.05 3600 < 0.5 3600 9.5 < 1 31 0.11 < 0.09 13000 OSK-W-19-1181-W5-795 Stériles < 1														
OSK-W-19-1181-W5-795 Stériles < 1 < 1.5 < 0.05 13000 < 0.5 13000 5.6 < 1 15 0.07 < 0.09 15000 OSK-W-19-1181-W5-920 Stériles < 1														
OSK-W-19-1181-W5-920 Stériles < 1 < 1.5 < 0.05 26000 < 0.5 26000 3 1 7.4 0.03 < 0.09 61000 OSK-W-19-1181-W5-970 Stériles < 1														
OSK-W-19-1181-W5-970 Stériles < 1 < 1.5 < 0.05 29000 < 0.5 29000 5.2 < 1 13 0.06 < 0.09 57000 OSK-W-19-1412-W3-715 Stériles < 1			•							<u> </u>				
OSK-W-19-1412-W3-715 Stériles < 1 < 1.5 < 0.05 24000 < 0.5 24000 18 1 10 0.05 < 0.09 63000 OSK-W-19-1412-W3-765 Stériles < 1														
OSK-W-19-1412-W3-765 Stériles < 1 < 1.5 < 0.05 20000 < 0.5 20000 4.4 < 1 9.3 0.1 < 0.09 29000 08359 Down Ramp 3 Stériles 3 < 1.5										1				
08359 Down Ramp 3 Stériles 3 < 1.5 < 0.05 340 < 0.5 9200 27 < 1 44 0.08 < 0.09 21000 08360 Down Ramp 4 Stériles 1 < 1.5										- 1 - 1				
08360 Down Ramp 4 Stériles 1 < 1.5 < 0.05 710 < 0.5 20000 21 < 1 14 0.04 < 0.09 47000 OBM-15-564_79 Stériles - - < 0.05														
OBM-15-564_79 Stériles < 0.05 - 0.59 9500 49 < 1 19 0.14 0.88 9400														
				 										
	OBM-15-557 80	Stériles		-	< 0.05	-	0.59	5000	10	1	24	0.14	9.9	21000

Identification de l'échantillon	Type de l'échantillon	F	Br	Hg	Si	Ag	Al	As	В	Ba	Be	Bi	Ca
ODM 45 550 04	Ot (vil	μg/g	μg/g	ug/g	%	μg/g	μg/g	μg/g	μg/g	μg/g	µg/g	µg/g	μg/g
OBM-15-552_81	Stériles	-	-	< 0.05	-	0.45	7800 17000	7.7	< 1	19 20	0.1	2.6	10000 6000
OBM-15-554_82	Stériles	-	-	< 0.05 < 0.05	-	0.6	8600	11	1 <1		0.14	6.4 0.44	13000
OSK-W-16-311-W2_84	Stériles	-	-		-	0.29		7.5		33	0.17		
OSK-W-16-706-W1_85	Stériles	-	-	< 0.05 < 0.05	-	0.31	6800 4600	19 16	< 1 < 1	23 31	0.15 0.14	0.94 4.4	15000 12000
OSK-W-16-706-W1_86	Stériles	-	-	0.00	-	0.34	6000	25	·	32	****		14000
OSK-W-16-706-W1_87 OSK-W-16-706-W1_88	Stériles	-	-	< 0.05 < 0.05	-	0.77 0.27	4100	3.2	1 <1	34	0.09	2.3	11000
	Stériles	-	-										
OSK-W-16-706-W2_89	Stériles	-	-	< 0.05	-	0.22	4200	7.1	1	29	0.1	4.8	12000
OSK-W-16-708-W1_90	Stériles	-	-	< 0.05 < 0.05	-	0.74 0.23	16000 6600	25 14	< 1 < 1	84	0.14	16 3.4	31000 14000
OSK-W-16-708-W2_91	Stériles	-	-	< 0.05	-				< 1	21	0.14 0.11	0.6	14000
OSK-W-16-735-W2_92	Stériles	<u> </u>	-			0.96	4400	7.3		42	• • • • •		
OSK-W-16-743_93	Stériles		-	< 0.05		2	3900	90	1	24	0.16	7.2	4500
OSK-W-16-746_94	Stériles	-	-	< 0.05	-	0.5	19000	4.4	<1	130	0.14	9	18000
OSK-W-16-754_95	Stériles	-	-	< 0.05	-	0.19	3900	3.3	<1	24	0.08	2.2	11000
OSK-W-16-754_96	Stériles	-	-	< 0.05	-	0.55	8000	6.3	<1	21	0.14	2.1	15000
OSK-W-17-774_97	Stériles	-	-	< 0.05	-	0.65	19000	23	<1	96	0.11	6.4	35000
OSK-W-17-774_98	Stériles	-	-	< 0.05	-	0.14	4800	2.8	< 1	26	0.09	0.41	16000
OSK-W-17-789_99	Stériles	-	-	< 0.05	-	0.47	5900	12	1	25	0.1	2.2	4200
OSK-W-17-789_100	Stériles	-	-	< 0.05	-	0.63	4800	21	1	23	0.12	2.3	9800
OSK-W-17-812_101	Stériles	-	-	< 0.05	-	0.2	3400	24	2	26	0.14	< 0.09	17000
OSK-W-17-812_102	Stériles	-	-	< 0.05	-	0.96	2500	52	2	25	0.07	< 0.09	24000
OBM-15-552_103 OSK-W-16-311-W1 83	Stériles Stériles	<u> </u>	-	< 0.05 < 0.05	-	0.72 0.35	8300 8800	8.1 27	< 1	21 24	0.16 0.17	3.7 2.8	23000 7300
MT-1	Mort-terrain	<u>-</u> <1	< 1.5	< 0.05		< 0.5	7600	0.7	-	39	0.17	< 0.09	1400
MT-1-DupA	Mort-terrain	< 1	< 1.5	< 0.05	-	< 0.5	6300	0.7	-	15	0.08	< 0.09	1000
MT-2	Mort-terrain	< 1	< 1.5	< 0.05		< 0.5	7600	0.7	-	18	0.07	< 0.09	1100
MT-2 MT-3	Mort-terrain	< 1	< 1.5	< 0.05		< 0.5	6900	0.8	-	16	0.09	< 0.09	1100
MT-3 MT-4	Mort-terrain	< 1	< 1.5	< 0.05	-	< 0.5	7700	0.8	-	21	0.06	< 0.09	1200
MT-4 MT-5	Mort-terrain	<1	< 1.5	< 0.05		< 0.5	6800	1.6	-	19	0.1	< 0.09	1700
MT-6	Mort-terrain	< 1	< 1.5	< 0.05	-	< 0.5	6100	1.1	-	25	0.08	< 0.09	2000
MT-7	Mort-terrain	< 1	< 1.5	< 0.05		< 0.5	7700	1.1	-	18	0.08	< 0.09	1500
MT-8	Mort-terrain	< 1	< 1.5	< 0.05		< 0.5	8100	0.9	-	19	0.09	< 0.09	1300
MT-8-DUP-S	Mort-terrain	< 1	< 1.5	< 0.05	-	< 0.5	8400	0.9	-	21	0.09	< 0.09	1400
TP-1-S	Mort-terrain	1	< 1.5	< 0.05		< 0.5	4100	0.6	-	19	0.06	< 0.09	1700
TP-1-TS	Mort-terrain	<u>'</u>	< 1.5	0.07		< 0.5	6700	1.3	-	25	0.00	0.17	1300
TP-2-S	Mort-terrain	1	< 1.5	< 0.07		< 0.5	5200	0.6	-	25	0.08	< 0.09	1900
TP-2-TS	Mort-terrain	< 1	< 1.5	< 0.05	-	< 0.5	15000	0.0	_	18	0.17	< 0.09	1200
TP-3-S	Mort-terrain	2	< 1.5	< 0.05	-	< 0.5	5200	0.9	-	23	0.17	< 0.09	1700
TP-3-TS	Mort-terrain	< 1	< 1.5	< 0.05		< 0.5	17000	1.1	-	15	0.09	< 0.09	850
TP-5-IS	Mort-terrain	1	< 1.5	< 0.05	-	< 0.5	6300	0.7	-	27	0.15	< 0.09	2100
TP-5-S TP-5-S-DUPA	Mort-terrain	<u> </u>	< 1.5	< 0.05	-	< 0.5	6400	0.7	-	29	0.1	< 0.09	2500
TP-5-TS	Mort-terrain	<u> </u>	< 1.5	< 0.05	-	< 0.5	5600	0.6	-	17	0.06	< 0.09	1200
TP-6-S	Mort-terrain	2	< 1.5	< 0.05		< 0.5	4000	1.3		21	0.00	< 0.09	2100
TP-6-TS	Mort-terrain	< 1	< 1.5	0.09	_	< 0.5	2700	1.3		28	0.07	< 0.09	19000
TP-7-S	Mort-terrain	< 1	< 1.5	< 0.05	-	< 0.5	5500	1.3	-	15	0.00	< 0.09	1600
TP-7-TS	Mort-terrain	< 1	< 1.5	0.06	-	< 0.5	7000	1.1	-	26	0.07	< 0.09	8100
TP-8-TS	Mort-terrain	< 1	< 1.5	< 0.05		< 0.5	6400	31	-	23	0.14	< 0.09	2900
15-0-19	wort-terrairi	<u> </u>	_ ` 1.∪	\ 0.00	•	<u> </u>	L 0400	<u> </u>			U. I	<u> </u>	2500

Tableau E: Résultats de l'analyse MA.200.

Identification de l'échantillon	Type de l'échantillon	F	Br	Hg	Si	Ag	Al	As	В	Ва	Ве	Bi	Са
		μg/g	μg/g	ug/g	%	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g
TP-9-S	Mort-terrain	2	< 1.5	< 0.05	-	< 0.5	4200	0.9	-	24	0.06	< 0.09	2000
TP-9-TS	Mort-terrain	< 1	< 1.5	0.06	-	< 0.5	3100	1.2	-	33	0.09	< 0.09	5800
TP-10-S	Mort-terrain	< 1	< 1.5	< 0.05	-	< 0.5	2900	< 0.5	-	13	0.04	< 0.09	1900
TP-10-S-DUPA	Mort-terrain	1	< 1.5	< 0.05	-	< 0.5	3400	< 0.5	-	15	0.04	< 0.09	2300
TP-10-TS	Mort-terrain	< 1	< 1.5	< 0.05	-	< 0.5	800	< 0.5	-	29	< 0.02	< 0.09	7200
TP-10-TS-DUPA	Mort-terrain	< 1	< 1.5	< 0.05	-	< 0.5	1100	0.5	-	39	0.02	< 0.09	8900
TP-11-S	Mort-terrain	1	< 1.5	< 0.05	-	< 0.5	4700	0.6	-	17	0.07	< 0.09	1700
TP-11-TS	Mort-terrain	< 1	< 1.5	< 0.05	-	< 0.5	18000	0.9	-	21	0.18	< 0.09	1800
TP-5-TS-DUPA	Mort-terrain	< 1	< 1.5	< 0.05	-	< 0.5	8500	0.7	-	16	0.1	< 0.09	1300

Identification de l'échantillon	Type de l'échantillon	Cd µg/g	Co µg/g	Cr μg/g	Cu µg/g	Fe µg/g	K µg/g	Li µg/g	Mg µg/g	Mn µg/g	Mo µg/g	Na µg/g	Ni μg/g
PSRTC-A (Province du Supérior "S")		0.9	30	100	65	F-9-9	F-9-9	F-3-3	F-9-9	1000	8	F-9-9	50
E-27-D-H	Minerai	0.81	15	20	260	74000	1600	4	2500	200	1.4	190	17
E-27-D-L	Minerai	0.56	18	24	150	70000	1600	12	3400	210	1.2	200	12
E-27-U-H	Minerai	3.5	13	20	120	72000	1500	6	2400	180	1.6	180	18
E-27-U-L	Minerai	6.2	27	28	100	67000	1700	9	3900	280	1.3	210	52
E-CA-D-H	Minerai	18	22	25	230	65000	1500	11	6700	370	2.7	170	31
E-CA-D-L	Minerai	1.4	22	24	260	57000	1600	16	8400	510	4	200	28
E-CA-U-H	Minerai	26	8.1	22	380	48000	1500	4	4800	350	4	190	14
E-CA-U-L	Minerai	45	6.1	25	100	32000	1400	2	3400	220	4.3	200	10
Under Dog A	Minerai	6.1	6.4	35	320	35000	750	2	1000	72	14	73	12
Under Dog B	Minerai	0.32	4.7	39	270	21000	720	2	1000	89	3.2	63	7
Under Dog C	Minerai	1.6	34	29	670	91000	650	4	1100	71	3.1	75	15
P3-I	Minerai	0.21	11	17	38	21000	1100	6	8200	430	1.7	280	21
P3-J	Minerai	1.8	10	18	66	24000	1100	5	11000	530	1.6	190	24
P3-K	Minerai	0.31	11	24	52	23000	1000	4	8100	370	1	210	28
P3-L	Minerai	0.96	5.9	17	33	19000	1100	3	7500	390	1.1	210	11
Triple Lynx LG	Minerai	0.12	5.4	34	22	18000	1400	4	2200	140	13	190	14
Lynx 4 LP-LG	Minerai	1.5	7.8	32	94	30000	1300	2	7600	360	4.9	200	18
Lynx 4 HP-LG	Minerai	0.75	21	32	46	37000	1600	2	2400	130	1.7	240	50
Triple Lynx MG/HG	Minerai	0.58	11	28	32	27000	1600	3	4000	140	1.7	210	31
Lynx 4 LP-MG/HG	Minerai	1.1	13	30	75	41000	1500	3	6300	420	3.5	210	37
Lynx 4 HP-MG/HG	Minerai	0.52	16	29	57	38000	1500	4	9800	580	4.1	230	62
RC-F03-21	Mort-terrain	0.04	15	37	53	36000	540	33	8300	920	0.4	300	25
VR2-F01-21 CR-7	Mort-terrain	0.07	40	28	110	59000	540	40	5600	1000	2.1	280	11
VR3-F01-21 CR-5	Mort-terrain	< 0.02	43	21	121	54000	240	53	11000	920	0.2	290	53
HMTN-F01-21 CF-1	Mort-terrain	<0.5	3	14	3	6820	126	<20	1720	75	<1	<100	9
HMBT-F01-21 CF-2	Mort-terrain	<0.5	7	17	11	12200	351	<20	3980	216	<1	<100	12
HMBT-F02-21 CF-2	Mort-terrain	<0.5	4	14	13	8380	283	<20	3560	131	<1	<100	10
HMBT-F03-21 CH3 (CF-3?)	Mort-terrain	<0.5	4	13	9	7320	277	<20	3130	112	<1	<100	9
UTE-F02-21 CF-1	Mort-terrain	<0.5	6	16	25	12300	231	<20	3900	486	1	120	11
HMBT-F01-21 CF-3	Mort-terrain	<0.5	7	16	7	11800	223	<20	3320	201	<1	<100	9
HMBT-F02-21_CF-4	Mort-terrain	<0.5	4	13	22	7880	298	<20	3610	121	<1	120	12
HMBT-F02-21_CF-6	Mort-terrain	<0.5	4	16	16	6610	389	<20	2980	103	<1	<100	10
HMBT-F03-21_CF-7	Mort-terrain	<0.5	5	11	26	11100	225	<20	2570	226	<1	<100	9
TU-F03-21_CF-3	Mort-terrain	<0.5	4	11	12	8250	549	<20	2660	112	<1	108	7
TS-F02-21_CF-1	Mort-terrain	<0.5	2	13	6	7770	281	<20	1670	88	<1	118	6
BH-F01-21_CF-1	Mort-terrain	<0.5	7	88	8	12000	367	<20	5130	114	<1	104	38
BD-F03-21_CF-1	Mort-terrain	<0.5	<2	3	23	908	666	<20	1510	831	<1	<100	17
R-F01-21_CF-1	Mort-terrain	0.5	2	6	28	6210	303	<20	1310	267	2	<100	10
HMBT-F01-21_CR-4	Mort-terrain	<0.9	<15	<45	45	59900	100	-	7860	970	<2	<100	<30
TU-F01-21_CR-3	Mort-terrain	<0.9	26	80	<40	48100	<100	-	40100	1340	<2	107	211
TU-F02-21_CR-2	Mort-terrain	<0.9	<15	<45	<40	5280	187	-	2460	211	<2	181	<30
BD-F01-21_21_CR-2	Mort-terrain	<0.9	<15	<45	<40	17400	220	-	10600	432	<2	229	<30
BK-F01-21_CR-2	Mort-terrain	<0.9	<15	<45	<40	7510	263	-	7020	326	<2	<100	<30
HMT-F03-21_CR-4	Mort-terrain	<0.9	<15	<45	<40	20500	261	-	9790	661	<2	<100	<30
CONC-F02-21 CR-3	Mort-terrain	<0.9	27	<45	136	72800	118	-	18300	1080	<2	<100	<30

Identification de l'échantillon	Type de l'échantillon	Cd	Co	Cr ug/g	Cu	Fe µg/g	K	Li ug/g	Mg	Mn	Mo	Na ug/g	Ni ug/g
AHS-F02-21 CF-2	Mort-terrain	μ g/g <0.5	μ g/g 4	µg/g 13	<u>μg/g</u> 11	8100	μ g/g 203	μ g/g <20	μ g/g 2970	μ g/g 112	μ g/g <1	μ g/g <100	μ g/g 11
AHS-F02-21_CF-2 AHS-F03-21 CF-1	Mort-terrain	<0.5	3	12	5	8890	109	<20	2120	89	<1	<100	7
AHS-F03-21_CF-1	Mort-terrain	<0.5	<2	12	5	4200	109	<20	1960	56	<1	<100	6
AHS-F03-21_CF-2 AHS-F04-21 CF-1	Mort-terrain	<0.5	3	15	4	9930	132	<20	3020	84	<1	<100	8
AHS-F04-21_CF-1 AHS-F04-21_CF-3	Mort-terrain	<0.5	3	11	4	6610	227	<20	2950	98	<1	<100	8
AHS-TR01-21-40-67	Mort-terrain	<0.5	3	17	5	10700	<100	<20	2350	72	<1	<100	9
AHS-TR01-21-40-67 AHS-TR02-21-219-300		<0.5	3	12	10	6550	266	<20	2490	96	<1	<100	7
AHS-TR02-21-219-300 AHS-TR03-21-19-31	Mort-terrain	<0.5	3	27	3	13900	<100	<20	1390	50	<1	<100	7
	Mort-terrain	<0.5	5	15		9820	212	<20	3240	104	<1	<100	12
AHS-TR03-21-80-130	Mort-terrain		3	23	18		104	<20	2300	79		<100	
AHS-TR04-21-40-55 AHS-TR05-21-104-145	Mort-terrain	<0.5 <0.5		10	<u>3</u>	13400 5180	104	<20	2110	61	<1 <1	<100	9
	Mort-terrain	<0.5	2 4	10	10		139	<20	2110	79	<1	<100	7
AHS-TR05-21-145-210	Mort-terrain					8420							<u> </u>
AHS-TR06-21-150-210	Mort-terrain	<0.5	4	14	9	8090	280	<20	3320	120	<1	<100	9
BAD-F01-21_CF-1	Mort-terrain	<0.5	4	11	6	7560	170	<20	2850	92	<1	<100	9
BAD-F01-21_CF-2	Mort-terrain	<0.5	3	9	7	5570	172	<20	2090	82	<1	<100	7
BA-F01-21_CF-2	Mort-terrain	<0.5	4	12	11	7190	254	<20	3310	113	<1	<100	9
BB-TR01-21-57-170	Mort-terrain	<0.5	2	8	5	5210	<100	<20	2050	73	<1	<100	5
BC-F01-21_CF-1B	Mort-terrain	<0.5	4	9	4	6810	164	<20	2450	76	<1	<100	8
BD-F03-21_CF-5	Mort-terrain	<0.5	2	9	10	4580	134	<20	1870	57	<1	<100	6
BD-TR01-21-46-155	Mort-terrain	<0.5	3	9	2	5540	101	<20	1960	68	<1	<100	5
BD-TR02-21-150-170	Mort-terrain	<0.5	3	8	6	4030	130	<20	1820	52	<1	<100	6
BD-TR03-21-120-175	Mort-terrain	<0.5	2	8	3	4410	109	<20	1550	49	<1	<100	5
BE-F01-21_CF-2	Mort-terrain	<0.5	4	10	8	6470	148	<20	2150	115	<1	<100	7
BE-F01-21_CF-3	Mort-terrain	<0.5	3	14	10	7950	229	<20	2040	139	<1	<100	8
BE-TR01-21-40-103	Mort-terrain	<0.5	4	10	7	6680	264	<20	3020	101	<1	<100	8
BF-TR01-21-22-54	Mort-terrain	<0.5	4	13	15	7700	<100	<20	2450	155	<1	<100	9
BF-TR02-21-40-51	Mort-terrain	<0.5	6	15	11	11600	<100	<20	2120	84	<1	<100	10
BF-TR03-21-79-139	Mort-terrain	<0.5	3	9	21	5660	<100	<20	1260	73	<1	<100	6
BH-F01-21_CF-2	Mort-terrain	<0.5	3	11	7	6880	160	<20	1780	131	<1	<100	7
BI-F03-21_CF-1A	Mort-terrain	<0.5	2	14	3	8510	<100	<20	1600	58	<1	<100	6
BI-TR01-21-107-189	Mort-terrain	<0.5	2	7	5	4120	<100	<20	1580	49	<1	<100	5
BI-TR03-21-31-35	Mort-terrain	<0.5	<2	14	3	9740	<100	<20	965	36	<1	<100	4
CAMP-F02-21_CF-1	Mort-terrain	<0.5	<2	9	6	6190	258	<20	1280	88	<1	<100	5
CAMP-TR01-21-32-63	Mort-terrain	<0.5	3	13	8	8800	<100	<20	2020	72	<1	<100	7
CAMP-TR02-21-73-170	Mort-terrain	<0.5	3	9	7	4860	110	<20	2090	75	<1	<100	6
CAMP-TR03-21-50-84	Mort-terrain	<0.5	2	12	3	7050	<100	<20	1830	69	<1	<100	6
CC-TR01-21-68-134	Mort-terrain	<0.5	3	11	5	5830	149	<20	2770	86	<1	<100	9
CC-TR02-21-61-174	Mort-terrain	<0.5	3	10	7	5300	202	<20	2260	73	<1	<100	7
COND-TR01-21-112-181	Mort-terrain	<0.5	3	9	10	5810	187	<20	1960	94	<1	<100	7
COND-TR02-21-42-66	Mort-terrain	<0.5	3	14	4	8040	<100	<20	1920	58	<1	<100	9
COND-TR02-21-66-110	Mort-terrain	<0.5	2	8	7	4640	156	<20	1500	66	<1	<100	6
COND-TR03-21-34-57	Mort-terrain	<0.5	<2	<2	<1	746	<100	<20	<100	<10	<1	<100	<2
COND-TR04-21-49-140	Mort-terrain	<0.5	3	11	9	6510	173	<20	1990	90	<1	<100	7
HMBT-F01-21 CF-1B	Mort-terrain	<0.5	2	16	3	13400	<100	<20	1760	71	<1	<100	6
HMBT-F02-21 CF-1	Mort-terrain	<0.5	4	14	8	8080	<100	<20	3000	96	<1	<100	11
HMBT-F03-21 CF-1C	Mort-terrain	<0.5	4	12	5	7890	142	<20	2600	100	<1	<100	9
HMT-F03-21 CF-2	Mort-terrain	<0.5	6	14	11	10700	108	<20	2330	261	<1	<100	11

Identification de l'échantillon	Type de l'échantillon	Cd	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Mo	Na	Ni
US F04 24 CF 4	Mort torrain	µg/g	μg/g	μg/g	μg/g	μ g/g	μg/g	µg/g	µg/g	μg/g	μg/g	μg/g	μg/g
HS-F01-21_CF-1 HS-F01-21_CF-2	Mort-terrain	<0.5 <0.5	<u>3</u>	11 17	7 13	7520 8080	151 205	<20 <20	2880 2900	82 105	<1 <1	<100 <100	8 9
HS-TR01-21_CF-2	Mort-terrain	<0.5	4	20	6	13600	<100	<20	2580	78	<1	<100	10
	Mort-terrain	<0.5		_	3	6270	<100	<20	2010	62		<100	7
RC-F03-21_CF-1B R-TR01-21-40-70	Mort-terrain	<0.5	<u>3</u> 5	11 23	10	10200	123	<20	3440	246	<1 <1	<100	12
	Mort-terrain	<0.5	4	13	10		213	<20	2960	111	<1	<100	8
R-TR03-21-61-114	Mort-terrain	<0.5	4	12		8890 7900	161	<20	3080	106		<100	10
R-TR04-21-38-62	Mort-terrain				6 7					84	<1 <1		9
SSE-F01-21_CF-1B	Mort-terrain	<0.5	4	15	•	8300	131	<20	2260			<100	
SSE-F02-21_CF-1B	Mort-terrain	<0.5	3	20	3	10700	109	<20	2120 2500	76	<1	<100	8
TS-F02-21_CF-3	Mort-terrain	<0.5	7	12	26	12100	180	<20		168	<1	<100	16
TU-F01-21_CF-1B	Mort-terrain	< 0.5	3	11	3	7680	105	<20	1810	78	<1	<100	9
TU-F03-21_CF-1	Mort-terrain	<0.5	3	11	3	7830	127	<20	2200	111	<1	<100	6
TU-F04-21_CF-1B	Mort-terrain	<0.5	2	19	2	10200	<100	<20	1460	56	<1	<100	6
TU-TR01-21-52-190	Mort-terrain	< 0.5	3	8	7	5550	125	<20	1460	74	<1	<100	6
UTM-F01-21_CF-1	Mort-terrain	<0.5	4	14	14	8650	298	<20	3370	112	<1	<100	10
UTM-F01-21_CF-3	Mort-terrain	< 0.5	3	10	7	7120	200	<20	2200	110	<1	<100	7
UTM-F02-21_CF-1D	Mort-terrain	<0.5	3	11	5	6230	<100	<20	1650	84	<1	<100	6
UTM-F03-21_CF-1B	Mort-terrain	<0.5	2	11	4	5740	121	<20	1620	83	<1	<100	5
UTM-F05-21_CF-1A	Mort-terrain	<0.5	2	14	3	11400	116	<20	1190	62	<1	<100	5
UTM-F06-21_CF-1C	Mort-terrain	<0.5	<2	5	1	7360	<100	<20	399	26	<1	<100	<2
UTM-F07-21_CF-2	Mort-terrain	<0.5	4	14	9	7610	195	<20	2310	126	<1	<100	9
VR1-F01-21_CF-1A	Mort-terrain	<0.5	3	18	5	10600	150	<20	1990	88	<1	<100	11
VR6-F01-21_CF-1	Mort-terrain	<0.5	3	11	4	7450	117	<20	2440	160	<1	<100	8
BH-22-27-CF-2	Mort-terrain	<0.5	3	17	5	11100	116	<20	1480	56	<1	<100	7
CF1-F-16-22	Mort-terrain	<0.5	3	13	3	6470	<100	<20	1880	64	<1	<100	7
F01-22-CF-1B	Mort-terrain	<0.5	3	20	4	8320	104	<20	2360	80	<1	<100	11
F01-22-CF-2	Mort-terrain	<0.5	4	14	9	7800	206	<20	3130	116	<1	<100	10
F02-22-CF-1B	Mort-terrain	<0.5	5	18	7	8430	182	<20	3350	116	<1	<100	12
F02-22-CF-3	Mort-terrain	<0.5	4	14	12	8470	355	<20	3240	136	<1	<100	10
F03-22-CF-1B	Mort-terrain	<0.5	4	10	7	6290	156	<20	2770	79	<1	<100	9
F03-22-CF-3	Mort-terrain	<0.5	3	11	11	6340	298	<20	3110	108	<1	<100	9
F04-22-CF-1	Mort-terrain	<0.5	4	16	14	8390	365	<20	2940	132	<1	115	10
F04-22-CF-3	Mort-terrain	<0.5	4	14	10	9310	256	<20	3230	129	<1	<100	11
F05-22-CF-1	Mort-terrain	<0.5	4	14	14	8230	506	<20	3220	129	<1	154	11
F06-22-CF-2	Mort-terrain	<0.5	4	11	4	5660	141	<20	1980	82	<1	<100	8
F06-22-CF-3	Mort-terrain	<0.5	4	10	9	5270	142	<20	2030	88	<1	<100	9
F07-22-CF-2	Mort-terrain	<0.5	2	9	4	4150	133	<20	1510	57	<1	<100	6
F07-22-CF-3	Mort-terrain	<0.5	4	16	14	10400	301	<20	3450	142	<1	<100	13
F08-22-CF-1B	Mort-terrain	<0.5	4	18	6	10500	129	<20	2900	112	<1	<100	11
F10-22-CF-1B	Mort-terrain	<0.5	5	26	8	14500	137	<20	3050	87	<1	<100	16
F10-22-CF-3	Mort-terrain	<0.5	5	18	13	8490	358	<20	3670	136	<1	<100	11
F15-22-CF-2	Mort-terrain	<0.5	2	13	15	5720	125	<20	1730	58	<1	<100	7
F18-22-CF-1	Mort-terrain	1.2	<15	<45	<40	1650	237	<2	669	39	<2	450	<30
F18-22-CF-3B	Mort-terrain	<0.9	<15	<45	<40	6510	211	5	2860	75	<2	<100	<30
F19-22-CF-1	Mort-terrain	1	<15	<45	<40	1270	285	<2	1720	18	<2	847	<30
F19-22-CF-3	Mort-terrain	<0.9	<15	<45	<40	4420	101	4	2100	61	<2	<100	<30
F20-22-CF-2	Mort-terrain	<0.5	6	18	42	13400	115	<20	2300	186	<u>-</u> <1	<100	15

Identification de l'échantillon	Type de l'échantillon	Cd	Со	Cr	Cu	Fe	к	Li	Mg	Mn	Мо	Na	Ni
F00 00 0F 40	Mant tamain	μg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	μg/g	µg/g	μg/g	μg/g	μg/g
F22-22-CF-1C	Mort-terrain	<0.5	3	16	2	7360	105	<20	1530	69	<1	<100	11
F22-22-CF-2	Mort-terrain	<0.5	3	19	8	10400	393	<20	2250	105	<1	159	11
F23-22-CF-1A	Mort-terrain	<0.5	<2	10	2	5900	106	<20	876	35	<1	<100	4
F23-22-CF-2	Mort-terrain	<0.5	<2	9	3	4600	124 <100	<20	1500 <100	60 <10	<1 <1	<100 <100	5
F24-22-CF-1A	Mort-terrain	<0.5	<2	2	2	879		<20			-		<2
F24-22-CF-4	Mort-terrain	<0.5	4	13	19	8460	268	<20	2250	126	<1	130 345	9
F28-22-CF-1	Mort-terrain	<0.9	<15 <15	<45	<40	1050	<100	<2	2530	43	<2	<100	<30
F28-22-CF-3	Mort-terrain	<0.9		<45	<40	4520	135	4	2310	62	<2		<30
F29-22-CF-1	Mort-terrain	<0.5	5	15	17	9640	345	<20	3680	134	<1	<100	11
F30-22-CF-1	Mort-terrain	<0.5	4	17	16	10100	485	<20	3620	148	<1	137	11
F31-22-CF3A	Mort-terrain	<0.5	5	17	7	9260	206	<20	2850	126	<1	<100	12
F32-22-CF-1B	Mort-terrain	<0.5	2	15	3	8710	101	<20	2060	69	<1	<100	6
F32-22-CF-2	Mort-terrain	<0.5	3	11	4	6920	153	<20	2270	93	<1	<100	7
F33-22-CF1C	Mort-terrain	<0.5	4	14	6	7830	180	<20	2750	126	<1	<100	11
F34-22-CF-2	Mort-terrain	<0.5	4	15	7	8480	169	<20	2840	136	<1	<100	10
F35-22-CF-2B	Mort-terrain	<0.5	3	15	6	9220	114	<20	2470	137	<1	<100	9
F35-22-CF-3	Mort-terrain	<0.5	5	12	23	13600	121	<20	1670	112	<1	<100	10
F36-22-CF-1B	Mort-terrain	<0.5	4	15	3	9220	<100	<20	3100	123	<1	<100	10
F37-22-CF-3A	Mort-terrain	<0.9	<15	<45	<40	7130	201	7	3480	111	<2	<100	<30
F42-22-CF-1B	Mort-terrain	<0.5	2	14	3	7750	111	<20	2090	76	<1	<100	7
F42-22-CF-4	Mort-terrain	<0.5	9	9	33	18500	293	<20	2030	201	<1	132	16
F43-22-CF-1	Mort-terrain	<0.5	5	15	17	8780	413	<20	3810	134	<1	<100	11
F43-22-CF-2	Mort-terrain	<0.5	5	24	12	12000	801	<20	3880	152	2	195	12
F44-22-CF-1A	Mort-terrain	<0.5	2	11	2	5480	137	<20	1900	81	<1	<100	6
F44-22-CF-3	Mort-terrain	<0.5	3	12	8	6530	312	<20	2480	87	<1	<100	8
F46-22-CF-2	Mort-terrain	<0.5	5	14	6	7960	144	<20	3070	102	<1	<100	11
F48-22-CF-1	Mort-terrain	<0.5	4	11	9	7290	288	<20	3170	106	<1	<100	8
F49-22-CF-2	Mort-terrain	<0.5	5	10	7	6100	195	<20	2040	123	<1	<100	8
F49-22-CF-3	Mort-terrain	<0.5	6	16	14	9690	871	<20	3510	155	<1	<100	11
F50-22-CF-2	Mort-terrain	<0.5	4	14	8	7690	176	<20	2610	111	<1	<100	10
F51-22 CF1B	Mort-terrain	<0.5	<2	9	<1	4480	107	<20	1520	48	<1	<100	4
F51-22 CF2B	Mort-terrain	<0.5	4	12	6	8010	229	<20	3240	106	<1	<100	9
F52-22 CF1B	Mort-terrain	<0.5	<2	9	2	6370	102	<20	1530	48	<1	<100	4
F53-22 CF2A	Mort-terrain	<0.5	<2	9	1	5060	101	<20	1540	56	<1	<100	4
F53-22-CF-2B	Mort-terrain	<0.5	6	20	14	13800	420	<20	3520	181	<1	139	13
F54-22 CF2	Mort-terrain	<0.5	3	13	9	7720	157	<20	2410	108	<1	<100	8
F55-22-CF-2A	Mort-terrain	<0.5	3	16	4	9680	167	<20	2350	109	<1	<100	8
F56-22-CF-3	Mort-terrain	<0.5	4	14	6	7590	234	<20	2300	118	<1	<100	9
F57-22-CF-2B	Mort-terrain	<0.5	3	11	5	6380	168	<20	1750	76	<1	<100	7
F57-22-CF-3	Mort-terrain	<0.5	3	10	6	5650	179	<20	1740	81	<1	<100	7
F58-22-CF-2B	Mort-terrain	<0.5	4	16	3	10800	167	<20	2450	177	<1	<100	8
F59-22-CF-2	Mort-terrain	<0.5	<2	13	2	3900	110	<20	1330	47	<1	<100	5
F60-22-CF-2B	Mort-terrain	<0.5	<2	13	4	5120	127	<20	1720	54	<1	<100	6
F60-22-CF-3	Mort-terrain	<0.5	<2	10	5	4520	142	<20	1510	48	<1	<100	6
F61-22-CF-1	Mort-terrain	<0.5	3	15	7	8110	160	<20	1810	80	<1	<100	10
F62-22-CF-1B	Mort-terrain	<0.5	2	18	2	7400	<100	<20	1480	58	<1	<100	7
F-63-22-CF-4A	Mort-terrain	<0.5	3	15	8	5260	464	<20	3120	78	<1	141	9

Identification de l'échantillon	Type de l'échantillon	Cd	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Mo	Na	Ni
F64-22-CF-2	Mort torrain	μ g/g <0.5	μg/g	µg/g 13	μg/g	μ g/g 4380	μ g/g 146	μ g/g <20	μ g/g 1740	μg/g 61	μ g/g <1	μ g/g <100	μg/g
F64-22-CF-2	Mort-terrain	<0.5	<2 3	13	5 7	5920	154	<20	2040	71	<1	<100	6 8
F65-22-CF-2B	Mort-terrain Mort-terrain	<0.5	<2	10	8	5830	108	<20	1510	47	<1	<100	6
F66-22-CF-2B	Mort-terrain	<0.5	2	12	12	6080	195	<20	2060	71	<1	<100	8
F67-22-CF-1B		<0.5	7	38	47	9750	234	<20	2740	512	2	171	18
F67-22-CF-1B	Mort-terrain Mort-terrain	<0.5	5	14	13	9550	238	<20	3460	172	<1	<100	12
F68-22-CF-1B	Mort-terrain	<0.5	<2	8	13	3580	<100	<20	431	24	<1	<100	<2
F69-22-CF-2	Mort-terrain	<0.5	4	13	6	7700	254	<20	3250	121	<1	<100	10
F69-22-CF-3	Mort-terrain	<0.5	4	14	9	8200	266	<20	3790	135	<1	<100	10
F70-22-CF-2	Mort-terrain	<0.5	<2	4	8	2920	<100	<20	953	128	<1	<100	3
F71-22-CF-2	Mort-terrain	<0.5	5	19	9	9300	255	<20	3640	127	<1	<100	12
F71-22-CF-4	Mort-terrain	<0.5	11	13	43	25700	254	31	5700	590	<1	<100	13
F72-22-CF-1B	Mort-terrain	<0.5	3	18	7	10400	<100	<20	2110	65	<1	<100	9
F73-22-CF-1A	Mort-terrain	0.7	<2	4	8	952	919	<20	517	34	<1	<100	5
F74-22-CF-3A	Mort-terrain	<0.5	3	12	12	6530	191	<20	2110	105	<1	<100	7
F75-22-CF-1B	Mort-terrain	<0.5	3	19	4	12800	<100	<20	1990	66	<1	<100	7
F75-22-CF-2	Mort-terrain	<0.5	3	12	4	7490	<100	<20	1580	60	<1	<100	6
F76-22-CF-1	Mort-terrain	<0.5	<2	9	6	5750	419	<20	1720	267	<1	<100	6
F77-22-CF-3B	Mort-terrain	<0.5	4	12	10	8660	151	<20	2180	79	<1	<100	9
F78-22-CF-1B	Mort-terrain	<0.5	5	17	6	12100	159	<20	3800	142	<1	<100	12
F79-22-CF-1B	Mort-terrain	<0.5	3	18	3	13000	115	<20	3400	97	<1	<100	9
F80-22-CF-2	Mort-terrain	<0.5	10	7	17	24300	475	67	6170	7550	2	112	16
F81-22-CF-1B	Mort-terrain	<0.5	4	15	10	7950	159	<20	3260	102	<1	<100	10
F82-22-CF-1	Mort-terrain	<0.5	4	11	8	8270	152	<20	1870	144	<1	<100	8
F83-22-CF-3A	Mort-terrain	<0.5	4	18	5	8960	183	<20	3340	117	<1	<100	10
F84-22-CF-1	Mort-terrain	<0.5	6	17	13	9550	312	<20	2410	713	<1	<100	8
F85-22-CF-2	Mort-terrain	<0.5	4	12	10	8370	191	<20	3550	108	<1	<100	10
F86-22-CF-1	Mort-terrain	<0.5	<2	10	2	10200	<100	<20	578	22	<1	<100	2
F87-22-CF-1	Mort-terrain	<0.5	4	12	7	7950	189	<20	2840	105	<1	<100	9
F88-22-CF-1	Mort-terrain	<0.5	6	14	7	8370	187	<20	2930	118	<1	<100	11
F88-22-CF-2	Mort-terrain	<0.5	4	10	10	7350	230	<20	3050	111	<1	<100	8
F92-22-CF-1A	Mort-terrain	<0.5	<2	7	1	6380	<100	<20	347	18	<1	<100	<2
F92-22-CF-2	Mort-terrain	-	-	-	-	-	-	-	-	-	-	-	-
F92-22-CF-4	Mort-terrain	<0.5	46	78	56	61500	222	51	5070	1570	<1	<100	231
F93-22-CF-1B	Mort-terrain	<0.5	3	13	3	5720	<100	<20	1560	59	<1	<100	7
F94-22-CF-1B	Mort-terrain	<0.5	2	12	2	6350	118	<20	2020	63	<1	<100	6
F95-22-CF-1B	Mort-terrain	<0.5	8	15	8	11100	173	<20	2360	188	<1	<100	13
F96-22-CF-1B	Mort-terrain	<0.5	<2	13	2	10800	<100	<20	1120	36	<1	<100	4
BH-22-25-CF-1	Mort-terrain	<0.5	6	23	23	12500	360	<20	4260	168	<1	<100	14
BH-22-26-CF-2	Mort-terrain	<0.5	2	9	4	5010	<100	<20	1430	54	<1	<100	6
BH-22-28-CF-1B	Mort-terrain	<0.5	26	79	39	45200	137	54	6060	613	<1	<100	93
Tails CND 1	Résidus	8	15	170	190	57000	980	6	7600	530	3.8	170	37
Tails CND 4	Résidus	4.5	17	180	250	50000	1100	5	5900	380	5.7	180	38
Tails CND 5	Résidus	1.3	13	170	260	44000	1200	4	4900	330	6.5	200	35
Tails CND 6	Résidus	2.3	10	160	440	44000	1500	4	2000	140	8.4	210	25
CIL 11 CND	Résidus	0.67	12	60	78	28000	280	3	3700	230	4.3	120	32
CIL 12 CND	Résidus	1.3	12	53	85	34000	250	< 2	6600	430	2.7	53	30

Identification de l'échantillon	Type de l'échantillon	Cd µg/g	Co µg/g	Cr μg/g	Cu µg/g	Fe µg/g	Κ μg/g	Li µg/g	Mg µg/g	Mn µg/g	Mo µg/g	Na μg/g	Ni µg/g
CIL 13 CND	Résidus	0.81	16	55	<u>μg/g</u> 51	37000	240	<u>μg/g</u> 2	7800	500	3.3	11	50
EAG-13-485 1	Stériles	0.13	3	22	43	13000	1300	7	7900	410	1.1	180	3.7
EAG-13-485 2	Stériles	0.10	34	130	37	36000	210	40	36000	1300	< 0.1	160	140
EAG-13-485 3	Stériles	1.8	17	63	93	60000	1400	25	14000	820	< 0.1	150	43
EAG-13-485 4	Stériles	0.23	25	130	96	41000	6700	26	25000	880	0.3	270	85
EAG-13-490 5	Stériles	0.12	7.6	12	57	10000	1700	2	760	36	3.2	210	6.9
EAG-13-490_5	Stériles	0.12	4.7	14	15	12000	1300	11	6900	280	0.1	360	3.1
EAG-13-491 7	Stériles	0.22	7.2	15	37	26000	1200	12	10000	630	0.4	140	9.3
EAG-14-544 8	Stériles	0.12	0.88	14	1.4	7800	1400	5	5400	440	< 0.1	230	0.7
OBM-15-557 10	Stériles	0.12	7.3	11	2.7	18000	1600	10	11000	510	< 0.1	370	7
OBM-15-559 11	Stériles	0.14	1.2	21	13	8000	1600	< 2	2600	150	< 0.1	160	1.7
OBM-15-559_11	Stériles	0.04	5.4	17	5.9	9400	1300	5	5600	310	< 0.1	430	7.3
OBM-15-559_12 OBM-15-559_13	Stériles	0.04	35	85	29	47000	980	29	28000	1000	< 0.1	150	7.5
OBM-15-565 15	Stériles	0.08	4.3	9.3	6.3	12000	1700	< 2	5500	300	1.5	190	4.3
OBM-15-565_16	Stériles	0.87	1.2	17	30	8700	1600	< 2	610	37	< 0.1	170	4.5
OBM-16-580 17	Stériles	0.07	51	28	2000	110000	1800	8	11000	440	< 0.1	110	96
OBM-16-580_17 OBM-16-580_18	Stériles	0.20	5.4	17	29	8800	1500	8	5000	130	< 0.1	350	3.8
OBM-16-609 19	Stériles	0.03	5	19	39	18000	1600	< 2	1000	49	< 0.1	170	1.7
OBM-16-619 20	Stériles	0.79	12	14	25	18000	1700	5	2200	130	0.1	200	1.7
		0.2	27	20	86	70000	560	48	16000	1100	< 0.1	160	33
OBM-16-642_21 OBM-16-645_22	Stériles Stériles	0.03	9.7	13	51	39000	1300	35	9300	930	< 0.1	120	8.5
OBM-16-671 23	Stériles	0.14	21	84	20	32000	1200	22	20000	1100	< 0.1	120	86
OBM-16-693 24	Stériles	0.24	31	25	52	36000	1600	5	22000	880	< 0.1	150	71
OBM-16-693_24	Stériles	0.07	3.7	8.5	3.5	8000	1900	2	3900	190	< 0.1	140	5.2
OBM-16-693_25	Stériles	0.07	3.7	110	66	48000	1400	18	27000	950	< 0.1	150	130
OSK-W-16-715 27	Stériles	0.4	13	8.4	15	23000	1700	8	11000	560	< 0.1	220	12
OSK-W-16-735-W1 28		0.17	12	7.8	24	22000	1900	4	1400	100	< 0.1	200	7.3
	Stériles									320		250	7.9
OSK-W-16-751_29	Stériles	0.27	3	16	1.2	14000	1400	< 2	7000		13		
OSK-W-16-751_30 OSK-W-16-760_31	Stériles	0.33 3	28 8	120 15	29 42	44000 20000	320 1300	57 16	35000 5100	1100 340	< 0.1 3.3	290 190	100 11
OSK-W-16-760_31 OSK-W-16-760_32	Stériles	0.06	8	57	28	20000	750	10	5900	180	1.9	500	15
	Stériles	0.06	24	110	71	38000	250	74	29000	990	< 0.1	82	75
OSK-W-16-761_33	Stériles Stériles	0.17	47	69	73	64000	1100	69	29000	1400	< 0.1	180	70
OSK-W-16-761_34			34	4.7		72000				1500		600	24
OSK-W-17-773_36	Stériles	0.13			26		490	32	16000		< 0.1		
OSK-W-17-773_37	Stériles	0.11	23	2.9	56	73000	550	29	15000	1800	< 0.1	410	4.3
OSK-W-17-773_38	Stériles	0.06	7.6	8.8	6.5	15000	1300	3	6900	420	< 0.1	590	6.5
OSK-W-17-773_39	Stériles	0.15	8.6	4.5	23	18000	1500	3	11000	610	< 0.1	440 240	10
OSK-W-17-773_40	Stériles	0.1	2.3	7.4	12	14000	1600	< 2	5200	350	< 0.1		3.8
OSK-W-17-773_41	Stériles	0.07	32	90	44	46000	670	75 55	28000	1100	< 0.1	66	64
OSK-W-17-773_42	Stériles	0.09	31	64	44	56000	930	55	30000	950	< 0.1	200	54
OSK-W-17-774_43	Stériles	0.33	3.7	15	240	14000	1900	3	4600	130	9.6	230	3.5
OSK-W-17-774_44	Stériles	0.02	6.7	17	1.3	14000	1600	8	6200	270	< 0.1	410	12
OSK-W-17-779_45	Stériles	0.06	3.6	18	8	33000	1200	26	5100	620	< 0.1	140	7.6
OSK-W-17-779_46	Stériles	0.15	0.51	15	9.5	7800	1600	2	5200	250	< 0.1	200	0.7
OSK-W-17-779_47	Stériles	0.06	28	81	99	47000	63	55	22000	1400	< 0.1	78	32
OSK-W-17-783_48	Stériles	0.09	31	70	47	57000	640	61	33000	1500	< 0.1	430	99
OSK-W-17-783_49	Stériles	0.07	36	63	85	55000	700	43	30000	1300	< 0.1	500	100

Identification de l'échantillon	Type de l'échantillon	Cd µg/g	Co µg/g	Cr μg/g	Cu µg/g	Fe µg/g	K μg/g	Li µg/g	Mg µg/g	Mn µg/g	Mo μg/g	Na µg/g	Ni µg/g
OSK-W-17-788 50	Stériles	0.06	<u>μg/g</u> 4.1	13	3.2	13000	1300	<u>μg/g</u> 5	6400	350	49/9 40.1	460	4.8
OSK-W-17-788_50	Stériles	0.00	5.8	11	4.9	11000	1400	4	4700	290	< 0.1	450	4.0
OSK-W-17-788 52	Stériles	0.04	1.6	14	1.7	22000	1700	5	3100	500	< 0.1	210	1.8
EAG-13-485 53	Stériles	0.14	3.2	22	54	34000	1500	4	2200	160	< 0.1	190	3.7
EAG-13-465_55 EAG-13-485_54	Stériles	0.17	5.4	12	20	14000	1700	6	8200	560	0.3	300	4.6
EAG-13-465_54 EAG-13-490_55	Stériles	0.14	7	12	13	14000	1400	6	8900	420	0.3	420	15
EAG-13-490_55 EAG-13-497_56	Stériles	6.1	3.8	15	86	29000	1900	< 2	2400	95	1.6	240	4.5
EAG-13-497_30	Stériles	0.26	36	17	110	69000	1700	17	4300	370	1.3	120	39
EAG-14-538 58	Stériles	0.20	6.2	14	130	24000	2000	2	630	25	2.7	240	6.9
OBM-15-559 59	Stériles	0.1	19	48	170	41000	2000	25	14000	220	2.7	700	30
OBM-15-559_59 OBM-15-566_60	Stériles	0.03	3.3	5.1	3.7	16000	1700	< 2	20000	810	0.2	170	3.3
OBM-15-366_60 OBM-16-630_61	Stériles	0.33	7.4	16	150	29000	1600	10	3100	310	1.5	160	3.7
	Steriles	0.12	27	12	230	76000	1700	19	3400	200	0.5	170	15
OBM-16-654_62			12	19		13000	1400		8200			410	14
OBM-16-671_63	Stériles	0.12		14	7.4			6	2200	420	0.2		
OBM-16-673_64	Stériles	0.26	7.5	12	110	74000	1900 2100	4		55 27	0.7	290	8.4
OSK-W-16-713_65	Stériles	0.18	11	14	120 93	36000 16000	2000	2	520 800		1.2	260 310	13
OSK-W-16-735-W1_66	Stériles	0.15	9.1					4		33	5.2		12
OSK-W-16-760_67	Stériles	15	42	94	160	65000	1100	34	20000	720	3.8	340	78
OBM-16-580_68	Stériles	0.11	28	67	170	43000	2800	28	16000	400	0.4	630	71
OBM-16-645_69	Stériles	0.89	32	9	170	61000	1300	19	11000	980	1	150	14
OBM-16-642_70	Stériles	0.11	17	12	160	43000	1700	4	18000	540	4.9	130	37
OBM-16-640_71	Stériles	0.13	20	12	110	44000	1100	15	10000	690	1.5	160	15
OSK-W-17-774_72	Stériles	0.05	9.3	12	220	12000	1400	3	9800	190	17	240	3.2
OSK-W-17-918_73	Stériles	0.11	4.2	9.2	15	13000	1400	3	10000	550	0.6	170	6.2
OSK-W-17-879_74	Stériles	0.1	12	6.2	11	19000	1300	< 2	12000	670	2.1	330	10
OSK-W-17-1006_75	Stériles	0.1	5	7.7	13	23000	1300	3	13000	740	0.3	240	10
OSK-W-17-1039_76	Stériles	0.08	3.9	7.5	9	12000	1400	3	9500	520	0.2	240	5.3
OSK-W-17-934_77	Stériles	0.16	5	7.9	16	11000	1500	2	8100	340	0.3	280	6.1
OBM-15-557_78	Stériles	0.22	18	9.1	85	64000	690	24	12000	1300	1.2	220	5.4
GC10001	Stériles	0.1	10	2.2	30	20000	1900	6	9900	410	1.4	480	14
GC10002	Stériles	0.14	8.9	1.3	20	15000	2200	2	8900	450	0.3	420	8.7
GC10003	Stériles	0.06	13	33	18	30000	900	34	23000	640	0.5	460	36
GC10004	Stériles	0.11	6.8	1.5	25	22000	1700	7	12000	670	0.6	240	11
GC10005	Stériles	0.12	9.7	0.84	45	27000	1800	< 2	6700	360	1.5	360	27
GC10006	Stériles	0.2	12	0.77	39	15000	1800	8	6200	440	0.5	400	13
GC10007	Stériles	0.08	3.7	1.5	5.6	14000	1700	5	11000	520	0.8	670	16
GC10008	Stériles	0.07	4	3.6	5.2	7000	1100	14	2500	190	0.2	510	4.7
GC10009	Stériles	0.32	6.6	1.2	15	12000	1700	6	10000	850	0.4	290	5.9
GC10010	Stériles	0.03	6.4	1.4	15	15000	1400	8	7300	320	0.9	890	6.8
GC10011	Stériles	0.02	3.1	0.97	4.9	5700	1700	11	2800	120	0.5	440	4.9
GC10012	Stériles	0.02	6.9	2.2	7.9	14000	980	15	7000	290	0.7	560	9.1
GC10013	Stériles	0.1	5.5	0.78	8.4	14000	1900	3	11000	490	0.5	230	5.9
GC10014	Stériles	0.07	34	120	44	48000	610	84	28000	1200	0.1	160	110
GC10015	Stériles	0.21	30	130	100	51000	230	73	26000	1600	0.2	130	49
GC10016	Stériles	0.22	29	150	39	30000	330	57	34000	1000	< 0.1	160	170
GC10017	Stériles	0.04	13	4.8	21	28000	1400	12	14000	710	0.9	290	25
GC10018	Stériles	0.11	38	32	45	51000	800	27	31000	1500	0.6	270	63

Identification de l'échantillon	Type de l'échantillon	Cd	Co	Cr	Cu	Fe µg/g	K	Li ug/g	Mg	Mn	Mo	Na ug/g	Ni
GC10019	Stériles	μg/g 0.06	μg/g 34	μ g/g 74	μg/g 89	47000	μ g/g 430	μ g/g 93	μ g/g 30000	μg/g 1300	μ g/g 0.6	μ g/g 110	μg/g 96
GC10019 GC10020	Stériles	0.04	29	160	71	34000	480	73	43000	1100	0.0	180	150
GC10020 GC10021	Stériles	0.04	<u> </u>	85	67	38000	680	61	37000	1200	0.2	210	130
GC10021 GC10022	Stériles	0.13	<u>55</u> 51	70	110	56000	720	75	28000	1300	0.1	140	71
GC10022 GC10023	Stériles	0.22	50	73	78	69000	1300	45	36000	1800	0.2	190	120
GC10023 GC10024	Stériles	0.22	29	250	9.2	36000	34	88	37000	950	0.1	95	190
GC10024 GC10025	Stériles	0.54	1.1	0.84	26	9600	1500	3	11000	550	0.1	160	2
GC10023 GC10026	Stériles	0.05	6.7	0.66	29	24000	1600	4	9200	500	1.8	260	9.4
GC10020 GC10027	Stériles	0.03	12	6.4	13	8500	2400	5	4100	170	3.3	430	33
GC10027 GC10028	Stériles	7.4	1.8	1	25	22000	1700	18	8900	890	0.9	210	2.4
GC10028 GC10029	Stériles	0.04	24	5.3	21	24000	1800	17	9300	340	1.3	400	2.4
GC10029 GC10030		0.04	3.1	0.98	25	19000	1900	16	7100	860	0.6	230	4
GC10030 GC10031	Stériles Stériles		0.54	1.6	5.8	5800	2100	3	4700	300	0.6	250	1.5
		0.11				9100		8	3900	200	0.3	210	0.7
GC10032	Stériles	0.2	0.55	0.61 290	12 94		1800	100					220
#08351	Stériles	0.06	35			44000	45		44000	1200 540	< 0.1	260	12
#08352	Stériles	0.05	8.8	4.3	14	22000	1800	26	8900		0.6	600	
#08353	Stériles	0.06	37	260	43	48000	410	98	47000	1100	< 0.1	430	230
#08354	Stériles	0.06	6.7	3.1	19	19000	1700	23	8200	480	1.9	690	9.1
#08355	Stériles	0.13	6.8	2.1	15	15000	2400	13	9100	630	0.5	480	8.4
#08356	Stériles	0.06	7.1	1.2	13	16000	2400	13	7200	420	0.3	450	5.1
#08357	Stériles	0.03	30	170	20	43000	520	90	45000	1000	0.4	350	170
#08358	Stériles	0.04	38	410	20	39000	19	110	50000	710	< 0.1	29	280
WST-21-0647-161.5	Stériles	< 0.02	3.2	24	3.5	5700	770	3	2300	150	0.1	340	3.4
WST-21-0647-260	Stériles	0.12	4.3	29	16	13000	1100	< 2	2200	160	0.4	150	4.8
WST-21-0647-313	Stériles	0.2	2.4	32	8.7	8000	950	< 2	3900	280	1.5	120	3.2
WST-19-0160A-55	Stériles	0.43	24	24	74	60000	640	22	11000	1100	1.4	110	26
OSK-W-21-2606-615	Stériles	0.15	19	34	87	48000	910	23	8100	500	0.7	94	10
OSK-W-21-2606-670	Stériles	0.45	25	110	81	26000	800	26	18000	930	0.8	84	64
WST-22-1020-160	Stériles	< 0.02	3.6	31	5	5500	760	11	1600	120	< 0.1	360	3.5
WST-21-0666-54	Stériles	0.29	44	96	69	51000	300	47	31000	1400	4.5	250	108
WST-22-1020-210	Stériles	0.02	4.2	25	5.8	8200	780	12	5700	250	0.3	300	3.1
WST-22-1020-320	Stériles	0.06	0.38	41	3.8	4500	950	< 2	3100	230	0.2	150	1.3
WST-22-1013-345	Stériles	0.56	4.3	34	20	16000	1200	14	5200	210	3.9	180	11
OSK-W-21-2551-W3-915	Stériles	0.04	5.1	39	3.3	11000	660	15	4300	180	1.3	500	6
WST-21-0873-268.1	Stériles	0.07	0.7	38	4	2200	1200	< 2	1200	81	1.7	170	2.2
WST-21-0992-450	Stériles	0.09	5.9	38	14	12000	1100	7	8000	250	0.6	340	6
WST-21-0952-32	Stériles	0.09	50	160	57	34000	180	44	32000	920	< 0.1	110	143
OSK-W-21-1949-W15-1080	Stériles	0.34	3.2	21	13	9800	940	5	5500	290	1.9	130	5.5
WST-21-0873-330	Stériles	0.24	47	33	85	46000	850	15	16000	1200	0.2	110	76
WST-18-0024-50	Stériles	0.24	46	32	84	45000	830	15	16000	1200	0.2	100	76
WST-21-0873-445	Stériles	0.19	0.52	26	3.7	3700	830	4	5800	210	0.1	110	1.6
OSK-W-21-2555-590	Stériles	0.45	22	100	31	31000	120	33	29000	1300	0.1	67	118
OSK-W-21-2555-728	Stériles	0.04	8.2	29	26	11000	810	8	4700	340	0.2	280	11
OSK-W-21-2544-838	Stériles	0.59	5.4	26	18	19000	1000	9	7300	870	1.5	100	5.3
OSK-W-21-2531-655	Stériles	0.06	9.1	34	8.7	12000	790	6	5300	310	0.2	330	12
WST-21-0730-500	Stériles	0.11	6	19	9.4	13000	920	4	7800	430	0.4	320	5.6
WST-20-0573-367	Stériles	0.07	7.1	26	2.9	10000	810	4	6700	360	< 0.1	320	12

Identification de l'échantillon	Type de l'échantillon	Cd µg/g	Co μg/g	Cr μg/g	Cu µg/g	Fe µg/g	K μg/g	Li μg/g	Mg µg/g	Mn μg/g	Mo μg/g	Na μg/g	Ni μg/g
WST-21-0621-155	Stériles	< 0.02	3	28	1.8	4700	660	<u>μα/α</u> 5	1800	120	< 0.1	330	2.4
OSK-W-19-1949-W1-635	Stériles	0.04	4.2	25	13	12000	1000	5	6500	360	0.5	150	5
OSK-W-20-2375-916	Stériles	0.04	8	15	6	13000	1100	6	6200	370	0.3	250	7.6
OSK-W-20-2070-010	Stériles	0.2	5.2	38	29	32000	1800	14	7300	950	3.9	190	7.0
OSK-W-21-2587-990	Stériles	0.06	4.1	26	7.7	6500	1800	3	2700	170	2.3	230	4.1
OSK-W-21-2587-1060	Stériles	0.05	1	35	8.2	11000	1500	4	4000	340	3	190	2
WST-21-2367-1666	Stériles	0.18	41	51	41	49000	1500	17	21000	1200	0.8	230	97
WST-21-0879-639	Stériles	0.17	27	120	52	43000	610	33	27000	1100	0.5	320	91
OSK-W-19-1897-610	Stériles	0.03	6.9	29	7.8	11000	1500	4	6000	320	2	470	10
OSK-W-19-1897-760	Stériles	0.09	3.5	44	40	10000	1300	7	4400	280	4.7	600	6.1
OSK-W-19-1897-825	Stériles	0.06	6.8	48	170	19000	1200	13	7200	300	5	460	16
OSK-W-19-1897-880	Stériles	0.04	5.4	35	66	12000	1300	10	3700	160	4.6	460	7.8
OSK-W-19-1897-983	Stériles	0.04	4.8	37	370	13000	1500	4	2700	150	4.6	210	6.1
OSK-W-20-2323-115	Stériles	0.04	18	23	120	49000	680	27	9300	580	2.2	210	11
WST-18-0024-120	Stériles	0.03	5.7	28	3	10000	1400	3	7300	320	2.1	470	12
OSK-W-19-1949-W1-948	Stériles	0.16	43	73	70	51000	810	45	31000	1300	0.4	180	97
OSK-W-19-1949-W1-1015	Stériles	0.10	1.4	29	10	6500	1500	4	2900	170	2.8	170	3.6
OSK-W-19-1949-W1-1013	Stériles	0.07	2.6	29	9.1	11000	1800	8	1500	130	2.7	300	2.2
OSK-W-21-2252-1013	Stériles	0.03	5.5	16	11	13000	1700	3	7200	350	1.4	210	4.8
OSK-W-20-2283-W7-888	Stériles	0.09	1.9	23	11	13000	1400	10	3200	250	3.1	150	4.0
OSK-W-20-2397-W1-680	Stériles	0.12	27	130	51	34000	210	76	29000	940	0.3	100	120
OSK-W-20-2256-W1-1051.7	Stériles	1.7	7.2	130	26	18000	1600	6	9000	460	7.8	230	120
OSK-W-20-2230-W1-1031.7	Stériles	0.09	4.7	23	3.9	12000	1300	10	7500	410	1.5	460	14
OSK-W-20-2375-W4-890	Stériles	0.03	8.6	20	14	15000	1800	4	780	38	4.4	350	12
OSK-W-20-2373-W4-830	Stériles	0.02	4.1	35	27	14000	1100	7	4800	170	3.5	380	4.1
OSK-W-21-2444-010	Stériles	0.00	8.3	23	23	19000	1100	10	8900	440	2.3	470	11
OSK-W-21-2444-545	Stériles	0.09	24	100	110	41000	160	56	30000	1300	6.3	140	90
OSK-W-21-2444-343 OSK-W-19-1746-W1-687	Stériles	0.23	5.5	18	15	13000	1200	3	5500	380	2	220	5.8
OSK-W-19-1746-W1-765	Stériles	0.09	1.3	24	7.5	9000	1100	7	2900	300	2.9	160	4
OSK-W-19-1740-W1-763	Stériles	< 0.09	3.1	22	7.3	9400	910	10	4900	300	1.8	300	5.7
OSK-W-17-1369-315	Stériles	0.02	20	23	68	42000	540	25	11000	1300	3.6	160	21
OSK-W-17-1369-315	Stériles	0.23	4.7	28	72	11000	1100	3	5200	170	2.7	290	3.5
OSK-W-17-1309-303	Stériles	0.16	24	31	130	60000	1500	19	8400	320	2.7	540	9.8
OSK-W-17-836-257	Stériles	0.00	29	72	37	47000	740	28	28000	1200	0.4	250	100
OSK-W-17-836-237	Stériles	0.17	2.4	19	48	13000	1100	9	4600	400	2.8	220	4
OSK-W-17-859-240	Stériles	0.07	2.4	93	32	38000	680	40	21000	990	1.1	180	69
OSK-W-17-864-W2-635	Stériles	0.13	5.4	30	13	13000	990	7	5500	310	1.4	360	9.3
OSK-W-17-870-270	Stériles	0.04	2.2	22	9.4	8100	1100	< 2	6800	350	1.3	170	3.7
OSK-W-17-670-270 OSK-W-19-1857-W2-980	Stériles	0.08	39	99	79	41000	390	32	16000	1300	0.4	190	88
OSK-W-19-1857-W2-1030	Stériles	0.06	4.6	28	15	12000	960	12	5000	230	2.2	160	11
OSK-W-19-1857-W2-1110	Stériles	0.04	26	130	27	35000	200	64	33000	910	0.3	170	130
OSK-W-19-1857-W2-1110	Stériles	0.04	32	220	4.7	43000	220	68	40000	1000	< 0.1	250	170
OSK-W-19-1857-W2-1210	Stériles	0.06	16	120	8.9	26000	690	34	21000	650	0.7	180	83
OSK-W-19-1657-W2-1310 OSK-W-19-1897-496	Stériles	0.05	20	16	130	71000	550	34	14000	1000	1.4	69	9.6
OSK-W-19-1897-496 OSK-W-19-909-W12-770	Steriles	0.35	2.9	22	9	13000	960	6	5700	350	0.4	340	9.6 5.6
OSK-W-19-909-W12-770		0.04	0.92	30	8.1	8200	1300	4	2800	200	3.8	210	2.8
USK-VV-19-909-VV 12-955	Stériles Stériles	0.38	1.3	33	6.5	4200	1000	2	2600	180	0.3	120	4.2

Identification de l'échantillon	Type de l'échantillon	Cd µg/g	Co µg/g	Cr	Cu	Fe µg/g	K µg/g	Li	Mg µg/g	Mn μg/g	Mo	Na µg/g	Ni μg/g
OSK-W-19-934-W3-940	Stériles	0.14	1.4	µg/g 30	μg/g 10	12000	1100	μg/g 8	6700	480	μ g/g 0.7	140	3.5
OSK-W-21-2613-W1-1105	Stériles	0.14	1.8	30	18	13000	1200	6	4200	340	0.7	120	3.7
OSK-W-19-934-W3-1045	Stériles	0.06	0.52	34	4	7200	1300	< 2	3400	250	0.4	93	1.7
OSK-W-21-2512-W3-550	Stériles	0.06	6.4	35	6.5	12000	980	5	6400	360	0.2	360	10
OSK-W-21-2512-W3-610	Stériles	< 0.02	4.4	29	4.9	8600	630	7	4200	270	0.2	270	7.2
OKS-W-21-2613-W1-855	Stériles	0.05	20	190	13	23000	21	28	38000	980	0.3	26	150
OKS-W-21-2629-720	Stériles	0.08	5.9	18	19	18000	630	16	6900	530	3.3	360	11
WST-21-0930-195	Stériles	< 0.02	4	34	3.5	5300	800	7	1900	150	2.4	370	3.7
OSK-W-21-2629-845	Stériles	0.08	36	100	61	44000	390	50	34000	1000	0.4	230	120
OSK-W-21-2605-1332	Stériles	0.08	4.6	43	27	31000	900	12	6300	780	4.3	140	9.3
OSK-W-21-2629-948	Stériles	0.1	53	75	100	50000	680	41	20000	1200	0.6	150	100
OBM-15-552-230	Stériles	0.03	6.6	33	6	14000	1000	4	7647	340	0.2	460	9.9
OBM-15-552-280	Stériles	0.03	6.9	29	6.2	15000	1100	3	8535	380	0.3	460	11
OBM-16-655-535	Stériles	0.05	6.6	19	3	13000	440	4	6265	310	0.1	180	8.5
OBM-16-655-600	Stériles	0.03	6.4	33	7.5	12000	1500	4	6555	330	2.3	480	7.7
OBM-16-655-330	Stériles	0.06	18	9.9	35	72000	1100	24	13357	1700	0.8	120	2.3
OBM-16-677-79	Stériles	0.06	6.7	24	4.2	13000	1400	4	8177	360	1.7	490	13
OSK-W-16-309-W2-645	Stériles	0.02	7.5	31	4.3	13000	1400	8	6359	330	0.2	380	11
OSK-W-16-309-W2-720	Stériles	< 0.02	5.6	33	12	12000	1600	5	6331	320	2.5	500	8.4
OSK-W-16-706-W2-905	Stériles	0.08	7.2	42	238	26000	2500	17	9101	270	3.3	390	14
OSK-W-16-309-W2-1000	Stériles	0.05	9.1	49	252	26000	1200	14	6929	160	11	580	12
OSK-W-16-743-W1-915	Stériles	0.5	7.4	20	19	16000	1500	12	5700	280	1.1	260	7.8
OSK-W-17-1079-580	Stériles	0.2	33	141	68	50000	1800	24	26465	1400	0.8	140	77
OSK-W-17-1104-665	Stériles	0.06	23	92	54	41000	20	71	33226	1200	0.1	200	88
OSK-W-17-1121-545	Stériles	0.02	2.3	37	1.9	5900	910	12	2326	130	2.7	430	4
OSK-W-17-1305-261	Stériles	0.07	7.7	15	3.1	15000	490	3	9290	400	< 0.1	230	13
OSK-W-17-1369-262.5	Stériles	0.15	32	114	74	52000	330	73	34376	1300	0.9	190	81
OSK-W-17-1369-219.5	Stériles	0.1	1.9	34	24	8900	2400	6	2663	76	2.9	190	2.6
OSK-W-17-913-820	Stériles	0.11	3.2	25	45	11000	1700	6	8857	230	0.2	210	2.6
OSK-W-17-968-145	Stériles	0.31	27	76	39	41000	440	62	32552	1400	0.5	200	123
OSK-W-18-1386-W4-885	Stériles	0.12	53	37	93	56000	1200	16	20874	1800	0.8	510	129
OSK-W-18-1608-805	Stériles	0.73	43	73	87	57000	1200	42	21413	1100	0.3	190	99
OSK-W-18-1713-470	Stériles	0.73	18	75	69	45000	820	44	20039	1100	1.1	110	52
OSK-W-18-1744-W1-575	Stériles	0.12	30	33	17	79000	400	50	24729	1800	0.3	310	57
OSK-W-18-1759-190	Stériles	0.07	4.4	27	18	11000	1100	8	4500	240	2	230	6
OSK-W-19-1181-W12-1140	Stériles	0.14	3.3	24	15	8900	1200	7	2969	130	2	210	5
OSK-W-19-1181-W5-705	Stériles	< 0.02	2.7	31	2.2	8000	1200	4	2890	130	0.1	460	3
OSK-W-19-1181-W5-845	Stériles	< 0.02	3.2	30	5.5	8700	1100	5	2938	150	0.2	430	3.4
OSK-W-19-1181-W5-795	Stériles	0.03	9.2	32	17	27000	510	32	5105	500	2.1	450	16
OSK-W-19-1181-W5-920	Stériles	0.07	34	163	45	50000	320	77	42468	1100	0.4	350	143
OSK-W-19-1181-W5-970	Stériles	0.06	30	127	106	55000	450	83	38349	1200	< 0.1	280	96
OSK-W-19-1412-W3-715	Stériles	0.12	31	139	62	62000	530	68	42066	1300	0.4	310	155
OSK-W-19-1412-W3-765	Stériles	0.08	17	8.8	29	57000	320	43	10954	1000	0.4	220	7.3
08359 Down Ramp 3	Stériles	0.03	12	48	30	19000	2000	28	11000	452	0.4	800	23
08360 Down Ramp 4	Stériles	0.06	38	140	73	49000	680	70	33000	860	0.1	390	130
OBM-15-564_79	Stériles	1.1	7.1	6.7	72	19000	1200	22	7300	230	1.5	530	16
OBM-15-557_80	Stériles	0.02	11	1.2	69	18000	1900	8	4000	140	1.3	97	8

Identification de l'échantillon	Type de l'échantillon	Cd µg/g	Co µg/g	Cr μg/g	Cu µg/g	Fe µg/g	K µg/g	Li µg/g	Mg µg/g	Mn µg/g	Mo µg/g	Na µg/g	Ni μg/g
OBM-15-552 81	Stériles	< 0.02	16	8.6	350	23000	890	17	6400	140	9.8	410	15
OBM-15-554 82	Stériles	< 0.02	48	4	150	44000	1200	27	12000	470	1	250	26
OSK-W-16-311-W2 84	Stériles	0.1	4.8	4.9	64	15000	1600	17	6000	320	 	430	11
OSK-W-16-706-W1 85	Stériles	0.1	4.2	5.1	300	19000	1400	12	5800	230	14	470	14
OSK-W-16-706-W1 86	Stériles	0.05	5.7	1.6	130	13000	1300	8	3900	180	3.5	340	5.6
OSK-W-16-706-W1 87	Stériles	0.12	5.1	2.9	170	9000	1100	9	3700	150	0.5	500	5.2
OSK-W-16-706-W1 88	Stériles	< 0.02	6.3	1.8	210	14000	1400	7	2500	80	22	460	7.9
OSK-W-16-706-W2 89	Stériles	< 0.02	7.1	1.5	64	19000	1500	6	2700	96	1	390	8.1
OSK-W-16-708-W1 90	Stériles	0.08	43	106	100	64000	5200	27	17000	670	9.9	370	92
OSK-W-16-708-W2 91	Stériles	0.03	18	5	87	25000	1400	9	5900	140	2.3	540	18
OSK-W-16-735-W2 92	Stériles	0.35	3.6	1.5	280	7100	1400	7	4400	200	2	530	5.1
OSK-W-16-743 93	Stériles	0.41	13	1.7	350	23000	1900	4	1500	54	3.4	230	15
OSK-W-16-746 94	Stériles	0.05	31	26	150	55000	6400	29	18000	620	1.4	500	30
OSK-W-16-754 95	Stériles	0.03	4.9	2	110	11000	1100	5	2700	86	0.9	440	5.5
OSK-W-16-754 96	Stériles	< 0.02	10	4.6	270	17000	1800	13	8200	170	1.8	160	13
OSK-W-17-774 97	Stériles	0.13	51	77	890	69000	3100	23	24000	940	2.4	330	87
OSK-W-17-774 98	Stériles	0.04	6.1	2.5	120	8500	1300	6	3800	160	0.4	360	3.7
OSK-W-17-789 99	Stériles	0.03	3.7	1.5	270	12000	2000	9	3700	82	7.4	290	7
OSK-W-17-789 100	Stériles	0.11	5.2	1.6	230	13000	1800	7	2800	120	1.4	270	5.7
OSK-W-17-812 101	Stériles	0.1	4	0.6	12	8200	1500	4	4900	260	0.3	400	6.5
OSK-W-17-812 102	Stériles	0.12	5.1	1.4	14	18000	1100	< 2	10000	600	0.5	410	22
OBM-15-552 103	Stériles	0.03	14	6.8	1200	30000	1700	15	8800	180	47	270	24
OSK-W-16-311 - W1_83	Stériles	0.3	9.1	5.6	76	19000	1500	13	5600	140	1.4	500	15
MT-1	Mort-terrain	0.09	4.6	81	6	9900	1100	5	2600	89	0.3	230	13
MT-1-DupA	Mort-terrain	0.06	2.5	99	5	8300	250	4	1800	76	0.3	220	9.8
MT-2	Mort-terrain	0.08	2.3	110	4.9	9100	280	4	1500	73	0.4	260	8.1
MT-3	Mort-terrain	0.05	2.1	140	4.8	8700	380	4	1200	67	0.4	240	9.9
MT-4	Mort-terrain	0.08	3.2	100	6	9400	310	4	2100	95	0.4	280	9.2
MT-5	Mort-terrain	0.08	4.2	130	12	9800	300	4	1900	110	0.5	300	13
MT-6	Mort-terrain	0.08	1.7	110	5.3	11000	470	5	1300	82	0.5	270	7
MT-7	Mort-terrain	0.08	2.8	140	6.9	10000	260	4	1500	100	0.4	240	11
MT-8	Mort-terrain	0.13	2.7	120	5.8	10000	300	4	1700	84	0.5	250	9.4
MT-8-DUP-S	Mort-terrain	0.09	3	170	7.6	11000	330	4	1900	100	0.6	310	13
TP-1-S	Mort-terrain	< 0.02	2.9	120	5.7	8100	470	4	2300	85	0.4	430	10
TP-1-TS	Mort-terrain	0.23	2.7	170	6.6	10000	240	2	1200	79	0.6	250	13
TP-2-S	Mort-terrain	< 0.02	4.3	69	9.7	8900	520	6	3300	120	0.2	440	12
TP-2-TS	Mort-terrain	0.05	2.8	120	5.3	14000	320	5	2000	79	0.4	370	11
TP-3-S	Mort-terrain	0.02	4.3	68	8.4	8800	480	6	3100	120	0.3	450	12
TP-3-TS	Mort-terrain	0.07	2.2	140	4.6	14000	270	4	1400	65	0.4	340	9.9
TP-5-S	Mort-terrain	0.03	4.6	80	7.9	10000	530	7	3500	130	0.3	470	12
TP-5-S-DUPA	Mort-terrain	0.02	5.3	92	9	11000	580	7	3900	140	0.3	540	14
TP-5-TS	Mort-terrain	0.04	2.7	76	4.8	8200	330	5	2100	79	0.3	320	7.8
TP-6-S	Mort-terrain	< 0.02	3.1	110	9.8	7900	470	5	2300	86	0.3	550	11
TP-6-TS	Mort-terrain	0.27	1.6	46	8.4	3500	170	< 2	740	140	0.5	370	4.6
TP-7-S	Mort-terrain	< 0.02	3.4	110	8.1	8300	320	8	2800	950	0.3	300	18
TP-7-TS	Mort-terrain	0.1	7.9	110	8.8	13000	230	7	2500	540	0.6	260	13
TP-8-TS	Mort-terrain	0.08	7.9	130	11	20000	240	5	1800	730	0.6	260	13

Tableau E: Résultats de l'analyse MA.200.

Identification de l'échantillon	Type de l'échantillon	Cd	Co	Cr	Cu	Fe	К	Li	Mg	Mn	Мо	Na	Ni
		μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g
TP-9-S	Mort-terrain	< 0.02	4.3	76	7.8	8600	390	5	2300	340	0.3	330	9.8
TP-9-TS	Mort-terrain	0.26	2.3	130	12	6400	300	2	1600	130	0.6	270	11
TP-10-S	Mort-terrain	< 0.02	2.1	83	4.2	4900	290	3	1600	60	0.3	360	7.2
TP-10-S-DUPA	Mort-terrain	0.02	2.6	120	5.8	6100	360	3	1900	75	0.3	460	10
TP-10-TS	Mort-terrain	0.1	0.63	9.9	11	2300	27	< 2	390	49	0.7	170	3
TP-10-TS-DUPA	Mort-terrain	0.18	0.88	18	13	2700	39	< 2	460	61	0.9	210	4.4
TP-11-S	Mort-terrain	< 0.02	3	81	7.6	7500	300	3	1800	81	0.3	340	9.1
TP-11-TS	Mort-terrain	0.03	4.1	120	7.4	15000	400	6	3000	110	0.4	380	14
TP-5-TS-DUPA	Mort-terrain	0.07	3	89	5.2	11000	320	6	2400	90	0.4	330	8.9

Identification de l'échantillon	Type de l'échantillon	P µg/g	Pb µg/g	Sb µg/g	Se µg/g	Sn µg/g	Sr µg/g	Te µg/g	Ti µg/g	TΙ μg/g	Th µg/g	U µg/g	V µg/g
PSRTC-A (Province du Supérior "S")		<u> </u>	40		3	5	<u> </u>			F9.9	6,64	₩ 9 ,9	F9.9
E-27-D-H	Minerai	-	20	3.8	5.8	< 0.5	20	-	8.2	0.04	2.7	0.19	4
E-27-D-L	Minerai	-	8.5	3.3	1.6	< 0.5	8.6	-	10	0.05	3.9	0.26	7
E-27-U-H	Minerai	-	15	4.2	2.6	< 0.5	12	-	5.9	0.03	3.2	0.3	3
E-27-U-L	Minerai	-	11	3.5	2.4	< 0.5	18	-	5.6	0.03	2.1	0.14	7
E-CA-D-H	Minerai	_	13	4.5	2.7	< 0.5	22	-	18	0.04	2.4	0.21	16
E-CA-D-L	Minerai	-	13	4.7	1.4	< 0.5	24	-	6.8	0.04	2.2	0.15	8
E-CA-U-H	Minerai	-	47	50	4.4	< 0.5	23	-	3.7	0.02	2.3	0.21	2
E-CA-U-L	Minerai	-	30	11	4.1	< 0.5	12	-	3.1	< 0.02	2.7	0.98	1
Under Dog A	Minerai	270	6	9	2.4	0.6	8	1.4	4.4	0.03	2.9	0.27	1
Under Dog B	Minerai	260	4.2	< 0.8	1.5	< 0.5	8.1	5.5	3.1	0.02	2.3	0.42	< 1
Under Dog C	Minerai	1100	8.9	2.6	3.2	< 0.5	8.8	1.6	5.8	0.03	4.7	0.12	2
P3-I	Minerai	210	4.2	1.1	< 0.7	< 0.5	19	1	7.2	0.02	0.47	0.14	6
P3-J	Minerai	180	19	2.5	1.3	< 0.5	26	5.2	5.8	0.02	0.37	0.081	8
P3-K	Minerai	130	9.8	1.3	1	< 0.5	16	7.3	5.4	0.02	0.13	0.11	6
P3-L	Minerai	94	15	1.8	< 0.7	< 0.5	16	18	4.6	< 0.02	< 0.01	0.17	4
Triple Lynx LG	Minerai	91	18	0.9	0.8	< 0.5	12	1.8	5.8	0.03	0.33	0.42	2
Lynx 4 LP-LG	Minerai	120	110	4.4	1.4	< 0.5	19	1.7	5.2	0.05	4.2	0.24	6
Lynx 4 HP-LG	Minerai	210	17	2.6	< 0.7	< 0.5	11	1.6	4.6	0.06	1.9	0.24	4
Triple Lynx MG/HG	Minerai	140	16	1.6	1	< 0.5	15	2	4.9	0.03	0.5	0.28	3
Lynx 4 LP-MG/HG	Minerai	120	25	3.5	1.2	< 0.5	14	1	4.9	0.06	4.1	0.33	6
Lynx 4 HP-MG/HG	Minerai	200	28	2.4	1.5	< 0.5	33	0.99	4.3	0.04	5.2	0.23	9
RC-F03-21	Mort-terrain	710	2	< 0.8	< 0.7	< 5	29	< 1	11	< 0.02	-	0.072	16
VR2-F01-21 CR-7	Mort-terrain	630	13	1.9	0.9	< 5	36	< 1	16	< 0.02	-	0.21	12
VR3-F01-21 CR-5	Mort-terrain	190	0.48	< 0.8	< 0.7	< 5	9.3	< 1	35	< 0.02	-	0.033	79
HMTN-F01-21 CF-1	Mort-terrain	268	<5	<20	<0.5	<5	14	<15	592	<15	<20	<20	<15
HMBT-F01-21 CF-2	Mort-terrain	437	<5	<20	<0.5	<5	17	<15	530	<15	<20	<20	18
HMBT-F02-21 CF-2	Mort-terrain	340	<5	<20	<0.5	<5	25	<15	481	<15	<20	<20	<15
HMBT-F03-21 CH3 (CF-3?)	Mort-terrain	248	<5	<20	<0.5	<5	18	<15	535	<15	<20	<20	<15
UTE-F02-21 CF-1	Mort-terrain	520	<5	<20	0.7	<5	28	<15	678	<15	<20	<20	18
HMBT-F01-21 CF-3	Mort-terrain	379	<5	<20	<0.5	<5	12	<15	509	<15	<20	<20	16
HMBT-F02-21_CF-4	Mort-terrain	310	<5	<20	<0.5	<5	14	<15	381	<15	<20	<20	<15
HMBT-F02-21_CF-6	Mort-terrain	266	<5	<20	<0.5	<5	12	<15	376	<15	<20	<20	<15
HMBT-F03-21_CF-7	Mort-terrain	349	<5	<20	<0.5	<5	12	<15	427	<15	<20	<20	<15
TU-F03-21_CF-3	Mort-terrain	343	<5	<20	<0.5	<5	13	<15	542	<15	<20	<20	<15
TS-F02-21_CF-1	Mort-terrain	278	6	<20	<0.5	<5	15	<15	450	<15	<20	<20	16
BH-F01-21_CF-1	Mort-terrain	354	<5	<20	<0.5	<5	14	<15	732	<15	<20	<20	25
BD-F03-21_CF-1	Mort-terrain	470	11	<20	<0.5	<5	23	<15	15	<15	<20	<20	<15
R-F01-21_CF-1	Mort-terrain	532	12	<20	<0.5	<5	43	<15	80	<15	<20	<20	<15
HMBT-F01-21_CR-4	Mort-terrain	1620	<30	<20	<1.0	<5	17	-	38	<15	-	<20	<15
TU-F01-21_CR-3	Mort-terrain	552	<30	<20	<1.0	<5	27	-	8	<15	-	<20	47
TU-F02-21_CR-2	Mort-terrain	273	<30	<20	<1.0	<5	8	-	2	<15	-	<20	<15
BD-F01-21_21_CR-2	Mort-terrain	437	<30	<20	<1.0	<5	13	-	2	<15	-	<20	<15
BK-F01-21_CR-2	Mort-terrain	12	<30	<20	<1.0	<5	13	-	2	<15	-	<20	<15
HMT-F03-21_CR-4	Mort-terrain	469	<30	<20	<1.0	<5	8	-	10	<15	-	<20	<15
CONC-F02-21_CR-3	Mort-terrain	696	<30	<20	<1.0	<5	21	-	33	<15	-	20	78

Identification de l'échantillon	Type de l'échantillon	P	Pb	Sb	Se	Sn	Sr ug/g	Te	Ti	TI	Th	U Ua/a	V
AHS-F02-21 CF-2	Mort-terrain	μg/g -	μ g/g <5	μ g/g <20	μ g/g <0.5	μ g/g <5	μg/g	μg/g -	μg/g	μ g/g <15	μg/g -	μg/g	μ g/g <15
AHS-F02-21_CF-2 AHS-F03-21 CF-1			<5	<20	<0.5	<5 <5	-	-	-	<15	-	-	16
AHS-F03-21_CF-1 AHS-F03-21 CF-2	Mort-terrain Mort-terrain		<5	<20	<0.5	<5 <5	-		-	<15		-	<15
AHS-F03-21_CF-2 AHS-F04-21 CF-1	Mort-terrain	-	<5	<20	<0.5	<5 <5		-	-	<15	-		17
AHS-F04-21_CF-1 AHS-F04-21 CF-3	Mort-terrain	<u> </u>	<5	<20	<0.5	<5 <5	-	-	-	<15	-	-	<15
AHS-TR01-21-40-67	Mort-terrain		<5 <5	<20	<0.5	<5 <5	-	-	-	<15	-	-	16
AHS-TR01-21-40-67 AHS-TR02-21-219-300	Mort-terrain	-	<5 <5	<20	<0.5	<5 <5	-	 -	-	<15	-	-	<15
AHS-TR02-21-219-300 AHS-TR03-21-19-31			<5	<20	<0.5	<5 <5	-	-	-	<15	-	 	23
AHS-TR03-21-19-31 AHS-TR03-21-80-130	Mort-terrain		<5	<20	<0.5	<5 <5				<15			16
AHS-TR03-21-60-130 AHS-TR04-21-40-55	Mort-terrain	<u> </u>	<5 <5	<20	<0.5	<5 <5	-	-	-	<15	-	-	24
	Mort-terrain			<20	<0.5				-	<15			<15
AHS-TR05-21-104-145	Mort-terrain	-	<5 <5	<20		<5 <5	-	-	-		-	-	<15
AHS-TR05-21-145-210	Mort-terrain	-			<0.5		-	-	-	<15	-	-	
AHS-TR06-21-150-210	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
BAD-F01-21_CF-1	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
BAD-F01-21_CF-2	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
BA-F01-21_CF-2	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
BB-TR01-21-57-170	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-		<15
BC-F01-21_CF-1B	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-		<15
BD-F03-21_CF-5	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
BD-TR01-21-46-155	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
BD-TR02-21-150-170	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
BD-TR03-21-120-175	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
BE-F01-21_CF-2	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
BE-F01-21_CF-3	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
BE-TR01-21-40-103	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
BF-TR01-21-22-54	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
BF-TR02-21-40-51	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
BF-TR03-21-79-139	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
BH-F01-21_CF-2	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
BI-F03-21_CF-1A	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	19
BI-TR01-21-107-189	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
BI-TR03-21-31-35	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
CAMP-F02-21_CF-1	Mort-terrain	-	12	<20	<0.5	<5	-	-	-	<15	-	-	<15
CAMP-TR01-21-32-63	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
CAMP-TR02-21-73-170	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
CAMP-TR03-21-50-84	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
CC-TR01-21-68-134	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
CC-TR02-21-61-174	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
COND-TR01-21-112-181	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
COND-TR02-21-42-66	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
COND-TR02-21-66-110	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
COND-TR03-21-34-57	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
COND-TR04-21-49-140	Mort-terrain	_	<5	<20	<0.5	<5	-	-	-	<15	_	-	<15
HMBT-F01-21 CF-1B	Mort-terrain	_	< 5	<20	<0.5	<5	-	-	-	<15	-	_	23
HMBT-F02-21 CF-1	Mort-terrain	_	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
HMBT-F03-21 CF-1C	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
HMT-F03-21 CF-2	Mort-terrain	-	<5	<20	<0.5	<5	-	_	_	<15	_	_	15

Identification de l'échantillon	Type de l'échantillon	P	Pb	Sb	Se	Sn	Sr	Te	Ti	TI	Th	U	V
HS-F01-21 CF-1	Mort-terrain	μg/g -	μ g/g <5	μ g/g <20	μ g/g <0.5	μ g/g <5	μg/g	μg/g -	μg/g	μ g/g <15	μg/g -	μg/g	μ g/g <15
HS-F01-21_CF-1			<5	<20	<0.5	<5 <5	-	-	-	<15	-	-	<15
HS-TR01-21_CF-2	Mort-terrain Mort-terrain		<5	<20	<0.5	<5 <5	-		-	<15			21
RC-F03-21 CF-1B	Mort-terrain	-	<5	<20	<0.5	<5		-	-	<15	-	-	<15
R-TR01-21-40-70	Mort-terrain	<u> </u>	<5	<20	<0.5	<5 <5	-	-	-	<15	-	-	23
R-TR01-21-40-70	Mort-terrain		<5 <5	<20	<0.5	<5 <5	-		-	<15	-	-	<15
R-TR03-21-61-114 R-TR04-21-38-62	Mort-terrain	-	<5 <5	<20	<0.5	<5 <5	-	-	-	<15	-	-	<15
SSE-F01-21 CF-1B	Mort-terrain		<5	<20	<0.5	<5 <5	-	-	-	<15	-	-	16
SSE-F01-21_CF-1B SSE-F02-21 CF-1B			<5	<20	<0.5	<5 <5				<15		 	
TS-F02-21 CF-16	Mort-terrain	<u> </u>	<5 <5	<20	<0.5	<5 <5	-	-	-	<15	-	-	21 <15
TU-F01-21 CF-1B	Mort-terrain		<5 <5	<20	<0.5	<5 <5			-	<15			<15
	Mort-terrain	-	<5 <5	<20	<0.5	<5 <5	-	-	-	<15	-	-	17
TU-F03-21_CF-1	Mort-terrain	-					-	-	-		-	-	
TU-F04-21_CF-1B	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	20
TU-TR01-21-52-190	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
UTM-F01-21_CF-1	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	17
UTM-F01-21_CF-3	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
UTM-F02-21_CF-1D	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-		<15
UTM-F03-21_CF-1B	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-		<15
UTM-F05-21_CF-1A	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	21
UTM-F06-21_CF-1C	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
UTM-F07-21_CF-2	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
VR1-F01-21_CF-1A	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	22
VR6-F01-21_CF-1	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	<15	-	-	<15
BH-22-27-CF-2	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	18
CF1-F-16-22	Mort-terrain	-	<5	<20	<0.5	<5	-	-	527	-	-	-	<15
F01-22-CF-1B	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F01-22-CF-2	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	16
F02-22-CF-1B	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F02-22-CF-3	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	15
F03-22-CF-1B	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F03-22-CF-3	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F04-22-CF-1	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	15
F04-22-CF-3	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	16
F05-22-CF-1	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	15
F06-22-CF-2	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F06-22-CF-3	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F07-22-CF-2	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F07-22-CF-3	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	16
F08-22-CF-1B	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	17
F10-22-CF-1B	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	22
F10-22-CF-3	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	16
F15-22-CF-2	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F18-22-CF-1	Mort-terrain	_	46	<20	1.3	14	-	-	13	-	_	-	<15
F18-22-CF-3B	Mort-terrain	_	<30	<20	<1.0	< 5	-	-	473	_	-	_	16
F19-22-CF-1	Mort-terrain	_	31	<20	1.4	8	-	-	15	-	-	-	<15
F19-22-CF-3	Mort-terrain		<30	<20	<1.0	< 5	-	_	434	_	_	_	<15
F20-22-CF-2	Mort-terrain	-	<5	<20	<0.5	<5	_		-	_	_	_	17

Identification de l'échantillon	Type de l'échantillon	P	Pb	Sb	Se	Sn	Sr	Те	Ti	TI	Th	U	V
500.00.05.40		μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	µg/g
F22-22-CF-1C	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F22-22-CF-2	Mort-terrain	-	<5	<20	<0.5	< 5	-	-	-	-	-	-	17
F23-22-CF-1A	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F23-22-CF-2	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F24-22-CF-1A	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F24-22-CF-4	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F28-22-CF-1	Mort-terrain	-	<30	<20	<1.0	8	-	-	19	-	-	-	<15
F28-22-CF-3	Mort-terrain	-	<30	<20	<1.0	<5	-	-	385	-	-	-	<15
F29-22-CF-1	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	18
F30-22-CF-1	Mort-terrain	-	16	<20	<0.5	<5	-	-	-	-	-	-	19
F31-22-CF3A	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	15
F32-22-CF-1B	Mort-terrain	-	<5	<20	<0.5	<5	-	-	550	-	-	-	19
F32-22-CF-2	Mort-terrain	-	<5	<20	<0.5	<5	-	-	475	-	-	-	<15
F33-22-CF1C	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F34-22-CF-2	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F35-22-CF-2B	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	17
F35-22-CF-3	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F36-22-CF-1B	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	16
F37-22-CF-3A	Mort-terrain	-	<30	<20	<1.0	<5	-	-	307	-	-	-	<15
F42-22-CF-1B	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	21
F42-22-CF-4	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F43-22-CF-1	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	16
F43-22-CF-2	Mort-terrain	_	<5	<20	<0.5	<5	-	-	-	-	-	-	19
F44-22-CF-1A	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F44-22-CF-3	Mort-terrain	_	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F46-22-CF-2	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F48-22-CF-1	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F49-22-CF-2	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F49-22-CF-3	Mort-terrain	-	<5	<20	<0.5	<5	-	-	-	-	-	-	17
F50-22-CF-2	Mort-terrain	-	<5	<20	<0.5	<5	-	-	629	-	-	-	<15
F51-22 CF1B	Mort-terrain	-	<5	<20	<0.5	<5	-	-	929	-	-	-	17
F51-22 CF2B	Mort-terrain	-	<5	<20	<0.5	<5	-	-	612	-	-	-	<15
F52-22 CF1B	Mort-terrain	-	<5	<20	<0.5	<5	-	-	753	-	-	-	20
F53-22 CF2A	Mort-terrain	_	<5	<20	<0.5	<5	-	_	504	_	_	_	<15
F53-22-CF-2B	Mort-terrain	_	<5	<20	<0.5	<5	-	-	-	-	-	-	20
F54-22 CF2	Mort-terrain	-	<5	<20	<0.5	<5	-	-	574	-	-	-	<15
F55-22-CF-2A	Mort-terrain	_	<5	<20	<0.5	<5	-	-	-	-	-	-	18
F56-22-CF-3	Mort-terrain	_	<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F57-22-CF-2B	Mort-terrain		<5	<20	<0.5	<5	-	_	523	-	_	_	<15
F57-22-CF-3	Mort-terrain	-	<5	<20	<0.5	<5	-	-	494	-	-	-	<15
F58-22-CF-2B	Mort-terrain		<5	<20	<0.5	0	_	_	-	_		_	17
F59-22-CF-2	Mort-terrain		<5	<20	<0.5	<5	_	-	_	_	-	-	<15
F60-22-CF-2B	Mort-terrain		<5	<20	<0.5	<5	-	-	-	-	-	-	<15
F60-22-CF-3	Mort-terrain	-	<5	<20	<0.5	<5	<u>-</u>	-	-	<u>-</u>	-	-	<15
F61-22-CF-3	Mort-terrain	<u> </u>	<5	<20	<0.5	<5 <5	-	-	-	-	-	-	<15
F62-22-CF-1B	Mort-terrain	<u> </u>	<5 <5	<20	<0.5	<5 <5	-	-	-	-	-	-	15
F-63-22-CF-4A	Mort-terrain	-	<5	<20	<0.5	<5 <5	-	-	526	-	-	-	<15

Identification de l'échantillon	Type de l'échantillon	P µg/g	Pb μg/g	Sb µg/g	Se µg/g	Sn μg/g	Sr µg/g	Te μg/g	Ti µg/g	ΤΙ μg/g	Th µg/g	U µg/g	V µg/g
F64-22-CF-2	Mort-terrain	<u></u>	<5	<20	<0.5	49 /9	- 49	- 49,9	- 49	- 49		- 49	<15
F64-22-CF-4	Mort-terrain	_	<5	<20	<0.5	<5	-	_	_	-	_	-	<15
F65-22-CF-2B	Mort-terrain		<5	<20	<0.5	<5		_	445	_	_		<15
F66-22-CF-3	Mort-terrain	-	<5	<20	<0.5	<5		_	572		_	_	<15
F67-22-CF-1B	Mort-terrain	-	<5	<20	0.9	<5	_	_	251	_	_	_	16
F67-22-CF-3	Mort-terrain		<5	<20	<0.5	<5	_	_	553	_	_	_	<15
F68-22-CF-1B	Mort-terrain	-	<5	<20	<0.5	<5	_	_	-	_	_	-	20
F69-22-CF-2	Mort-terrain	-	<5	<20	<0.5	<5	_	_	_	_	_	_	<15
F69-22-CF-3	Mort-terrain	_	<5	<20	<0.5	<5	_	_	_	-	_	_	<15
F70-22-CF-2	Mort-terrain	_	<5	<20	1.6	<5	_	_	_	_	_	_	<15
F71-22-CF-2	Mort-terrain	-	<5	<20	<0.5	<5	_	_	_	_	_	_	17
F71-22-CF-4	Mort-terrain	-	<5	<20	<0.5	<5	_	_	_	_	_	_	20
F72-22-CF-1B	Mort-terrain		<5	<20	<0.5	<5		_		_	_		16
F73-22-CF-1A	Mort-terrain		21	<20	0.9	<5	_	-	_	_	-	_	<15
F74-22-CF-3A	Mort-terrain	_	<5	<20	<0.5	<5	_	_	_	_	_	_	<15
F75-22-CF-1B	Mort-terrain		<5	<20	<0.5	<5	_	_	_	_	_	-	17
F75-22-CF-2	Mort-terrain		<5	<20	<0.5	<5		_	_	_	_	_	18
F76-22-CF-1	Mort-terrain		<5	<20	<0.5	<5	-	_	_	_	_		<15
F77-22-CF-3B	Mort-terrain		<5	<20	<0.5	<5	_	_		_	_	_	<15
F78-22-CF-1B	Mort-terrain	-	<5	<20	<0.5	<5					_		20
F79-22-CF-1B	Mort-terrain	-	<5	<20	<0.5	<5	_	_	_	_	-	-	24
F80-22-CF-2	Mort-terrain	-	<5	<20	<0.5	<5		_	_	_	_		<15
F81-22-CF-1B	Mort-terrain		<5	<20	<0.5	<5		_	_	_	_	_	<15
F82-22-CF-1	Mort-terrain		<5	<20	<0.5	<5	_	_		_	_	_	<15
F83-22-CF-3A	Mort-terrain		<5	<20	<0.5	<5		_			_		17
F84-22-CF-1	Mort-terrain	-	7	<20	1	<5	_	_	_	_	_	_	<15
F85-22-CF-2	Mort-terrain	-	<5	<20	<0.5	<5		_		_	_		<15
F86-22-CF-1	Mort-terrain	-	<5	<20	<0.5	<5		_	_	_	_	_	28
F87-22-CF-1	Mort-terrain	-	<5	<20	<0.5	<5	_	-	_	_	-	_	<15
F88-22-CF-1	Mort-terrain	-	<5	<20	<0.5	<5		_	_		_	_	<15
F88-22-CF-2	Mort-terrain		<5	<20	<0.5	<5		_	_	_	_	_	<15
F92-22-CF-1A	Mort-terrain		<5	<20	<0.5	<5	_	_	_	_	_	_	25
F92-22-CF-2	Mort-terrain	-	-	-		-	_	_	_	_	_	-	-
F92-22-CF-4	Mort-terrain	-	<5	<20	<0.5	<5		_	_		_	_	36
F93-22-CF-1B	Mort-terrain		<5 <5	<20	<0.5	<5	-		-	-		-	<15
F94-22-CF-1B	Mort-terrain	-	<5	<20	<0.5	<5		_			_		<15
F95-22-CF-1B	Mort-terrain	-	<5	<20	<0.5	<5		-	_	_	_		17
F96-22-CF-1B	Mort-terrain		<5	<20	<0.5	<5	-	_			_		<15
BH-22-25-CF-1	Mort-terrain		<5	<20	<0.5	<5		_		_	_		23
BH-22-26-CF-2	Mort-terrain	<u> </u>	<5 <5	<20	<0.5	<5	-	-	-	-	-	-	<15
BH-22-28-CF-1B	Mort-terrain	-	<5	<20	<0.5	<5		_			_		54
Tails CND 1	Résidus	-	250	7.3	1.7	1.9	22	2.8	7.1	< 0.02	1.2	0.22	5
Tails CND 4	Résidus		210	10	1.9	1.9	22	4.2	13	0.04	1.4	0.22	7
Tails CND 5	Résidus		200	15	1.9	2.2	19	2.7	11	0.03	1.3	0.25	5
Tails CND 6	Résidus	-	220	24	2.7	1.7	15	3.5	18	0.03	1.3	0.23	4
CIL 11 CND	Résidus	130	25	2.1	1.4	0.9	12	2.1	4.3	< 0.02	0.66	0.24	2
CIL 12 CND	Résidus	100	53	4.1	1.2	1.1	15	2.3	2.6	< 0.02	8.2	0.22	3

Identification de l'échantillon	Type de l'échantillon	P µg/g	Pb μg/g	Sb µg/g	Se µg/g	Sn μg/g	Sr µg/g	Te μg/g	Ti μg/g	ΤΙ μg/g	Th μg/g	U µg/g	V µg/g
CIL 13 CND	Résidus	180	23	2.8	1.4	< 0.5	21	2	2	< 0.02	6.7	0.18	4
EAG-13-485 1	Stériles	78	3.4	1	< 0.7	< 0.5	21	< 0.1	5.3	< 0.02	3	0.46	< 1
EAG-13-485 2	Stériles	470	5.1	0.8	< 0.7	< 0.5	71	< 0.1	25	< 0.02	1.2	0.048	44
EAG-13-485 3	Stériles	580	3.9	1.6	< 0.7	< 0.5	15	0.14	100	0.03	1.5	0.12	59
EAG-13-485 4	Stériles	1400	3.5	< 0.8	< 0.7	0.5	90	0.39	760	0.03	2.1	0.12	67
EAG-13-490 5	Stériles	390	2.8	1.5	< 0.7	< 0.5	8.9	< 0.1	9.7	0.13	2.5	0.33	2
EAG-13-490 6	Stériles	290	3.5	< 0.8	< 0.7	< 0.5	24	0.18	10	0.03	1.5	0.32	2
EAG-13-491 7	Stériles	51	7	< 0.8	< 0.7	< 0.5	23	0.2	6.3	< 0.02	1.9	0.36	< 1
EAG-14-544 8	Stériles	47	2.9	< 0.8	< 0.7	< 0.5	11	< 0.1	4.7	0.02	3.1	0.49	< 1
OBM-15-557 10	Stériles	470	4.9	< 0.8	< 0.7	< 0.5	53	< 0.1	5.7	0.02	2.4	0.43	3
OBM-15-559 11	Stériles	17	4.2	0.8	< 0.7	< 0.5	11	< 0.1	4.9	< 0.02	2.9	0.51	< 1
OBM-15-559 12	Stériles	660	0.98	< 0.8	< 0.7	< 0.5	130	< 0.1	13	< 0.02	2.9	0.6	4
OBM-15-559 13	Stériles	400	0.72	< 0.8	< 0.7	< 0.5	120	< 0.1	28	0.03	1.5	0.032	51
OBM-15-565 15	Stériles	300	3.7	< 0.8	< 0.7	< 0.5	43	0.17	6.2	0.03	2.2	0.032	1
OBM-15-565_16	Stériles	58	1.8	1.1	< 0.7	< 0.5	7.8	0.17	5.8	0.02	4.4	0.27	< 1
OBM-16-580 17	Stériles	310	11	1.7	3	< 0.5	41	4.3	11	0.05	2.3	0.03	11
OBM-16-580_17	Stériles	310	1.8	< 0.8	< 0.7	< 0.5	10	< 0.1	74	0.03	1.7	0.34	3
OBM-16-609 19	Stériles	43	12	1.6	< 0.7	< 0.5	9.2	1.6	6.5	0.03	3.6	1.4	1
OBM-16-603_13	Stériles	440	3.5	1.2	< 0.7	< 0.5	8.3	0.47	5	0.03	2.2	0.31	2
OBM-16-642 21	Stériles	810	1.1	< 0.8	< 0.7	< 0.5	19	< 0.1	34	< 0.02	2.3	0.12	42
OBM-16-645_21	Stériles	260	2.8	1.7	< 0.7	< 0.5	12	< 0.1	10	0.02	4.5	0.72	4
OBM-16-671 23	Stériles	1100	2.9	1.7	< 0.7	< 0.5	120	0.24	12	0.02	2.1	0.053	17
OBM-16-693 24	Stériles	440	5	1.2	< 0.7	< 0.5	140	1.1	9.7	0.03	1.7	0.12	8
OBM-16-693_24	Stériles	360	1.4	< 0.8	< 0.7	< 0.5	32	< 0.1	8.6	0.03	2.5	0.12	1
OBM-16-693_26	Stériles	930	5.8	< 0.8	< 0.7	0.7	140	0.4	57	0.05	1.7	0.16	35
OSK-W-16-715 27	Stériles	500	6	1	< 0.7	< 0.5	38	0.35	6.7	0.03	2.3	0.24	3
OSK-W-16-715_27	Stériles	490	16	1.6	< 0.7	< 0.5	16	0.51	6.3	0.04	2.4	0.33	2
OSK-W-16-751 29	Stériles	84	8.8	< 0.8	< 0.7	< 0.5	14	< 0.1	3.1	0.04	2.7	1.4	< 1
OSK-W-16-751_23	Stériles	620	5.8	0.9	< 0.7	< 0.5	46	< 0.1	13	< 0.02	1.1	0.005	70
OSK-W-16-761_30	Stériles	87	6.6	1	< 0.7	< 0.5	7.1	< 0.1	5	0.02	3.3	0.86	2
OSK-W-16-760_31	Stériles	200	5.1	< 0.8	< 0.7	< 0.5	9.9	0.22	310	0.02	2.7	0.31	27
OSK-W-16-761 33	Stériles	560	2	1	< 0.7	< 0.5	73	< 0.1	33	< 0.02	0.79	< 0.002	82
OSK-W-16-761 34	Stériles	750	2.8	1.4	< 0.7	< 0.5	26	< 0.1	10	< 0.02	0.77	< 0.002	44
OSK-W-17-773 36	Stériles	560	1.1	< 0.8	< 0.7	< 0.5	40	< 0.1	31	< 0.02	0.56	< 0.002	46
OSK-W-17-773_37	Stériles	1300	0.87	< 0.8	< 0.7	< 0.5	51	< 0.1	10	< 0.02	0.61	< 0.002	65
OSK-W-17-773 38	Stériles	410	3	< 0.8	< 0.7	< 0.5	26	< 0.1	2	< 0.02	0.9	0.12	2
OSK-W-17-773 39	Stériles	680	1.7	1.6	< 0.7	< 0.5	13	< 0.1	3.1	< 0.02	2.2	0.29	2
OSK-W-17-773 40	Stériles	46	4.5	0.8	< 0.7	< 0.5	7	< 0.1	4.2	< 0.02	4.1	0.61	< 1
OSK-W-17-773 41	Stériles	560	1.2	< 0.8	< 0.7	< 0.5	93	< 0.1	22	< 0.02	0.93	0.003	65
OSK-W-17-773_41	Stériles	640	2.3	< 0.8	< 0.7	< 0.5	90	< 0.1	35	< 0.02	1.2	0.003	49
OSK-W-17-773_42	Stériles	300	2.3	14	< 0.7	< 0.5	24	0.6	7	0.02	1.6	0.38	2
OSK-W-17-774_43	Stériles	670	0.92	< 0.8	< 0.7	< 0.5	71	< 0.1	58	< 0.02	2.3	0.66	9
OSK-W-17-779 45	Stériles	59	4.4	< 0.8	< 0.7	< 0.5	3.9	< 0.1	8	0.03	2.7	0.34	1
OSK-W-17-779_43	Stériles	33	1.7	0.9	< 0.7	< 0.5	9.2	< 0.1	4.3	< 0.02	3.6	0.34	< 1
OSK-W-17-779_40	Stériles	860	0.78	< 0.8	< 0.7	< 0.5	82	< 0.1	4.3	< 0.02	0.95	< 0.002	140
OSK-W-17-779_47 OSK-W-17-783_48	Stériles	700	0.76	< 0.8	< 0.7	< 0.5	47	< 0.1	6.1	< 0.02	0.55	< 0.002	52
OSK-W-17-783_46	Stériles	510	0.31	< 0.8	< 0.7	< 0.5	36	< 0.1	4.4	< 0.02	0.55	< 0.002	42

Identification de l'échantillon	Type de l'échantillon	P µg/g	Pb µg/g	Sb µg/g	Se µg/g	Sn µg/g	Sr µg/g	Te μg/g	Ti µg/g	TΙ μg/g	Th µg/g	U µg/g	V µg/g
OSK-W-17-788 50	Stériles	310	2.4	< 0.8	< 0.7	< 0.5	20	< 0.1	3.8	< 0.02	1.5	0.14	2
OSK-W-17-788 51	Stériles	320	2.7	0.8	< 0.7	< 0.5	16	< 0.1	3.6	< 0.02	1.5	0.17	2
OSK-W-17-788 52	Stériles	47	17	< 0.8	< 0.7	< 0.5	8.8	< 0.1	5.6	0.03	5.1	1.7	< 1
EAG-13-485 53	Stériles	31	4.9	1.9	< 0.7	< 0.5	10	0.25	5.2	< 0.02	3.4	0.35	< 1
EAG-13-485 54	Stériles	300	2	< 0.8	< 0.7	< 0.5	34	< 0.1	6.5	0.03	0.72	0.07	2
EAG-13-490 55	Stériles	650	1.5	< 0.8	< 0.7	< 0.5	49	< 0.1	8.1	0.02	1.3	0.3	3
EAG-13-497 56	Stériles	220	9	11	< 0.7	< 0.5	18	0.16	5.9	0.04	0.95	0.39	1
EAG-13-513 57	Stériles	680	5.9	1.2	0.8	< 0.5	13	0.81	13	0.06	1.1	0.072	14
EAG-14-538 58	Stériles	320	8.4	1.9	1.5	< 0.5	13	2.3	6.9	0.04	1.3	0.32	3
OBM-15-559 59	Stériles	470	1.6	< 0.8	0.9	< 0.5	18	0.53	470	0.07	1.6	0.3	38
OBM-15-566 60	Stériles	290	2.3	< 0.8	< 0.7	< 0.5	49	< 0.1	12	0.03	0.7	0.1	2
OBM-16-630 61	Stériles	98	5.1	1.4	< 0.7	< 0.5	7.8	1.8	10	0.03	4.6	0.78	< 1
OBM-16-654 62	Stériles	910	5.8	1.5	1.1	< 0.5	5	1.2	22	0.05	2.2	0.1	11
OBM-16-671 63	Stériles	710	1.1	< 0.8	< 0.7	< 0.5	120	< 0.1	16	0.04	2.2	0.34	5
OBM-16-673 64	Stériles	320	20	1.1	2.1	< 0.5	16	1.3	10	0.05	1.8	0.28	2
OSK-W-16-713 65	Stériles	420	11	1.1	1.2	< 0.5	10	1.2	7.1	0.05	2.2	0.36	2
OSK-W-16-735-W1 66	Stériles	390	2.5	1	< 0.7	< 0.5	11	0.17	7.2	0.05	1.6	0.42	2
OSK-W-16-760 67	Stériles	520	94	1.4	< 0.7	< 0.5	15	1.1	740	0.06	0.87	0.05	98
OBM-16-580 68	Stériles	500	3.3	< 0.8	1	< 0.5	20	6.1	650	0.15	0.71	0.099	73
OBM-16-645 69	Stériles	930	8	1.4	< 0.7	< 0.5	51	1.1	27	0.05	1.8	0.11	17
OBM-16-642 70	Stériles	290	2	0.9	2.2	< 0.5	69	0.28	15	0.03	0.76	0.12	7
OBM-16-640 71	Stériles	1200	2	1.2	< 0.7	< 0.5	33	0.17	27	0.03	2	0.16	14
OSK-W-17-774 72	Stériles	290	2.4	< 0.8	< 0.7	< 0.5	220	< 0.1	12	0.02	0.98	0.3	2
OSK-W-17-918 73	Stériles	150	3.3	1.1	< 0.7	< 0.5	12	< 0.1	5.1	0.02	2.6	0.5	< 1
OSK-W-17-879 74	Stériles	330	2.5	< 0.8	< 0.7	< 0.5	13	< 0.1	3.9	0.03	1.3	0.21	2
OSK-W-17-1006 75	Stériles	190	3	1.2	< 0.7	< 0.5	12	< 0.1	4.2	0.03	2	0.19	1
OSK-W-17-1039 76	Stériles	200	2.1	< 0.8	< 0.7	< 0.5	11	0.13	4.6	0.02	2.6	0.22	< 1
OSK-W-17-934 77	Stériles	270	3.6	1.2	< 0.7	< 0.5	14	< 0.1	5.2	0.02	2.6	0.23	1
OBM-15-557 78	Stériles	1000	4.5	1.7	< 0.7	< 0.5	25	< 0.1	40	< 0.02	2.7	0.26	16
GC10001	Stériles	240	3.4	1.3	< 0.7	< 0.5	18	2.5	6	0.03	< 0.1	0.29	1
GC10002	Stériles	190	5.5	1.1	< 0.7	< 0.5	17	2.6	6.1	0.03	< 0.1	0.3	2
GC10003	Stériles	420	1.8	0.9	< 0.7	< 0.5	29	2	5.5	< 0.02	< 0.1	0.17	19
GC10004	Stériles	300	3.8	0.9	< 0.7	< 0.5	18	2.4	5.2	0.03	< 0.1	0.2	2
GC10005	Stériles	220	3.9	2.2	< 0.7	< 0.5	10	3	5.1	0.06	0.28	0.28	1
GC10006	Stériles	230	4.6	2.2	< 0.7	< 0.5	22	1.4	7.5	0.03	0.11	0.39	1
GC10007	Stériles	210	2.3	< 0.8	< 0.7	2.1	18	1.5	4.6	0.02	< 0.1	0.28	2
GC10008	Stériles	290	2.2	< 0.8	< 0.7	< 0.5	48	1	6.4	< 0.02	< 0.1	0.39	2
GC10009	Stériles	300	24	0.9	< 0.7	< 0.5	30	0.92	9.6	0.03	< 0.1	0.17	2
GC10010	Stériles	310	2.1	< 0.8	< 0.7	< 0.5	17	0.8	3.8	< 0.02	< 0.1	0.11	2
GC10011	Stériles	350	1.6	< 0.8	< 0.7	< 0.5	15	0.85	5.9	0.03	< 0.1	0.13	1
GC10012	Stériles	320	2.8	< 0.8	< 0.7	< 0.5	27	1	6.5	< 0.02	< 0.1	0.14	2
GC10013	Stériles	290	5.4	1.6	< 0.7	< 0.5	38	1.1	6.8	< 0.02	< 0.1	0.18	1
GC10014	Stériles	770	2.8	< 0.8	< 0.7	< 0.5	84	0.56	31	< 0.02	< 0.1	0.017	75
GC10015	Stériles	780	7.2	< 0.8	< 0.7	< 0.5	80	0.43	40	< 0.02	< 0.1	0.02	110
GC10016	Stériles	400	11	< 0.8	< 0.7	< 0.5	79	0.25	22	< 0.02	< 0.1	0.013	38
GC10017	Stériles	250	1.7	< 0.8	< 0.7	< 0.5	30	1.8	6.5	0.02	< 0.1	0.25	5
GC10018	Stériles	450	2.4	0.8	< 0.7	< 0.5	85	0.77	8.2	< 0.02	< 0.1	0.054	23

Page Page	μg/g 0.013 0.025 0.016 0.026 0.02 0.007 0.19	71 35 32 77 33 69
GC10020 Stériles 400 1.9 < 0.8 < 0.7 < 0.5 69 0.29 17 < 0.02 < 0.1 GC10021 Stériles 390 1.8 1.1 < 0.7	0.025 0.016 0.026 0.02 0.007 0.19	35 32 77 33
GC10021 Stériles 390 1.8 1.1 < 0.7 < 0.5 40 0.16 15 < 0.02 < 0.1 GC10022 Stériles 580 3.3 < 0.8	0.016 0.026 0.02 0.007 0.19	32 77 33
GC10022 Stériles 580 3.3 < 0.8 < 0.7 < 0.5 62 0.2 30 < 0.02 < 0.1 GC10023 Stériles 320 3.2 1.5 < 0.7	0.026 0.02 0.007 0.19	77 33
GC10023 Stériles 320 3.2 1.5 < 0.7 < 0.5 53 0.18 9.8 < 0.02 < 0.1 GC10024 Stériles 410 1.2 < 0.8	0.02 0.007 0.19	33
GC10024 Stériles 410 1.2 < 0.8 < 0.7 < 0.5 160 0.03 57 < 0.02 < 0.1	0.19	
	0.19	
GC10025 Stériles 43 8.1 1.9 < 0.7 < 0.5 18 2.9 5.1 < 0.02 0.11		< 1
GC10026 Stériles 210 3.8 1.4 < 0.7 < 0.5 15 1.5 5.7 0.02 < 0.1	0.32	1
GC10027 Stériles 100 6.9 0.9 < 0.7 < 0.5 22 1.8 6.9 0.04 < 0.1	0.32	2
GC10028 Stériles 30 6.9 < 0.8 < 0.7 < 0.5 11 3 7 0.02 < 0.1	0.79	1
GC10029 Stériles 280 3.1 0.9 < 0.7 < 0.5 19 2.4 6.6 0.04 < 0.1	0.25	3
GC10030 Stériles 40 11 1.1 < 0.7 < 0.5 14 3.7 7.9 0.03 < 0.1	0.41	1
GC10031 Stériles 28 5.8 1 < 0.7 < 0.5 13 4.1 6.5 < 0.02 < 0.1	0.19	< 1
GC10032 Stériles 35 5.3 1 < 0.7 < 0.5 14 3.4 7.9 < 0.02 < 0.1	0.3	< 1
#08351 Stériles 210 1.8 < 0.8 < 0.7 < 5 62 < 1 49 < 0.02 -	0.009	83
#08352 Stériles 380 2 < 0.8 < 0.7 < 5 13 < 1 8.2 0.04 -	0.26	8
#08353 Stériles 270 1.2 < 0.8 < 0.7 < 5 59 < 1 23 < 0.02 -	0.013	71
#08354 Stériles 340 2.1 < 0.8 < 0.7 < 5 13 < 1 6.8 0.04 -	0.22	6
#08355 Stériles 350 5.8 0.8 < 0.7 < 5 22 < 1 8 0.07 -	0.19	5
#08356 Stériles 310 4.1 0.9 < 0.7 < 5 22 < 1 8.2 0.05 -	0.24	3
#08357 Stériles 350 0.87 < 0.8 < 0.7 < 5 53 < 1 19 < 0.02 -	0.003	58
#08358 Stériles 500 1.6 < 0.8 < 0.7 < 5 129 < 1 60 < 0.02 -	0.04	71
WST-21-0647-161.5 Stériles 220 1.7 < 0.8 < 0.7 < 5 44 < 1 7.2 < 0.02 -	0.29	1
WST-21-0647-260 Stériles 160 6.9 1.1 < 0.7 < 5 6.9 < 1 4.8 0.03 -	0.26	< 1
WST-21-0647-313 Stériles 40 12 1.1 < 0.7 < 5 9.3 < 1 4.1 < 0.02 -	0.19	< 1
WST-19-0160A-55 Stériles 640 3.2 1.1 < 0.7 < 5 20 < 1 94 0.05 -	0.13	47
OSK-W-21-2606-615 Stériles 1000 8.4 < 0.8 < 0.7 < 5 24 < 1 90 0.06 -	0.24	15
OSK-W-21-2606-670 Stériles 360 0.74 < 0.8 < 0.7 < 5 44 < 1 150 0.05 -	0.014	75
WST-22-1020-160 Stériles 240 1.5 < 0.8 < 0.7 < 5 27 < 1 10 < 0.02 -	0.34	2
WST-21-0666-54 Stériles 440 5.6 < 0.8 1.5 < 5 74 < 1 6.6 < 0.02 -	0.007	49
WST-22-1020-210 Stériles 270 2.5 < 0.8 < 0.7 < 5 16 < 1 4.6 < 0.02 -	0.13	1
WST-22-1020-320 Stériles 52 2.2 < 0.8 < 0.7 < 5 5.4 < 1 3.8 < 0.02 -	0.45	< 1
WST-22-1013-345 Stériles 250 8.9 1.3 < 0.7 < 5 11 < 1 5.6 < 0.02 -	0.44	2
OSK-W-21-2551-W3-915 Stériles 380 1.3 < 0.8 < 0.7 < 5 15 < 1 4.2 < 0.02 -	0.3	2
WST-21-0873-268.1 Stériles 17 7.7 < 0.8 < 0.7 < 5 5.7 < 1 3.5 < 0.02 -	0.35	< 1
WST-21-0992-450 Stériles 270 3.9 < 0.8 < 0.7 < 5 26 < 1 5.3 0.02 -	0.16	2
WST-21-0952-32 Stériles 330 2.5 < 0.8 < 0.7 < 5 42 < 1 13 < 0.02 -	0.008	34
OSK-W-21-1949-W15-1080 Stériles 190 5.5 < 0.8 < 0.7 < 5 18 < 1 4.7 < 0.02 -	0.18	1
WST-21-0873-330 Stériles 630 14 1 < 0.7 < 5 38 < 1 5.2 < 0.02 -	0.026	17
WST-18-0024-50 Stériles 620 14 1 < 0.7 < 5 37 < 1 5.5 < 0.02 -	0.026	16
WST-21-0873-445 Stériles 32 9.9 < 0.8 < 0.7 < 5 14 < 1 3.6 < 0.02 -	0.13	< 1
OSK-W-21-2555-590 Stériles 530 1.2 < 0.8 < 0.7 < 5 83 < 1 67 < 0.02 -	0.009	58
OSK-W-21-2555-728 Stériles 540 1.4 < 0.8 < 0.7 < 5 910 < 1 14 < 0.02 -	0.51	5
OSK-W-21-2544-838 Stériles 170 11 1.2 < 0.7 < 5 17 < 1 6.2 < 0.02 -	0.32	1
OSK-W-21-2531-655 Stériles 550 1.1 < 0.8 < 0.7 < 5 95 < 1 11 < 0.02 -	0.51	4
WST-21-0730-500 Stériles 290 5.3 < 0.8 < 0.7 < 5 14 < 1 4.7 0.02 -	0.14	1
WST-20-0573-367 Stériles 540 2.8 < 0.8 < 0.7 < 5 66 < 1 5.2 < 0.02 -	0.39	3

Identification de l'échantillon	Type de l'échantillon	P µg/g	Pb μg/g	Sb µg/g	Se µg/g	Sn µg/g	Sr µg/g	Te μg/g	Ti μg/g	TΙ μg/g	Th µg/g	U µg/g	V µg/g
WST-21-0621-155	Stériles	210	0.82	< 0.8	< 0.7	< 5	38	< 1	6.5	< 0.02	-	0.31	1
OSK-W-19-1949-W1-635	Stériles	210	1.1	< 0.8	< 0.7	< 5	13	< 1	4.5	< 0.02	-	0.27	< 1
OSK-W-20-2375-916	Stériles	420	0.9	< 0.8	< 0.7	< 5	8.4	< 1	4.5	0.03	-	0.25	3
OSK-W-21-2613-1042	Stériles	190	4.4	1.4	< 0.7	< 5	12	< 1	13	0.03	-	0.24	2
OSK-W-21-2587-990	Stériles	290	3.6	< 0.8	< 0.7	< 5	7.9	< 1	7.6	0.04	-	0.17	1
OSK-W-21-2587-1060	Stériles	28	3.7	< 0.8	< 0.7	< 5	9.6	< 1	8.4	0.04	-	0.21	< 1
WST-21-0878-517	Stériles	530	6.3	0.9	< 0.7	< 5	44	< 1	11	0.04	-	0.063	20
WST-21-0879-639	Stériles	550	10	< 0.8	< 0.7	< 5	37	< 1	18	< 0.02	-	0.053	53
OSK-W-19-1897-610	Stériles	560	1.1	< 0.8	< 0.7	< 5	120	< 1	29	0.03	-	0.58	5
OSK-W-19-1897-760	Stériles	260	1	< 0.8	< 0.7	< 5	15	< 1	16	0.03	-	0.11	4
OSK-W-19-1897-825	Stériles	360	0.97	< 0.8	< 0.7	< 5	32	< 1	25	0.04	-	0.24	11
OSK-W-19-1897-880	Stériles	280	2.2	< 0.8	< 0.7	< 5	18	< 1	12	0.04	-	0.16	4
OSK-W-19-1897-983	Stériles	240	1.7	< 0.8	< 0.7	< 5	15	< 1	9.1	0.04	-	0.46	2
OSK-W-20-2323-115	Stériles	680	0.66	< 0.8	< 0.7	< 5	18	< 1	50	0.03	-	0.13	37
WST-18-0024-120	Stériles	530	1.5	< 0.8	< 0.7	< 5	200	< 1	12	0.03	-	0.45	4
OSK-W-19-1949-W1-948	Stériles	390	3.1	< 0.8	< 0.7	< 5	45	< 1	14	0.02	-	0.021	41
OSK-W-19-1949-W1-1015	Stériles	49	3.4	< 0.8	< 0.7	< 5	5.8	< 1	7.6	0.03	-	0.32	< 1
OSK-W-21-2252-W12-922	Stériles	180	2.7	< 0.8	< 0.7	< 5	8.6	< 1	7.6	0.04	-	0.28	< 1
OSK-W-21-2252-1013	Stériles	280	5.3	0.8	< 0.7	< 5	40	< 1	9.2	0.03	-	0.24	2
OSK-W-20-2283-W7-888	Stériles	160	4.8	< 0.8	< 0.7	< 5	7.5	< 1	8.3	0.02	-	0.24	1
OSK-W-20-2397-W1-680	Stériles	380	1.5	< 0.8	< 0.7	< 5	70	< 1	43	< 0.02	-	0.01	75
OSK-W-20-2256-W1-1051.7	Stériles	370	11	1.1	< 0.7	< 5	21	< 1	7	0.03	-	0.78	2
OSK-W-20-2313-W6-983	Stériles	530	2.3	< 0.8	< 0.7	< 5	73	< 1	11	0.02	-	0.36	4
OSK-W-20-2375-W4-890	Stériles	370	1.6	< 0.8	< 0.7	< 5	6.6	< 1	5.9	0.05	-	0.32	3
OSK-W-21-2444-610	Stériles	260	2.3	< 0.8	< 0.7	< 5	20	< 1	7.7	0.03	-	0.3	2
OSK-W-20-2350-125	Stériles	450	2.5	< 0.8	< 0.7	< 5	46	< 1	6.5	0.02	-	0.28	5
OSK-W-21-2444-545	Stériles	620	1.1	< 0.8	< 0.7	< 5	94	< 1	48	< 0.02	-	0.026	84
OSK-W-19-1746-W1-687	Stériles	390	5.4	1.3	< 0.7	< 5	12	< 1	6	0.03	-	0.19	2
OSK-W-19-1746-W1-765	Stériles	41	5.6	0.9	< 0.7	< 5	6.5	< 1	6.2	< 0.02	-	0.37	< 1
OSK-W-19-1857-W2-895	Stériles	310	0.88	0.8	< 0.7	< 5	17	< 1	8.8	< 0.02	-	0.24	2
OSK-W-17-1369-315	Stériles	650	3.4	< 0.8	< 0.7	< 5	37	< 1	56	0.02	-	0.14	40
OSK-W-17-1369-365	Stériles	250	2.6	3.6	< 0.7	< 5	16	< 1	6.4	0.03	-	0.35	1
OSK-W-17-663-W2-680	Stériles	1000	2.6	< 0.8	0.8	< 5	19	< 1	280	0.09	-	0.18	32
OSK-W-17-836-257	Stériles	540	1.3	< 0.8	< 0.7	< 5	66	< 1	7.1	< 0.02	-	0.022	27
OSK-W-17-836-400	Stériles	27	2.3	0.9	< 0.7	< 5	11	< 1	5	0.02	-	0.27	< 1
OSK-W-17-859-240	Stériles	290	1.5	0.8	< 0.7	< 5	34	< 1	11	< 0.02	-	0.1	38
OSK-W-17-864-W2-635	Stériles	550	2.4	< 0.8	< 0.7	< 5	62	< 1	10	0.02	-	0.4	4
OSK-W-17-870-270	Stériles	150	1.9	1.1	< 0.7	< 5	8.2	< 1	3.4	0.03	-	0.24	< 1
OSK-W-19-1857-W2-980	Stériles	360	0.26	0.9	< 0.7	< 5	19	< 1	55	< 0.02	-	0.016	61
OSK-W-19-1857-W2-1030	Stériles	59	1.1	< 0.8	< 0.7	< 5	7.4	< 1	5.8	< 0.02	-	0.33	2
OSK-W-19-1857-W2-1110	Stériles	460	0.28	< 0.8	< 0.7	< 5	48	< 1	22	< 0.02	-	0.01	53
OSK-W-19-1857-W2-1210	Stériles	360	0.25	< 0.8	< 0.7	< 5	53	< 1	31	< 0.02	-	0.017	81
OSK-W-19-1857-W2-1310	Stériles	180	1.1	< 0.8	< 0.7	< 5	32	< 1	14	< 0.02	-	0.19	36
OSK-W-19-1897-496	Stériles	850	7.6	2	< 0.7	< 5	12	< 1	61	0.03	-	0.28	30
OSK-W-19-909-W12-770	Stériles	130	1.3	< 0.8	< 0.7	< 5	11	< 1	4.7	0.02	-	0.27	< 1
OSK-W-19-909-W12-955	Stériles	32	3	1.1	< 0.7	< 5	6.7	< 1	4.6	0.03	-	0.3	< 1
OSK-W-19-934-W3-885	Stériles	42	3.5	0.9	< 0.7	< 5	5.4	< 1	4.7	< 0.02	-	0.29	< 1

hā\a hā\a hā\a hā\a hā\a hā\a hā\a hā\a	μg/g	μg/g
OSK-W-19-934-W3-940 Stériles 34 3.4 1.6 < 0.7 < 5 8.3 < 1 6.2 < 0.02 -	0.36	< 1
OSK-W-21-2613-W1-1105 Stériles 32 7.4 1 < 0.7 < 5 16 < 1 9.8 0.02 -	0.43	< 1
OSK-W-19-934-W3-1045 Steriles 28 5.7 1 < 0.7 < 5 7.1 < 1 6.5 < 0.02 -	0.49	< 1
OSK-W-21-2512-W3-550 Stériles 560 1.2 < 0.8 < 0.7 < 5 116 < 1 12 < 0.02 -	0.45	3
OSK-W-21-2512-W3-610 Stériles 550 0.61 < 0.8 < 0.7 < 5 105 < 1 10 < 0.02 -	0.41	3
OKS-W-21-2613-W1-855 Stériles 270 1.8 < 0.8 < 0.7 < 5 244 < 1 30 < 0.02 -	0.004	30
OKS-W-21-2629-720 Stériles 320 0.75 < 0.8 < 0.7 < 5 24 < 1 5.3 < 0.02 -	0.15	2
WST-21-0930-195 Stériles 250 0.89 < 0.8 < 0.7 < 5 50 < 1 8.6 < 0.02 -	0.36	2
OSK-W-21-2629-845 Stériles 500 0.44 < 0.8 < 0.7 < 5 61 < 1 12 < 0.02 -	0.01	51
OSK-W-21-2605-1332 Stériles 65 2.5 1 < 0.7 < 5 7.6 < 1 13 < 0.02 -	0.62	2
OSK-W-21-2629-948 Stériles 360 0.78 < 0.8 < 0.7 < 5 25 < 1 12 < 0.02 -	0.006	37
OBM-15-552-230 Stériles 630 1.1 < 0.8 < 0.7 < 5 82 < 1 13 < 0.02 -	0.48	4
OBM-15-552-280 Stériles 660 1 < 0.8 < 0.7 < 5 83 < 1 7.9 0.02 -	0.54	4
OBM-16-655-535 Stériles 650 2.7 < 0.8 < 0.7 < 5 81 < 1 5.6 < 0.02 -	0.41	2
OBM-16-655-600 Stériles 610 0.78 < 0.8 < 0.7 < 5 85 < 1 11 0.02 -	0.48	3
OBM-16-655-330 Stériles 1300 1.3 < 0.8 < 0.7 < 5 59 < 1 30 < 0.02 -	0.18	7
OBM-16-677-79 Steriles 620 1.7 < 0.8 < 0.7 < 5 89 < 1 7.9 0.02 -	0.51	4
OSK-W-16-309-W2-645 Stériles 640 1.1 < 0.8 < 0.7 < 5 140 < 1 14 < 0.02 -	0.53	5
OSK-W-16-309-W2-720 Stériles 610 0.71 < 0.8 < 0.7 < 5 81 < 1 13 0.03 -	0.57	4
OSK-W-16-706-W2-905 Stériles 410 1 < 0.8 < 0.7 < 5 18 < 1 130 0.11 -	0.31	14
OSK-W-16-309-W2-1000 Stériles 400 2.9 < 0.8 < 0.7 < 5 14 < 1 32 0.03 -	0.31	9
OSK-W-16-743-W1-915 Stériles 540 2.5 < 0.8 < 0.7 < 5 12 < 1 15 0.04 -	0.53	4
OSK-W-17-1079-580 Stériles 240 1.4 < 0.8 < 0.7 < 5 88 < 1 120 0.08 -	0.031	69
OSK-W-17-1104-665 Stériles 560 0.5 < 0.8 < 0.7 < 5 31 < 1 24 < 0.02 -	0.009	68
OSK-W-17-1121-545 Stériles 270 1.3 < 0.8 < 0.7 < 5 26 < 1 7.5 < 0.02 -	0.36	2
OSK-W-17-1305-261 Stériles 630 1.4 < 0.8 < 0.7 < 5 77 < 1 3.3 < 0.02 -	0.45	2
OSK-W-17-1369-262.5 Stériles 540 1.4 < 0.8 < 0.7 < 5 42 < 1 15 < 0.02 -	0.016	68
OSK-W-17-1369-219.5 Stériles 56 1.9 < 0.8 < 0.7 < 5 9.8 < 1 8.7 0.05 -	0.57	1
OSK-W-17-913-820 Stériles 270 1.8 1.5 < 0.7 < 5 16 < 1 6.7 0.03 -	0.36	1
OSK-W-17-968-145 Stériles 460 2.3 1.6 < 0.7 < 5 25 < 1 8.5 < 0.02 -	0.014	36
OSK-W-18-1386-W4-885 Stériles 490 1.9 < 0.8 < 0.7 < 5 24 1.8 5.5 0.03 -	0.008	20
OSK-W-18-1608-805 Stériles 680 25 1.5 < 0.7 < 5 24 < 1 11 0.03 -	0.037	34
OSK-W-18-1713-470 Stériles 1000 2 0.8 < 0.7 < 5 19 < 1 59 0.05 -	0.19	34
OSK-W-18-1744-W1-575 Stériles 910 0.66 < 0.8 < 0.7 < 5 55 < 1 13 < 0.02 -	0.008	48
OSK-W-18-1759-190 Stériles 190 1.7 1.1 < 0.7 < 5 4.3 < 1 3.3 0.02 -	0.26	1
OSK-W-19-1181-W12-1140 Stériles 250 5.2 1 < 0.7 < 5 6.5 < 1 4.8 0.02 -	0.19	1
OSK-W-19-1181-W5-705 Stériles 260 0.82 < 0.8 < 0.7 < 5 39 < 1 6.6 < 0.02 -	0.32	2
OSK-W-19-1181-W5-845 Stériles 260 1.5 < 0.8 < 0.7 < 5 23 < 1 5.5 < 0.02 -	0.36	1
OSK-W-19-1181-W5-795 Stériles 460 1 < 0.8 < 0.7 < 5 12 < 1 17 < 0.02 -	0.12	10
OSK-W-19-1181-W5-920 Stériles 530 0.43 < 0.8 < 0.7 < 5 43 < 1 11 < 0.02 -	0.013	59
OSK-W-19-1181-W5-970 Stériles 460 0.59 < 0.8 < 0.7 < 5 62 < 1 17 < 0.02 -	0.014	70
OSK-W-19-1412-W3-715 Stériles 560 0.78 < 0.8 < 0.7 < 5 40 < 1 9.2 < 0.02 -	0.007	49
OSK-W-19-1412-W3-765 Stériles 670 0.43 < 0.8 < 0.7 < 5 27 < 1 12 < 0.02 -	0.024	33
08359 Down Ramp 3 Stériles 360 3.5 < 0.8 < 0.7 < 5 28 < 1 5.9 0.05 -	0.16	11
08360 Down Ramp 4 Stériles 330 1.9 < 0.8 < 0.7 < 5 53 < 1 13 < 0.02 -	0.039	64
OBM-15-564 79 Stériles 380 11 - < 0.7 < 0.8 20 < 0.1 72 0.05 2.1	0.34	12
OBM-15-557_80 Stériles 490 1.7 - 1.1 < 0.8 28 0.58 9.1 0.03 2.4	0.47	2

Identification de l'échantillon	Type de l'échantillon	P µg/g	Pb μg/g	Sb µg/g	Se µg/g	Sn µg/g	Sr µg/g	Te μg/g	Ti µg/g	TI μg/g	Th µg/g	U µg/g	V µg/g
OBM-15-552 81	Stériles	350	2.3	- 49,9	2.1	< 0.8	15	0.27	170	< 0.02	1.9	0.27	10
OBM-15-554 82	Stériles	330	0.83	-	1.1	< 0.8	18	0.8	810	0.03	0.54	0.075	47
OSK-W-16-311-W2 84	Stériles	320	1.7	_	< 0.7	< 0.8	23	< 0.1	45	0.06	1.9	0.28	10
OSK-W-16-706-W1 85	Stériles	370	1.3	_	< 0.7	< 0.8	25	< 0.1	30	0.03	1.7	0.27	9
OSK-W-16-706-W1_86	Stériles	230	2.5	_	< 0.7	< 0.8	19	0.18	12	< 0.02	1	0.094	3
OSK-W-16-706-W1 87	Stériles	240	1.9	_	< 0.7	< 0.8	19	0.49	10	0.02	0.98	0.45	3
OSK-W-16-706-W1 88	Stériles	300	1.3	_	1.1	< 0.8	14	0.13	24	0.03	1.2	0.23	3
OSK-W-16-706-W2 89	Stériles	300	1.2	_	0.9	< 0.8	18	0.62	12	0.02	1.4	0.39	3
OSK-W-16-708-W1 90	Stériles	380	1.3	_	2.5	< 0.8	19	1.2	860	0.21	0.57	0.054	120
OSK-W-16-708-W2 91	Stériles	400	1.5	_	1.7	< 0.8	17	0.21	27	0.03	2	0.37	11
OSK-W-16-735-W2 92	Stériles	290	2.3	_	< 0.7	< 0.8	25	0.12	9.2	0.02	1.7	0.62	2
OSK-W-16-743 93	Stériles	330	2.1	_	1.6	47	8.7	0.33	17	0.05	2	0.34	3
OSK-W-16-746 94	Stériles	890	1.4	_	0.9	< 0.8	40	0.42	880	0.26	1.5	0.14	84
OSK-W-16-754 95	Stériles	260	0.98	_	< 0.7	< 0.8	19	0.29	9.2	0.02	1.5	0.43	3
OSK-W-16-754 96	Stériles	350	0.8	_	0.9	< 0.8	20	0.3	100	0.04	1.7	0.28	6
OSK-W-17-774 97	Stériles	540	1.5	_	2.1	< 0.8	95	0.27	420	0.09	0.83	0.063	110
OSK-W-17-774 98	Stériles	290	1.1	_	< 0.7	< 0.8	17	< 0.1	19	0.02	1.2	0.27	3
OSK-W-17-789 99	Stériles	330	1.5	_	< 0.7	< 0.8	7.8	0.21	10	0.04	1.3	0.28	3
OSK-W-17-789 100	Stériles	280	1.4	_	< 0.7	< 0.8	15	0.16	10	0.03	1.5	0.48	2
OSK-W-17-812 101	Stériles	270	1.6	_	< 0.7	< 0.8	14	< 0.1	4.4	< 0.02	2.6	0.27	1
OSK-W-17-812 102	Stériles	230	1.9	_	< 0.7	< 0.8	15	< 0.1	3.7	0.03	1.7	0.13	2
OBM-15-552 103	Stériles	450	1.5	-	2.6	0.8	32	0.28	13	0.03	1.7	0.26	8
OSK-W-16-311-W1 83	Stériles	400	3.1	-	< 0.7	< 0.8	23	0.11	45	0.04	1.4	0.26	9
MT-1	Mort-terrain	290	2.9	< 0.8	< 0.7	< 5	15	< 1	370	0.03	-	0.16	21
MT-1-DupA	Mort-terrain	210	2	< 0.8	< 0.7	< 5	13	< 1	270	< 0.02	-	0.14	12
MT-2	Mort-terrain	240	3.7	< 0.8	< 0.7	< 5	14	< 1	300	< 0.02	-	0.16	15
MT-3	Mort-terrain	220	2.7	< 0.8	< 0.7	< 5	11	< 1	280	0.03	-	0.14	13
MT-4	Mort-terrain	280	3.3	< 0.8	< 0.7	< 5	15	< 1	290	< 0.02	-	0.18	15
MT-5	Mort-terrain	210	2.9	< 0.8	< 0.7	< 5	14	< 1	290	< 0.02	-	0.15	15
MT-6	Mort-terrain	180	3.2	< 0.8	< 0.7	< 5	10	< 1	230	< 0.02	-	0.22	15
MT-7	Mort-terrain	230	2.7	< 0.8	< 0.7	< 5	13	< 1	290	< 0.02	-	0.16	15
MT-8	Mort-terrain	280	4.8	< 0.8	< 0.7	< 5	16	< 1	300	< 0.02	-	0.16	16
MT-8-DUP-S	Mort-terrain	250	3.2	< 0.8	< 0.7	< 5	16	< 1	320	< 0.02	-	0.17	17
TP-1-S	Mort-terrain	190	1.1	< 0.8	< 0.7	< 5	18	< 1	300	< 0.02	-	0.18	12
TP-1-TS	Mort-terrain	200	20	< 0.8	< 0.7	< 5	15	< 1	260	< 0.02	-	0.15	17
TP-2-S	Mort-terrain	280	1.2	< 0.8	< 0.7	< 5	20	< 1	310	0.02	-	0.22	13
TP-2-TS	Mort-terrain	390	2.6	< 0.8	< 0.7	< 5	16	< 1	390	< 0.02	-	0.17	22
TP-3-S	Mort-terrain	260	1.1	< 0.8	< 0.7	< 5	20	< 1	320	< 0.02	-	0.21	13
TP-3-TS	Mort-terrain	330	3.7	< 0.8	< 0.7	< 5	13	< 1	330	0.03	-	0.16	27
TP-5-S	Mort-terrain	280	1.4	< 0.8	< 0.7	< 5	22	< 1	340	0.03	-	0.21	16
TP-5-S-DUPA	Mort-terrain	360	1.3	< 0.8	< 0.7	< 5	21	< 1	360	0.02	-	0.21	18
TP-5-TS	Mort-terrain	220	1.6	< 0.8	< 0.7	< 5	13	< 1	280	< 0.02	-	0.16	13
TP-6-S	Mort-terrain	220	1.1	< 0.8	< 0.7	< 5	19	< 1	260	0.02	-	0.21	11
TP-6-TS	Mort-terrain	190	3.2	< 0.8	0.9	< 5	37	< 1	64	< 0.02	-	0.24	5
TP-7-S	Mort-terrain	240	1.7	< 0.8	< 0.7	< 5	9	< 1	160	0.02	-	0.3	12
TP-7-TS	Mort-terrain	290	2.1	< 0.8	< 0.7	< 5	25	< 1	280	0.04	-	0.42	16
TP-8-TS	Mort-terrain	230	2	< 0.8	< 0.7	< 5	14	< 1	170	< 0.02	-	0.36	13

Tableau E: Résultats de l'analyse MA.200.

Identification de l'échantillon	Type de l'échantillon	Р	Pb	Sb	Se	Sn	Sr	Te	Ti	TI	Th	U	v
		μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g
TP-9-S	Mort-terrain	320	1.1	< 0.8	< 0.7	< 5	14	< 1	270	0.02	-	0.17	12
TP-9-TS	Mort-terrain	220	6.2	< 0.8	< 0.7	< 5	22	< 1	110	< 0.02	-	0.25	7
TP-10-S	Mort-terrain	270	0.84	< 0.8	< 0.7	< 5	15	< 1	270	< 0.02	-	0.16	8
TP-10-S-DUPA	Mort-terrain	280	0.94	< 0.8	< 0.7	< 5	19	< 1	320	< 0.02	-	0.17	10
TP-10-TS	Mort-terrain	67	0.29	< 0.8	< 0.7	< 5	17	< 1	36	< 0.02	-	0.21	2
TP-10-TS-DUPA	Mort-terrain	79	0.49	< 0.8	< 0.7	< 5	21	< 1	29	< 0.02	-	0.32	3
TP-11-S	Mort-terrain	250	0.99	< 0.8	< 0.7	< 5	16	< 1	300	< 0.02	-	0.19	12
TP-11-TS	Mort-terrain	300	2.3	< 0.8	< 0.7	< 5	17	< 1	450	0.02	-	0.27	22
TP-5-TS-DUPA	Mort-terrain	340	1.9	< 0.8	< 0.7	< 5	15	< 1	330	< 0.02	-	0.17	17

Identification de l'échantillon	Type de l'échantillon	W µg/g	Υ μg/g	Zn μg/g
PSRTC-A (Province du		P3'3	H9/9	
Supérior "S")				150
E-27-D-H	Minerai	0.99	3.2	51
E-27-D-L	Minerai	2.6	4.2	54
E-27-U-H	Minerai	0.84	2.8	390
E-27-U-L	Minerai	4	2.3	610
E-CA-D-H	Minerai	0.83	3.5	920
E-CA-D-L	Minerai	1.3	3.7	150
E-CA-U-H	Minerai	< 0.04	2.4	3500
E-CA-U-L	Minerai	0.06	2.9	5800
Under Dog A	Minerai	0.44	2.3	600
Under Dog B	Minerai	0.12	2.3	30
Under Dog C	Minerai	0.79	5.2	150
P3-I	Minerai	0.25	2.6	42
P3-J	Minerai	9.6	2.4	350
P3-K	Minerai	0.55	2.4	74
P3-L	Minerai	1.3	2.5	170
Triple Lynx LG	Minerai	0.17	3.7	23
Lynx 4 LP-LG	Minerai	2.1	3.1	280
Lynx 4 HP-LG	Minerai	0.17	2.5	140
Triple Lynx MG/HG	Minerai	0.34	3.4	79
Lynx 4 LP-MG/HG	Minerai	0.34	3.9	180
Lynx 4 HP-MG/HG	Minerai	0.23	3	83
RC-F03-21	Mort-terrain	-	6.9	54
VR2-F01-21_CR-7	Mort-terrain	-	4.1	53
VR3-F01-21_CR-5	Mort-terrain	-	2.7	106
HMTN-F01-21_CF-1	Mort-terrain	-	-	13
HMBT-F01-21_CF-2	Mort-terrain	-	-	27
HMBT-F02-21_CF-2	Mort-terrain	-	-	24
HMBT-F03-21_CH3 (CF-3?)	Mort-terrain	-	-	20
UTE-F02-21_CF-1	Mort-terrain	-	-	44
HMBT-F01-21_CF-3	Mort-terrain	-	-	18
HMBT-F02-21_CF-4	Mort-terrain	-	-	19
HMBT-F02-21_CF-6	Mort-terrain	-	-	16
HMBT-F03-21_CF-7	Mort-terrain	-	-	21
TU-F03-21_CF-3	Mort-terrain	-	-	16
TS-F02-21_CF-1	Mort-terrain	-	-	13
BH-F01-21_CF-1	Mort-terrain	-	-	25
BD-F03-21_CF-1	Mort-terrain	-	-	124
R-F01-21_CF-1	Mort-terrain		-	66
HMBT-F01-21_CR-4	Mort-terrain	<10	-	103
TU-F01-21_CR-3	Mort-terrain	<10	-	42
TU-F02-21_CR-2	Mort-terrain	<10	-	15 37
BD-F01-21_21_CR-2 BK-F01-21_CR-2	Mort-terrain Mort-terrain	<10 <10	-	14
		<10	-	75
HMT-F03-21_CR-4 CONC-F02-21_CR-3	Mort-terrain Mort-terrain	<10	-	98
COING-FUZ-Z I_GR-3	wort-terrain	<u> </u>	_	90

Identification de l'échantillon	Type de l'échantillon	W µg/g	Υ μg/g	Zn μg/g
AHS-F02-21 CF-2	Mort-terrain	<u></u>	<u> </u>	18
AHS-F03-21 CF-1	Mort-terrain		-	15
AHS-F03-21 CF-2	Mort-terrain		 	15
AHS-F04-21 CF-1	Mort-terrain	_	<u> </u>	16
AHS-F04-21 CF-3	Mort-terrain			18
AHS-TR01-21-40-67	Mort-terrain		 	16
AHS-TR02-21-219-300	Mort-terrain	_	-	16
AHS-TR03-21-19-31	Mort-terrain		<u> </u>	17
AHS-TR03-21-80-130	Mort-terrain	-		18
AHS-TR04-21-40-55	Mort-terrain			16
AHS-TR05-21-104-145	Mort-terrain		<u> </u>	12
AHS-TR05-21-145-210	Mort-terrain	_	<u> </u>	16
AHS-TR06-21-150-210	Mort-terrain	_	<u> </u>	18
BAD-F01-21 CF-1	Mort-terrain	_	-	19
BAD-F01-21 CF-2	Mort-terrain			12
BA-F01-21 CF-2	Mort-terrain	_		18
BB-TR01-21-57-170	Mort-terrain			11
BC-F01-21 CF-1B	Mort-terrain	_	<u> </u>	19
BD-F03-21 CF-5	Mort-terrain	_	_	11
BD-TR01-21-46-155	Mort-terrain	_	<u> </u>	10
BD-TR02-21-150-170	Mort-terrain	-		10
BD-TR03-21-120-175	Mort-terrain			8
BE-F01-21 CF-2	Mort-terrain	_		13
BE-F01-21 CF-3	Mort-terrain	_	_	13
BE-TR01-21-40-103	Mort-terrain	_	_	18
BF-TR01-21-22-54	Mort-terrain	-	_	13
BF-TR02-21-40-51	Mort-terrain	-	_	13
BF-TR03-21-79-139	Mort-terrain	-	_	7
BH-F01-21 CF-2	Mort-terrain	_	_	12
BI-F03-21 CF-1A	Mort-terrain	-	_	12
BI-TR01-21-107-189	Mort-terrain	-	_	10
BI-TR03-21-31-35	Mort-terrain	_	_	6
CAMP-F02-21 CF-1	Mort-terrain	_	_	23
CAMP-TR01-21-32-63	Mort-terrain	_	_	13
CAMP-TR02-21-73-170	Mort-terrain	_	_	10
CAMP-TR03-21-50-84	Mort-terrain	-	_	12
CC-TR01-21-68-134	Mort-terrain	_	-	13
CC-TR02-21-61-174	Mort-terrain	_	_	12
COND-TR01-21-112-181	Mort-terrain	_	_	12
COND-TR02-21-42-66	Mort-terrain	-	-	13
COND-TR02-21-66-110	Mort-terrain	-	-	10
COND-TR03-21-34-57	Mort-terrain	-	-	<5
COND-TR04-21-49-140	Mort-terrain	_	_	12
HMBT-F01-21 CF-1B	Mort-terrain	-	-	14
HMBT-F02-21 CF-1	Mort-terrain	_	_	16
HMBT-F03-21 CF-1C	Mort-terrain	-	-	21
HMT-F03-21 CF-2	Mort-terrain	-	-	19

Identification de l'échantillon	Type de l'échantillon	W	Y	Zn
HC F01 21 CF 1	Mort torrain	μg/g	μg/g	μg/g
HS-F01-21_CF-1 HS-F01-21_CF-2	Mort-terrain		-	17 17
HS-TR01-21_CF-2	Mort-terrain		-	16
RC-F03-21 CF-1B	Mort-terrain Mort-terrain	-	-	12
R-TR01-21-40-70		-	-	17
R-TR03-21-61-114	Mort-terrain		-	18
R-1R03-21-61-114 R-TR04-21-38-62	Mort-terrain Mort-terrain	-	-	21
SSE-F01-21 CF-1B	Mort-terrain		-	12
SSE-F02-21 CF-1B	Mort-terrain	-	-	14
TS-F02-21 CF-1B	Mort-terrain		-	25
TU-F01-21 CF-1B	Mort-terrain		-	10
TU-F03-21 CF-1	Mort-terrain		-	13
TU-F04-21 CF-1B	Mort-terrain		-	11
TU-TR01-21-52-190	Mort-terrain		-	8
UTM-F01-21 CF-1	Mort-terrain		-	18
UTM-F01-21_CF-1	Mort-terrain		-	14
UTM-F02-21 CF-1D	Mort-terrain		-	8
UTM-F03-21 CF-1B	Mort-terrain		 	10
UTM-F05-21_CF-1A	Mort-terrain		-	13
UTM-F06-21 CF-1A	Mort-terrain		-	<5
UTM-F07-21 CF-2	Mort-terrain		-	13
VR1-F01-21_CF-2	Mort-terrain		-	17
VR6-F01-21_CF-1A	Mort-terrain		-	12
BH-22-27-CF-2	Mort-terrain		-	12
CF1-F-16-22	Mort-terrain		-	12
F01-22-CF-1B	Mort-terrain		 	16
F01-22-CF-1B	Mort-terrain			20
F02-22-CF-1B	Mort-terrain		 	27
F02-22-CF-3	Mort-terrain		-	24
F03-22-CF-1B	Mort-terrain		 -	19
F03-22-CF-3	Mort-terrain		-	21
F04-22-CF-1	Mort-terrain		 	25
F04-22-CF-3	Mort-terrain		 	20
F05-22-CF-1	Mort-terrain	-	-	24
F06-22-CF-2	Mort-terrain		-	13
F06-22-CF-3	Mort-terrain			15
F07-22-CF-2	Mort-terrain		<u> </u>	11
F07-22-CF-3	Mort-terrain		_	25
F08-22-CF-1B	Mort-terrain			26
F10-22-CF-1B	Mort-terrain		-	27
F10-22-CF-3	Mort-terrain		 	25
F15-22-CF-2	Mort-terrain		 	14
F18-22-CF-1	Mort-terrain		-	80
F18-22-CF-3B	Mort-terrain		 	13
F19-22-CF-1	Mort-terrain		 -	64
F19-22-CF-3	Mort-terrain		 	11
F20-22-CF-2	Mort-terrain		 	23
1 20 22 01 2	Mortionali		-	

Identification de l'échantillon	Type de l'échantillon	W µg/g	Υ μg/g	Zn μg/g
F22-22-CF-1C	Mort-terrain	μg/g	μg/g	15
F22-22-CF-1C	Mort-terrain		-	19
F23-22-CF-1A	Mort-terrain	-	-	12
F23-22-CF-1A	Mort-terrain	-	-	11
F24-22-CF-1A	Mort-terrain		 	12
F24-22-CF-4	Mort-terrain		 	20
F28-22-CF-1	Mort-terrain		 	18
F28-22-CF-3	Mort-terrain		 	11
F29-22-CF-1	Mort-terrain	-	-	26
F30-22-CF-1	Mort-terrain		-	26
F31-22-CF3A	Mort-terrain		 	17
F32-22-CF-1B	Mort-terrain	-	-	12
F32-22-CF-2	Mort-terrain	-	-	14
F33-22-CF1C	Mort-terrain	-	-	21
F34-22-CF-2	Mort-terrain	-	 	20
F35-22-CF-2B	Mort-terrain	-	-	17
F35-22-CF-3	Mort-terrain		 	21
F36-22-CF-1B	Mort-terrain	-	-	17
F37-22-CF-3A	Mort-terrain	-		15
F42-22-CF-1B	Mort-terrain		 	15
F42-22-CF-4	Mort-terrain	-	-	44
F43-22-CF-1	Mort-terrain	_	<u> </u>	25
F43-22-CF-2	Mort-terrain		_	33
F44-22-CF-1A	Mort-terrain			14
F44-22-CF-3	Mort-terrain	-	-	20
F46-22-CF-2	Mort-terrain	-	_	20
F48-22-CF-1	Mort-terrain	-	 -	22
F49-22-CF-2	Mort-terrain	-	_	17
F49-22-CF-3	Mort-terrain		 -	25
F50-22-CF-2	Mort-terrain	-	<u> </u>	18
F51-22 CF1B	Mort-terrain	-	_	9
F51-22 CF2B	Mort-terrain			21
F52-22 CF1B	Mort-terrain	-	-	10
F53-22 CF2A	Mort-terrain	_	<u> </u>	11
F53-22-CF-2B	Mort-terrain	-	_	25
F54-22 CF2	Mort-terrain	_	_	17
F55-22-CF-2A	Mort-terrain	-	_	16
F56-22-CF-3	Mort-terrain	-	_	17
F57-22-CF-2B	Mort-terrain	_	_	12
F57-22-CF-3	Mort-terrain	_	_	12
F58-22-CF-2B	Mort-terrain	-	-	16
F59-22-CF-2	Mort-terrain	_	_	10
F60-22-CF-2B	Mort-terrain	_	_	11
F60-22-CF-3	Mort-terrain	-	-	10
F61-22-CF-1	Mort-terrain	_	_	15
F62-22-CF-1B	Mort-terrain	-	-	12
F-63-22-CF-4A	Mort-terrain	_	-	17

GAL137-2148985706

Identification de l'échantillon	Type de l'échantillon	W µg/g	Υ μg/g	Zn μg/g
F64-22-CF-2	Mort-terrain	μg/g	µg/g	13
F64-22-CF-4	Mort-terrain		-	18
F65-22-CF-2B	Mort-terrain			14
F66-22-CF-3	Mort-terrain	-	-	14
F67-22-CF-1B	Mort-terrain	-		41
F67-22-CF-3	Mort-terrain	-		22
F68-22-CF-1B	Mort-terrain	-	-	6
F69-22-CF-2	Mort-terrain	-		20
F69-22-CF-3	Mort-terrain	-		24
F70-22-CF-2	Mort-terrain			13
F71-22-CF-2	Mort-terrain	-	 	23
F71-22-CF-4	Mort-terrain			48
F72-22-CF-1B	Mort-terrain	-		17
F73-22-CF-1A	Mort-terrain	-		40
F74-22-CF-3A	Mort-terrain		 	15
F75-22-CF-1B	Mort-terrain		_	16
F75-22-CF-2	Mort-terrain			14
F76-22-CF-1	Mort-terrain	-	 	88
F77-22-CF-3B	Mort-terrain		-	19
F78-22-CF-1B	Mort-terrain			27
F79-22-CF-1B	Mort-terrain	-	_	20
F80-22-CF-2	Mort-terrain		-	55
F81-22-CF-1B	Mort-terrain	_	_	20
F82-22-CF-1	Mort-terrain		 	18
F83-22-CF-3A	Mort-terrain		-	22
F84-22-CF-1	Mort-terrain	-	-	27
F85-22-CF-2	Mort-terrain		_	23
F86-22-CF-1	Mort-terrain	_		8
F87-22-CF-1	Mort-terrain			24
F88-22-CF-1	Mort-terrain	-		22
F88-22-CF-2	Mort-terrain	-	_	20
F92-22-CF-1A	Mort-terrain		_	8
F92-22-CF-2	Mort-terrain	_	-	-
F92-22-CF-4	Mort-terrain	_	_	68
F93-22-CF-1B	Mort-terrain	-	_	12
F94-22-CF-1B	Mort-terrain	_	_	14
F95-22-CF-1B	Mort-terrain	-	_	16
F96-22-CF-1B	Mort-terrain	-	_	10
BH-22-25-CF-1	Mort-terrain	_	_	25
BH-22-26-CF-2	Mort-terrain	_	_	11
BH-22-28-CF-1B	Mort-terrain	-	-	57
Tails CND 1	Résidus	1.9	2.8	940
Tails CND 4	Résidus	5.4	3.6	400
Tails CND 5	Résidus	0.73	3	160
Tails CND 6	Résidus	0.65	3	260
CIL 11 CND	Résidus	11	2.8	110
CIL 12 CND	Résidus	18	2.4	240

Identification de l'échantillon	Type de l'échantillon	W µg/g	Y µg/g	Zn μg/g
CIL 13 CND	Résidus	7.7	2	150
EAG-13-485 1	Stériles	0.05	3.8	35
EAG-13-485 2	Stériles	0.05	2.7	190
EAG-13-485 3	Stériles	1.1	8.8	360
EAG-13-485 4	Stériles	7.7	8.6	110
EAG-13-490 5	Stériles	0.35	3	15
EAG-13-490_6	Stériles	0.33	2.5	22
EAG-13-491 7	Stériles	0.09	3.9	56
EAG-14-544 8	Stériles	0.06	5.4	19
OBM-15-557 10	Stériles	0.00	3	46
OBM-15-559 11	Stériles	0.13	3.1	14
OBM-15-559 12	Stériles	< 0.04	3	26
OBM-15-559 13	Stériles	0.37	3.7	93
OBM-15-565 15	Stériles	0.1	2.5	20
OBM-15-565 16	Stériles	0.09	2.8	90
OBM-16-580 17	Stériles	4.1	2.3	46
OBM-16-580 18	Stériles	0.14	2	14
OBM-16-609 19	Stériles	0.13	4.7	95
OBM-16-619 20	Stériles	0.13	2.1	31
OBM-16-642 21	Stériles	< 0.04	15	88
OBM-16-645 22	Stériles	0.15	5.6	120
OBM-16-671 23	Stériles	0.92	6.4	110
OBM-16-693 24	Stériles	4.5	3.4	58
OBM-16-693 25	Stériles	0.26	2	10
OBM-16-693 26	Stériles	9.5	5.3	120
OSK-W-16-715 27	Stériles	0.24	2.8	46
OSK-W-16-735-W1 28	Stériles	0.24	2	13
OSK-W-16-751 29	Stériles	0.05	5.6	19
OSK-W-16-751 30	Stériles	< 0.04	5	73
OSK-W-16-760 31	Stériles	0.05	4.1	340
OSK-W-16-760 32	Stériles	0.53	14	24
OSK-W-16-761 33	Stériles	0.23	5	52
OSK-W-16-761 34	Stériles	0.18	3.7	170
OSK-W-17-773 36	Stériles	< 0.04	2.1	90
OSK-W-17-773 37	Stériles	0.06	5.7	84
OSK-W-17-773 38	Stériles	0.08	2.2	16
OSK-W-17-773 39	Stériles	< 0.04	3.1	49
OSK-W-17-773 40	Stériles	0.07	4.1	22
OSK-W-17-773 41	Stériles	< 0.04	6.1	46
OSK-W-17-773 42	Stériles	1.3	4.5	79
OSK-W-17-774 43	Stériles	0.18	2.1	31
OSK-W-17-774 44	Stériles	0.12	3.7	28
OSK-W-17-779 45	Stériles	0.16	2.6	99
OSK-W-17-779 46	Stériles	< 0.04	4	58
OSK-W-17-779 47	Stériles	< 0.04	7.5	48
OSK-W-17-783 48	Stériles	0.07	3.1	87
OSK-W-17-783 49	Stériles	< 0.04	1.7	81

Identification de l'échantillon	Type de l'échantillon	W µg/g	Y µg/g	Zn μg/g
OSK-W-17-788 50	Stériles	0.08	1.3	39
OSK-W-17-788 51	Stériles	0.06	1.2	31
OSK-W-17-788 52	Stériles	0.14	7.3	28
EAG-13-485 53	Stériles	0.08	3.4	30
EAG-13-485 54	Stériles	0.06	2.1	42
EAG-13-490 55	Stériles	0.07	2.8	52
EAG-13-497 56	Stériles	0.22	1.7	960
EAG-13-513 57	Stériles	6.9	3.7	97
EAG-14-538 58	Stériles	0.26	1.4	15
OBM-15-559 59	Stériles	0.84	8.1	46
OBM-15-566 60	Stériles	0.6	2	40
OBM-16-630 61	Stériles	0.3	5.7	41
OBM-16-654 62	Stériles	0.37	4	98
OBM-16-671 63	Stériles	< 0.04	3.5	24
OBM-16-673 64	Stériles	0.18	1.6	14
OSK-W-16-713 65	Stériles	0.39	1.9	16
OSK-W-16-735-W1 66	Stériles	14	2.7	22
OSK-W-16-760 67	Stériles	2.5	4	2500
OBM-16-580 68	Stériles	4.1	8.5	68
OBM-16-645 69	Stériles	23	5.4	140
OBM-16-642 70	Stériles	0.79	3.5	13
OBM-16-640 71	Stériles	13	8.5	50
OSK-W-17-774 72	Stériles	0.43	3.3	14
OSK-W-17-918 73	Stériles	0.19	3.2	39
OSK-W-17-879_74	Stériles	0.17	2.5	38
OSK-W-17-1006 75	Stériles	0.16	2.9	33
OSK-W-17-1039_76	Stériles	0.18	3	35
OSK-W-17-934_77	Stériles	0.14	2.9	32
OBM-15-557_78	Stériles	0.98	15	89
GC10001	Stériles	0.11	3.9	25
GC10002	Stériles	0.11	3.9	41
GC10003	Stériles	0.11	4	34
GC10004	Stériles	0.17	4.6	27
GC10005	Stériles	0.21	3.8	23
GC10006	Stériles	0.07	4.4	53
GC10007	Stériles	0.17	3.2	26
GC10008	Stériles	1.6	1.2	31
GC10009	Stériles	0.08	2.3	91
GC10010	Stériles	0.07	1.7	24
GC10011	Stériles	0.07	1.3	10
GC10012	Stériles	< 0.04	2.2	13
GC10013	Stériles	0.29	2.9	41
GC10014	Stériles	< 0.04	9.7	41
GC10015	Stériles	2.1	10	95
GC10016	Stériles	0.07	5.9	66
GC10017	Stériles	0.07	4.7	17
GC10018	Stériles	0.2	4.2	38

Identification de l'échantillon	Type de l'échantillon	W µg/g	Y µg/g	Zn μg/g
GC10019	Stériles	< 0.04	6.8	51
GC10020	Stériles	< 0.04	3.6	39
GC10021	Stériles	0.06	5.6	48
GC10022	Stériles	0.04	10	78
GC10023	Stériles	0.09	4.8	110
GC10024	Stériles	< 0.04	4.3	32
GC10025	Stériles	0.08	2.9	110
GC10026	Stériles	0.1	5.1	21
GC10027	Stériles	0.06	4.2	19
GC10028	Stériles	0.04	6.7	1100
GC10029	Stériles	0.08	3.9	25
GC10030	Stériles	0.35	11	55
GC10031	Stériles	0.15	8.1	32
GC10032	Stériles	0.05	4.4	74
#08351	Stériles	-	3.8	36
#08352	Stériles	-	3.7	58
#08353	Stériles	-	3.8	46
#08354	Stériles	-	2.9	52
#08355	Stériles	-	2.7	29
#08356	Stériles	-	2.7	33
#08357	Stériles	-	2	45
#08358	Stériles	-	4	63
WST-21-0647-161.5	Stériles	-	1.1	15
WST-21-0647-260	Stériles	-	2.1	47
WST-21-0647-313	Stériles	-	2.3	48
WST-19-0160A-55	Stériles	-	7.5	300
OSK-W-21-2606-615	Stériles	-	15	62
OSK-W-21-2606-670	Stériles	-	3.8	120
WST-22-1020-160	Stériles	-	1	21
WST-21-0666-54	Stériles	-	2	93
WST-22-1020-210	Stériles	-	1.5	18
WST-22-1020-320	Stériles	-	4.4	12
WST-22-1013-345	Stériles	-	2.9	110
OSK-W-21-2551-W3-915	Stériles	-	2.4	22
WST-21-0873-268.1	Stériles	-	2.9	8.4
WST-21-0992-450	Stériles	-	2.1	27
WST-21-0952-32	Stériles	-	2.4	37
OSK-W-21-1949-W15-1080	Stériles	-	2.2	66
WST-21-0873-330	Stériles		3.3	80
WST-18-0024-50	Stériles		3.2	78 41
WST-21-0873-445 OSK-W-21-2555-590	Stériles	-	1.9 4.6	56
OSK-W-21-2555-728	Stériles	-	4.6	31
OSK-W-21-2535-728	Stériles	-	3.9	140
OSK-W-21-2544-838	Stériles Stériles		3.9	30
WST-21-0730-500	Steriles	-	1.9	28
WST-20-0573-367	Steriles	-	2.6	26
W31-20-00/3-30/	Steriles		2.0	20

Identification de l'échantillon	Type de l'échantillon	W µg/g	Υ μg/g	Zn μg/g
WST-21-0621-155	Stériles	μg/g	1.1	14
OSK-W-19-1949-W1-635	Stériles		2.9	23
OSK-W-20-2375-916	Stériles		3.2	31
OSK-W-21-2613-1042	Stériles	_	7.4	110
OSK-W-21-2587-990	Stériles		1.3	21
OSK-W-21-2587-1060	Stériles	-	3.2	20
WST-21-0878-517	Stériles	_	4.6	69
WST-21-0879-639	Stériles		4.4	100
OSK-W-19-1897-610	Stériles	-	3.6	28
OSK-W-19-1897-760	Stériles	_	2.1	22
OSK-W-19-1897-825	Stériles	_	4.4	32
OSK-W-19-1897-880	Stériles	-	2.5	16
OSK-W-19-1897-983	Stériles	-	2.6	8.7
OSK-W-20-2323-115	Stériles	_	10	65
WST-18-0024-120	Stériles	_	2.7	23
OSK-W-19-1949-W1-948	Stériles	-	5.4	74
OSK-W-19-1949-W1-1015	Stériles	_	4.8	25
OSK-W-21-2252-W12-922	Stériles	-	3.1	17
OSK-W-21-2252-1013	Stériles	-	2.3	35
OSK-W-20-2283-W7-888	Stériles	_	4.6	52
OSK-W-20-2397-W1-680	Stériles	-	6	30
OSK-W-20-2256-W1-1051.7	Stériles	-	3.6	290
OSK-W-20-2313-W6-983	Stériles	-	3	34
OSK-W-20-2375-W4-890	Stériles	-	2.8	6.8
OSK-W-21-2444-610	Stériles	-	2.4	14
OSK-W-20-2350-125	Stériles	-	2.6	57
OSK-W-21-2444-545	Stériles	-	6.4	79
OSK-W-19-1746-W1-687	Stériles	-	2.2	71
OSK-W-19-1746-W1-765	Stériles	-	4.9	46
OSK-W-19-1857-W2-895	Stériles	-	2.8	24
OSK-W-17-1369-315	Stériles	-	15	125
OSK-W-17-1369-365	Stériles	-	2.5	14
OSK-W-17-663-W2-680	Stériles	-	15	80
OSK-W-17-836-257	Stériles	-	2.8	73
OSK-W-17-836-400	Stériles	-	3	32
OSK-W-17-859-240	Stériles	-	2.4	73
OSK-W-17-864-W2-635	Stériles	-	2.8	24
OSK-W-17-870-270	Stériles	-	2.7	26
OSK-W-19-1857-W2-980	Stériles	-	6.7	60
OSK-W-19-1857-W2-1030	Stériles	-	7.9	26
OSK-W-19-1857-W2-1110	Stériles	-	4.9	32
OSK-W-19-1857-W2-1210	Stériles	-	4.7	40
OSK-W-19-1857-W2-1310	Stériles	-	4.8	32
OSK-W-19-1897-496	Stériles	-	16	257
OSK-W-19-909-W12-770	Stériles	-	2.9	26
OSK-W-19-909-W12-955	Stériles	-	3.3	85
OSK-W-19-934-W3-885	Stériles	-	2.9	14

Identification de l'échantillon	Type de l'échantillon	W µg/g	Y µg/g	Zn μg/g
OSK-W-19-934-W3-940	Stériles	<u> </u>	4.2	75
OSK-W-21-2613-W1-1105	Stériles	-	5	61
OSK-W-19-934-W3-1045	Stériles	-	4	18
OSK-W-21-2512-W3-550	Stériles	_	2.8	31
OSK-W-21-2512-W3-610	Stériles	_	2.8	24
OKS-W-21-2613-W1-855	Stériles	_	2.3	17
OKS-W-21-2629-720	Stériles	_	2.3	45
WST-21-0930-195	Stériles	-	1.2	17
OSK-W-21-2629-845	Stériles	-	4.1	49
OSK-W-21-2605-1332	Stériles	_	25	70
OSK-W-21-2629-948	Stériles	-	2.7	95
OBM-15-552-230	Stériles	_	3	25
OBM-15-552-280	Stériles	-	3.1	27
OBM-16-655-535	Stériles	-	2.4	22
OBM-16-655-600	Stériles	_	3	26
OBM-16-655-330	Stériles	_	9.2	88
OBM-16-677-79	Stériles	_	2.4	31
OSK-W-16-309-W2-645	Stériles	_	3	26
OSK-W-16-309-W2-720	Stériles	_	3.1	20
OSK-W-16-706-W2-905	Stériles	-	4.3	45
OSK-W-16-309-W2-1000	Stériles	_	3.9	19
OSK-W-16-743-W1-915	Stériles	_	3.9	65
OSK-W-17-1079-580	Stériles	_	4	74
OSK-W-17-1104-665	Stériles	_	3.6	29
OSK-W-17-1121-545	Stériles	-	0.99	13
OSK-W-17-1305-261	Stériles	-	2.4	36
OSK-W-17-1369-262.5	Stériles	_	3.2	60
OSK-W-17-1369-219.5	Stériles	-	4.2	26
OSK-W-17-913-820	Stériles	_	2.1	17
OSK-W-17-968-145	Stériles	_	2.4	111
OSK-W-18-1386-W4-885	Stériles	_	2.5	53
OSK-W-18-1608-805	Stériles	_	2.6	228
OSK-W-18-1713-470	Stériles	_	11	239
OSK-W-18-1744-W1-575	Stériles	_	4.8	80
OSK-W-18-1759-190	Stériles	_	2.1	45
OSK-W-19-1181-W12-1140	Stériles	_	1.8	27
OSK-W-19-1181-W5-705	Stériles	_	0.93	23
OSK-W-19-1181-W5-845	Stériles	_	0.93	16
OSK-W-19-1181-W5-795	Stériles	_	3.6	53
OSK-W-19-1181-W5-920	Stériles	_	3.3	39
OSK-W-19-1181-W5-970	Stériles	-	2.2	43
OSK-W-19-1412-W3-715	Stériles	_	3.8	57
OSK-W-19-1412-W3-765	Stériles	_	3	69
08359 Down Ramp 3	Stériles	_	2.5	54
08360 Down Ramp 4	Stériles	_	4.6	64
OBM-15-564 79	Stériles	0.09	-	198
OBM-15-557 80	Stériles	1	-	11

Identification de l'échantillon	Type de l'échantillon	W µg/g	Υ μg/g	Zn μg/g
OBM-15-552 81	Stériles	2.8	<u> </u>	24
OBM-15-554 82	Stériles	0.94	_	65
OSK-W-16-311-W2 84	Stériles	0.2	_	38
OSK-W-16-706-W1 85	Stériles	0.08		28
OSK-W-16-706-W1_86	Stériles	0.05		12
OSK-W-16-706-W1_87	Stériles	< 0.04		31
OSK-W-16-706-W1_88	Stériles	0.91	-	7.1
OSK-W-16-706-W2 89	Stériles	0.18		5.3
OSK-W-16-708-W1 90	Stériles	3	-	57
OSK-W-16-708-W2 91	Stériles	0.07	-	11
OSK-W-16-705-W2_91	Stériles	0.07	-	63
OSK-W-16-733-W2_92 OSK-W-16-743 93	Stériles	0.07	-	45
OSK-W-16-745_93	Stériles	0.05	-	59
OSK-W-16-746_94 OSK-W-16-754_95	Stériles	0.05	-	9.4
OSK-W-16-754_95		0.26		29
	Stériles		-	
OSK-W-17-774_97	Stériles	0.13	-	84
OSK-W-17-774_98	Stériles	< 0.04	-	16
OSK-W-17-789_99	Stériles	0.16	-	13
OSK-W-17-789_100	Stériles	0.09	-	21
OSK-W-17-812_101	Stériles	< 0.04	-	36
OSK-W-17-812_102	Stériles	0.11	-	40
OBM-15-552_103	Stériles	0.89	-	21
OSK-W-16-311-W1_83	Stériles	0.07	_	55
MT-1	Mort-terrain	-	1.2	19
MT-1-DupA	Mort-terrain	-	0.85	12
MT-2	Mort-terrain	-	0.96	13
MT-3	Mort-terrain	-	0.75	10
MT-4	Mort-terrain	-	1.1	15
MT-5	Mort-terrain	-	1.2	14
MT-6	Mort-terrain	-	1.2	15
MT-7	Mort-terrain	-	1.2	12
MT-8	Mort-terrain	-	1	15
MT-8-DUP-S	Mort-terrain	-	1.1	15
TP-1-S	Mort-terrain	-	1.3	12
TP-1-TS	Mort-terrain	-	1.1	16
TP-2-S	Mort-terrain	-	1.5	18
TP-2-TS	Mort-terrain	-	1.1	14
TP-3-S	Mort-terrain	-	1.7	16
TP-3-TS	Mort-terrain	-	0.86	10
TP-5-S	Mort-terrain	-	1.7	21
TP-5-S-DUPA	Mort-terrain		1.7	22
TP-5-TS	Mort-terrain	-	0.86	16
TP-6-S	Mort-terrain	-	1.9	11
TP-6-TS	Mort-terrain	-	1.2	3.8
TP-7-S	Mort-terrain	-	2.4	8.3
TP-7-TS	Mort-terrain	-	3.7	17
TP-8-TS	Mort-terrain	-	2.2	16

GAL137-2148985706

Tableau E: Résultats de l'analyse MA.200.

Identification de l'échantillon	Type de l'échantillon	w	Y	Zn
		μg/g	μg/g	μg/g
TP-9-S	Mort-terrain	-	2	13
TP-9-TS	Mort-terrain	-	1.9	16
TP-10-S	Mort-terrain	-	1.6	8.5
TP-10-S-DUPA	Mort-terrain	-	1.8	9.5
TP-10-TS	Mort-terrain	-	0.64	6.1
TP-10-TS-DUPA	Mort-terrain	-	0.85	15
TP-11-S	Mort-terrain	-	1.9	10
TP-11-TS	Mort-terrain	-	2	17
TP-5-TS-DUPA	Mort-terrain	-	1	17

Identification de	Quartz	Muscovite	Biotite	Phlogopite	Chlorite	Pyrite	Calcite	Ankérite	Dolomite	Sidérite	Rhodochrosite	Fluorapatite	Orthoclase
l'échantillon	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %
Tails CND 1	47.8	27.9	-	-	2.8	5.4	0.4	0.5	6.4	0.09	-	0.8	0.3
Tails CND 4	48.9	27.8	0.7	-	2.3	4.1	0.8	0.2	4.8	0	-	1.0	0.3
Tails CND 5	49.9	26.9	0.7	-	1.5	4.1	0.8	0.4	4.0	0	-	0.8	0.4
Tails CND 6	52.2	27.0	-	-	2.1	4.9	1.0	0.2	0.4	0	-	0.8	0.5
E-27-U-H	48.9	32.5	-	-	1.9	9.3	0.7	0.4	2.0	0	-	1.1	0.5
E-CA-U-H	46.9	29.3	-	-	4.2	6.6	0.6	0.8	4.1	0.09	-	0.2	0.0
P3-K	56.6	25.8	-	-	0.2	2.0	0.7	0.9	7.4	0	-	0.9	0.6
Under Dog A	46.4	32.1	-	-	3.7	3.5	1.9	0.5	0.5	0.08	-	0.6	0.2
OSK-W-16-760_31	63.6	22.7	-	-	6.2	1.0	1.1	0.5	2.0	0	-	0.6	0.1
OBM-16-630_61	54.3	33.1	-	-	2.8	2.6	0.8	0.4	1.9	0	-	1.1	0.4
EAG-13-485_3	30.6	21.8	-	5.9	12.8	1.3	6.4	-	-	0.00	-	0.5	0.1
OSK-W-16-760_67	16.4	4.9	-	6.0	16.5	2.3	6.4	0.4	0.05	0.6	-	0.0	0.5
OBM-16-580_17	28.0	38.2	-	ı	3.2	15.1	2.3	0.8	7.8	-	0.1	-	0.4
OSK-W-17-774_44	25.8	17.2	-	-	4.2	0.6	4.6	-	-	-	-	-	0.4
OBM-16-671_23	29.5	25.2	-	-	12.3	0.7	5.5	1.4	7.9	-	0.2	-	0.5
EAG-14-538_58	53.7	36.7	-	-	2.7	2.5	0.6	-	-	-	-	-	0.7
OSK-W-17-773_41	28.3	19.9	-	•	28.8	0.4	11.7	1.1	7.8	-	-	=	0.5
OBM-15-564_79	39.9	21.4	-	-	6.2	1.2	2.3	-	-	-	-	-	0.5
OSK-W-16-743_93	50.0	36.4	-	•	2.9	2.7	1.4	0.3	0.2	-	0.4	-	0.4
OSK-W-17-812_102	55.2	23.5	-	ı	0.4	1.1	0.6	1.6	11.6	-	0	-	0.2

[&]quot;-" = phase non présente

Identification de	Albite	Anorthite	Gypse	Kaolinite	Rutile	Dravite	Ilménite	Actinolite	Diopside	Magnétite	Épidote	Todorokite	TOTAL
l'échantillon	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %
Tails CND 1	0.9	3.0	3.1	0.4	0.3	-	-	-	-	-	-	-	100
Tails CND 4	3.7	2.1	3.0	0.1	0.2	-	-	-	-	-	-	-	100
Tails CND 5	5.5	2.0	2.9	0.1	0.1	-	-	-	-	-	-	-	100
Tails CND 6	6.8	2.0	1.7	0.2	0.1	-	ı	-	i	ı	-	-	100
E-27-U-H	1.0	1.3	-	0.3	0.2	-	-	-	-	1	-	-	100
E-CA-U-H	0.9	1.3	-	0.1	0.2	4.7	-	-	-	-	-	-	100
P3-K	1.2	2.0	-	0.3	0.1	-	ı	-	i	ı	-	1.2	100
Under Dog A	7.3	1.0	-	0.1	0.1	2.1	ı	-	-	ı	-	-	100
OSK-W-16-760_31	1.4	0.6	-	0.2	0.1	-	-	-	-	-	-	-	100
OBM-16-630_61	1.4	0.7	-	0.2	0.2	-	ı	-	i	ı	-	-	100
EAG-13-485_3	16.4	2.4	-	0.8	0	-	1.0	-	1	ı	-	-	100
OSK-W-16-760_67	31.9	3.0	-	0.6	0	-	0.2	4.5	0.9	0.1	4.8	-	100
OBM-16-580_17	2.7	1.1	-	-	0.2	-	-	-	-	-	-	-	100
OSK-W-17-774_44	45.5	1.9	-	-	-	-	-	-	-	-	-	-	100
OBM-16-671_23	15.0	1.5	-	-	0.2	-	-	-	-	-	-	-	100
EAG-14-538_58	2.6	0.6	-	-	-	-	-	-	-	-	-	-	100
OSK-W-17-773_41	0.3	1.1	-	-	0.2	-	•	-	-	1	-	-	100
OBM-15-564_79	27.0	1.6	-	-	-	-	-	-	-	-	-	-	100
OSK-W-16-743_93	4.2	1.1	-	-	0.1	-	-	-	-	1	-	-	100
OSK-W-17-812_102	3.0	1.4	-	-	0.1	-	ı	-	i	ı	-	1.4	100

[&]quot;-" = phase non présent

Identification de	Type de	Poids de l'échantillon	Fluide Ext	Volume Ext	pH final	рН	Conductivité	Alcalinité	HCO ₃	CO ₃	ОН	SO ₄	CI	P total réactif	Br	NO ₂	NO ₃	NO2+N O3	F	CN(T)
l'échantillon	l'échantillon	g	#1 or #2	mL	pas d'unité	pas d'unit	μS/cm	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L	mg/L	mg/L	mg /L	mg N/L	mg N/L	mg N/L	mg/L	mg/L
E-27-D-H	Minerai	20	1	400	5.2	5.26	5360	2080	-	-	-	6.3	< 20	< 0.03		< 0.3	< 0.6	< 0.6	< 0.06	-
E-27-D-L	Minerai	20	1	400	5.07	5.11	4990	1770	-	-	-	6.8	< 20	< 0.03	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
E-27-U-H	Minerai	20	1	400	5	5.05	4900	1640	-	-	-	11	< 20	< 0.03	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
E-27-U-L	Minerai	20	1	400	5.03	5.07	4900	1710	-	-	-	12	< 20	< 0.03	< 3		< 0.6	< 0.6	< 0.06	-
E-CA-D-H	Minerai	20	1	400	5.41	5.46	4680	2370	-	-	-	5.5	< 20	< 0.03	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
E-CA-D-L	Minerai	20	1	400	5.34	5.39	5670	2300	-	-	-	3.8	< 20	< 0.03	< 3		< 0.6	< 0.6	< 0.06	-
E-CA-U-H	Minerai	20	1	400	5.12	5.17	5170	1890	-	-	-	17	< 20	< 0.03	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
E-CA-U-L	Minerai	20	1	400	5.04	5.09	4860	1710	-	-	-	5.6	< 20	< 0.03	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
Under Dog A	Minerai	20	1	400	5.11	5.15	5090	1590	1590	< 2	-	5	< 20	< 0.2	< 3		< 0.6	< 0.6	0.07	-
Under Dog B	Minerai	20	1	400	5.22	5.27	5380	1860	1860	< 2	-	4.1	< 20	< 0.2	< 3	< 0.3	< 0.6	< 0.6	0.07	-
Under Dog C	Minerai	20	1	400	5.02	5.06	4870	1410	1410	< 2	-	14	< 20	< 0.2	< 3		< 0.6	< 0.6	0.07	-
EAG-13-485_1	Stériles	20	1	400	5.14	5.14	4270	1640	1640	< 2	-	< 2	< 20	< 0.3	< 3		< 0.6	< 0.6	0.06	-
EAG-13-490_5	Stériles	20	1	400	4.94	4.94	3930	1130	1130	< 2	-	6.5	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	0.06	-
EAG-13-490_6	Stériles	20	1	400	5.32	5.32	4590	1970	1970	< 2	-	< 2	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	0.11	-
EAG-13-491_7	Stériles	20	1	400	5.17	5.16	4410	1610	1610	< 2	-	5.8	< 20	< 0.3	< 3		< 0.6	< 0.6	< 0.06	-
EAG-14-544_8	Stériles	20	1	400	5.09	5.1	4160	1520	1520	< 2	-	< 2	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	0.08	-
OBM-15-557_10	Stériles	20	1	400	5.28	5.28	4630	1840	1840	< 2	-	3.5	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	0.06	-
OBM-15-559_11	Stériles	20	1	400	5.01	5.02	4020	1330	1330	< 2	-	2.4	< 20	< 0.3	< 3		< 0.6	< 0.6	< 0.06	-
OBM-15-559_12	Stériles	20	1	400	5.27	5.27	4580	1870	1870	< 2	-	8.6	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	0.06	-
OBM-15-559_13	Stériles	20	2	400	4.96	4.96	3870	1260	1260	< 2	-	< 2	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
OBM-15-565_15	Stériles	20	1	400	5.18	5.18	4420	1660	1660	< 2	-	< 2	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
OBM-15-565_16	Stériles	20	1	400	4.95	4.94	3980	1150	1150	< 2	-	< 2	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
OBM-16-580_18	Stériles	20	1	400	5.35	5.35	4610	1930	1930	< 2	-	< 2	< 20	0.4	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
OBM-16-609_19	Stériles	20	1	400	4.96	4.95	3920	1160	1160	< 2	-	4.5	< 20	< 0.3	< 3		< 0.6	< 0.6	0.07	-
OBM-16-619_20	Stériles	20	1	400	5.01	5	4130	1300	1300	< 2	-	4.9	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
OBM-16-671_23	Stériles	20	2	400	4.91	4.9	3750	1130	1130	< 2	-	5.4	< 20	< 0.3	< 3		< 0.6	< 0.6	0.12	-
OBM-16-693_25	Stériles	20	1	400	5.19	5.18	4410	1690	1690	< 2	-	< 2	< 20	< 0.3	< 3		< 0.6	< 0.6	0.08	-
OSK-W-16-715_27	Stériles	20	1	400	5.53	5.53	4740	< 2	< 2	< 2	-	< 2	< 20	< 0.3	< 3	< 0.6	< 0.6	< 0.6	0.06	-
OSK-W-16-735-W1_28	Stériles	20	1	400	5.07	5.07	4210	1420	1420	< 2	-	2.2	< 20	< 0.3	< 3		< 0.6	< 0.6	0.09	-
OSK-W-16-751_29	Stériles	20	1	400	5.19	5.19	4420	1720	1720	< 2	-	< 2	< 20	< 0.3		< 0.6	< 0.6	< 0.6	< 0.06	-
OSK-W-16-751_30	Stériles	20	2	400	4.94	4.93	3780	1240	1240	< 2	-	< 2	< 20	< 0.3	< 3		< 0.6	< 0.6	< 0.06	-
OSK-W-16-760_31	Stériles	20	1	400	5.15	5.14	4380	1650	1650	< 2	-	< 2	< 20	< 0.3	< 3	< 0.6	< 0.6	< 0.6	0.09	-
OSK-W-16-761_33	Stériles	20	2	400	5.08	5.1	4140	1590	1590	< 2	-	< 2	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
OSK-W-17-773_38	Stériles	20	1	400	5.81	5.85	5030	2830	2830	< 2	-	< 2	< 20	< 0.3	< 3		< 0.6	< 0.6	0.08	_
OSK-W-17-773_39	Stériles	20	1	400	5.55	5.48	4760	2480	2480	< 2	-	< 2	< 20	< 0.3	< 3		< 0.6	< 0.6	< 0.06	-
OSK-W-17-773_40	Stériles	20	1	400	5.18	5.13	4270	1580	1580	< 2	-	< 2	< 20	< 0.3	< 3		< 0.6	< 0.6	< 0.06	
OSK-W-17-773_41	Stériles	20	2	400	5.57	5.67	4640	2720	2720	< 2	-	< 2	< 20	< 0.3	< 3.		< 0.6	< 0.6	< 0.06	
OSK-W-17-774_43	Stériles	20	1	400	5.28	5.29	4640	1880	1880	< 2	-	< 2	< 20	< 0.3	< 3.	< 0.3	< 0.6	< 0.6	0.06	-
OSK-W-17-774_44	Stériles	20	1	400	5.98	6.24	5390	2860	2860	< 2	-	< 2	< 20	< 0.3	< 3.	< 0.3	< 0.6	< 0.6	0.1	-

Identification de	Type de	Poids de l'échantillon	Fluide Ext	Volume Ext	pH final	рН	Conductivité	Alcalinité	HCO ₃	CO ₃	ОН	SO ₄	CI	P total réactif	Br	NO ₂	NO ₃	NO2+N O3	F	CN(T)
l'échantillon	l'échantillon	g	#1 or #2	mL	pas d'unité	pas d'unit	μS/cm	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L	mg/L	mg/L	mg /L	mg N/L	mg N/L	mg N/L	mg/L	mg/L
OSK-W-17-779_45	Stériles	20	1	400	5.04	5.07	4280	1420	1420	< 2	-	3.7	< 20	1.1	< 3.	< 0.3	< 0.6	< 0.6	< 0.06	-
OSK-W-17-779_46	Stériles	20	1	400	5.2	5.22	4570	1840	1840	< 2	-	< 2	< 20	< 0.3	< 3.	< 0.3	< 0.6	< 0.6	0.06	-
OSK-W-17-779_47	Stériles	20	2	400	5.68	5.84	4820	2860	2860	< 2	-	12	< 20	< 0.3	< 3.	< 0.3	< 0.6	< 0.6	< 0.06	-
OSK-W-17-783_48	Stériles	20	1	400	5.73	5.78	5000	2740	2740	< 2	-	< 2	< 20	< 0.3	< 3.	< 0.3	< 0.6	< 0.6	< 0.06	-
OSK-W-17-788_50	Stériles	20	1	400	5.36	5.36	4690	1990	1990	< 2	-	< 2	< 20	0.4	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
OSK-W-17-788_51	Stériles	20	1	400	5.36	5.35	4660	2000	2000	< 2	-	< 2	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
OSK-W-17-788_52	Stériles	20	1	400	5.06	5.06	4240	1420	1420	< 2	-	< 2	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	0.1	-
EAG-13-485_53	Stériles	20	1	400	5.02	5.01	4150	1340	1340	< 2	-	3.7	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
EAG-13-485_54	Stériles	20	1	400	5.29	5.29	4720	1870	1870	< 2	-	< 2	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
EAG-13-490_55	Stériles	20	1	400	5.41	5.4	4730	1990	1990	< 2	-	< 2	< 20	0.3	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
EAG-13-497_56	Stériles	20	1	400	5.02	5.02	4090	1350	1350	< 2	-	12	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
EAG-14-538_58	Stériles	20	1	400	4.96	4.96	4130	1250	1250	< 2	-	3.8	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	0.07	-
OBM-15-559_59	Stériles	20	1	400	5.17	5.18	4470	1680	1680	< 2	-	3.5	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	0.06	-
OBM-15-566_60	Stériles	20	1	400	5.51	5.54	4890	2570	2570	< 2	-	< 2	< 20	0.3	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
OBM-16-671_63	Stériles	20	1	400	5.48	5.5	4940	2410	2410	< 2	-	26	< 20	0.3	< 3	< 0.3	< 0.6	< 0.6	0.06	-
OBM-16-673_64	Stériles	20	1	400	5.02	5.04	4310	1400	1400	< 2	-	12	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	0.06	-
OBM-16-645_69	Stériles	20	1	400	5.39	5.4	4700	1970	1970	< 2	-	< 2	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
OBM-16-642_70	Stériles	20	1	400	5.64	5.67	5000	2720	2720	< 2	-	< 2	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	0.06	-
OSK-W-17-774_72	Stériles	20	1	400	5.34	5.35	4620	1950	1950	< 2	-	6.3	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	0.08	-
OSK-W-17-918_73	Stériles	20	1	400	5.35	5.35	4760	2030	2030	< 2	-	< 2	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
OSK-W-17-879_74	Stériles	20	1	400	5.55	5.51	4860	2420	2420	< 2	-	< 2	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
OSK-W-17-1006_75	Stériles	20	1	400	5.43	5.42	4760	2300	2300	< 2	-	< 2	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
OSK-W-17-1039_76	Stériles	20	1	400	5.36	5.35	5640	2220	2220	< 2	-	< 2	< 20	0.3	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
OSK-W-17-934_77	Stériles	20	1	400	5.31	5.31	4630	1960	1960	< 2	-	< 2	< 20	< 0.3	< 3	< 0.3	< 0.6	< 0.6	0.06	-
Tails CND 1	Résidus	20	1	400	5.56	5.6	6000	2200	2200	< 2	< 2	30	< 20	< 0.03	< 3	< 0.3	< 0.6	< 0.6	0.08	< 0.01
Tails CND 4	Résidus	20	1	400	5.64	5.67	6090	2270	2270	< 2	< 2	37	< 20	< 0.03	< 3	< 0.3	< 0.6	< 0.6	0.06	< 0.01
Tails CND 5	Résidus	20	1	400	5.56	5.6	5920	2170	2170	< 2	< 2	23	< 20	< 0.03	< 3	< 0.3	< 0.6	< 0.6	0.07	< 0.01
Tails CND 6	Résidus	20	1	400	5.25	5.26	5510	1760	1760	< 2	< 2	34	< 20	< 0.03	< 3	< 0.3	< 0.6	< 0.6	0.12	< 0.01
Triple Lynx LG	Minerai	20	1	400	-	5.01	5060	1320	1320	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
Lynx 4 LP-LG	Minerai	20	1	400	-	5.22	5480	1740	1740	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
Lynx 4 HP-LG	Minerai	20	1	400	-	5.03	5030	1360	1360	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
Triple Lynx MG/HG	Minerai	20	1	400	-	5.18	5440	1680	1680	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
Lynx 4 LP-MG/HG	Minerai	20	1	400	-	5.15	5390	1630	1630	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
Lynx 4 HP-MG/HG	Minerai	20	1	400	-	5.29	5680	1860	1860	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	
GC10001	Stériles	20	1	400	-	5.25	5580	1820	1820	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
GC10002	Stériles	20	1	400	-	5.24	5530	1800	1800	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	- 7
GC10004	Stériles	20	2	400	-	4.5	2900	< 2	< 2	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
GC10005	Stériles	20	1	400	-	5.18	5490	1680	1680	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
GC10006	Stériles	20	1	400	-	5.41	5910	2070	2070	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-

Identification de	Type de	Poids de l'échantillon	Fluide Ext	Volume Ext	pH final	рН	Conductivité	Alcalinité	НСО₃	CO ₃	ОН	SO ₄	CI	P total réactif	Br	NO ₂	NO ₃	NO2+N O3	F	CN(T)
l'échantillon	l'échantillon	g	#1 or #2	mL	pas d'unité	pas d'unit	μS/cm	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L	mg/L	mg/L	mg /L	mg N/L	mg N/L	mg N/L	mg/L	mg/L
GC10009	Stériles	20	1	400	-	5.34	5710	1950	1950	< 2	-	< 20	< 20	< 0.03	< 30		< 6	< 6	< 0.06	
GC10010	Stériles	20	1	400	-	5.25	5500	1790	1790	< 2	-	< 20	< 20	< 0.03	< 30	_	< 6	< 6	< 0.06	-
GC10012	Stériles	20	1	400	-	5.15	5450	1640	1640	< 2	-	< 20	< 20	< 0.03	< 30		< 6	< 6	< 0.06	-
GC10017	Stériles	20	2	400	-	4.46	2820	< 2	< 2	< 2	-	< 20	< 20	< 0.03	< 30		< 6	< 6	< 0.06	-
GC10018	Stériles	20	2	400	-	5.05	4600	1400	1400	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
GC10019	Stériles	20	2	400	-	6.44	6150	2670	2670	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
GC10021	Stériles	20	2	400	-	4.98	4530	1290	1290	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
GC10022	Stériles	20	2	400	-	5.7	5760	2350	2350	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
GC10026	Stériles	20	1	400	-	5.23	5540	1760	1760	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
GC10029	Stériles	20	1	400	-	5.4	5870	2040	2040	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
GC10030	Stériles	20	1	400	-	5.13	5350	1580	1580	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	
CIL 11 CND	Résidus	20	1	400	-	5.24	5570	1750	1750	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
CIL 12 CND	Résidus	20	1	400	-	5.39	5830	2010	2010	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
CIL 13 CND	Résidus	20	1	400	-	5.42	5810	2030	2030	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
OSK-W-21-2613-1042	Stériles	20	1	400	5.25	5.24	5550	1650	1650	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
OSK-W-21-2587-990	Stériles	20	1	400	5.18	5.16	5390	1530	1530	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
OSK-W-19-1897-880	Stériles	20	1	400	5.78	5.83	6300	2210	2210	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
OSK-W-19-1897-983	Stériles	20	1	400	5.33	5.3	5710	1760	1760	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
OSK-W-21-2252-W12-922	Stériles	20	1	400	4.99	4.96	4850	1090	1090	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
OSK-W-20-2283-W7-888	Stériles	20	1	400	5.22	5.21	5440	1510	1510	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
OSK-W-20-2375-W4-890	Stériles	20	1	400	5.05	5.03	5000	1190	1190	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
OSK-W-21-2444-610	Stériles	20	1	400	6.09	6.4	6580	2350	2350	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
WST-21-0647-260	Stériles	20	1	400	-	4.91	5090	888	888	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
WST-22-1013-345	Stériles	20	1	400	-	4.98	5310	1060	1060	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
WST-21-0873-268.1	Stériles	20	1	400	-	4.89	5000	824	824	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
OSK-W-16-706-W2-905	Stériles	20	1	400	-	5.48	6290	1740	1740	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	0.11	-
OSK-W-16-743-W1-915	Stériles	20	1	400	-	5.19	5750	1350	1350	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	0.06	-
OSK-W-17-1369-219.5	Stériles	20	1	400	-	4.9	5170	844	844	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
DSK-W-19-1181-W12-1140	Stériles	20	1	400	-	4.94	5240	975	975	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
OSK-W-19-1746-W1-687	Stériles	20	1	400	-	5	5350	1070	1070	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	< 0.06	-
OSK-W-17-1369-365	Stériles	20	1	400	-	5.09	5660	1200	1200	< 2	-	< 20	< 20	< 0.03	< 30	_	< 6	< 6	< 0.06	
OSK-W-19-909-W12-955	Stériles	20	1	400	-	5	5300	1090	1090	< 2	-	< 20	< 20	< 0.03	< 30	< 3	< 6	< 6	0.08	-
OSK-W-19-934-W3-885	Stériles	20	1	400	-	5.01	5320	1090	1090	< 2	-	< 20	< 20	< 0.03	< 30		< 6	< 6	< 0.06	-
OSK-W-21-2613-W1-1105	Stériles	20	1	400	-	5.06	5430	1160	1160	< 2	-	< 20	< 20	< 0.03	< 30		< 6	< 6	< 0.06	-
OSK-W-19-934-W3-1045	Stériles	20	1	400	-	5.02	5380	1130	1130	< 2	-	< 20	< 20	< 0.03	< 30		< 6	< 6	< 0.06	-
OSK-W-21-2605-1332	Stériles	20	1	400	-	5.12	5600	1310	1310	< 2	-	< 20	< 20	< 0.03	< 30	_	< 6	< 6	< 0.06	

Identification de	Type de	Poids de l'échantillon	Fluide Ext	Volume Ext	pH final	рН	Conductivité	Alcalinité	НСО₃	CO ₃	ОН	SO ₄	CI	P total réactif	Br	NO ₂	NO ₃	NO2+N O3	F	CN(T)
l'échantillon	l'échantillon	g	#1 or #2	mL	pas d'unité	pas d'unit	μS/cm	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L	mg/L	mg/L	mg /L	mg N/L	mg N/L	mg N/L	mg/L	mg/L
OBM-15-564_79	Stériles	20	1	400	5.25	5.27	5590	1850	1850	< 2	-	5.4	< 20	0.05	< 3	< 0.3	< 0.6	< 0.6	< 0.06	- 7
OBM-15-557_80	Stériles	20	1	400	6.03	6.31	6490	2680	2680	< 2	-	2.8	< 20	0.04	< 3	< 0.3	< 0.6	< 0.6	< 0.06	- 1
OBM-15-552_81	Stériles	20	1	400	5.36	5.4	5800	2050	2050	< 2	-	4.1	< 20	0.04	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
OSK-W-16-311-W2 84	Stériles	20	1	400	5.42	5.44	5860	2130	2130	< 2	-	< 2	< 20	< 0.03	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
OSK-W-16-706-W1_85	Stériles	20	1	400	5.46	5.5	5910	2150	2150	< 2	-	3.6	< 20	0.05	< 3	< 0.3	< 0.6	< 0.6	0.06	- 1
OSK-W-16-706-W1_86	Stériles	20	1	400	5.52	5.58	5990	2250	2250	< 2	-	4.1	< 20	0.04	< 3	< 0.3	< 0.6	< 0.6	0.06	-
OSK-W-16-706-W1_87	Stériles	20	1	400	6	6.3	6440	2660	2660	< 2	-	< 2	< 20	0.04	< 3	< 0.3	< 0.6	< 0.6	< 0.06	- 1
OSK-W-16-706-W1_88	Stériles	20	1	400	5.29	5.32	5700	1920	1920	< 2	-	22	< 20	< 0.03	< 3	< 0.3	< 0.6	< 0.6	0.08	-
OSK-W-16-706-W2 89	Stériles	20	1	400	5.37	5.39	5730	2030	2030	< 2	-	5	< 20	0.04	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
OSK-W-16-708-W2_91	Stériles	20	1	400	5.59	5.6	5980	2300	2300	< 2	-	4.1	< 20	< 0.03	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
OSK-W-16-735-W2 92	Stériles	20	1	400	5.4	5.43	5840	2120	2120	< 2	-	< 2	< 20	0.03	< 3	< 0.3	< 0.6	< 0.6	0.06	- 1
OSK-W-16-743_93	Stériles	20	1	400	5.02	5.02	4970	1350	1350	< 2	-	5	< 20	< 0.03	< 3	< 0.3	< 0.6	< 0.6	0.06	-
OSK-W-16-754 95	Stériles	20	1	400	5.7	5.78	6270	2450	2450	< 2	-	5.7	< 20	< 0.03	< 3	< 0.3	< 0.6	< 0.6	0.07	- 1
OSK-W-16-754 96	Stériles	20	1	400	5.8	5.93	6340	2540	2540	< 2	-	2.3	< 20	0.04	< 3	< 0.3	< 0.6	< 0.6	< 0.06	-
OSK-W-17-774 98	Stériles	20	1	400	5.45	5.48	5970	2190	2190	< 2	-	6	< 20	< 0.03	< 3	< 0.3	< 0.6	< 0.6	< 0.06	- 1
OSK-W-17-789 99	Stériles	20	1	400	5.06	5.08	5160	1520	1520	< 2	-	3.5	< 20	0.03	< 3	< 0.3	< 0.6	< 0.6	< 0.06	- 1
OSK-W-17-789_100	Stériles	20	1	400	5.37	5.43	5850	2080	2080	< 2	-	3.2	< 20	0.03	< 3	< 0.3	< 0.6	< 0.6	0.06	-
OSK-W-17-812_101	Stériles	20	1	400	5.3	5.38	5630	2040	2040	< 2	-	< 2	< 20	0.04	< 3	< 0.3	< 0.6	< 0.6	< 0.06	- 1
OSK-W-17-812 102	Stériles	20	1	400	5.3	5.34	5700	1960	1960	< 2	-	< 2	< 20	0.04	< 3	< 0.3	< 0.6	< 0.6	< 0.06	- 1
OBM-15-552 103	Stériles	20	1	400	6.3	7.06	6790	3110	3110	< 2	-	4.2	< 20	0.04	< 3	< 0.3	< 0.6	< 0.6	0.08	- 1
OSK-W-16-311-W1 83	Stériles	20	1	400	5.2	5.21	5330	1760	1760	< 2	-	4.2	< 20	0.05	< 3	< 0.3	< 0.6	< 0.6	< 0.06	T - 1

Identification de	CN Disponible	Hg	Al	As	Ag	Ва	В	Be	Bi	Ca	Cd	Cr	Со	Cu	Fe	к	Li	Mg	Mn	Мо	Na
l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
E-27-D-H	-	< 0.00001	0.43	0.019	< 0.0005	0.0498	0.04	0.00044	0.00017	233	0.00154	0.005	0.00152	0.0014	1.85	6.15	0.004	21.9	6.42	0.0009	1400
E-27-D-L	-	< 0.00001	0.7	0.097	< 0.0005	0.07	< 0.02	0.00046	0.00028	111	0.00143	0.0153	0.00222	0.0016	8.34	5.67	0.005	18.9	4.46	0.0006	1380
E-27-U-H	-	< 0.00001	0.82	0.017	< 0.0005	0.103	< 0.02	0.00049	0.00021	56	0.00268	0.0298	0.00256	0.0016	3.82	6.4	0.005	13.4	2.38	0.0004	1440
E-27-U-L	-	< 0.00001	0.71	0.018	< 0.0005	0.109	< 0.02	0.00053	0.00009	69	0.00676	0.0205	0.00244	0.0076	1.9	6.5	0.006	25.9	2.85	0.0005	1400
E-CA-D-H	-	< 0.00001	0.24	0.227	< 0.0005	0.0689	< 0.02	0.00057	< 0.00007	407	0.00768	0.0043	0.00288	0.0019	0.47	6.17	0.004	14.8	7.46	0.0007	1360
E-CA-D-L	-	< 0.00001	0.21	0.009	< 0.0005	0.0807	< 0.02	0.00072	< 0.00007	289	0.00188	0.0018	0.00305	0.0002	4.49	5.73	0.006	49.4	8.11	< 0.0001	1400
E-CA-U-H	-	< 0.00001	0.45	0.003	< 0.0005	0.201	0.03	0.0005	< 0.00007	128	0.0107	0.0112	0.00428	0.0121	2.85	6.2	0.005	41.5	4.4	0.0006	1380
E-CA-U-L	-	< 0.00001	0.61	0.005	< 0.0005	0.214	< 0.02	0.00029	< 0.00007	73.3	0.00525	0.007	0.00143	0.0017	4.21	4.8	0.003	27	2.24	0.0005	1400
Under Dog A	-	< 0.00001	0.63	0.005	< 0.0005	0.0414	< 0.02	0.00054	0.00016	144	0.0031	0.0044	0.00062	0.0045	1.01	6.29	0.004	4.22	1.59	0.001	1600
Under Dog B	-	< 0.00001	0.45	0.006	< 0.0005	0.0395	0.07	0.00062	0.00081	244	0.0002	0.0069	0.00055	0.023	0.32	6.79	0.016	3.27	2.2	0.0005	1590
Under Dog C	-	< 0.00001	0.95	0.002	< 0.0005	0.0297	0.12	0.00103	0.00076	61.8	0.0005	0.0036	0.00234	0.137	1.05	7.52	0.017	3.15	0.914	0.0004	1610
EAG-13-485_1	-	< 0.00001	0.57	0.006	< 0.0005	0.208	< 0.02	0.00041	0.00008	139	0.00053	0.0029	0.00013	0.0015	34.5	5.28	0.003	44.6	3.18	0.0002	1350
EAG-13-490 5	-	< 0.00001	0.77	0.012	< 0.0005	0.0855	< 0.02	0.00049	0.00113	20.3	0.00008	0.0032	0.00255	0.0094	1.01	6.32	0.003	2.85	0.366	0.0005	1300
EAG-13-490 6	-	< 0.00001	0.5	0.004	< 0.0005	0.0876	< 0.02	0.00051	< 0.00007	329	0.00064	0.0019	0.00059	0.0006	15.6	4.9	0.004	28.5	3.78	0.0002	1290
EAG-13-491 7	-	< 0.00001	0.5	< 0.002	< 0.0005	0.428	< 0.02	0.0003	< 0.00007	142	0.0007	0.0027	0.00139	0.0004	31.4	4.13	0.003	47.9	4.99	< 0.0001	1300
EAG-14-544 8	-	< 0.00001	0.72	0.004	< 0.0005	0.125	< 0.02	0.00055	< 0.00007	121	0.00065	0.003	0.00027	0.0005	27.5	4.49	0.003	32.1	3.87	< 0.0001	1310
OBM-15-557 10	-	0.00001	0.43	< 0.002	< 0.0005	0.76	< 0.02	0.00034	< 0.00007	290	0.00049	0.0022	0.00073	0.0004	25.3	3.69	0.004	33.8	3.68	< 0.0001	1300
OBM-15-559 11	-	0.00001	0.66	0.013	< 0.0005	0.183	< 0.02	0.00047	0.00013	56.3	0.00036	0.0038	< 0.00004	0.0004	11.8	4.5	0.002	21.7	1.43	0.0002	1290
OBM-15-559 12	-	0.00001	0.58	< 0.002	< 0.0005	0.198	< 0.02	0.00034	< 0.00007	321	0.00033	0.0032	0.00308	0.0012	17.2	3.6	0.001	20	3.65	< 0.0001	1310
OBM-15-559 13	-	< 0.00001	3.17	0.003	< 0.0005	0.0744	< 0.02	0.00183	0.00009	1240	0.00122	0.0114	0.0136	0.0003	67.5	3.88	0.007	75.5	19.3	< 0.0001	3.1
OBM-15-565 15	-	< 0.00001	0.47	0.002	< 0.0005	0.266	< 0.02	0.00064	0.00022	167	0.00062	0.0026	0.00293	< 0.0002	47.6	5.68	0.002	48.3	3.21	< 0.0001	1330
OBM-15-565 16	-	< 0.00001	0.97	0.023	< 0.0005	0.074	< 0.02	0.00038	0.0112	23.9	0.00056	0.0046	< 0.00004	0.0007	3.05	5.55	0.002	5.18	0.656	0.0001	1310
OBM-16-580 18	-	< 0.00001	0.47	0.006	< 0.0005	0.0753	< 0.02	0.00023	0.00019	408	0.00008	0.0023	0.00024	0.0033	0.44	4.52	0.002	1.35	1.85	0.0001	1300
OBM-16-609 19	-	< 0.00001	0.79	0.027	< 0.0005	0.0944	< 0.02	0.00034	0.00392	25	0.00062	0.0041	0.0006	0.0007	4.82	4.51	0.003	10.2	0.656	0.0005	1370
OBM-16-619 20	-	< 0.00001	0.94	0.009	< 0.0005	0.0617	< 0.02	0.00031	0.00068	60.2	0.00039	0.0035	0.00046	< 0.0002	9.12	6.59	0.003	18.5	1.95	0.0002	1300
OBM-16-671 23	-	< 0.00001	2.38	0.011	< 0.0005	2.59	< 0.02	0.0025	0.00013	1170	0.00342	0.0155	0.0139	0.002	83	4.48	0.005	95.6	18.6	< 0.0001	2
OBM-16-693 25	-	< 0.00001	0.68	< 0.002	< 0.0005	0.0807	< 0.02	0.00147	< 0.00007	189	0.00067	0.0028	0.00442	0.0015	31.2	7.36	0.002	35.9	3.08	0.0003	1290
OSK-W-16-715 27	-	0.00001	0.12	< 0.002	< 0.0005	0.146	< 0.02	0.00054	< 0.00007	396	0.00118	0.0003	0.00072	< 0.0002	31.5	7.05	0.003	52.7	5.41	< 0.0001	1300
OSK-W-16-735-W1 28	-	0.00001	0.95	0.032	< 0.0005	0.046	< 0.02	0.00066	0.00127	158	0.00032	0.003	0.00097	0.0028	2.7	7.29	0.003	5.53	3.11	0.0002	1310
OSK-W-16-751_29	-	< 0.00001	0.46	0.008	< 0.0005	0.155	< 0.02	0.00023	< 0.00007	158	0.00173	0.0029	0.00006	0.0003	38.7	3.7	0.003	56.8	3.09	< 0.0001	1330
OSK-W-16-751 30	-	< 0.00001	2.9	0.015	< 0.0005	0.0436	< 0.02	0.0001	< 0.00007	998	0.00481	0.0163	0.0277	0.0003	121	1.69	0.014	163	15.8	0.0001	2.4
OSK-W-16-760 31	-	< 0.00001	0.58	0.005	< 0.0005	0.0976	< 0.02	0.00057	< 0.00007	168	0.00168	0.0028	0.00203	< 0.0002	29.3	4.19	0.004	29.5	4.99	< 0.0001	1310
OSK-W-16-761 33	-	< 0.00001	2.13	0.021	< 0.0005	0.0457	< 0.02	0.00058	< 0.00007	1380	0.00238	0.0097	0.00662	0.0017	36.4	1.41	0.011	44.6	21.8	0.0001	1.5
OSK-W-17-773 38	-	< 0.00001	0.06	0.012	< 0.0005	0.0776	< 0.02	0.00014	0.00037	599	0.00029	< 0.0003		0.0012	12.8	4.18	0.006	27	7.13	0.0012	1380
OSK-W-17-773 39	-	< 0.00001	0.16	0.006	< 0.0005	0.0708	< 0.02	0.00026	< 0.00007	289	0.00086	0.0005	0.00477	< 0.0002	79.3	5.96	0.005	74.2	5.53	0.0002	1320
OSK-W-17-773 40	-	< 0.00001	0.57	0.014	< 0.0005	0.135	< 0.02	0.00055	< 0.00007	137	0.0005	0.0027	0.00034	< 0.0002	27.5	4.62	0.002	47.1	3.72	0.0001	1330
OSK-W-17-773 41	-	< 0.00001	0.11	0.008	< 0.0005	0.107	< 0.02	0.0005	< 0.00007	1630	0.00192	0.0009	0.00776	0.001	44.8	4.54	0.01	47.7	22.7	0.0008	1.7
OSK-W-17-774 43	-	< 0.00001	0.43	0.006	< 0.0005	0.0832	< 0.02	0.00045	< 0.00007	252	0.00071	0.0022	0.00068	0.0175	1.66	7.85	< 0.001	42.8	2.55	0.0001	1540
OSK-W-17-774 44	-	< 0.00001	0.03	0.002	< 0.0005	0.163	< 0.02	0.00015	< 0.00007	598	0.00056	0.0004	0.00156	0.0016	5.37	7.98	< 0.001	5.87	8.22	0.0003	1560

Identification de	CN Disponible	Hg	AI	As	Ag	Ва	В	Be	Bi	Ca	Cd	Cr	Co	Cu	Fe	K	Li	Mg	Mn	Мо	Na
l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
OSK-W-17-779_45	-	< 0.00001	0.76	0.005	< 0.0005	0.163	< 0.02	0.00055	< 0.00007	87.1	0.00039	0.0062	0.0005	0.0002	20	5.03	0.002	20.9	8.45	0.0003	1520
OSK-W-17-779_46	-	< 0.00001	0.56	0.045	< 0.0005	0.0748	< 0.02	0.00061	< 0.00007	139	0.00039	0.0042	0.00079	0.0027	60.6	6.51	< 0.001	55.3	3.21	0.0001	1570
OSK-W-17-779_47	-	< 0.00001	0.18	0.004	< 0.0005	0.0329	< 0.02	0.00033	< 0.00007	1730	0.00145	0.0017	0.00395	0.0019	28.5	0.79	< 0.001	16.6	31.2	0.0002	2.6
OSK-W-17-783_48	-	0.00001	0.01	< 0.002	< 0.0005	0.0833	< 0.02	< 0.00007	< 0.00007	315	0.00038	0.0003	0.0232	0.0004	48.3	3.95	0.01	124	8.46	0.0003	1520
OSK-W-17-788_50	-	< 0.00001	0.32	0.011	< 0.0005	0.0852	< 0.02	0.00025	< 0.00007	260	0.00053	0.0019	0.00627	0.0008	58.2	5.72	< 0.001	41.2	3.76	< 0.0001	1600
OSK-W-17-788_51	-	< 0.00001	0.31	0.01	< 0.0005	0.0975	< 0.02	0.00027	< 0.00007	280	0.00056	0.0019	0.00593	0.0032	52.8	6.01	< 0.001	37.4	3.97	0.0005	1570
OSK-W-17-788 52	-	< 0.00001	0.73	0.026	< 0.0005	0.0879	0.03	0.00066	0.00024	72.4	0.00062	0.0041	0.0003	< 0.0002	18.3	5.76	0.001	23.7	5.66	0.0002	1550
EAG-13-485_53	-	0.00001	0.58	0.009	< 0.0005	0.105	< 0.02	0.00032	< 0.00007	52	0.00044	0.0038	0.00038	< 0.0002	8.31	5.6	< 0.001	20.7	2.09	0.0004	1550
EAG-13-485 54	-	< 0.00001	0.42	0.003	< 0.0005	0.173	< 0.02	0.0003	< 0.00007	208	0.00096	0.0022	0.00261	0.0004	62.2	8.27	< 0.001	55.9	5.51	0.0002	1700
EAG-13-490 55	-	< 0.00001	0.27	0.015	< 0.0005	0.16	< 0.02	0.00027	< 0.00007	313	0.00061	0.0017	0.00747	0.0012	46.2	5.39	< 0.001	48.1	4.31	0.0003	1530
EAG-13-497 56	-	< 0.00001	0.81	< 0.002	< 0.0005	0.28	< 0.02	0.00041	0.00008	57.2	0.00512	0.005	0.00131	0.0157	3.17	7.79	< 0.001	23.1	1.17	< 0.0001	1580
EAG-14-538_58	-	0.00001	0.99	0.015	< 0.0005	0.0593	< 0.02	0.00039	0.00477	32.8	0.00021	0.0038	0.00077	0.0106	1.11	8.59	< 0.001	1.89	0.531	0.0008	1570
OBM-15-559 59	-	< 0.00001	1.08	< 0.002	< 0.0005	0.111	< 0.02	0.00035	0.00025	231	0.00025	0.0054	0.00218	0.009	0.96	10.7	0.008	3.92	1.81	0.0005	1550
OBM-15-566 60	-	< 0.00001	0.07	< 0.002	< 0.0005	0.106	< 0.02	0.00051	< 0.00007	232	0.00167	0.0005	0.00596	0.0038	71	6.98	< 0.001	107	6.24	0.0002	1580
OBM-16-671 63	-	0.00001	0.2	0.003	< 0.0005	0.319	< 0.02	0.00043	< 0.00007	347	0.00121	0.0013	0.0108	0.0104	36	5.59	< 0.001	43.2	5.52	0.0001	1540
OBM-16-673 64	-	< 0.00001	0.95	0.005	< 0.0005	0.148	< 0.02	0.00062	0.00069	94.5	0.00034	0.0037	0.00146	0.0007	3.73	7.8	0.003	11	1	0.001	1550
OBM-16-645 69	-	< 0.00001	0.14	0.003	< 0.0005	0.0653	< 0.02	0.00116	0.00008	299	0.00165	0.0005	0.00331	0.0002	21.1	6.07	0.003	44.4	9.81	0.0001	1540
OBM-16-642 70	-	< 0.00001	0.05	< 0.002	< 0.0005	0.0883	< 0.02	0.00094	< 0.00007	382	0.00047	0.0003	0.00095	0.0005	6.43	8.39	0.002	75.4	4.91	0.0002	1570
OSK-W-17-774 72	-	< 0.00001	0.29	0.002	< 0.0005	4.02	< 0.02	0.00054	0.00017	246	0.00038	0.0015	0.00398	0.005	18.5	5.32	< 0.001	57.9	1.78	0.0004	1590
OSK-W-17-918 73	-	< 0.00001	0.2	0.009	< 0.0005	0.113	< 0.02	0.00049	< 0.00007	200	0.00042	0.0011	0.00174	0.0006	44.6	6.79	< 0.001	87	5.44	0.0003	1560
OSK-W-17-879 74	-	< 0.00001	0.07	< 0.002	< 0.0005	0.0965	< 0.02	0.00018	< 0.00007	250	0.00054	0.0006	0.00364	0.0012	68	7.1	0.01	98	6.32	0.0003	1560
OSK-W-17-1006_75	-	< 0.00001	0.11	0.006	< 0.0005	0.0665	0.02	0.00031	< 0.00007	219	0.00063	0.0005	0.00086	< 0.0002	43.2	6.13	0.006	93.7	6.42	0.0002	1550
OSK-W-17-1039 76	-	< 0.00001	0.22	0.007	< 0.0005	0.0562	< 0.02	0.00036	< 0.00007	194	0.0005	0.0011	0.00096	0.0014	55.1	6.64	0.006	80.1	5.42	0.0001	1560
OSK-W-17-934 77	-	< 0.00001	0.36	0.013	< 0.0005	0.114	< 0.02	0.00034	< 0.00007	181	0.00115	0.0018	0.00166	0.0126	40.2	7.57	0.008	79.7	4.1	0.0004	1600
Tails CND 1	< 0.01	< 0.00001	0.03	< 0.002	< 0.0005	0.254	< 0.02	< 0.00007	0.00015	326	0.019	0.0012	0.00907	0.148	< 0.07	3.04	0.007	92.2	8.31	0.0023	1310
Tails CND 4	< 0.01	0.00001	0.02	< 0.002	< 0.0005	0.124	< 0.02	0.00008	0.00009	428	0.0114	0.0008	0.00894	0.0822	< 0.07	3.23	0.006	73.8	7.34	0.0011	1390
Tails CND 5	< 0.01	< 0.00001	0.04	< 0.002	< 0.0005	0.0921	< 0.02	0.0001	0.00013	396	0.00423	0.0012	0.0071	0.12	< 0.07	2.95	0.005	69	6.32	0.0022	1350
Tails CND 6	< 0.01	< 0.00001	0.28	0.003	< 0.0005	0.0639	< 0.02	0.00023	0.00024	309	0.00796	0.0062	0.00639	0.524	< 0.07	3.42	0.003	7.9	3.04	0.0017	1340
Triple Lynx LG	-	< 0.00001	0.46	0.025	< 0.0005	0.0736	< 0.02	0.00021	< 0.00007	76.9	0.00025	0.002	0.0004	< 0.002	9.34	2.78	0.003	14.3	1.47	< 0.0004	1400
Lynx 4 LP-LG	-	< 0.00001	0.3	0.011	< 0.0005	0.0444	< 0.02	0.00017	< 0.00007	201	0.00039	0.0011	0.00063	< 0.002	8.83	3.11	0.003	39.6	3.46	< 0.0004	1370
Lynx 4 HP-LG	-	< 0.00001	0.63	0.008	< 0.0005	0.0612	< 0.02	0.00048	< 0.00007	68.1	0.00044	0.0025	0.00144	< 0.002	10	4.43	0.003	20	1.76	< 0.0004	1460
Triple Lynx MG/HG	-	< 0.00001	0.3	0.012	< 0.0005	0.0817	< 0.02	0.00032	< 0.00007	148	0.00046	0.0013	0.00108	< 0.002	12.7	3.4	0.003	51.6	2.27	< 0.0004	1420
Lynx 4 LP-MG/HG	-	< 0.00001	0.36	0.006	< 0.0005	0.0558	< 0.02	0.00024	< 0.00007	133	0.00071	0.0018	0.0011	< 0.002	10.2	3.63	0.004	44.2	4.24	< 0.0004	1340
Lynx 4 HP-MG/HG	-	< 0.00001	0.16	0.006	< 0.0005	0.0606	< 0.02	0.00037	< 0.00007	230	0.00064	< 0.0008		< 0.002	6.05	3.64	0.004	52.5	5.33	< 0.0004	1350
GC10001	-	< 0.00001	0.41	0.0098	0.00021	0.0604	0.027	0.0004	0.00168	172	0.00055	0.0014	0.0054	< 0.0002	44.8	3.85	0.0048	53.6	2.87	0.011	1310
GC10002	-	< 0.00001	0.4	0.0124	0.00011	0.136	0.021	0.00043	0.00096	166	0.00058	0.0017	0.00152	0.0069	32.3	4.63	0.0063	63.7	3.93	0.00225	1400
GC10004	-	< 0.00001	0.23	0.009	< 0.00005	0.0084	< 0.002	7.7E-05	0.000067	46.6	0.00014	0.0005	0.00049	< 0.0002	18.9	0.38	0.0007	15.5	8.72	0.00017	1.09
GC10005	-	< 0.00001	4.95	0.151	0.00008	0.597	0.139	0.00389	0.00038	1440	0.0045	0.016	0.0162	0.0024	291	46.3	0.0378	526	3.35	0.00164	1390
GC10006	-	< 0.00001	0.2	0.0151	< 0.00005	0.0568	0.01	0.00038	0.00028	343	0.0007	9E-05	0.00292	0.0006	38	4.55	0.005	43.7	4.64	0.00038	1350

Identification de	CN Disponible	Hg	AI	As	Ag	Ва	В	Be	Bi	Ca	Cd	Cr	Co	Cu	Fe	к	Li	Mg	Mn	Мо	Na
l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
GC10009	-	< 0.00001	0.36	0.0101	0.00005	0.0656	0.012	0.00031	0.0003	327	0.00042	0.0024	0.00136	0.0007	17.8	4.45	0.0051	38.2	6.43	0.00057	1390
GC10010	-	< 0.00001	0.43	0.0068	< 0.00005	0.0699	0.013	0.00019	0.00023	176	0.00022	0.0009	0.00119	0.0002	32.7	3.43	0.0099	55	3.28	0.00044	1300
GC10012	-	< 0.00001	0.78	0.0127	0.00016	0.0627	0.004	0.00009	0.00021	184	0.00013	0.0038	0.00098	0.0004	10.5	2.68	0.0089	27.8	2.98	0.00029	1360
GC10017	-	< 0.00001	3.26	0.0239	< 0.00005	0.0541	7.08	0.0005	0.000052	515	0.00036	0.0066	0.00908	< 0.0002	141	34.7	0.0308	132	9.03	< 0.00004	198
GC10018	-	< 0.00001	1.36	0.0034	< 0.00005	0.0728	6.23	0.0006	0.00001	1080	0.00079	0.007	0.0309	< 0.0002	152	14.8	0.0203	167	15.3	0.00137	109
GC10019	-	< 0.00001	0.03	0.0242	< 0.00005	0.0721	4.27	0.0004	0.000008	2010	0.00116	0.0002	0.00337	< 0.0002	13	4.64	0.017	19.1	29.2	0.00015	61.6
GC10021	-	< 0.00001	2.44	0.0334	< 0.00005	0.0606	3.78	0.0004	< 0.000007	1110	0.00155	0.0114	0.00537	< 0.0002	58.3	5.55	0.0242	131	17.6	< 0.00004	60
GC10022	-	< 0.00001	0.09	0.0077	< 0.00005	0.0437	3.3	0.0006	< 0.000007	1710	0.00303	0.0004	0.004	< 0.0002	29.2	5.09	0.0174	33.7	27.8	0.00006	56.2
GC10026	-	< 0.00001	0.27	0.0103	< 0.00005	0.0487	0.007	0.00033	0.00004	160	0.00022	0.0007	0.00078	< 0.0002	32.6	3.94	0.0048	54.9	3.98	0.00012	1250
GC10029	-	< 0.00001	0.26	0.008	< 0.00005	0.062	0.008	0.00023	0.00003	325	0.00015	0.0008	0.00279	0.0008	20.8	4.42	0.0064	42.9	4.26	0.00018	1250
GC10030	-	< 0.00001	0.54	0.0086	< 0.00005	0.0787	0.006	0.00062	0.00003	110	0.00077	0.0015	0.00053	0.0009	38	3.42	0.005	33.4	8.2	0.00006	1220
CIL 11 CND	-	< 0.00001	0.14	0.003	< 0.00005	0.471	0.004	0.00019	< 0.000007	194	0.00163	0.001	0.00222	0.168	4.33	1.41	0.0023	52.9	4.8	0.00005	1410
CIL 12 CND	-	< 0.00001	0.04	0.0013	< 0.00005	0.0706	0.004	0.00011	0.000009	250	0.00143	0.0005	0.00226	0.204	2.22	1.29	0.0028	74.9	6.25	0.00005	1360
CIL 13 CND	-	< 0.00001	0.05	0.0013	< 0.00005	0.0549	0.005	0.00017	0.000111	275	0.00118	0.0016	0.00239	0.346	8.68	0.99	0.0025	72.3	6.08	< 0.00004	1300
OSK-W-21-2613-1042	-	< 0.00001	0.4	0.196	< 0.0005	0.125	< 0.02	0.00074	0.00001	165	0.00017	0.0014	0.00136	< 0.002	47.6	5.29	0.006	44.2	11.1	< 0.0004	1390
OSK-W-21-2587-990	-	< 0.00001	0.53	0.007	< 0.0005	0.11	< 0.02	0.00029	0.00001	126	0.00028	0.003	0.00109	< 0.002	32.6	6.32	0.006	45.3	3.79	< 0.0004	1390
OSK-W-19-1897-880	-	< 0.00001	0.06	0.006	< 0.0005	0.0683	< 0.02	0.00012	0.00001	530	0.0002	< 0.0008	0.00039	< 0.002	0.07	4.69	0.004	3.97	5.64	< 0.0004	1410
OSK-W-19-1897-983	-	< 0.00001	0.35	0.005	< 0.0005	0.0488	< 0.02	0.00029	0.00036	300	0.00013	0.0019	0.00037	0.016	0.44	5.74	0.002	8.48	3.3	< 0.0004	1370
OSK-W-21-2252-W12-922	-	< 0.00001	0.94	0.079	< 0.0005	0.0661	< 0.02	0.00025	0.00002	26	0.00012	0.0033	0.00042	< 0.002	5.1	4.85	0.004	6.92	2.01	< 0.0004	1430
OSK-W-20-2283-W7-888	-	< 0.00001	0.43	0.101	< 0.0005	0.0816	< 0.02	0.00122	< 0.00001	167	0.00021	0.0017	0.00196	< 0.002	36.1	5.3	0.005	31.7	5.95	< 0.0004	1330
OSK-W-20-2375-W4-890	-	< 0.00001	0.87	0.01	< 0.0005	0.0372	< 0.02	0.00033	< 0.00001	55.1	0.00017	0.0029	0.00112	< 0.002	14.3	5.8	0.004	17.2	1.5	< 0.0004	1400
OSK-W-21-2444-610	-	< 0.00001	0.02	0.004	< 0.0005	0.118	< 0.02	0.00008	0.00006	606	0.00037	< 0.0008	0.00026	< 0.002	< 0.07	5.08	0.003	6.65	5.16	< 0.0004	1380
WST-21-0647-260	-	< 0.00001	0.68	0.015	< 0.0005	0.166	< 0.02	0.00025	0.00003	41.7	0.00033	0.0046	0.00042	< 0.002	7.18	4.83	0.004	18.5	1.45	0.0004	1390
WST-22-1013-345	-	< 0.00001	0.8	0.044	< 0.0005	0.105	0.02	0.00086	0.00003	91.8	0.00092	0.0029	0.00454	0.008	15	5.26	0.006	25.6	2.52	< 0.0004	1410
WST-21-0873-268.1	-	< 0.00001	0.72	0.007	< 0.0005	0.054	< 0.02	0.00042	0.00008	33.1	0.00047	0.0037	0.00028	< 0.002	7.19	4.73	0.002	12.8	0.856	0.0008	1400
OSK-W-16-706-W2-905	-	< 0.00001	0.13	0.003	< 0.0005	0.0706	0.18	0.00033	0.00002	421	0.00087	0.0017	0.00073	0.006	2	7.62	0.005	10.3	5.6	0.0014	1380
OSK-W-16-743-W1-915	-	< 0.00001	0.62	0.034	< 0.0005	0.0769	< 0.02	0.00014	0.0006	281	0.00038	0.0032	0.00061	< 0.002	0.9	7.19	0.004	2.37	5.54	< 0.0004	1390
OSK-W-17-1369-219.5	-	< 0.00001	0.87	0.014	< 0.0005	0.0614	0.06	0.00069	0.00038	58.3	0.00064	0.007	0.00082	0.027	11.6	6.34	0.003	22	1.39	0.0012	1417
DSK-W-19-1181-W12-1140	-	< 0.00001	0.75	0.013	< 0.0005	0.0434	0.04	0.0002	0.00002	72.3	0.00059	0.0042	0.00095	0.024	12.5	5.28	0.005	20.4	1.99	0.0013	1360
OSK-W-19-1746-W1-687	-	< 0.00001	0.75	0.013	< 0.0005	0.0925	0.02	0.00022	0.00001	86.9	0.0005	0.0031	0.00097	0.005	19.9	5.89	0.005	35	2.48	0.0005	1380
OSK-W-17-1369-365	-	< 0.00001	0.57	0.007	< 0.0005	0.0662	0.02	0.00044	0.00005	180	0.00097	0.0045	0.00057	0.008	10.4	5.66	0.005	47.4	2.24	0.0007	1410
OSK-W-19-909-W12-955	-	< 0.00001	0.65	0.023	< 0.0005	0.0687	0.02	0.00043	0.00003	84.9	0.00072	0.0046	0.00031	0.004	19.6	4.57	0.005	31.5	2.91	0.0005	1420
OSK-W-19-934-W3-885	_	< 0.00001	0.7	0.008			0.02	0.00051	0.00001			0.0075	0.00065	0.007	20.6	4.86	0.004	34	2.75	0.0005	1390
OSK-W-21-2613-W1-1105	_	< 0.00001	0.49	0.006	< 0.0005	0.144	0.02	0.00043	0.00001	113	0.00057	0.003	0.00064	0.009	30.5	4.43	0.004	41.4	4.73	0.0007	1440
OSK-W-19-934-W3-1045	-	< 0.00001	0.6	0.006	< 0.0005	0.0344	0.03	0.00039	0.00002	92.6	0.00044	0.0044	0.00028	0.017	22.2	5.4	0.003	34	2.9	0.0013	1370
OSK-W-21-2605-1332	-	< 0.00001	0.41	0.004	< 0.0005	0.0372	0.03	0.00038	0.00001	161	0.00069	0.0034	0.00084	0.023	33.2	4.54	0.005	30.1	8.98	0.0012	1350

Identification de	CN Disponible	Hg	AI	As	Ag	Ва	В	Be	Bi	Са	Cd	Cr	Со	Cu	Fe	к	Li	Mg	Mn	Мо	Na
l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
OBM-15-564_79	-	< 0.00001	0.66	0.102	< 0.0005	0.0591	< 0.02	0.00037	0.00007	323	0.00234	0.0023	0.00149	0.0096	0.74	5.15	0.007	2.97	3.2	0.0005	1720
OBM-15-557_80	-	< 0.00001	< 0.01	0.011	< 0.0005	0.0481	< 0.02	0.00017	0.00013	731	0.00034	< 0.0003	0.00089	0.0024	< 0.07	8.39	0.002	4.61	3.88	0.0002	1750
OBM-15-552_81	-	< 0.00001	0.47	0.009	< 0.0005	0.0616	< 0.02	0.0005	0.00008	413	0.00029	0.0021	0.0018	0.0134	0.3	4.04	0.004	2.01	2.22	0.0006	1710
OSK-W-16-311-W2_84	-	< 0.00001	0.3	0.005	< 0.0005	0.0799	< 0.02	0.00053	< 0.00007	420	0.00075	0.0014	0.00046	0.0007	6.81	6.57	0.005	10.8	6.29	0.0002	1680
OSK-W-16-706-W1_85	-	< 0.00001	0.22	< 0.002	< 0.0005	0.0693	< 0.02	0.00058	< 0.00007	441	0.00052	0.0004	0.00255	0.0032	6.58	5.25	0.004	17.5	4.72	< 0.0001	1670
OSK-W-16-706-W1_86	-	< 0.00001	0.16	0.003	< 0.0005	0.0662	< 0.02	0.00038	< 0.00007	509	0.00025	0.0004	0.00038	0.0072	0.27	5.71	0.003	10	4.92	< 0.0001	1700
OSK-W-16-706-W1_87	-	< 0.00001	0.02	0.028	< 0.0005	0.0771	< 0.02	0.00017	< 0.00007	715	0.00039	0.0004	0.00037	0.0022	< 0.07	4.65	0.003	2.63	4.45	0.0001	1710
OSK-W-16-706-W1_88	-	< 0.00001	0.57	0.004	< 0.0005	0.0813	< 0.02	0.00026	0.00098	362	0.00004	0.0024	0.00049	0.0165	0.29	4.38	0.003	1.29	1.76	0.001	1700
OSK-W-16-706-W2_89	-	< 0.00001	0.42	< 0.002	< 0.0005	0.0625	< 0.02	0.00046	0.0005	407	0.00012	0.0021	0.00056	0.0007	0.54	4.92	0.002	2.54	2.26	0.0001	1710
OSK-W-16-708-W2_91	-	< 0.00001	0.18	< 0.002	< 0.0005	0.0445	< 0.02	0.00058	< 0.00007	535	0.00013	0.001	0.00098	0.0006	0.12	4.35	0.003	2.98	3.1	< 0.0001	1700
OSK-W-16-735-W2_92	-	< 0.00001	0.31	0.003	< 0.0005	0.0861	< 0.02	0.00044	< 0.00007	385	0.00038	0.0035	0.00233	0.0067	13.5	4.7	0.004	21.8	3.23	< 0.0001	1660
OSK-W-16-743_93	-	< 0.00001	1.03	0.025	< 0.0005	0.0438	< 0.02	0.00056	0.00132	73	0.0002	0.0042	0.00334	0.0199	0.44	7.08	0.003	1.02	0.68	0.0001	1660
OSK-W-16-754_95	-	< 0.00001	0.09	< 0.002	< 0.0005	0.173	< 0.02	0.0003	< 0.00007	603	0.0002	0.0006	0.00084	0.0026	< 0.07	4.25	0.001	2.22	3.21	0.0001	1680
OSK-W-16-754_96	-	< 0.00001	0.05	0.002	< 0.0005	0.0457	< 0.02	0.00028	< 0.00007	645	0.0001	0.0004	0.00056	0.0033	< 0.07	6.75	0.003	3.88	4.21	0.0001	1690
OSK-W-17-774_98	-	< 0.00001	0.29	0.004	< 0.0005	0.0846	< 0.02	0.00033	< 0.00007	472	0.00012	0.0018	0.00094	0.0035	0.55	4.3	0.002	1.54	2.96	0.0003	1680
OSK-W-17-789_99	-	< 0.00001	1.1	0.004	< 0.0005	0.046	< 0.02	0.0003	0.00222	140	0.00005	0.0038	0.00035	0.0124	0.47	7.67	0.004	1.46	1.31	0.0002	1690
OSK-W-17-789_100	-	< 0.00001	0.33	0.01	< 0.0005	0.0454	< 0.02	0.00042	< 0.00007	421	0.00038	0.0017	0.0023	0.0037	0.37	6.63	0.003	6.03	3.87	< 0.0001	1680
OSK-W-17-812_101	-	< 0.00001	0.28	0.036	< 0.0005	0.0659	< 0.02	0.00028	< 0.00007	284	0.00035	0.0012	0.0025	0.0029	48.3	6.51	0.006	52.8	3.23	0.0004	1700
OSK-W-17-812_102	-	< 0.00001	0.31	0.025	< 0.0005	0.112	< 0.02	0.00024	< 0.00007	199	0.00071	0.0012	0.00046	0.0013	50.5	4.74	0.005	85	4.67	< 0.0001	1680
OBM-15-552_103	-	< 0.00001	< 0.01	< 0.002	< 0.0005	0.0475	< 0.02	0.00013	< 0.00007	800	0.00012	< 0.0003	0.00085	0.0073	< 0.07	5.81	0.004	4.12	4.48	0.0406	1640
OSK-W-16-311-W1 83	_	< 0.00001	0.89	0.008	< 0.0005	0.0723	< 0.02	0.00036	0.00035	257	0.0007	0.0037	0.00097	0.005	0.86	6.52	0.004	2.9	1.61	0.0002	1640

Identification de	Ni	Р	Pb	U	Si	Sb	Se	Sn	Sr	Те	Ti	TI	Th	v	w	Υ	Zn
rechantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
E-27-D-H	0.006	-	0.0116	0.00069	-	0.003	0.001	0.0002	0.448	-	< 0.0005	< 0.00005	< 0.001	< 0.0001	< 0.0002	0.0152	0.09
E-27-D-L	0.009	-	0.0112	0.00049	-	0.004	0.0008	< 0.0001	0.128	-	< 0.0005	< 0.00005	< 0.001	< 0.0001	< 0.0002	0.0127	0.21
E-27-U-H	0.013	-	0.0216	0.00078	-	0.002	0.0006	< 0.0001	0.134	-	< 0.0005	< 0.00005	< 0.001	< 0.0001	< 0.0002	0.00592	0.31
E-27-U-L	0.013	-	0.0099	0.00086	-	< 0.002	< 0.0004	< 0.0001	0.184	-	< 0.0005	< 0.00005	< 0.001	< 0.0001	< 0.0002	0.00482	0.59
E-CA-D-H	0.016	-	0.0128	0.0003	-	0.006	0.0007	0.0002	0.569	-	< 0.0005	< 0.00005	< 0.001	< 0.0001	< 0.0002	0.0269	0.47
E-CA-D-L	0.034	-	0.0042	0.0003	-	< 0.002	< 0.0004	< 0.0001	0.393	-	< 0.0005	< 0.00005	< 0.001	< 0.0001	< 0.0002	0.0175	0.17
E-CA-U-H	0.012	-	0.0342	0.00057	-	0.005	0.0011	< 0.0001	0.285	-	< 0.0005	< 0.00005	< 0.001	< 0.0001	< 0.0002	0.00681	1.46
E-CA-U-L	0.009	-	0.0576	0.00221	-	0.005	0.0008	< 0.0001	0.158	-	< 0.0005	< 0.00005	0.002	< 0.0001	< 0.0002	0.00783	0.7
Under Dog A	0.003	0.004	0.0171	0.00175	1.56	0.006	< 0.0004	< 0.0001	0.154	-	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.0002	0.0127	0.35
Under Dog B	< 0.001	0.044	0.0103	0.00072	5.24	0.003	0.0015	< 0.0001	0.222	-	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.0006	0.0285	< 0.02
Under Dog C	0.001	0.015	0.0111	0.00042	5.46	0.007	0.0011	< 0.0001	0.107	-	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.0004	0.0137	0.04
EAG-13-485_1	0.003	-	0.0062	0.00058	1	< 0.002	< 0.0004	< 0.0001	0.197	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00007	0.014	0.08
EAG-13-490_5	0.002	-	0.0046	0.00091	1.4	0.005	< 0.0004	< 0.0001	0.17	< 0.001	< 0.0005	< 0.00005	0.002	0.0002	0.00004	0.00321	< 0.02
EAG-13-490 6	0.001	-	0.0173	0.00066	1.4	< 0.002	< 0.0004	< 0.0001	0.471	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00003	0.0167	0.03
EAG-13-491_7	0.005	-	0.0084	0.00048	1	< 0.002	< 0.0004	< 0.0001	0.227	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	< 0.00002	0.00919	0.14
EAG-14-544_8	0.001	-	0.0127	0.00089	1.2	< 0.002	0.0004	< 0.0001	0.138	< 0.001	< 0.0005	< 0.00005	0.004	< 0.0001	0.00002	0.0217	0.06
OBM-15-557_10	0.005	-	0.0097	0.00044	1	< 0.002	< 0.0004	< 0.0001	0.931	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00002	0.0226	0.07
OBM-15-559_11	< 0.001	-	0.0138	0.00056	1.1	< 0.002	< 0.0004	< 0.0001	0.107	< 0.001	< 0.0005	< 0.00005	0.001	< 0.0001	0.00002	0.00928	0.05
OBM-15-559_12	0.005	-	0.0028	0.00077	1.2	< 0.002	< 0.0004	< 0.0001	1.7	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00002	0.014	0.04
OBM-15-559_13	0.023	-	0.0018	0.00006	2.6	< 0.002	< 0.0004	< 0.0001	3.41	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00004	0.0461	0.07
OBM-15-565_15	0.011	-	0.0067	0.00079	1.2	< 0.002	< 0.0004	< 0.0001	0.399	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00006	0.00827	0.12
OBM-15-565_16	< 0.001	-	0.0102	0.0005	1.4	0.003	< 0.0004	< 0.0001	0.12	< 0.001	< 0.0005	< 0.00005	0.003	< 0.0001	0.00005	0.00723	0.04
OBM-16-580_18	< 0.001	-	0.004	0.00048	1.3	0.002	< 0.0004	< 0.0001	0.15	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00006	0.00147	< 0.02
OBM-16-609_19	< 0.001	-	0.0876	0.00263	1.2	0.005	0.0006	< 0.0001	0.148	< 0.001	< 0.0005	< 0.00005	0.006	0.0002	0.00068	0.0101	0.06
OBM-16-619_20	0.003	-	0.0106	0.00079	1.4	0.003	< 0.0004	< 0.0001	0.091	< 0.001	< 0.0005	< 0.00005	0.001	< 0.0001	0.00005	0.00889	0.04
OBM-16-671_23	0.052	-	0.0112	0.00026	2.2	0.005	0.001	< 0.0001	3	< 0.001	< 0.0005	< 0.00005	0.002	< 0.0001	0.00002	0.0747	0.13
OBM-16-693_25	0.009	-	0.0035	0.00034	1.6	< 0.002	< 0.0004	< 0.0001	0.457	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	< 0.00002	0.0122	0.08
OSK-W-16-715_27	0.007	-	0.002	0.00024	1.4	< 0.002	< 0.0004	< 0.0001	0.548	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00006	0.015	0.1
OSK-W-16-735-W1_28	0.002	-	0.214	0.00053	1.7	0.006	0.0004	0.0004	0.26	< 0.001	< 0.0005	< 0.00005	0.001	< 0.0001	0.00011	0.0232	0.02
OSK-W-16-751_29	0.01	-	0.0344	0.00222	1.1	< 0.002	< 0.0004	< 0.0001	0.101	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00005	0.0117	0.09
OSK-W-16-751_30	0.045	-	0.0267	0.00007	2.4	< 0.002	< 0.0004	< 0.0001	0.78	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00008	0.0217	0.07
OSK-W-16-760_31	0.008	-	0.0236	0.00235	1.2	0.003	0.0006	< 0.0001	0.11	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00006	0.0203	0.16
OSK-W-16-761_33	0.015	-	0.0144	0.00002	2	< 0.002	< 0.0004	< 0.0001	2.11	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00011	0.0424	< 0.02
OSK-W-17-773_38	0.009	-	0.0005	0.00022	1.3	< 0.002	0.0006	0.0001	0.225	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00102	0.0295	0.03
OSK-W-17-773_39	0.033	-	0.0004	0.0003	1.4	< 0.002	< 0.0004	< 0.0001	0.126	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00011	0.00656	0.27
OSK-W-17-773_40	0.002	-	0.0056	0.001	1.1	< 0.002	< 0.0004	< 0.0001	0.07	< 0.001	< 0.0005	< 0.00005	0.001	< 0.0001	0.00013	0.00988	0.13
OSK-W-17-773_41	0.015	-	0.0013	0.00006	1.4	< 0.002	< 0.0004	0.0001	2.39	< 0.001	< 0.0005	0.00005	< 0.001	< 0.0001	0.00019	0.0555	0.02
OSK-W-17-774_43	0.002	-	0.0045	0.00044	1.2	0.01	< 0.0004	< 0.0001	0.398	< 0.001	< 0.0005	0.00006	< 0.001	< 0.0001	< 0.00002	0.0168	0.06
OSK-W-17-774_44	0.003	-	0.0007	0.00012	1.1	< 0.002	< 0.0004	< 0.0001	2.16	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00002	0.0195	< 0.02

Identification de	Ni	Р	Pb	U	Si	Sb	Se	Sn	Sr	Те	Ti	TI	Th	V	w	Y	Zn
rechantinon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
OSK-W-17-779_45	0.004	-	0.0084	0.00058	1.2	< 0.002	< 0.0004	< 0.0001	0.049	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00002	0.00933	0.09
OSK-W-17-779 46	0.002	-	0.0035	0.00064	1.1	0.003	< 0.0004	< 0.0001	0.083	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00004	0.013	0.15
OSK-W-17-779_47	0.005	-	0.0006	0.00002	1.3	< 0.002	< 0.0004	< 0.0001	2.16	< 0.001	< 0.0005	< 0.00005	< 0.001	0.0001	0.00004	0.0232	< 0.02
OSK-W-17-783 48	0.04	-	< 0.0001	< 0.00002	1.4	< 0.002	< 0.0004	< 0.0001	0.205	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	< 0.00002	0.0013	0.05
OSK-W-17-788_50	0.011	-	0.0022	0.00023	1.1	< 0.002	< 0.0004	< 0.0001	0.217	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00002	0.00787	0.15
OSK-W-17-788_51	0.012	-	0.0023	0.00029	1.3	< 0.002	< 0.0004	0.0001	0.214	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00003	0.00793	0.14
OSK-W-17-788_52	0.001	-	0.0815	0.00264	1	0.002	< 0.0004	0.0002	0.083	< 0.001	0.0005	< 0.00005	0.002	< 0.0001	0.00002	0.0196	0.07
EAG-13-485_53	0.001	-	0.0038	0.00049	0.9	0.002	< 0.0004	< 0.0001	0.111	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	< 0.00002	0.00907	0.06
EAG-13-485_54	0.008	-	0.0011	0.00013	1.2	< 0.002	< 0.0004	< 0.0001	0.433	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00006	0.0117	0.14
EAG-13-490_55	0.025	-	0.0011	0.00068	1.2	< 0.002	< 0.0004	< 0.0001	0.382	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00002	0.0208	0.12
EAG-13-497_56	0.002	-	0.0129	0.00113	1.2	0.009	< 0.0004	< 0.0001	0.272	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	< 0.00002	0.00471	0.75
EAG-14-538_58	0.002	-	0.0124	0.00064	1.5	0.002	< 0.0004	0.0001	0.147	< 0.001	< 0.0005	< 0.00005	0.001	0.0007	0.00003	0.00437	0.04
OBM-15-559_59	0.009	-	0.001	0.00024	1.9	< 0.002	< 0.0004	0.0006	0.121	< 0.001	< 0.0005	0.00016	< 0.001	< 0.0001	0.00008	0.00345	< 0.02
OBM-15-566_60	0.011	-	0.0007	0.0003	0.9	< 0.002	< 0.0004	< 0.0001	0.259	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00003	0.0079	0.19
OBM-16-671_63	0.033	-	0.0009	0.00031	1.2	< 0.002	< 0.0004	< 0.0001	3.33	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00002	0.0245	0.07
OBM-16-673 64	0.004	-	0.17	0.00037	1.4	< 0.002	0.0004	0.0002	0.16	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00002	0.00987	0.03
OBM-16-645 69	0.016	-	0.0017	0.0001	1.2	< 0.002	< 0.0004	< 0.0001	0.493	< 0.001	< 0.0005	0.00007	< 0.001	< 0.0001	< 0.00002	0.0121	0.11
OBM-16-642 70	0.016	-	0.0006	0.00009	1.1	< 0.002	< 0.0004	< 0.0001	0.626	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00002	0.0154	0.04
OSK-W-17-774 72	0.005	-	0.0038	0.00047	0.8	< 0.002	< 0.0004	0.0001	2.08	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.00002	0.0222	0.06
OSK-W-17-918_73	0.008	-	0.001	0.00064	1	0.002	< 0.0004	< 0.0001	0.091	< 0.001	< 0.0005	0.00008	< 0.001	< 0.0001	0.00009	0.00964	0.16
OSK-W-17-879 74	0.022	-	0.0003	0.00033	1.2	< 0.002	< 0.0004	< 0.0001	0.103	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	< 0.00002	0.00515	0.26
OSK-W-17-1006 75	0.009	-	0.0007	0.00027	1	< 0.002	< 0.0004	< 0.0001	0.1	< 0.001	< 0.0005	0.00005	< 0.001	< 0.0001	0.00003	0.00775	0.17
OSK-W-17-1039_76	0.009	-	0.0008	0.00037	1.1	< 0.002	< 0.0004	< 0.0001	0.109	< 0.001	< 0.0005	0.00005	< 0.001	< 0.0001	0.00002	0.00923	0.19
OSK-W-17-934_77	0.013	-	0.0032	0.00038	1.2	0.002	< 0.0004	< 0.0001	0.132	< 0.001	< 0.0005	0.00006	< 0.001	< 0.0001	0.00004	0.00931	0.21
Tails CND 1	0.063	< 0.03	0.0835	0.0005	2.8	0.002	< 0.0004	0.00015	0.316	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.0003	0.00226	1.19
Tails CND 4	0.048	< 0.03	0.0532	0.00044	3.1	0.003	< 0.0004	0.00009	0.422	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	< 0.0002	0.00351	0.51
Tails CND 5	0.045	< 0.03	0.0923	0.00045	3.5	0.006	0.0006	0.00018	0.384	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	0.0005	0.00366	0.29
Tails CND 6	0.034	< 0.03	0.321	0.00096	4.6	0.017	< 0.0004	0.00006	0.339	< 0.001	0.0017	< 0.00005	< 0.001	< 0.0001	< 0.0002	0.00643	0.52
Triple Lynx LG	0.003	< 0.003	0.0854	0.00031	0.98	< 0.009	< 0.0004	-	-	< 0.0001	< 0.0005	< 0.00005	0.0005	< 0.00001	< 0.00002	-	0.03
Lynx 4 LP-LG	0.005	< 0.003	0.163	0.00016	0.99	< 0.009	0.0007	-	-	< 0.0001	< 0.0005	< 0.00005	0.0001	< 0.00001	< 0.00002	-	0.06
Lynx 4 HP-LG	0.014	< 0.003	0.0582	0.00031	1.29	< 0.009	< 0.0004	-	-	< 0.0001	< 0.0005	< 0.00005	0.0003	< 0.00001	< 0.00002	-	0.06
Triple Lynx MG/HG	0.01	< 0.003	0.0442	0.0003	1.06	< 0.009	< 0.0004	-	-	< 0.0001	< 0.0005	< 0.00005	< 0.0001	< 0.00001	< 0.00002	-	0.09
Lynx 4 LP-MG/HG	0.011	< 0.003	0.0338	0.0002	1.16	< 0.009	< 0.0004	-	-	< 0.0001	< 0.0005	< 0.00005	< 0.0001	< 0.00001	< 0.00002	-	0.1
Lynx 4 HP-MG/HG	0.057	< 0.003	0.014	0.00021	1.13	< 0.009	< 0.0004	-	-	< 0.0001	< 0.0005	< 0.00005	< 0.0001	< 0.00001	< 0.00002	-	0.1
GC10001	0.0095	< 0.003	0.00199	0.00036	1.34	0.0012	0.0008	-	-	< 0.0001	0.00015	0.00011	0.0003	< 0.00001	0.00036	-	0.105
GC10002	0.0101	< 0.003	0.0048	0.00045	1.34	0.0015	0.0005	-	-	< 0.0001	< 0.00005	0.0001	0.0004	< 0.00001	0.00002	-	0.188
GC10004	0.0028	< 0.003	0.0012	0.000048	0.2	< 0.0009	0.00004	-	-	< 0.0001	< 0.00005	0.000009	0.0008	0.00007	< 0.00002	-	0.024
GC10005	0.0409	< 0.003	0.0296	0.0038	14.8	0.0102	0.00174	-	-	0.0002	0.00067	0.0002	0.0046	< 0.00001	0.0005	-	1
GC10006	0.0104	< 0.003	0.00228	0.00029	1.29	0.0016	0.00035	-	-	0.0001	0.00013	0.00004	0.0004	< 0.00001	< 0.00002	-	0.142

Identification de	Ni	Р	Pb	U	Si	Sb	Se	Sn	Sr	Te	Ti	TI	Th	v	w	Υ	Zn
l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
GC10009	0.0037	< 0.003	0.0535	0.00042	1.35	0.001	0.00028	-	-	< 0.0001	0.00045	0.00004	0.0007	< 0.00001	< 0.00002	-	0.079
GC10010	0.0053	< 0.003	0.00168	0.00016	1.86	< 0.0009	0.00015	-	-	< 0.0001	0.0002	0.00004	0.0003	< 0.00001	0.00005	-	0.127
GC10012	0.0074	< 0.003	0.00791	0.00015	1.75	0.0021	0.0002	-	-	0.0003	0.00013	0.00004	0.0003	< 0.00001	< 0.00002	-	0.034
GC10017	0.0388	< 0.003	0.00622	0.000279	2.71	< 0.0009	0.00005	-	-	< 0.0001	0.00046	0.000011	0.0032	0.00167	< 0.00002	-	0.082
GC10018	0.0622	< 0.003	0.00082	0.000097	2.29	< 0.0009	0.00007	-	-	< 0.0001	0.00005	0.000011	0.0002	< 0.00001	< 0.00002	-	0.122
GC10019	0.0082	0.053	0.00018	0.000002	1.66	< 0.0009	0.00005	-	-	< 0.0001	0.0001	< 0.000005	< 0.0001	0.00001	< 0.00002	-	0.006
GC10021	0.0325	< 0.003	0.00499	0.000029	3.15	< 0.0009	0.00008	-	-	< 0.0001	0.00006	0.000009	< 0.0001	< 0.00001	< 0.00002	-	0.031
GC10022	0.0076	< 0.003	0.0022	0.000004	1.9	< 0.0009	0.0001	-	-	< 0.0001	0.00011	0.000008	< 0.0001	< 0.00001	0.00003	-	0.014
GC10026	0.0047	< 0.003	0.00128	0.0003	1.27	0.0012	0.00004	-	-	< 0.0001	0.00006	0.00001	0.0002	< 0.00001	< 0.00002	-	0.085
GC10029	0.0102	< 0.003	0.00059	0.00021	1.68	0.001	0.00009	-	-	< 0.0001	0.00017	0.00001	0.0002	< 0.00001	< 0.00002	-	0.047
GC10030	0.0024	< 0.003	0.0648	0.00049	1.25	0.0011	0.00016	-	-	< 0.0001	0.0001	0.00001	0.0007	< 0.00001	< 0.00002	-	0.092
CIL 11 CND	0.0142	< 0.003	0.00822	0.000449	2.74	0.001	0.00045	-	-	< 0.0001	< 0.00005	0.000073	< 0.0001	< 0.00001	< 0.00002	-	0.216
CIL 12 CND	0.017	< 0.003	0.0123	0.000233	2.11	0.0014	0.00048	-	-	< 0.0001	0.0001	0.000046	0.0001	< 0.00001	< 0.00002	-	0.209
CIL 13 CND	0.0414	< 0.003	0.00227	0.000239	2.18	0.0015	0.00027	-	-	< 0.0001	< 0.00005	0.000028	< 0.0001	0.00052	< 0.00002	-	0.173
OSK-W-21-2613-1042	0.023	< 0.003	0.0133	0.00042	1.71	0.012	< 0.0004	< 0.00006	0.149	< 0.0001	< 0.0005	< 0.00005	0.0002	< 0.00001	0.00004	-	0.1
OSK-W-21-2587-990	0.003	< 0.003	0.00861	0.00029	1.6	< 0.009	< 0.0004	0.00007	0.119	< 0.0001	< 0.0005	< 0.00005	0.0008	0.00001	0.00004	-	0.08
OSK-W-19-1897-880	0.002	< 0.003	0.00224	0.00009	1.61	< 0.009	< 0.0004	< 0.00006	0.404	< 0.0001	< 0.0005	< 0.00005	0.0002	< 0.00001	0.00003	-	< 0.02
OSK-W-19-1897-983	0.002	0.003	0.00776	0.000653	1.16	< 0.009	< 0.0004	< 0.00006	0.284	< 0.0001	< 0.0005	< 0.00005	< 0.0001	< 0.00001	0.00002	-	< 0.02
OSK-W-21-2252-W12-922	0.001	< 0.003	0.0138	0.000419	1.26	< 0.009	< 0.0004	< 0.00006	0.084	< 0.0001	< 0.0005	< 0.00005	0.0043	0.00006	< 0.00002	-	0.02
OSK-W-20-2283-W7-888	0.008	0.01	0.0217	0.00045	1.47	< 0.009	< 0.0004	0.00006	0.184	< 0.0001	< 0.0005	< 0.00005	0.0004	0.00001	0.00003	-	0.07
OSK-W-20-2375-W4-890	0.004	< 0.003	0.00241	0.000678	1.38	< 0.009	< 0.0004	< 0.00006	0.101	< 0.0001	< 0.0005	< 0.00005	0.0009	0.00003	< 0.00002	-	0.03
OSK-W-21-2444-610	0.001	< 0.003	0.00447	0.000091	1.15	< 0.009	< 0.0004	< 0.00006	0.556	< 0.0001	< 0.0005	< 0.00005	< 0.0001	0.00002	< 0.00002	-	< 0.02
WST-21-0647-260	0.002	0.02	0.0493	0.00049	0.9	< 0.009	0.0025	0.00009	0.065	0.0006	0.0033	< 0.00005	0.0028	0.00007	0.00015	-	0.04
WST-22-1013-345	0.015	< 0.003	0.07089	0.00054	1.12	< 0.009	0.0008	0.00007	0.135	0.0003	0.0008	0.0002	0.0019	0.0001	0.00014	-	0.22
WST-21-0873-268.1	0.002	< 0.003	0.03769	0.00057	1.05	< 0.009	0.0009	< 0.00006	0.067	< 0.0001	0.0028	< 0.00005	0.0041	0.00011	0.00011	-	0.03
OSK-W-16-706-W2-905	0.003	< 0.003	0.00118	0.00023	1.14	< 0.009	0.0024	0.00009	0.501	0.0004	0.0026	0.00036	0.0003	0.00015	0.00243	-	< 0.02
OSK-W-16-743-W1-915	0.005	< 0.003	0.01308	0.000491	2.76	< 0.009	< 0.0004	< 0.00006	0.224	< 0.0001	< 0.0005	< 0.00005	< 0.0001	0.00012	< 0.00002	-	< 0.02
OSK-W-17-1369-219.5	0.002	< 0.003	0.01314	0.00083	1.24	< 0.009	0.0026	0.00009	0.187	0.0008	0.0014	0.00024	0.0038	0.00037	0.00149	-	0.06
DSK-W-19-1181-W12-1140	0.003	< 0.003	0.01717	0.0002	1.01	< 0.009	0.0011	< 0.00006	0.082	0.0004	0.0027	0.00016	0.0008	0.0003	0.00093	-	0.05
OSK-W-19-1746-W1-687	0.003	< 0.003	0.01059	0.00049	1.13	< 0.009	< 0.0004	0.00006	0.086	0.0004	0.0024	< 0.00005	0.0006	0.00005	0.00047	-	0.08
OSK-W-17-1369-365	0.001	< 0.003	0.01561	0.00076	1.2	< 0.009	0.0008	0.00011	0.2	0.0008	0.0027	0.00008	0.0003	< 0.00001	0.00048	-	0.06
OSK-W-19-909-W12-955	0.003	< 0.003	0.00852	0.00049	1.04	< 0.009	0.0031	0.00008	0.09	0.0007	0.0034	< 0.00005	0.0008	0.00008	0.00023	-	0.13
OSK-W-19-934-W3-885	0.007	< 0.003	0.0246	0.00047	1.11	< 0.009	0.0017	0.00007	0.08	0.0005	0.0028	0.00005	0.001	0.00003	0.00031	-	0.06
OSK-W-21-2613-W1-1105	0.004	0.01	0.0381	0.00062	0.91	< 0.009	0.0005	< 0.00006	0.218	0.0001	0.0037	< 0.00005	0.0004	0.00011	0.00037	-	0.1
OSK-W-19-934-W3-1045	0.002	0.01	0.0324	0.00072	1	< 0.009	< 0.0004	< 0.00006	0.083	0.0005	0.0043	0.00012	0.0011	0.00018	0.00062	-	0.06
OSK-W-21-2605-1332	0.01	< 0.003	0.00242	0.00077	1.09	< 0.009	0.0027	< 0.00006	0.103	0.0005	0.0031	0.00015	0.0006	0.0003	0.00074	-	0.07

Identification de l'échantillon	Ni	Р	Pb	U	Si	Sb	Se	Sn	Sr	Те	Ti	TI	Th	v	w	Y	Zn
rechantinon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
OBM-15-564_79	0.007	0.04	0.311	0.0004	1.9	0.006	< 0.0004	0.0001	0.23	< 0.001	< 0.0005	< 0.00005	< 0.001	0.0003	< 0.0002	-	0.42
OBM-15-557_80	0.002	0.04	0.0219	0.00014	1.3	0.004	0.0004	< 0.0001	0.706	< 0.001	< 0.0005	< 0.00005	< 0.001	0.0003	< 0.0002	-	0.04
OBM-15-552_81	0.005	0.04	0.0363	0.00034	1.5	0.003	< 0.0004	< 0.0001	0.269	< 0.001	< 0.0005	< 0.00005	< 0.001	0.0003	< 0.0002	-	0.06
OSK-W-16-311-W2_84	0.005	0.03	0.0418	0.00019	1.5	0.002	< 0.0004	0.0002	0.396	< 0.001	< 0.0005	< 0.00005	< 0.001	0.0002	< 0.0002	-	0.05
OSK-W-16-706-W1_85	0.006	< 0.03	0.0027	0.00021	1.7	< 0.002	< 0.0004	0.0001	0.564	< 0.001	< 0.0005	< 0.00005	< 0.001	0.0001	< 0.0002	-	0.04
OSK-W-16-706-W1_86	0.002	0.04	0.0098	0.00005	1.5	0.002	< 0.0004	< 0.0001	0.472	< 0.001	< 0.0005	< 0.00005	< 0.001	0.0002	< 0.0002	-	0.03
OSK-W-16-706-W1_87	0.003	0.05	0.0079	0.00012	1.4	0.005	< 0.0004	< 0.0001	0.407	< 0.001	< 0.0005	< 0.00005	< 0.001	0.0002	< 0.0002	-	< 0.02
OSK-W-16-706-W1_88	0.002	0.05	0.0065	0.00049	1.3	< 0.002	< 0.0004	< 0.0001	0.188	< 0.001	< 0.0005	< 0.00005	< 0.001	0.0002	< 0.0002	-	< 0.02
OSK-W-16-706-W2_89	0.002	0.03	0.0084	0.00083	1.3	< 0.002	< 0.0004	< 0.0001	0.307	< 0.001	< 0.0005	< 0.00005	< 0.001	0.0002	< 0.0002	-	< 0.02
OSK-W-16-708-W2_91	0.003	< 0.03	0.0073	0.00014	1.2	< 0.002	< 0.0004	< 0.0001	0.324	< 0.001	< 0.0005	< 0.00005	< 0.001	0.0002	< 0.0002	-	< 0.02
OSK-W-16-735-W2_92	0.005	0.05	0.0101	0.00101	1.3	0.004	0.0004	< 0.0001	0.369	< 0.001	< 0.0005	< 0.00005	< 0.001	0.0002	< 0.0002	-	0.05
OSK-W-16-743_93	0.005	0.04	0.007	0.00056	1.5	0.028	< 0.0004	< 0.0001	0.076	< 0.001	< 0.0005	< 0.00005	< 0.001	0.0004	< 0.0002	-	0.02
OSK-W-16-754_95	0.002	0.03	0.0028	0.00067	1	< 0.002	< 0.0004	< 0.0001	0.585	< 0.001	< 0.0005	< 0.00005	< 0.001	0.0002	< 0.0002	-	< 0.02
OSK-W-16-754_96	0.003	0.03	0.0015	0.00003	1.4	0.003	< 0.0004	< 0.0001	0.608	< 0.001	< 0.0005	< 0.00005	< 0.001	0.0001	< 0.0002	-	< 0.02
OSK-W-17-774_98	0.002	0.04	0.0069	0.00034	1.2	< 0.002	< 0.0004	< 0.0001	0.287	< 0.001	< 0.0005	< 0.00005	< 0.001	0.0002	< 0.0002	-	< 0.02
OSK-W-17-789_99	0.003	< 0.03	0.0087	0.00054	1.8	0.002	< 0.0004	< 0.0001	0.089	< 0.001	< 0.0005	< 0.00005	< 0.001	0.0003	< 0.0002	-	< 0.02
OSK-W-17-789_100	0.004	< 0.03	0.0036	0.00052	1.3	0.004	0.0005	< 0.0001	0.328	< 0.001	< 0.0005	< 0.00005	< 0.001	< 0.0001	< 0.0002	-	< 0.02
OSK-W-17-812_101	0.015	0.05	0.002	0.0003	1.6	0.004	< 0.0004	< 0.0001	0.164	< 0.001	< 0.0005	< 0.00005	< 0.001	0.0001	< 0.0002	-	0.13
OSK-W-17-812_102	0.02	0.04	0.0032	0.00034	1.3	< 0.002	< 0.0004	< 0.0001	0.118	< 0.001	< 0.0005	< 0.00005	< 0.001	0.0001	< 0.0002	-	0.21
OBM-15-552_103	0.004	< 0.03	0.0008	0.00006	1.3	0.002	0.0005	< 0.0001	0.888	< 0.001	< 0.0005	< 0.00005	< 0.001	0.0002	< 0.0002	-	< 0.02
OSK-W-16-311-W1_83	0.009	0.04	0.0177	0.00019	2.1	0.003	< 0.0004	0.0001	0.179	< 0.001	< 0.0005	< 0.00005	< 0.001	0.0002	< 0.0002	-	0.04

Identification de	Type de	Poids de l'échantillon	Volume Ext	pH final	рН	Conductivité	Alcalinité	HCO₃	CO ₃	SO ₄	CI	P total réactif
l'échantillon	l'échantillon	g	mL	pas d'unité	pas d'unité	μS/cm	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L	mg/L	mg/L
E-27-D-H	Minerai	20	400	8.32	8.0	136	34	-	-	13	< 2	< 0.03
E-27-D-L	Minerai	20	400	8.07	7.9	121	30	-	-	13	< 2	< 0.03
E-27-U-H	Minerai	20	400	8.08	7.8	116	31	-	-	13	< 2	< 0.03
E-27-U-L	Minerai	20	400	8.1	7.8	137	32	-	-	18	< 2	< 0.03
E-CA-D-H	Minerai	20	400	8.61	8.0	123	35	-	-	10	< 2	< 0.03
E-CA-D-L	Minerai	20	400	8.59	8.0	122	33	-	-	9.6	< 2	< 0.03
E-CA-U-H	Minerai	20	400	8.29	8.0	150	37	-	-	21	< 2	< 0.03
E-CA-U-L	Minerai	20	400	8.18	7.8	95	27	-	-	11	< 2	< 0.03
Under Dog A	Minerai	20	400	8.42	7.8	140	33	33	< 2	9	4.3	< 0.03
Under Dog B	Minerai	20	400	8.81	8.0	91	29	29	< 2	6.5	< 2	< 0.03
Under Dog C	Minerai	20	400	7.92	7.7	152	32	32	< 2	17	< 2	< 0.03
P3-I	Minerai	20	400	8.98	7.9	82	31	31	< 2	4	< 2	< 0.03
P3-J	Minerai	20	400	9	7.9	96	33	33	< 2	5	< 2	< 0.03
P3-K	Minerai	20	400	8.65	7.7	76	31	31	< 2	5.2	< 2	< 0.03
P3-L	Minerai	20	400	8.93	7.9	84	31	31	< 2	5.2	< 2	< 0.03
EAG-13-485 2	Stériles	20	400	9.26	7.5	74	30	30	< 2	2.9	< 2	< 0.3
EAG-13-485 3	Stériles	20	400	9.01	7.6	71	30	30	< 2	3.6	< 2	< 0.3
EAG-13-485 4	Stériles	20	400	9.27	8.0	75	33	33	< 2	3.5	< 2	< 0.3
OBM-15-557 10	Stériles	20	400	9.51	8.0	78	31	31	< 2	4 4	< 2	< 0.3
OBM-15-559 11	Stériles	20	400	8.93	7.3	54	17	17	< 2	3.4	< 2	< 0.3
OBM-15-559 12	Stériles	20	400	9.53	7.6	63	26	26	< 2	3.8	< 2	< 0.3
OBM-15-559_13	Stériles	20	400	9.23	7.8	67	29	29	< 2	3	< 2	< 0.3
OBM-16-580 17	Stériles	20	400	8.35	7.8	164	41	41	< 2	14	< 2	< 0.3
OBM-16-580 18	Stériles	20	400	9.15	7.6	60	21	21	< 2	3.8	< 2	< 0.3
OBM-16-645 22	Stériles	20	400	8.97	7.6	73	29	29	< 2	3.9	< 2	< 0.3
OBM-16-671 23	Stériles	20	400	9.23	8.0	74	29	29	< 2	4.7	< 2	< 0.3
OSK-W-16-715 27	Stériles	20	400	9.23	7.9	83	35	35	< 2	3.8	< 2	< 0.3
OSK-W-16-713_27	Stériles	20	400	9.03	7.8	63	25	25	< 2	3.2	< 2	< 0.3
OSK-W-16-751_29	Stériles	20	400	9.23	8.0	66	29	29	< 2	2.9	< 2	< 0.3
OSK-W-16-760 31	Stériles	20	400	9.11	7.7	64	24	24	< 2	3.3	< 2	< 0.3
OSK-W-10-700_31	Stériles	20	400	9.06	8.1	93	44	44	< 2	2.9	< 2	< 0.3
OSK-W-17-773_37	Stériles	20	400	9.22	7.9	80	31	31	< 2	3.8	< 2	< 0.3
OSK-W-17-773_30	Stériles	20	400	9.25	8.0	88	42	42	< 2	3.1	< 2	< 0.3
OSK-W-17-773_59 OSK-W-17-773_41	Stériles	20	400	9.19	7.9	72	31	31	< 2	2.8	< 2	< 0.3
OSK-W-17-773_41	Stériles	20	400	9.19	7.9	93	36	36	< 2	3.8	< 2	< 0.3
OSK-W-17-773_42	Stériles	20	400	9.36	7.8	63	25	25	< 2	< 2	< 2	< 0.3
OSK-W-17-779 46	Stériles	20	400	9.30	7.7	66	28	28	< 2	2.8	< 2	< 0.3
OSK-W-17-779_40	Stériles	20	400	9.13	7.7	102	18	18	< 2	2.0	< 2	< 0.3
OSK-W-17-779_47	Stériles	20	400	9.13	8.0	68	28	28	< 2	3.1	< 2	< 0.3
EAG-13-485 53	Stériles	20	400	8.19	7.5	69	17	17	< 2	6.2	< 2	< 0.3
EAG-13-465_55 EAG-13-497_56	Stériles	20	400	8.16	7.5	90	20	20	< 2	12	< 2	< 0.3
EAG-13-497_56 EAG-13-513_57	Stériles	20	400	8.27	7.6	160	39	39	< 2	13	< 2	< 0.3
	Stériles	20	400	8.02	7.0	37	6	6		4.6	< 2	< 0.3
EAG-14-538_58									< 2			
OBM-15-559_59	Stériles	20	400	8.89	7.9	87	26	26	< 2	5.4	< 2	< 0.3
OBM-15-566_60	Stériles	20	400	9.49	8.4	82	35	34	< 2	2.8	< 2	< 0.3
OBM-16-630_61	Stériles	20	400	8.62	7.7	90	27	27	< 2	5.3	< 2	< 0.3

Identification de	Type de	Poids de l'échantillon	Volume Ext	pH final	рН	Conductivité	Alcalinité	HCO₃	CO ₃	SO ₄	CI	P total réactif
l'échantillon	l'échantillon	g	mL	pas d'unité	pas d'unité	μS/cm	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L	mg/L	mg/L
OBM-16-654_62	Stériles	20	400	5.43	5.6	45	< 2	< 2	< 2	11	< 2	< 0.3
OBM-16-671_63	Stériles	20	400	9.37	7.9	79	25	25	< 2	9.9	< 2	< 0.3
OBM-16-673_64	Stériles	20	400	8.19	7.4	114	25	25	< 2	9.4	< 2	16.7
OSK-W-16-760_67	Stériles	20	400	8.98	7.8	94	26	26	< 2	4.7	2.9	< 0.3
OBM-16-580_68	Stériles	20	400	8.95	7.8	88	27	27	< 2	5.4	< 2	< 0.3
OBM-16-645_69	Stériles	20	400	8.64	7.8	131	42	42	< 2	6.5	< 2	< 0.3
OBM-16-642_70	Stériles	20	400	8.96	7.9	113	38	38	< 2	5.3	< 2	< 0.3
OSK-W-17-774_72	Stériles	20	400	9.31	8.0	79	28	28	< 2	6.2	< 2	< 0.3
OSK-W-17-1006_75	Stériles	20	400	8.93	7.8	96	34	34	< 2	4.2	< 2	< 0.3
OSK-W-17-934_77	Stériles	20	400	9.28	7.9	70	29	29	< 2	3.1	< 2	0.5
Tails CND 1	Résidus	20	400	8.28	7.9	198	39	39	< 2	46	< 2	< 0.03
Tails CND 4	Résidus	20	400	8.25	7.9	227	39	39	< 2	59	< 2	< 0.03
Tails CND 5	Résidus	20	400	8.35	7.8	174	33	33	< 2	40	< 2	< 0.03
Tails CND 6	Résidus	20	400	8.23	7.8	211	35	35	< 2	54	< 2	< 0.03
Triple Lynx LG	Minerai	20	400	-	7.8	72	27	27	< 2	5.2	< 2	< 0.03
Lynx 4 LP-LG	Minerai	20	400	-	7.8	83	28	28	< 2	6.3	< 2	< 0.03
Lynx 4 HP-LG	Minerai	20	400	-	7.8	73	25	25	< 2	4.9	< 2	< 0.03
Triple Lynx MG/HG	Minerai	20	400	-	7.8	95	30	30	< 2	6.4	< 2	< 0.03
Lynx 4 LP-MG/HG	Minerai	20	400	-	7.8	99	34	34	< 2	7.5	< 2	< 0.03
Lynx 4 HP-MG/HG	Minerai	20	400	-	7.8	105	35	35	< 2	7.9	< 2	< 0.03
GC10001	Stériles	20	400	-	8.0	73	34	34	< 2	3.2	< 2	< 0.03
GC10002	Stériles	20	400	-	7.9	67	31	31	< 2	4.4	< 2	< 0.03
GC10003	Stériles	20	400	-	8.1	79	38	38	< 2	2.4	< 2	< 0.03
GC10004	Stériles	20	400	-	7.9	72	33	33	< 2	2.8	< 2	< 0.03
GC10005	Stériles	20	400	-	7.9	73	31	31	< 2	3.7	< 2	< 0.03
GC10006	Stériles	20	400	-	8.0	68	32	32	< 2	2.7	< 2	< 0.03
GC10007	Stériles	20	400	-	8.0	69	32	32	< 2	2.4	< 2	< 0.03
GC10008	Stériles	20	400	-	7.9	61	26	26	< 2	2.7	< 2	< 0.03
GC10009	Stériles	20	400	-	7.9	64	29	29	< 2	2.9	< 2	< 0.03
GC10010	Stériles	20	400	-	8.1	78	34	34	< 2	3.4	< 2	< 0.03
GC10011	Stériles	20	400	-	8.0	58	26	26	< 2	2.6	< 2	< 0.03
GC10012	Stériles	20	400	-	7.9	75	27	27	< 2	7.4	< 2	< 0.03
GC10013	Stériles	20	400	-	8.1	74	32	32	< 2	2.7	< 2	< 0.03
GC10014	Stériles	20	400	-	7.8	70	25	25	< 2	8.1	< 2	< 0.03
GC10015	Stériles	20	400	-	7.9	57	27	27	< 2	2	< 2	< 0.03
GC10016	Stériles	20	400	-	7.8	52	26	26	< 2	2	< 2	< 0.03
GC10017	Stériles	20	400	-	8.0	84	37	37	< 2	3.3	< 2	< 0.03
GC10018	Stériles	20	400	-	8.0	87	41	41	< 2	3.2	< 2	< 0.03
GC10019	Stériles	20	400	-	8.1	67	30	30	< 2	3	< 2	< 0.03
GC10020	Stériles	20	400	-	8.0	71	34	34	< 2	2.5	< 2	< 0.03
GC10021	Stériles	20	400	-	7.9	72	32	32	< 2	3.2	< 2	< 0.03
GC10022	Stériles	20	400	-	7.9	72	29	29	< 2	3.5	< 2	< 0.03
GC10023	Stériles	20	400	-	8.1	83	41	41	< 2	2.2	< 2	< 0.03
GC10024	Stériles	20	400	-	7.6	137	15	15	< 2	44	< 2	< 0.03
GC10025	Stériles	20	400	-	7.9	59	26	26	< 2	2.4	< 2	< 0.03
GC10026	Stériles	20	400	_	7.9	79	32	32	< 2	4	< 2	< 0.03

Identification de	Type de	Poids de l'échantillon	Volume Ext	pH final	рН	Conductivité	Alcalinité	HCO₃	CO ₃	SO ₄	CI	P total réactif
l'échantillon	l'échantillon	g	mL	pas d'unité	pas d'unité	μS/cm	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L	mg/L	mg/L
GC10027	Stériles	20	400	-	7.9	63	27	27	< 2	3.2	< 2	< 0.03
GC10028	Stériles	20	400	-	8.0	67	32	32	< 2	2.5	< 2	< 0.03
GC10029	Stériles	20	400	-	7.9	70	30	30	< 2	3.3	< 2	< 0.03
GC10030	Stériles	20	400	-	7.8	64	26	26	< 2	3.2	< 2	< 0.03
GC10031	Stériles	20	400	-	7.9	56	26	26	< 2	2.1	< 2	< 0.03
GC10032	Stériles	20	400	-	8.0	65	29	29	< 2	2.7	< 2	< 0.03
CIL 11 CND	Résidus	20	400	-	7.7	121	25	25	< 2	26	< 2	< 0.03
CIL 12 CND	Résidus	20	400	-	7.7	95	28	28	< 2	12	< 2	< 0.03
CIL 13 CND	Résidus	20	400	-	7.7	84	30	30	< 2	4.4	< 2	< 0.03
OSK-W-21-2613-1042	Stériles	20	400	9.08	7.7	66	22	22	< 2	< 20	< 20	< 0.03
OSK-W-21-2587-1060	Stériles	20	400	9.08	7.6	60	24	24	< 2	< 20	< 20	< 0.03
WST-21-0879-639	Stériles	20	400	9.2	7.8	71	33	33	< 2	< 20	< 20	< 0.03
OSK-W-19-1897-610	Stériles	20	400	9.36	7.7	67	27	27	< 2	< 20	< 20	< 0.03
OSK-W-19-1897-825	Stériles	20	400	9.21	7.8	68	29	29	< 2	< 20	< 20	< 0.03
OSK-W-19-1897-983	Stériles	20	400	8.96	7.7	82	28	28	< 2	< 20	< 20	< 0.03
OSK-W-20-2323-115	Stériles	20	400	9	7.7	72	27	27	< 2	< 20	< 20	< 0.03
OSK-W-19-1949-W1-948	Stériles	20	400	9.17	7.8	77	37	37	< 2	< 20	< 20	< 0.03
OSK-W-21-2252-W12-922	Stériles	20	400	8.1	7.4	46	12	12	< 2	< 20	< 20	< 0.03
OSK-W-21-2252-1013	Stériles	20	400	9.31	7.8	71	30	30	< 2	< 20	< 20	< 0.03
OSK-W-20-2283-W7-888	Stériles	20	400	9.06	7.7	70	27	27	< 2	< 20	< 20	< 0.03
OSK-W-20-2256-W1-1051.7	Stériles	20	400	9.25	7.8	71	29	29	< 2	< 20	< 20	< 0.03
OSK-W-20-2375-W4-890	Stériles	20	400	8.79	7.6	64	21	21	< 2	< 20	< 20	< 0.03
OSK-W-20-2350-125	Stériles	20	400	9.31	7.9	76	34	34	< 2	< 20	< 20	< 0.03
OSK-W-21-2444-545	Stériles	20	400	9.01	7.5	148	17	17	< 2	52	< 20	< 0.03
OSK-W-19-1746-W1-765	Stériles	20	400	9.02	7.5	55	20	20	< 2	< 20	< 20	< 0.03
OSK-W-17-663-W2-680	Stériles	20	400	8.84	7.2	102	18	18	< 2	< 20	< 20	< 0.03
OSK-W-19-1857-W2-1030	Stériles	20	400	9.28	7.7	65	23	23	< 2	< 20	< 20	< 0.03
OSK-W-19-1857-W2-1210	Stériles	20	400	9.22	7.5	94	21	21	< 2	< 20	< 20	< 0.03
OSK-W-19-1897-496	Stériles	20	400	8.92	7.6	76	22	22	< 2	< 20	< 20	< 0.03
OSK-W-19-909-W12-770	Stériles	20	400	9.32	7.6	66	24	24	< 2	< 20	< 20	< 0.03
OSK-W-19-934-W3-940	Stériles	20	400	9.3	7.5	64	21	21	< 2	< 20	< 20	< 0.03
OSK-W-19-934-W3-1045	Stériles	20	400	9.05	7.4	54	17	17	< 2	< 20	< 20	< 0.03
OSK-W-21-2512-W3-610	Stériles	20	400	9.21	7.5	115	17	17	< 2	28	< 20	< 0.03
OKS-W-21-2613-W1-855	Stériles	20	400	9.17	7.4	56	23	23	< 2	< 20	< 20	< 0.03
OSK-W-21-2629-845	Stériles	20	400	9.17	7.8	74	29	29	< 2	< 20	< 20	< 0.03
OSK-W-21-2605-1332	Stériles	20	400	8.52	7.6	103	28	28	< 2	< 20	< 20	< 0.03
OSK-W-21-2629-948	Stériles	20	400	9.09	7.7	79	31	31	< 2	< 20	< 20	< 0.03
OBM-15-552-280	Stériles	20	400	9.3	7.9	73	32	32	< 2	< 20	< 20	< 0.03
OBM-16-655-600	Stériles	20	400	9.25	7.8	67	26	26	< 2	< 20	< 20	< 0.03
OBM-16-655-330	Stériles	20	400	9.01	7.8	82	33	33	< 2	< 20	< 20	< 0.03
OBM-16-677-79	Stériles	20	400	9.35	7.9	74	34	34	< 2	< 20	< 20	< 0.03
OSK-W-16-706-W2-905	Stériles	20	400	9.2	7.6	65	11	11	< 2	< 20	< 20	< 0.03
OSK-W-17-1079-580	Stériles	20	400	9.13	7.6	63	24	24	< 2	< 20	< 20	< 0.03
OSK-W-17-1104-665	Stériles	20	400	8.86	7.5	164	21	21	< 2	69	< 20	< 0.03
OSK-W-17-1121-545	Stériles	20	400	9.42	7.6	51	22	22	< 2	< 20	< 20	< 0.03
OSK-W-17-1305-261	Stériles	20	400	9.38	7.8	70	30	30	< 2	< 20	< 20	< 0.03

Identification de	Type de	Poids de l'échantillon	Volume Ext	pH final	рН	Conductivité	Alcalinité	HCO ₃	CO ₃	SO ₄	CI	P total réactif
l'échantillon	l'échantillon	g	mL	pas d'unité	pas d'unité	μS/cm	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L	mg/L	mg/L
OSK-W-17-1369-219.5	Stériles	20	400	8.85	7.4	48	17	17	< 2	< 20	< 20	< 0.03
OSK-W-17-968-145	Stériles	20	400	9.14	7.8	74	32	32	< 2	< 20	< 20	< 0.03
OSK-W-18-1386-W4-885	Stériles	20	400	9.15	7.9	92	41	41	< 2	< 20	< 20	< 0.03
OSK-W-18-1608-805	Stériles	20	400	9.2	7.8	81	38	38	< 2	< 20	< 20	< 0.03
OSK-W-18-1713-470	Stériles	20	400	9.28	7.7	59	26	26	< 2	< 20	< 20	< 0.03
OSK-W-18-1759-190	Stériles	20	400	9.04	7.5	55	23	23	< 2	< 20	< 20	< 0.03
OSK-W-19-1181-W12-1140	Stériles	20	400	9.13	7.6	63	25	25	< 2	< 20	< 20	< 0.03
OSK-W-19-1181-W5-845	Stériles	20	400	9.36	7.8	63	30	30	< 2	< 20	< 20	< 0.03
OSK-W-19-1181-W5-970	Stériles	20	400	8.72	7.6	144	25	25	< 2	41	< 20	< 0.03
OSK-W-19-1412-W3-715	Stériles	20	400	9.12	7.8	79	37	37	< 2	< 20	< 20	< 0.03
OSK-W-19-1412-W3-765	Stériles	20	400	8.91	7.8	81	38	38	< 2	< 20	< 20	< 0.03
WST-21-0647-161.5	Stériles	20	400	9.03	7.9	66	30	30	< 2	< 20	< 20	< 0.03
WST-21-0647-313	Stériles	20	400	8.69	7.5	52	23	23	< 2	< 20	< 20	< 0.03
WST-19-0160A-55	Stériles	20	400	8.87	7.8	79	32	32	< 2	< 20	< 20	< 0.03
OSK-W-21-2606-615	Stériles	20	400	9.01	7.8	74	27	27	< 2	< 20	< 20	< 0.03
OSK-W-21-2606-670	Stériles	20	400	9.27	7.7	48	23	23	< 2	< 20	< 20	< 0.03
WST-21-0666-54	Stériles	20	400	9.2	7.8	85	38	38	< 2	< 20	< 20	< 0.03
WST-22-1013-345	Stériles	20	400	9.11	7.7	62	25	25	< 2	< 20	< 20	< 0.03
OSK-W-21-2551-W3-915	Stériles	20	400	9.35	7.8	60	27	27	< 2	< 20	< 20	< 0.03
WST-21-0992-450	Stériles	20	400	9.24	7.9	69	30	30	< 2	< 20	< 20	< 0.03
WST-21-0952-32	Stériles	20	400	9.17	7.8	71	31	31	< 2	< 20	< 20	< 0.03
OSK-W-21-1949-W15-1080	Stériles	20	400	9.19	7.8	68	26	26	< 2	< 20	< 20	< 0.03
WST-18-0024-50	Stériles	20	400	8.8	7.7	93	26	26	< 2	< 20	< 20	< 0.03
OSK-W-21-2555-590	Stériles	20	400	9.33	7.6	54	25	25	< 2	< 20	< 20	< 0.03
OSK-W-21-2544-838	Stériles	20	400	9.23	7.8	64	28	28	< 2	< 20	< 20	< 0.03
WST-20-0573-367	Stériles	20	400	9.26	7.8	67	25	25	< 2	< 20	< 20	< 0.03
#08351	Stériles	20	400	8.8	7.8	154	17	17	< 2	31	< 20	< 0.03
#08352	Stériles	20	400	9.03	8.3	87	32	32	< 2	< 20	< 20	< 0.03
#08353	Stériles	20	400	9.12	8.0	68	28	28	< 2	< 20	< 20	< 0.03
#08358	Stériles	20	400	8.52	7.6	241	12	12	< 2	93	< 20	< 0.03
OBM-15-564 79	Stériles	20	400	8.89	7.8	81	26	26	< 2	6.5	< 2	< 0.03
OBM-15-557 80	Stériles	20	400	9.05	7.8	74	27	27	< 2	3.8	< 2	< 0.03
OBM-15-552 81	Stériles	20	400	9.04	7.8	74	25	25	< 2	4.9	< 2	< 0.03
OBM-15-554 82	Stériles	20	400	8.91	7.8	82	26	26	< 2	6.9	< 2	< 0.03
OSK-W-16-311-W2 84	Stériles	20	400	9.21	7.9	65	28	28	< 2	2.8	< 2	< 0.03
OSK-W-16-706-W1 85	Stériles	20	400	9.25	7.9	70	27	27	< 2	3.9	< 2	< 0.03
OSK-W-16-706-W1 86	Stériles	20	400	9.1	7.9	69	25	25	< 2	4.1	< 2	< 0.03
OSK-W-16-706-W1 87	Stériles	20	400	9.25	7.9	63	25	25	< 2	2.8	< 2	< 0.03
OSK-W-16-706-W1 88	Stériles	20	400	8.92	7.7	113	23	23	< 2	22	< 2	< 0.03
OSK-W-16-706-W2 89	Stériles	20	400	8.93	7.8	75	25	25	< 2	4	< 2	< 0.03
OSK-W-16-708-W1 90	Stériles	20	400	8.67	7.8	135	31	31	< 2	14	< 2	< 0.03
OSK-W-16-708-W2 91	Stériles	20	400	8.92	7.8	79	25	25	< 2	4.1	< 2	< 0.03
OSK-W-16-735-W2 92	Stériles	20	400	9.31	8.1	60	28	28	< 2	2.3	< 2	< 0.03
OSK-W-16-743 93	Stériles	20	400	8.77	7.9	68	24	24	< 2	3.8	< 2	< 0.03
OSK-W-16-746 94	Stériles	20	400	8.53	7.6	282	21	21	< 2	92	< 2	< 0.03
OSK-W-16-754 95	Stériles	20	400	9.13	7.9	84	29	29	< 2	5.1	< 2	< 0.03

Identification de	Type de	Poids de l'échantillon	Volume Ext	pH final	pН	Conductivité	Alcalinité	HCO₃	CO ₃	SO ₄	CI	P total réactif
l'échantillon	l'échantillon	g	mL	pas d'unité	pas d'unité	μS/cm	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L	mg/L	mg/L
OSK-W-16-754_96	Stériles	20	400	9.18	7.9	72	25	25	< 2	3.5	< 2	< 0.03
OSK-W-17-774_97	Stériles	20	400	8.21	7.4	965	14	14	< 2	530	< 2	< 0.03
OSK-W-17-774 98	Stériles	20	400	9.26	7.8	70	24	24	< 2	5.1	< 2	< 0.03
OSK-W-17-789 99	Stériles	20	400	9.18	7.8	67	24	24	< 2	3.2	< 2	< 0.03
OSK-W-17-789 100	Stériles	20	400	9.13	7.9	66	25	25	< 2	3.1	< 2	< 0.03
OSK-W-17-812 101	Stériles	20	400	9.3	8.0	74	34	34	< 2	2.1	< 2	< 0.03
OSK-W-17-812_102	Stériles	20	400	9.1	7.9	79	33	33	< 2	3.3	< 2	< 0.03
OBM-15-552_103	Stériles	20	400	9.06	7.8	75	25	25	< 2	5.1	< 2	< 0.03
OSK-W-16-311-W1 83	Stériles	20	400	9.02	7.6	74	25	25	< 2	3.6	< 2	< 0.03

	Br	NO ₂	NO ₃	NO2+NO3	F	Hg	AI	As	Ag	Ва	В	Ве	Bi	Ca	Cd	Cr
Identification de l'échantillon	mg/L	mg N/L	mg N/L	mg N/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
E-27-D-H	< 3	< 0.3	< 0.6	< 0.6	< 0.06	< 0.00001	0.232	0.0017	0.00143	0.00084	0.012	< 0.000007	< 0.000007	22.4	0.000011	0.00006
E-27-D-L	< 3	< 0.3	< 0.6	< 0.6		< 0.00001	0.127	0.0016	0.00035	0.00104	0.007	< 0.000007	< 0.000007	17.7	0.000011	0.00007
E-27-U-H	< 3	< 0.3	< 0.6	< 0.6	< 0.06	< 0.00001	0.108	0.0014	0.00029	0.00123	0.008	< 0.000007	0.000007	15.1	0.000016	0.00004
E-27-U-L	< 3	< 0.3	< 0.6	< 0.6	< 0.06	< 0.00001	0.12	0.0014	0.00087	0.00131	0.005	< 0.000007	< 0.000007	20.7	0.000041	0.00006
E-CA-D-H	< 3	< 0.3	< 0.6	< 0.6	< 0.06		0.297	0.0024	0.00026	0.00082	0.011	< 0.000007	< 0.000007	18.5	0.000003	0.00004
E-CA-D-L	< 3	< 0.3	< 0.6	< 0.6	< 0.06	< 0.00001	0.298	0.0035	< 0.00005	0.00075	0.007	< 0.000007	< 0.000007	21.2	0.000005	0.00003
E-CA-U-H	< 3	< 0.3	< 0.6	< 0.6	< 0.06	< 0.00001	0.114	0.0022	0.0007	0.00278	0.018	< 0.000007	< 0.000007	20.2	0.00009	0.00009
E-CA-U-L	< 3	< 0.3	< 0.6	< 0.6	< 0.06	< 0.00001	0.088	0.0014	0.00054	0.00328	0.008	< 0.000007	< 0.000007	11.3	0.000068	< 0.00003
Under Dog A	< 3	< 0.3	< 0.6	< 0.6	< 0.06	< 0.00001	0.334	0.0018	0.00023	0.00072	0.011	< 0.000007	< 0.000007	19.6	0.000005	< 0.00003
Under Dog B	< 3	< 0.3	< 0.6	< 0.6	< 0.06		0.614	0.0038	0.00009	0.00041	0.077	< 0.000007	< 0.000007	14.1	0.000021	< 0.00003
Under Dog C	< 3	< 0.3	< 0.6	< 0.6	< 0.06		0.055	0.0013	0.0004	0.00064	0.056	< 0.000007	< 0.000007	23.2	< 0.000003	< 0.00003
P3-I	< 3	< 0.3	< 0.6	< 0.6	< 0.06	< 0.00005	0.561	0.0155	< 0.00005	0.00095	0.007	< 0.000007	0.000218	8.57	< 0.000003	< 0.00003
P3-J	< 3	< 0.3	< 0.6	< 0.6	< 0.06		0.583	0.0104	< 0.00005	0.00136	0.02	< 0.000007	0.000012	9.97	< 0.000003	< 0.00003
P3-K	< 3	< 0.3	< 0.6	< 0.6	< 0.06	< 0.00005	0.291	0.0077	< 0.00005	0.00152	0.005	< 0.000007	0.000044	7.6	< 0.000003	< 0.00003
P3-L	< 3	< 0.3	< 0.6	< 0.6	< 0.06		0.526	0.0086	< 0.00005	0.00163	0.007	< 0.000007	0.000032	8.69	< 0.000003	< 0.00003
EAG-13-485 2	< 3	< 0.3	< 0.6	_	< 0.06	< 0.00001	0.414	0.0093	< 0.00005	0.00043	< 0.002	< 0.000007	< 0.000007	8.36	< 0.000003	0.00004
EAG-13-485 3	< 3	< 0.3	< 0.6	_	< 0.06		0.972	0.0003	< 0.00005	0.0004	< 0.002		0.000008	10.2	< 0.000003	< 0.00003
EAG-13-485 4	< 3	< 0.3	< 0.6	_	< 0.06	< 0.00001	0.671	0.0037	< 0.00005	0.00094	0.002	< 0.000007	< 0.000007	8.26	< 0.000003	< 0.00003
OBM-15-557 10	< 3	< 0.3	< 0.6	_	< 0.06	< 0.00001	0.794	0.0032	< 0.00005	0.00502	0.004	< 0.000007	< 0.000007	8.63	< 0.000003	< 0.00003
OBM-15-559 11	< 3	< 0.3	< 0.6	_	< 0.06		0.221	0.0026	< 0.00005	0.00195	0.002	< 0.000007	< 0.000007	4.69	0.000003	< 0.00003
OBM-15-559 12	< 3	< 0.3	< 0.6	_	< 0.06		0.906	0.0008	< 0.00005	0.00132	< 0.002		< 0.000007	7.99	0.000006	0.00006
OBM-15-559 13	< 3	< 0.3	< 0.6	_	< 0.06		0.695	0.0005	< 0.00005	0.0006	0.002	< 0.000007	< 0.000007	8.56	< 0.000003	0.00004
OBM-16-580 17	< 3	< 0.3	< 0.6	_	< 0.06		0.252	0.0022	0.00283	0.00077	0.018	< 0.000007	0.000036	24.5	0.000003	0.00004
OBM-16-580 18	< 3	< 0.3	< 0.6	_	< 0.06	< 0.00001	0.819	0.002	< 0.00005	0.00038	0.002	< 0.000007	< 0.000007	8.04	< 0.000003	< 0.00003
OBM-16-645 22	< 3	< 0.3	< 0.6	_	< 0.06	< 0.00001	0.488	0.0051	< 0.00005	0.00109	< 0.002		< 0.000007	9.42	< 0.000003	< 0.00003
OBM-16-671 23	< 3	< 0.3	< 0.6	_	< 0.06		0.729	0.0029	< 0.00005	0.064	0.002	< 0.000007	0.00002	9.46	< 0.000003	< 0.00003
OSK-W-16-715 27	< 3	< 0.3	< 0.6	_	< 0.06		0.752	0.0041	< 0.00005	0.00123	0.002	< 0.000007	< 0.000007	10.1	< 0.000003	0.00004
OSK-W-16-751 29	< 3	< 0.3	< 0.6	_		< 0.00001	0.334	0.0032	< 0.00005		0.003	< 0.000007	< 0.000007	6.1	< 0.000003	< 0.00003
OSK-W-16-751 30	< 3	< 0.3	< 0.6	_	< 0.06		0.697	0.0014	< 0.00005	0.00031	0.005	< 0.000007	0.000015	8.09	< 0.000003	< 0.00003
OSK-W-16-760 31	< 3	< 0.3	< 0.6	_	< 0.06		0.395	0.0025	< 0.00005	0.00067	0.004	< 0.000007	< 0.000007	9.08	< 0.000003	< 0.00003
OSK-W-17-773 37	< 3	< 0.3	< 0.6	_	< 0.06		0.677	0.0005	< 0.00005	0.0009	0.002	< 0.000007	< 0.000007	12	< 0.000003	0.00007
OSK-W-17-773 38	< 3	< 0.3	< 0.6	_	< 0.06		0.818	0.0075	< 0.00005	0.00035	0.003	< 0.000007	< 0.000007	9.2	< 0.000003	0.00004
OSK-W-17-773 39	< 3	< 0.3	< 0.6	_		< 0.00001	0.946	0.0125	< 0.00005		0.008	< 0.000007	< 0.000007	9.13	< 0.000003	< 0.00003
OSK-W-17-773 41	< 3	< 0.3	< 0.6	_	< 0.06		0.672	0.0024	< 0.00005	0.00101	0.002	< 0.000007	< 0.000007	8.83	< 0.000003	< 0.00003
OSK-W-17-773 42	< 3	< 0.3	< 0.6	_	< 0.06		0.556	0.0008	< 0.00005	0.00051	< 0.002		0.000008	10.1	< 0.000003	< 0.00003
OSK-W-17-774 44	< 3	< 0.3	< 0.6	_		< 0.00001	0.859	0.0004	< 0.00005	0.00031	< 0.002		< 0.000007	7.9	< 0.000003	< 0.00003
OSK-W-17-779 46	< 3	< 0.3	< 0.6			< 0.00001	0.488	0.0266	< 0.00005	0.00063	0.002	< 0.000007	< 0.000007	6.87	< 0.000003	< 0.00003
OSK-W-17-779 47	< 3	< 0.3	< 0.6	_		< 0.00001	0.806	0.0007	< 0.00005		< 0.002		< 0.000007	14.9	< 0.000003	< 0.00003
OSK-W-17-779_47 OSK-W-17-788_51	< 3	< 0.3	< 0.6		< 0.06		0.878	0.0064	< 0.00005	0.00049	0.002	< 0.000007	< 0.000007	7.99	< 0.000003	0.00003
EAG-13-485 53	< 3	< 0.3	< 0.6		< 0.06		0.046	0.0004	< 0.00005	0.00043	0.003	< 0.000007	0.000007	6.58	0.000004	< 0.00003
EAG-13-403_55	< 3	< 0.3	< 0.6			< 0.00001	0.046	0.0001	0.00003		< 0.002		0.000008	9.18	0.000004	< 0.00003
EAG-13-513 57	< 3	< 0.3	< 0.6			< 0.00001	0.184	0.0024	0.00011	0.00403	0.002	< 0.000007	0.00000	24.2	< 0.000033	0.01128
EAG-14-538 58	< 3	< 0.3	< 0.6			< 0.00001	0.164	0.0024	< 0.00027		< 0.000		< 0.00002	2.45	0.000005	< 0.00003
OBM-15-559 59	< 3	< 0.3	< 0.6		< 0.06		0.693	0.0028	< 0.00005	0.00059	0.002	< 0.000007	0.000007	12.3	< 0.000003	< 0.00003
OBM-15-559_59 OBM-15-566_60	< 3	< 0.3	< 0.6	-	< 0.06		0.693	0.0005	< 0.00005	0.00059	< 0.003		< 0.000007	7.65	< 0.000003	< 0.00003
	_			-												
OBM-16-630_61	< 3	< 0.3	< 0.6	-	 < 0.06	< 0.00001	0.299	0.0018	0.0001	0.001	< 0.002	< 0.000007	0.000017	12.6	0.000005	< 0.00003

	Br	NO ₂	NO ₃	NO2+NO3	F	Hg	AI	As	Ag	Ва	В	Ве	Bi	Ca	Cd	Cr
Identification de l'échantillon	mg/L	mg N/L	mg N/L	mg N/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
OBM-16-654_62	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.028	0.0036	< 0.00005	0.00188	0.003	0.000055	< 0.000007	1.78	0.000169	< 0.00003
OBM-16-671_63	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.749	0.0007	< 0.00005	0.00222	< 0.002	< 0.000007	< 0.000007	10.5	< 0.000003	< 0.00003
OBM-16-673_64	< 3	< 0.3	< 0.6	•	< 0.06	< 0.00001	0.09	0.0005	< 0.00005	0.00065	0.003	< 0.000007	0.000011	15.2	< 0.000003	< 0.00003
OSK-W-16-760_67	< 3	< 0.3	< 0.6	•	0.09	< 0.00001	0.715	0.0027	< 0.00005	0.0015	0.003	< 0.000007	< 0.000007	12	< 0.000003	0.00003
OBM-16-580_68	< 3	< 0.3	< 0.6		< 0.06	< 0.00001	0.756	0.0016	< 0.00005	0.00048	0.004	< 0.000007	< 0.000007	11.5	< 0.000003	< 0.00003
OBM-16-645_69	< 3	< 0.3	< 0.6	-	< 0.06		0.421	0.0013	0.0001	0.00069	0.007	< 0.000007	0.000035	16.7	< 0.000003	< 0.00003
OBM-16-642_70	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.649	0.0006	< 0.00005	0.00068	< 0.002		0.000013	13.7	< 0.000003	< 0.00003
OSK-W-17-774_72	< 3	< 0.3	< 0.6	-	< 0.06		0.634	0.0015	< 0.00005	0.374	0.003	< 0.000007	< 0.000007	10.2	< 0.000003	< 0.00003
OSK-W-17-1006_75	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.435	0.008	< 0.00005	0.00091	0.007	< 0.000007	0.000007	8.81	< 0.000003	< 0.00003
OSK-W-17-934_77	< 3	< 0.3	< 0.6	-	0.06	< 0.00001	0.692	0.0133	< 0.00005	0.00077	0.007	< 0.000007	< 0.000007	6.56	< 0.000003	< 0.00003
Tails CND 1	< 3	< 0.3	< 0.6	< 0.6	0.08	< 0.00001	0.077	0.0012	0.00008	0.00509	0.002	< 0.000007	0.00003	30.7	0.00003	0.00089
Tails CND 4	< 3	< 0.3	< 0.6	< 0.6	0.06	< 0.00001	0.031	0.0011	0.00007	0.00248	0.002	< 0.000007	0.000009	36.6	0.000018	0.0008
Tails CND 5	< 3	< 0.3	< 0.6	< 0.6	0.08	< 0.00001	0.063	0.0012	< 0.00005	0.00129	0.003	< 0.000007	0.000015	27.4	0.000004	0.00079
Tails CND 6	< 3	< 0.3	< 0.6	< 0.6	0.11	< 0.00001	0.051	0.0007	0.00005	0.00119	0.003	< 0.000007	0.000025	37.2	0.00001	0.00094
Triple Lynx LG	< 3	< 0.3	< 0.6	-	0.2	< 0.00001	0.549	0.0085	< 0.00005		0.008	< 0.000007	0.000024	8.78	< 0.000003	< 0.00008
Lynx 4 LP-LG	< 3	< 0.3	< 0.6	-	0.12	< 0.00001	0.48	0.0088	< 0.00005		0.009	< 0.000007	0.000019	10	< 0.000003	
Lynx 4 HP-LG	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.329	0.007	< 0.00005	0.00062	0.012	< 0.000007	0.000013	7.29	< 0.000003	< 0.00008
Triple Lynx MG/HG	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.303	0.0076	< 0.00005	0.0009	0.008	< 0.000007	0.000018	10.5	0.000004	< 0.00008
Lynx 4 LP-MG/HG	< 3	< 0.3	< 0.6	-	< 0.06		0.367	0.0059	0.00011	0.0006	0.009	< 0.000007	0.000013	11.4	< 0.000003	< 0.00008
Lynx 4 HP-MG/HG	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.408	0.0067	0.0001	0.00069	0.011	< 0.000007	0.000011	11.9	< 0.000003	< 0.00008
GC10001	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.917	0.0091	< 0.00005	0.00037	0.007	< 0.000007	< 0.000007	7.67	0.000007	< 0.00008
GC10002	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.892	0.0238	< 0.00005		0.008	< 0.000007	< 0.000007	6.91	0.000004	< 0.00008
GC10003	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.904	0.01	< 0.00005		0.01	< 0.000007	< 0.000007	8.28	< 0.000003	< 0.00008
GC10004	< 3	< 0.3	< 0.6	-	< 0.06		0.711	0.0163	< 0.00005		0.005	< 0.000007	< 0.000007	8.46	0.000005	< 0.00008
GC10005	< 3	< 0.3	< 0.6	-	< 0.06		0.666	0.0227	< 0.00005		0.008	< 0.000007	< 0.000007	6.8	0.000003	< 0.00008
GC10006	< 3	< 0.3	< 0.6	-	< 0.06		0.985	0.0115	< 0.00005		0.005	< 0.000007	< 0.000007	8.33	< 0.000003	< 0.00008
GC10007	< 3	< 0.3	< 0.6	-	< 0.06		0.835	0.0069	< 0.00005		0.008	< 0.000007	< 0.000007	7.31	< 0.000003	< 0.00008
GC10008	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.962	0.0064	< 0.00005		0.004	< 0.000007	< 0.000007	7.65	0.000005	< 0.00008
GC10009	< 3	< 0.3	< 0.6	-	< 0.06		1.11	0.01	< 0.00005		0.003	< 0.000007	0.000009	7.72	0.000007	< 0.00008
GC10010	< 3	< 0.3	< 0.6	-	< 0.06		1.25	0.0071	< 0.00005		0.007	< 0.000007	0.000018	7.78	< 0.000003	< 0.00008
GC10011	< 3	< 0.3	< 0.6	-	< 0.06		1.15	0.049	< 0.00005		0.006	< 0.000007	0.000009	6.91	0.000003	< 0.00008
GC10012	< 3	< 0.3	< 0.6	-	< 0.06		0.954	0.0098	< 0.00005		< 0.002		0.000007	9.51	< 0.000003	< 0.00008
GC10013	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.989	0.0043	< 0.00005		0.004	< 0.000007	0.000008	8.29	< 0.000003	< 0.00008
GC10014	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.854	0.0077	< 0.00005	0.00226	0.003	< 0.000007	0.000011	10.1	< 0.000003	< 0.00008
GC10015	< 3	< 0.3	< 0.6	-	< 0.06		0.76	0.0011	< 0.00005		0.003	< 0.000007	0.000007	8.05	< 0.000003	< 0.00008
GC10016	< 3	< 0.3	< 0.6	-	< 0.06		0.593	0.0022	< 0.00005		0.004	< 0.000007	< 0.000007	7.3	< 0.000003	< 0.00008
GC10017	< 3	< 0.3	< 0.6	-	< 0.06		0.882	0.006	< 0.00005		0.005	< 0.000007	0.000011	9.69	< 0.000003	< 0.00008
GC10018	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.712	0.0037	< 0.00005	0.00069	0.007	< 0.000007	0.000011	8.93	0.000006	< 0.00008
GC10019	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.832	0.0057	< 0.00005		0.004	< 0.000007	< 0.000007	8.64	< 0.000003	< 0.00008
GC10020	< 3	< 0.3	< 0.6	-	< 0.06		0.464	0.0028	< 0.00005		0.004	< 0.000007	0.000007	8.06	< 0.000003	< 0.00008
GC10021	< 3	< 0.3	< 0.6	-	< 0.06		0.749	0.0071	< 0.00005		0.007	< 0.000007	< 0.000007	8.67	< 0.000003	< 0.00008
GC10022	< 3	< 0.3	< 0.6	-	< 0.06		0.817	0.0052	< 0.00005		0.003	< 0.000007	< 0.000007	9.58	< 0.000003	< 0.00008
GC10023	< 3	< 0.3	< 0.6	-	< 0.06		0.774	0.023	< 0.00005		0.005	< 0.000007	0.000007	9.31	< 0.000003	< 0.00008
GC10024	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.439	0.0005	< 0.00005	0.00772	0.003	< 0.000007	< 0.000007	21.3	< 0.000003	< 0.00008
GC10025	< 3	< 0.3	< 0.6	-	< 0.06		0.605	0.0065	< 0.00005		0.004	< 0.000007	< 0.000007	6.19	0.000029	< 0.00008
GC10026	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.658	0.025	< 0.00005	0.00034	0.003	< 0.000007	< 0.000007	8.39	< 0.000003	< 0.00008

	Br	NO ₂	NO ₃	NO2+NO3	F	Hg	Al	As	Ag	Ва	В	Ве	Bi	Ca	Cd	Cr
ldentification de l'échantillon	mg/L	mg N/L	mg N/L	mg N/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
GC10027	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.896	0.0251	< 0.00005	0.00042	0.005	< 0.000007	0.000009	7.78	0.000007	< 0.00008
GC10028	< 3	< 0.3	< 0.6	-	< 0.06		0.801	0.0013	< 0.00005	0.00046	0.004	< 0.000007	0.000013	8.58	0.000004	< 0.00008
GC10029	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.875	0.0113	< 0.00005	0.00037	0.003	< 0.000007	< 0.000007	8.59	0.000005	< 0.00008
GC10030	< 3	< 0.3	< 0.6	-	< 0.06	0.00001	0.497	0.0073	< 0.00005	0.00069	0.003	< 0.000007	< 0.000007	7.18	0.000008	< 0.00008
GC10031	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.69	0.001	< 0.00005	0.00061	0.003	< 0.000007	< 0.000007	5.9	< 0.000003	< 0.00008
GC10032	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.753	0.0025	< 0.00005	0.00069	0.004	< 0.000007	< 0.000007	7.27	< 0.000003	< 0.00008
CIL 11 CND	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.183	0.0164	0.00013	0.00877	0.005	< 0.000007	< 0.000007	12.9	0.000003	0.0004
CIL 12 CND	< 3	< 0.3	< 0.6	-	< 0.06	0.00002	0.154	0.0118	0.00005	0.00052	0.004	< 0.000007	0.000013	10.3	0.000972	0.0003
CIL 13 CND	< 3	< 0.3	< 0.6	-	< 0.06	< 0.00001	0.175	0.0419	< 0.00005	0.00045	0.004	< 0.000007	0.000038	16.2	0.000735	0.00037
OSK-W-21-2613-1042	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.778		0.0734	0.0014	0.005	< 0.000007	< 0.00001	8.53	0.000003	< 0.00008
OSK-W-21-2587-1060	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.631	< 0.0000	0.0067	0.00463	0.003	< 0.000007	< 0.00001	6.16	0.000003	< 0.00008
WST-21-0879-639	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.78	< 0.0000	0.002	0.00031	0.002	< 0.000007	< 0.00001	8.36	0.000006	< 0.00008
OSK-W-19-1897-610	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.852	< 0.0000	0.0014	0.00147	< 0.002	< 0.000007	< 0.00001	8.45	< 0.000003	< 0.00008
OSK-W-19-1897-825	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.823	< 0.0000	0.0015	0.00089	< 0.002	< 0.000007	< 0.00001	8.27	< 0.000003	< 0.00008
OSK-W-19-1897-983	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.932	< 0.0000	0.0033	0.0006	0.006	< 0.000007	0.00001	9.87	< 0.000003	< 0.00008
OSK-W-20-2323-115	< 30	< 3	< 6	-	< 0.06	< 0.00001		< 0.0000	0.0013	0.00052	< 0.002	< 0.000007	< 0.00001	10.3	< 0.000003	< 0.00008
OSK-W-19-1949-W1-948	< 30	< 3	< 6	-	0.15	< 0.00001	0.773	< 0.0000	0.0038	0.00063	0.004	< 0.000007	< 0.00001	8.77	< 0.000003	< 0.00008
OSK-W-21-2252-W12-922	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.386	< 0.0000	0.0189	0.00171	0.004	0.000007	< 0.00001	4.11	0.000007	< 0.00008
OSK-W-21-2252-1013	< 30	< 3	< 6	_	< 0.06	< 0.00001	0.969		0.0051	0.00064	0.003	0.000013	< 0.00001	7.66	< 0.000003	< 0.00008
OSK-W-20-2283-W7-888	< 30	< 3	< 6	_	< 0.06	< 0.00001	0.713		0.0428	0.0006	0.004	< 0.000007	< 0.00001	8.43	< 0.000003	
OSK-W-20-2256-W1-1051.7	< 30	< 3	< 6	_	< 0.06	< 0.00001		< 0.0000	0.0036	0.00048	0.008	< 0.000007	< 0.00001	8.06	< 0.000003	
OSK-W-20-2375-W4-890	< 30	< 3	< 6	_	< 0.06			< 0.0000	0.0079	0.00208	0.007	< 0.000007	< 0.00001	6.4	0.000007	< 0.00008
OSK-W-20-2350-125	< 30	< 3	< 6	_	< 0.06			< 0.00000	0.0045	0.00062		< 0.000007	< 0.00001	8.33	< 0.000003	
OSK-W-21-2444-545	< 30	< 3	< 6	_	< 0.06	< 0.00001	0.482		0.0005	0.0135	< 0.002	< 0.000007	< 0.00001	20.7	0.000003	< 0.00008
OSK-W-19-1746-W1-765	< 30	< 3	< 6	_	< 0.06	< 0.00001		< 0.0000	0.0017	0.00094	0.006	< 0.000007	< 0.00001	6.82	0.000003	< 0.00008
OSK-W-17-663-W2-680	< 30	< 3	< 6	_	< 0.06	0.00001		< 0.0000	0.0013	0.00082	0.004	< 0.000007	< 0.00001	16.5	0.000003	< 0.00008
OSK-W-19-1857-W2-1030	< 30	< 3	< 6	_	< 0.06	< 0.00001	1.17	< 0.0000	0.0065	0.00036	0.008	< 0.000007	< 0.00001	9.57	< 0.000003	
OSK-W-19-1857-W2-1210	< 30	< 3	< 6	_	< 0.06			< 0.00000	0.0009	0.00197	0.005	< 0.000007	< 0.00001	14.3	< 0.000003	
OSK-W-19-1897-496	< 30	< 3	< 6	_	< 0.06	0.00014			0.0047	0.00774	0.007	< 0.000007	< 0.00001	13.1	< 0.000003	
OSK-W-19-909-W12-770	< 30	< 3	< 6	_	< 0.06	< 0.00014	1	< 0.0000	0.0049	0.00054	0.009	< 0.000007	< 0.00001	8.87	0.000011	< 0.00008
OSK-W-19-934-W3-940	< 30	< 3	< 6	_	< 0.06	0.00013	0.806	< 0.0000	0.0017	0.00054	0.005	< 0.000007	< 0.00001	6.95	< 0.000003	
OSK-W-19-934-W3-1045	< 30	< 3	< 6	_	< 0.06	< 0.00010		< 0.00000	0.0029	0.00045	0.005	< 0.000007	< 0.00001	6.32	< 0.000003	
OSK-W-21-2512-W3-610	< 30	< 3	< 6		< 0.06			< 0.00000	0.001	0.00495	0.005	< 0.000007	< 0.00001	18.2	< 0.000003	
OKS-W-21-2613-W1-855	< 30	< 3	< 6		< 0.06	< 0.00001	0.199		0.0013	0.199	0.004	< 0.000007	< 0.00001	9.08	0.000005	< 0.00008
OSK-W-21-2629-845	< 30	< 3	< 6		< 0.06	< 0.00001	0.777	< 0.0000	0.003	0.00087	0.009	< 0.000007	< 0.00001	9.36	< 0.000003	
OSK-W-21-2605-1332	< 30	< 3	< 6	_	< 0.06	< 0.00001		< 0.0000	0.0018	0.00067	0.006	< 0.000007	< 0.00001	16.1	< 0.000003	
OSK-W-21-2609-1332	< 30	< 3	< 6		0.06	< 0.00001	0.423	< 0.00000	0.0010	0.00007	0.000	< 0.000007	< 0.00001	10.1	< 0.000003	
OBM-15-552-280	< 30	< 3	< 6	-	< 0.06		0.93	0.0000	< 0.0002	0.00079	< 0.009		< 0.00001	8.51	< 0.000003	
OBM-16-655-600	< 30	< 3	< 6		< 0.06	< 0.00001	0.92	0.0003	< 0.00005	0.0194	< 0.002		< 0.00001	8.6	< 0.000003	
OBM-16-655-330	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.933	0.0012	< 0.00005	0.00271	< 0.002		< 0.00001	11.6	< 0.000003	
OBM-16-677-79	< 30	< 3	< 6		< 0.06	< 0.00001	0.767	0.0002	< 0.00005	0.00202	< 0.002		< 0.00001	8.47	< 0.000003	
OSK-W-16-706-W2-905	< 30	< 3	< 6	<u> </u>	< 0.06		0.827	0.0022	< 0.00005	0.00049	< 0.002		< 0.00001	8.89	< 0.000003	
OSK-W-17-1079-580	< 30	< 3	< 6	-	< 0.06		1.02	0.0015	< 0.00005	0.00049	< 0.002		0.00001	7.76	< 0.000003	
OSK-W-17-1079-560 OSK-W-17-1104-665	< 30	< 3	< 6		< 0.06	< 0.00001	0.634	0.0008	< 0.00005	0.00034	< 0.002		< 0.00001	22.7	< 0.000003	
OSK-W-17-1104-665 OSK-W-17-1121-545	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.634	0.0008	< 0.00005	0.00043	< 0.002		< 0.00001	6.94	< 0.000003	
OSK-W-17-1305-261	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.815	0.0017	< 0.00005	0.0588	< 0.002	< 0.000007	< 0.00001	8.89	< 0.000003	< 0.00008

	Br	NO ₂	NO ₃	NO2+NO3	F	Hg	AI	As	Ag	Ва	В	Ве	Bi	Ca	Cd	Cr
Identification de l'échantillon																
recitation	mg/L	mg N/L	mg N/L	mg N/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
OSK-W-17-1369-219.5	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.501	0.0173	< 0.00005	0.00074	< 0.002	< 0.000007	< 0.00001	4.47	0.000006	< 0.00008
OSK-W-17-968-145	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.678	0.0445	< 0.00005	0.00025	< 0.002	< 0.000007	0.00002	10.1	< 0.000003	< 0.00008
OSK-W-18-1386-W4-885	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.926	0.0181	< 0.00005	0.00043	0.007	< 0.000007	< 0.00001	9.83	< 0.000003	0.0001
OSK-W-18-1608-805	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.842	0.0048	< 0.00005	0.00066	0.006	< 0.000007	< 0.00001	9.5	< 0.000003	< 0.00008
OSK-W-18-1713-470	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.916	0.0067	< 0.00005	0.00047	0.003	< 0.000007	< 0.00001	7.98	< 0.000003	< 0.00008
OSK-W-18-1759-190	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.611	0.0319	< 0.00005	0.00088	0.007	< 0.000007	< 0.00001	5.17	< 0.000003	< 0.00008
OSK-W-19-1181-W12-1140	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.791	0.0068	< 0.00005	0.0004	0.005	< 0.000007	< 0.00001	7.54	0.000018	< 0.00008
OSK-W-19-1181-W5-845	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.982	0.0044	< 0.00005	0.0512	0.002	< 0.000007	< 0.00001	8.12	< 0.000003	< 0.00008
OSK-W-19-1181-W5-970	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.68	0.0028	< 0.00005	0.00152	0.004	< 0.000007	< 0.00001	18.8	< 0.000003	< 0.00008
OSK-W-19-1412-W3-715	< 30	< 3	< 6	•	< 0.06	< 0.00001	0.68	0.0037	< 0.00005	0.00042	0.006	< 0.000007	< 0.00001	9.21	< 0.000003	< 0.00008
OSK-W-19-1412-W3-765	< 30	< 3	< 6	•	< 0.06	< 0.00001	0.786	0.0005	< 0.00005	0.00058	0.004	< 0.000007	< 0.00001	11	< 0.000003	< 0.00008
WST-21-0647-161.5	< 30	< 3	< 6	•	< 0.06	0.00002	0.902	0.0037	< 0.00005	0.00077	< 0.002	< 0.000007	< 0.00001	7.98	< 0.000003	< 0.00008
WST-21-0647-313	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.546	0.004	< 0.00005	0.00067	0.004	< 0.000007	< 0.00001	4.9	< 0.000003	< 0.00008
WST-19-0160A-55	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.808	0.0005	< 0.00005	0.00072	< 0.002	< 0.000007	< 0.00001	11.3	< 0.000003	< 0.00008
OSK-W-21-2606-615	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.913	0.012	< 0.00005	0.0006	< 0.002	< 0.000007	< 0.00001	10.7	< 0.000003	< 0.00008
OSK-W-21-2606-670	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.766	0.0007	< 0.00005	0.00051	< 0.002	< 0.000007	< 0.00001	7.62	< 0.000003	< 0.00008
WST-21-0666-54	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.718	0.0021	< 0.00005	0.00144	0.007	< 0.000007	< 0.00001	10.4	< 0.000003	< 0.00008
WST-22-1013-345	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.832	0.0082	< 0.00005	0.0009	0.011	< 0.000007	< 0.00001	7.42	< 0.000003	< 0.00008
OSK-W-21-2551-W3-915	< 30	< 3	< 6	-	< 0.06	< 0.00001	1.08	0.0081	< 0.00005	0.00021	0.007	< 0.000007	< 0.00001	8.07	< 0.000003	< 0.00008
WST-21-0992-450	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.894	0.0089	< 0.00005	0.00033	0.004	< 0.000007	< 0.00001	7.92	< 0.000003	< 0.00008
WST-21-0952-32	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.523	0.0032	< 0.00005	0.00101	0.006	< 0.000007	< 0.00001	8.65	< 0.000003	< 0.00008
OSK-W-21-1949-W15-1080	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.831	0.0068	< 0.00005	0.00036	0.006	< 0.000007	< 0.00001	8.09	< 0.000003	< 0.00008
WST-18-0024-50	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.688	0.0021	< 0.00005	0.00077	< 0.002	< 0.000007	< 0.00001	13.4	< 0.000003	< 0.00008
OSK-W-21-2555-590	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.406	0.0007	< 0.00005	0.0355	0.002	< 0.000007	< 0.00001	7.73	< 0.000003	< 0.00008
OSK-W-21-2544-838	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.751	0.0081	< 0.00005	0.0007	0.005	< 0.000007	< 0.00001	7.88	< 0.000003	< 0.00008
WST-20-0573-367	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.832	0.0026	< 0.00005	0.00213	0.003	< 0.000007	< 0.00001	8.36	< 0.000003	< 0.00008
#08351	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.431	< 0.0000	0.001	0.00322	0.015	< 0.000007	< 0.00001	19.2	< 0.000003	< 0.00008
#08352	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.913	< 0.0000	0.0059	0.00068	0.014	< 0.000007	< 0.00001	9.31	0.000004	< 0.00008
#08353	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.461	< 0.0000	0.0015	0.00043	0.009	< 0.000007	< 0.00001	7.66	0.000021	< 0.00008
#08358	< 30	< 3	< 6	-	< 0.06	< 0.00001	0.377	< 0.0000	0.0111	0.138	0.009	< 0.000007	< 0.00001	40	< 0.000003	< 0.00008
OBM-15-564_79	< 3	< 0.3	< 0.6	< 0.6	< 0.06	0.00001	0.716	0.0058	< 0.00005	0.00065	0.004	< 0.000007	0.000019	11	0.000014	0.00008
OBM-15-557_80	< 3	< 0.3	< 0.6	< 0.6	0.06	0.00001	0.862	0.0024	< 0.00005	0.00037	0.008	< 0.000007	0.000035	10.4	< 0.000003	0.00004
OBM-15-552_81	< 3	< 0.3	< 0.6	< 0.6	< 0.06	0.00001	0.853	0.0025	< 0.00005	0.0006	0.005	< 0.000007	< 0.000007	10.7	< 0.000003	0.00005
OBM-15-554_82	< 3	< 0.3	< 0.6	< 0.6	0.09	0.00002	0.916	0.0006	< 0.00005	0.00067	0.008	< 0.000007	0.00001	11.8	< 0.000003	0.00003
OSK-W-16-311-W2_84	< 3	< 0.3	< 0.6	< 0.6	< 0.06	< 0.00001	0.006	0.0119	< 0.00005	0.00281	0.01	< 0.000007	< 0.000007	33.6	0.00524	< 0.00003
OSK-W-16-706-W1_85	< 3	< 0.3	< 0.6	< 0.6	< 0.06	< 0.00001	0.022	0.0039	< 0.00005	0.0009	0.029	< 0.000007	< 0.000007	5.57	0.00001	< 0.00003
OSK-W-16-706-W1_86	< 3	< 0.3	< 0.6	< 0.6	< 0.06	< 0.00001	0.219	0.0025	< 0.00005	0.00039	0.007	0.00002	< 0.000007	6.39	0.494	< 0.00003
OSK-W-16-706-W1_87	< 3	< 0.3	< 0.6	< 0.6	< 0.06	< 0.00001	1.14	0.0059	< 0.00005	0.00049	0.005	< 0.000007	0.000024	8.64	0.000009	0.00006
OSK-W-16-706-W1_88	< 3	< 0.3	< 0.6	< 0.6	0.06	< 0.00001	0.742	0.0019	< 0.00005	0.00108	0.002	< 0.000007	0.000022	16.9	< 0.000003	< 0.00003
OSK-W-16-706-W2_89	< 3	< 0.3	< 0.6	< 0.6	< 0.06	< 0.00001	0.894	0.0018	< 0.00005	0.00122	0.003	< 0.000007	0.000007	10.3	< 0.000003	0.00004
OSK-W-16-708-W1_90	< 3	< 0.3	< 0.6	< 0.6	< 0.06	< 0.00001	0.633	0.0005	< 0.00005	0.00264	0.004	< 0.000007	0.000073	18.9	< 0.000003	0.00005
OSK-W-16-708-W2_91	< 3	< 0.3	< 0.6	< 0.6	< 0.06	< 0.00001	0.818	0.001	< 0.00005	0.0008	0.003	< 0.000007	0.000084	11.5	< 0.000003	0.00004
OSK-W-16-735-W2_92	< 3	< 0.3	< 0.6	< 0.6	< 0.06	< 0.00001	1.2	0.0034	< 0.00005	0.00052	0.003	< 0.000007	< 0.000007	7.64	0.000003	0.00004
OSK-W-16-743 93	< 3	< 0.3	< 0.6	< 0.6	< 0.06	0.00001	0.903	0.0189	0.00014	0.00048	0.006	< 0.000007	0.00001	9.52	< 0.000003	0.00007
OSK-W-16-746 94	< 3	< 0.3	< 0.6	< 0.6	< 0.06	< 0.00001	0.536	< 0.0002	< 0.00005	0.0227	< 0.002	< 0.000007	0.00011	46.9	< 0.000003	< 0.00003
OSK-W-16-754 95	< 3	< 0.3	< 0.6	< 0.6	0.06	0.00001	0.889	0.0014	< 0.00005	0.0023	0.005	< 0.000007	0.000013	10.7	< 0.000003	0.00003

Identification de	Br	NO ₂	NO ₃	NO2+NO3	F	Hg	Al	As	Ag	Ва	В	Ве	Bi	Ca	Cd	Cr
l'échantillon	mg/L	mg N/L	mg N/L	mg N/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
OSK-W-16-754 96	< 3	< 0.3	< 0.6	< 0.6	0.06	0.00001	0.794	0.002	< 0.00005	0.00047	0.008	< 0.000007	0.000015	9.37	< 0.000003	< 0.00003
OSK-W-17-774_97	< 3	< 0.3	< 0.6	< 0.6	< 0.06	0.00001	0.347	0.0003	0.00005	0.0366	0.006	< 0.000007	0.000019	229	0.000003	0.00007
OSK-W-17-774 98	< 3	< 0.3	< 0.6	< 0.6	< 0.06	0.00001	0.964	0.0018	< 0.00005	0.00093	0.005	< 0.000007	0.000007	9.23	< 0.000003	< 0.00003
OSK-W-17-789 99	< 3	< 0.3	< 0.6	< 0.6	0.06	< 0.00001	1.22	0.0044	< 0.00005	0.00053	0.009	< 0.000007	0.000023	8.19	< 0.000003	0.00005
OSK-W-17-789_100	< 3	< 0.3	< 0.6	< 0.6	< 0.06	0.00001	1.05	0.0052	< 0.00005	0.00076	0.007	< 0.000007	0.000026	9	0.000003	0.00004
OSK-W-17-812_101	< 3	< 0.3	< 0.6	< 0.6	< 0.06	< 0.00001	1.17	0.0326	< 0.00005	0.00035	0.012	< 0.000007	< 0.000007	8.81	< 0.000003	0.00005
OSK-W-17-812_102	< 3	< 0.3	< 0.6	< 0.6	< 0.06	< 0.00001	0.828	0.0238	< 0.00005	0.00111	0.015	< 0.000007	< 0.000007	8.34	0.000004	0.00003
OBM-15-552_103	< 3	< 0.3	< 0.6	< 0.6	0.08	0.00001	0.817	0.0009	< 0.00005	0.00038	0.01	< 0.000007	0.00001	10.5	0.000019	0.00006
OSK-W-16-311-W1 83	< 3	< 0.3	< 0.6	< 0.6	< 0.06	0.00001	1.07	0.0067	< 0.00005	0.00064	0.01	< 0.000007	< 0.000007	9.47	< 0.000003	0.00004

	Co	Cu	Fe	К	Li	Mg	Mn	Мо	Na	Ni	P (tot)	Pb	U	Si	Sb	Se
Identification de l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
E-27-D-H	0.000036	0.00388	< 0.007	3.91	0.0016	1.03	0.0672	0.00048	0.84	0.0001	-	0.00018	0.000094	-	0.0067	0.00181
E-27-D-L	0.000031	0.00147	< 0.007	3.58	0.0018	1.5	0.115	0.00035	0.72	< 0.0001	-	0.00018	0.00003	-	0.0079	0.00067
E-27-U-H	0.00004	0.00082	< 0.007	3.45	0.002	2.33	0.125	0.00037	0.74	0.0002	-	0.00003	0.00003	-	0.0048	0.00045
E-27-U-L	0.000036	0.0004	0.015	3.7	0.0021	2.48	0.0682	0.00026	0.77	0.0002	-	0.00003	0.000015	-	0.0048	0.00044
E-CA-D-H	0.000027	0.00069	< 0.007	3.02	0.0019	3.08	0.0292	0.00027	0.97	0.0001	-	0.00006	0.000012	-	0.006	0.00037
E-CA-D-L	0.000026	0.00054	< 0.007	3.36	0.002	0.959	0.0343	0.00029	0.92	0.0001	-	0.00006	0.000016	-	0.0083	0.00057
E-CA-U-H	0.00008	0.00091	< 0.007	3.9	0.003	4.69	0.083	0.00095	0.9	0.0001	-	0.00005	0.000022	-	0.0175	0.00241
E-CA-U-L	0.00012	0.0003	< 0.007	3.24	0.002	2.97	0.0978	0.00112	0.81	0.0003	-	0.00002	0.000043	-	0.0098	0.00186
Under Dog A	0.000031	0.00042	< 0.007	7.66	0.0024	0.495	0.015	0.00076	1.89	0.0001	0.005	0.00005	0.000546	1.19	0.0146	0.00059
Under Dog B	< 0.000004	0.0022	0.007	4.36	0.0157	0.757	0.0031	0.00112	14.5	< 0.0001	0.041	< 0.00001	0.000232	4.7	0.004	0.00187
Under Dog C	0.000048	0.00063	< 0.007	4.1	0.0055	0.625	0.0677	0.00726	5.19	< 0.0001	0.008	< 0.00001	0.000186	3.83	0.0061	0.00083
P3-I	0.000006	0.00075	0.007	1.95	0.0026	1.7	0.00347	0.00072	1.01	0.0002	< 0.003	0.00024	0.000038	1.12	0.003	< 0.00004
P3-J	< 0.000004	0.00037	0.018	2.11	0.0024	2.24	0.00414	0.00038	1.05	0.0002	< 0.003	0.0002	0.000027	1.08	0.0051	0.00042
P3-K	0.000043	0.00081	0.012	1.91	0.0016	2.36	0.018	0.00023	0.9	0.0005	< 0.003	0.00021	0.000063	1.1	0.0025	0.00012
P3-L	< 0.000004	0.00042	< 0.007	2.01	0.0024	2.38	0.00481	0.00004	0.96	0.0002	< 0.003	0.0002	0.000049	1.04	0.0033	0.00039
EAG-13-485 2	< 0.000004	0.00111	0.008	1.12	0.0008	2.31	0.00089	0.00005	1.32	< 0.0001	< 0.003	0.00003	< 0.000002	1.19	0.0009	< 0.00004
EAG-13-485 3	< 0.000004	0.00017	< 0.007	2.53	0.0007	0.496	0.00071	0.00032	0.89	< 0.0001	< 0.003	0.00001	0.000003	0.85	0.0035	< 0.00004
EAG-13-485 4	< 0.000004	0.00009	< 0.007	4.13	0.001	1.56	0.00079	0.00005	1.28	< 0.0001	< 0.003	< 0.00001	0.000003	1.26	0.0012	0.00008
OBM-15-557 10	0.000004	0.00011	< 0.007	2.76	0.0022	1.43	0.00183	0.00028	2.12	< 0.0001	< 0.003	0.00001	0.000038	1.54	0.001	< 0.00004
OBM-15-559 11	< 0.000004	0.00034	0.007	2.45	0.0009	1.77	0.0195	0.00057	0.68	< 0.0001	< 0.003	0.00004	0.000067	1.42	0.0008	< 0.00004
OBM-15-559 12	0.000058	0.00027	< 0.007	1.88	0.0005	0.489	0.00099	0.00085	2.14	0.0005	< 0.003	0.00003	0.000073	2.13	0.0003	< 0.00004
OBM-15-559 13	< 0.000004	0.00006	< 0.007	1.82	0.0004	1.36	0.00033	0.0001	1.31	< 0.0001	< 0.003	< 0.00001	< 0.000002	0.9	0.001	< 0.00004
OBM-16-580 17	0.000067	0.00041	< 0.007	5.73	0.0012	2.25	0.0174	0.00006	1.1	0.0005	< 0.003	0.00001	0.00001	0.79	0.0041	0.00067
OBM-16-580 18	< 0.000004	0.00011	< 0.007	2.26	0.0006	0.246	0.00043	0.00005	1.76	< 0.0001	< 0.003	< 0.00001	0.000009	1.81	0.0008	0.00006
OBM-16-645 22	0.000006	0.00111	0.049	2.38	0.0021	1.79	0.021	0.00025	0.38	< 0.0001	< 0.003	0.00004	0.00001	1.09	0.0033	< 0.00004
OBM-16-671 23	0.000022	0.00303	< 0.007	2.95	0.0007	1.75	0.00091	0.00007	1.17	0.0001	< 0.003	0.00004	< 0.000002	1.19	0.0074	0.00011
OSK-W-16-715 27	0.000005	0.00073	0.017	3.63	0.0011	1.91	0.00307	0.00067	1.23	< 0.0001	< 0.003	0.00003	0.000022	1.26	0.0016	0.00006
OSK-W-16-751 29	< 0.000004	0.00016	< 0.007	2.15	0.0009	2.59	0.00939	0.00052	0.61	0.0001	< 0.003	0.00004	0.000353	1.4	0.0006	< 0.00004
OSK-W-16-751 30	< 0.000004	0.00008	< 0.007	0.68	0.0013	1.95	0.00035	0.00002	1.52	< 0.0001	0.003	< 0.00001	0.000002	0.99	0.0004	< 0.00004
OSK-W-16-760 31	0.000006	0.00049	< 0.007	2.02	0.0015	1.02	0.00557	0.00109	0.62	< 0.0001	< 0.003	0.00003	0.000032	1.34	0.0036	0.00007
OSK-W-17-773 37	< 0.000004	0.00551	0.011	0.77	0.0022	2.75	0.005	0.00059	1.74	< 0.0001	0.003	0.00002	< 0.000002	0.86	0.0007	< 0.00004
OSK-W-17-773 38	0.000021	0.00018	0.059	1.99	0.0028	1.58	0.00311	0.00023	1.72	< 0.0001	< 0.003	< 0.00001	0.000054	1.43	0.0008	< 0.00004
OSK-W-17-773 39	0.000008	0.00011	< 0.007	3.23	0.0019	2.22	0.00396	0.00022	1.67	< 0.0001	0.003	< 0.00001	0.000064	1.37	0.0023	0.00004
OSK-W-17-773 41	< 0.000004	0.00017	< 0.007	2.13	0.0014	1.92	0.00094	0.00007	0.41	< 0.0001	< 0.003	< 0.00001	< 0.000002	0.82	0.0006	< 0.00004
OSK-W-17-773 42	< 0.000004	0.0001	< 0.007	1.48	0.0017	3.14	0.00091	0.00006	1.32	< 0.0001	< 0.003	< 0.00001	< 0.000002	0.81	0.001	< 0.00004
OSK-W-17-774 44	< 0.000004	0.00023	< 0.007	2.07	0.0004	0.351	0.00043	0.0002	2.03	0.0003	< 0.003	< 0.00001	0.000034	1.74	0.0006	< 0.00004
OSK-W-17-779 46	< 0.000004	0.00011	< 0.007	2.98	0.0013	2.29	0.00819	0.00048	0.63	< 0.0001	< 0.003	< 0.00001	0.000099	1.49	0.0018	< 0.00004
OSK-W-17-779 47	< 0.000004	0.00008	< 0.007	0.2	0.0008	1.05	0.00116	0.00006	0.82	< 0.0001	< 0.003	< 0.00001	< 0.000002	0.86	0.0003	< 0.00004
OSK-W-17-788 51	< 0.000004	0.00052	< 0.007	2.53	0.0009	1.06	0.00263	0.00002	2.13	0.0001	< 0.003	0.00017	0.000064	2	0.0009	< 0.00004
EAG-13-485 53	0.000011	0.00015	< 0.007	2.61	0.0011	2.33	0.109	0.00025	0.62	< 0.0001	< 0.003	< 0.00001	0.000018	1.06	0.0021	< 0.00004
EAG-13-497 56	0.000011	0.00011	< 0.007	3.44	0.0009	2.2	0.0533	0.00013	0.79	< 0.0001	< 0.003	< 0.00001	0.000014	1.09	0.01	0.00014
EAG-13-513 57	0.00012	0.00301	0.052	3.48	0.0017	0.718	0.111	0.00088	0.74	0.0056	< 0.003	0.00002	0.0000014	0.94	0.0018	0.00009
EAG-14-538 58	< 0.000004	0.00013	< 0.007	4.12	0.0001	0.348	0.0145	0.00017	1	< 0.0001	< 0.003	0.00006	0.000012	1.14	0.0013	0.0002
	< 0.000004	0.00016	< 0.007	2.35	0.0012	0.697	0.00143	0.00017	1.13	< 0.0001	< 0.003	< 0.00001	0.000012	1.01	0.0013	0.0002
UDIVI-13-224 24							0.00102			- 0.0001				1.01	U.UUII	1 0.00011
OBM-15-559_59 OBM-15-566_60	< 0.000004	0.0001	< 0.007	4.15	0.0012	3.22	0.00265	0.00004	0.7	< 0.0001	< 0.003	< 0.00001	0.000007	1.55	0.001	< 0.00004

	Co	Cu	Fe	К	Li	Mg	Mn	Мо	Na	Ni	P (tot)	Pb	U	Si	Sb	Se
Identification de						9		0			. (101)					
l'échantillon																
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
OBM-16-654 62	0.001666	0.00009	0.38	4.41	0.0017	0.776	0.0836	0.00007	0.59	0.0035	< 0.003	0.00005	0.000012	1.18	0.0013	0.00008
OBM-16-671_63	0.000021	0.00053	< 0.007	1.67	0.0008	0.906	0.00163	0.00007	1.82	0.0001	0.004	< 0.00001	0.000031	2.01	0.0007	< 0.00004
OBM-16-673_64	< 0.000004	0.00004	< 0.007	3.41	0.0015	0.646	0.0224	0.00005	1.19	< 0.0001	0.003	< 0.00001	0.00001	0.99	0.0012	0.00011
OSK-W-16-760_67	< 0.000004	0.00169	< 0.007	2.01	0.0013	0.72	0.00116	0.00006	1.64	< 0.0001	< 0.003	< 0.00001	< 0.000002	1.02	0.0039	0.00009
OBM-16-580_68	0.000015	0.00009	< 0.007	2.66	0.0014	0.755	0.00097	0.00006	1.5	< 0.0001	0.004	0.00006	0.000002	1.02	0.0014	0.00017
OBM-16-645_69	0.000011	0.00016	< 0.007	3	0.0016	2.9	0.0198	0.00014	0.74	< 0.0001	< 0.003	< 0.00001	0.000008	0.72	0.0059	0.00015
OBM-16-642_70	0.00001	0.00009	< 0.007	3.91	0.0011	3.7	0.00302	0.00018	0.84	0.0002	< 0.003	< 0.00001	0.00001	0.88	0.0018	0.00033
OSK-W-17-774 72	< 0.000004	0.0002	< 0.007	2.59	0.0007	1.62	0.00078	0.00149	1.56	< 0.0001	< 0.003	< 0.00001	0.00001	1.48	0.0009	0.0004
OSK-W-17-1006 75	< 0.000004	0.00006	< 0.007	2.93	0.0016	3.65	0.00945	0.00006	0.85	< 0.0001	< 0.003	< 0.00001	0.000032	1.02	0.0026	0.00009
OSK-W-17-934 77	< 0.000004	0.00018	< 0.007	3.26	0.0018	2.24	0.0035	0.00054	1.07	< 0.0001	< 0.003	< 0.00001	0.000032	1.48	0.0019	0.00004
Tails CND 1	0.000891	0.00094	0.116	1.58	0.002	2.66	0.0199	0.00228	1.52	0.0003	< 0.003	0.00021	0.000031	0.7	0.006	0.00042
Tails CND 4	0.00109	0.00039	0.064	1.6	0.0018	2.88	0.0176	0.00234	2	0.0002	< 0.003	0.00005	0.000041	0.66	0.0106	0.00047
Tails CND 5	0.00104	0.00036	0.102	1.49	0.0014	2.03	0.0102	0.00239	2	0.0002	< 0.003	0.00012	0.000029	0.73	0.0179	0.00066
Tails CND 6	0.000487	0.00042	0.021	1.95	0.0012	0.579	0.0114	0.0024	1.92	0.0001	< 0.003	0.00007	0.00004	0.79	0.0263	0.00075
Triple Lynx LG	0.00001	< 0.0002	< 0.007	2.92	0.0028	1.22	0.00318	0.00056	1.1	< 0.0001	< 0.003	0.00008	0.000047	1.36	0.003	0.00028
Lynx 4 LP-LG	0.000017	< 0.0002	< 0.007	2.58	0.0024	1.91	0.00351	0.00068	1.12	0.0001	< 0.003	0.00026	0.000028	1.25	0.0156	0.0008
Lynx 4 HP-LG	0.000021	< 0.0002	< 0.007	2.69	0.0017	2.41	0.00854	0.00023	0.87	0.0002	< 0.003	0.00006	0.000015	1.08	0.0053	0.00011
Triple Lynx MG/HG	0.000035	< 0.0002	< 0.007	2.63	0.002	2.44	0.00669	0.0002	0.98	0.0003	< 0.003	0.00009	0.000034	1.04	0.0051	0.00035
Lynx 4 LP-MG/HG	0.00003	< 0.0002	< 0.007	2.67	0.0024	2.84	0.01094	0.00023	1.02	0.0002	< 0.003	0.00003	0.000026	0.99	0.0273	0.0005
Lynx 4 HP-MG/HG	0.000021	< 0.0002	< 0.007	2.7	0.0023	3.57	0.00701	0.00051	1.04	0.0003	< 0.003	0.00003	0.000021	0.9	0.0087	0.00075
GC10001	0.000039	0.0005	< 0.007	2.77	0.0017	2.01	0.00208	0.00015	1.33	< 0.0001	< 0.003	0.00022	0.000041	1.57	0.002	0.00012
GC10002	0.000013	0.0005	< 0.007	3.28	0.0021	2	0.00228	0.00007	1.18	< 0.0001	< 0.003	0.00004	0.000044	1.59	0.0021	< 0.00004
GC10003	0.000009	< 0.0002	< 0.007	2.12	0.0033	2.37	0.00104	0.00007	2.2	< 0.0001	< 0.003	0.00002	0.000011	1.49	0.001	< 0.00004
GC10004	0.00005	0.0002	< 0.007	2.61	0.0011	2.6	0.00267	0.00054	0.62	0.0002	< 0.003	0.00007	0.000013	1.24	0.0011	0.00007
GC10005	0.00002	< 0.0002	< 0.007	3.22	0.0015	2.72	0.00606	0.00026	1.14	< 0.0001	< 0.003	0.00002	0.000078	1.31	0.002	0.00008
GC10006	0.000007	< 0.0002	< 0.007	3.03	0.0019	1.33	0.00214	0.00022	1.29	< 0.0001	< 0.003	< 0.00001	0.000071	1.6	0.003	0.00006
GC10007	0.000006	< 0.0002	< 0.007	2.14	0.0024	2.3	0.00318	0.00014	1.62	< 0.0001	< 0.003	< 0.00001	0.000026	1.6	0.001	< 0.00004
GC10008	0.000046	< 0.0002	< 0.007	2.39	0.0019	0.707	0.00145	0.00018	1.71	< 0.0001	< 0.003	0.00009	0.000047	1.76	< 0.0009	< 0.00004
GC10009	0.000069	0.0007	< 0.007	3.02	0.0018	1.09	0.00243	0.00006	1.48	< 0.0001	< 0.003	0.00009	0.000045	1.78	0.0014	< 0.00004
GC10010	0.000011	< 0.0002	< 0.007	1.98	0.0051	1.9	0.00302	0.0006	2.99	< 0.0001	< 0.003	0.00002	0.000032	1.73	0.0017	< 0.00004
GC10011	0.000015	< 0.0002	< 0.007	3.44	0.0027	0.597	0.00139	0.00009	1.71	< 0.0001	0.005	0.00006	0.000022	1.97	< 0.0009	
GC10012	0.000006	< 0.0002	< 0.007	1.68	0.0041	1.22	0.00179	0.00009	1.55	< 0.0001	< 0.003	0.00002	0.000008	1.66	0.0011	< 0.00004
GC10013	0.000009	< 0.0002	< 0.007	3.53	0.0018	1.79	0.00193	0.00008	1	0.0001	< 0.003	0.00002	0.000049	1.6	0.009	< 0.00004
GC10014	0.000009	< 0.0002	< 0.007	1.18	0.0007	0.924	0.00059	< 0.00004	0.84	< 0.0001	< 0.003	< 0.00001	< 0.000000	0.93	< 0.0009	< 0.00004
GC10015	0.000019	< 0.0002	< 0.007	0.43	0.0008	1.01	0.00067	0.00047	0.8	< 0.0001	< 0.003	0.00008	0.000007	0.92	< 0.0009	
GC10016	< 0.000004	0.0003	< 0.007	0.62	0.0006	1.06	0.00032	0.00008	0.82	< 0.0001	< 0.003	< 0.00001	< 0.000002	0.92	< 0.0009	
GC10010 GC10017	0.000058	0.0003	< 0.007	3.02	0.0024	2.52	0.00193	0.00005	1.24	0.0002	< 0.003	0.00005	0.000001	1.32	0.0011	< 0.00004
GC10017 GC10018	0.000036	0.0002	< 0.007	1.7	0.0024	3.71	0.00133	0.00013	1.4	< 0.0002	< 0.003	< 0.00003	0.0000011	0.97	< 0.0009	
GC10018 GC10019	0.00004	< 0.0002	< 0.007	0.83	0.002	0.768	0.000178	0.00000	0.51	< 0.0001	< 0.003	< 0.00001	< 0.000002	0.82	< 0.0009	< 0.00003
GC10019 GC10020	0.000007	< 0.0002	< 0.007	1.5	0.0001	2.11	0.00037	0.000012	0.92	< 0.0001	< 0.003		< 0.000002	1.03	0.0003	< 0.00004
GC10020 GC10021	0.000001	< 0.0002	< 0.007	2	0.0011	1.87	0.0006	0.00003	1.15	< 0.0001	< 0.003		< 0.000002 < 0.000002	0.98	0.0017	< 0.00004
GC10021 GC10022	0.00001	< 0.0002	< 0.007	1.59	0.0009	1.28	0.0000	0.00012	0.54	< 0.0001	< 0.003		< 0.000002 < 0.000002	0.38	< 0.0017	
GC10022 GC10023	0.000048	< 0.0002	< 0.007	2.97	0.0003	2.92	0.00107	0.00003	0.88	0.0001	< 0.003	< 0.00001	0.000002	0.79	0.0035	< 0.00004
GC10023 GC10024	0.000048	< 0.0002	< 0.007	0.11	0.0013	1.67	0.00107	0.00007	0.88	< 0.0002	< 0.003	0.00001	< 0.000018	0.88	< 0.0033	
GC10024 GC10025	0.000014	0.0002	< 0.007	2.92	0.0013	1.07	0.00127	0.00003	0.7	0.0001	< 0.003	0.00001	0.000002	1.57	0.0023	< 0.00004
GC10025 GC10026	0.000028	< 0.0003		2.92	0.0018	2.65	0.00438	0.00014	0.56	< 0.0001	< 0.003		0.000024	1.26	0.0023	< 0.00004
GC 10020	0.000006	<u> </u>	\ U.UU /	2.99	0.0024	2.03	0.00533	0.00013	0.90	<u> </u>	<u>\ 0.003</u>	<u> </u>	0.0000056	1.20	0.003	<u> </u>

	Со	Cu	Fe	K	Li	Mg	Mn	Мо	Na	Ni	P (tot)	Pb	U	Si	Sb	Se
Identification de	CO	Cu	16	'	-	IVIG	IVIII	IVIO	I Na	141		Fυ		31	GD .	36
l'échantillon																
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
GC10027	0.000034	< 0.0002	< 0.007	3.64	0.0021	0.827	0.00143	0.00038	0.96	0.0003	< 0.003	0.00015	0.000095	1.69	0.0026	< 0.00004
GC10028	0.000007	< 0.0002	< 0.007	3.11	0.0015	1.21	0.00522	0.00017	0.92	< 0.0001	< 0.003	0.00003	0.000062	1.46	0.0028	< 0.00004
GC10029	0.000022	< 0.0002	0.024	2.73	0.0022	1.32	0.00108	0.00044	1.28	0.0002	< 0.003	0.00006	0.00001	1.43	0.001	< 0.00004
GC10030	0.000016	< 0.0002	< 0.007	2.6	0.0023	1.81	0.0199	0.00007	0.86	0.0002	< 0.003	0.00055	0.00001	1.13	0.0022	0.00006
GC10031	< 0.000004	< 0.0002	< 0.007	3.01	0.0018	1.27	0.00708	0.00004	0.81	< 0.0001	< 0.003	0.00005	0.000055	1.69	0.0053	< 0.00004
GC10032	< 0.000004	< 0.0002	< 0.007	2.94	0.0014	1.29	0.00303	0.00006	0.78	< 0.0001	< 0.003	0.00002	0.000051	1.53	0.0087	< 0.00004
CIL 11 CND	0.000206	0.0017	0.095	0.72	0.0008	0.921	0.0021	0.00082	7.38	0.0004	0.003	0.00034	0.000035	0.73	0.0029	0.00065
CIL 12 CND	0.00166	0.273	0.081	0.67	0.0008	1.23	0.027	0.00101	5.27	0.0137	0.003	0.0377	0.000025	0.62	0.0078	0.00104
CIL 13 CND	0.00159	0.751	0.527	0.51	0.0005	1.17	0.113	0.00107	2.27	0.0308	0.003	0.094	0.00004	0.73	0.0077	0.00101
OSK-W-21-2613-1042	0.000011	< 0.0002	0.03	3.49	0.0018	1.5	0.0128	0.00017	1.13	0.0002	0.02	< 0.00009	0.000011	0.95	0.0132	0.00007
OSK-W-21-2587-1060	0.000004	< 0.0002	< 0.007	2.82	0.0015	1.39	0.00943	0.00012	1.07	0.0001	0.009	< 0.00009	0.000029	1.04	0.0037	0.00011
WST-21-0879-639	0.000009	< 0.0002	< 0.007	1.31	0.0009	2	0.00054	0.00014	1.33	< 0.0001	0.009	< 0.00009	0.000005	0.7	0.0025	0.00006
OSK-W-19-1897-610	0.000009	< 0.0002	< 0.007	1.7	0.0006	0.851	0.00121	0.00011	1.8	0.0001	0.008	< 0.00009	0.000047	1.31	< 0.0009	0.00005
OSK-W-19-1897-825	0.000006	< 0.0002	< 0.007	1.72	0.0009	1	0.00107	0.00052	1.73	< 0.0001	0.006	< 0.00009	0.00001	1.13	0.002	0.00018
OSK-W-19-1897-983	0.000005	< 0.0002	< 0.007	4.79	0.0012	0.545	0.00126	0.00045	1.78	< 0.0001	0.009	< 0.00009	0.000034	1.21	0.0019	0.00064
OSK-W-20-2323-115	0.000009	< 0.0002	< 0.007	1.75	0.0007	0.787	0.00155	0.00008	1	< 0.0001	0.007	< 0.00009	0.000003	0.74	0.001	0.00032
OSK-W-19-1949-W1-948	0.00001	< 0.0002	< 0.007	2.07	0.0016	2.56	0.00078	0.00019	0.99	0.0001	0.006	< 0.00009	0.000002	0.66	0.0056	0.00007
OSK-W-21-2252-W12-922	0.000022	0.0002	0.039	2.98	0.0016	0.758	0.0473	0.00011	1.31	0.0003	0.031	0.00022	0.000018	0.8	0.0017	0.00007
OSK-W-21-2252-1013	< 0.000004	< 0.0002	< 0.007	3.84	0.0016	1.49	0.0024	0.00011	1.48	< 0.0001	0.003	< 0.00009	0.000088	1.17	0.0067	0.00009
OSK-W-20-2283-W7-888	0.000009	< 0.0002	< 0.007	3.18	0.0015	1.18	0.00622	0.00038	0.77	0.0001	0.003	< 0.00009	0.000031	0.98	0.0075	0.00018
OSK-W-20-2256-W1-1051.7	0.000008	< 0.0002	< 0.007	3.21	0.0017	1.58	0.0026	0.00136	1.11	< 0.0001	0.003	< 0.00009	0.000121	1.06	0.0075	0.00024
OSK-W-20-2375-W4-890	0.000008	< 0.0002	< 0.007	3.23	0.0016	1.59	0.00743	0.00024	1.4	< 0.0001	0.004	< 0.00009	0.000048	0.97	0.002	0.00015
OSK-W-20-2350-125	0.000004	< 0.0002	< 0.007	2.22	0.0013	1.82	0.00147	0.00011	2.08	< 0.0001	< 0.003	< 0.00009	0.000039	1.27	0.0016	0.00008
OSK-W-21-2444-545	0.000006	< 0.0002	< 0.007	0.28	0.0011	2.41	0.00289	0.0002	1.12	< 0.0001	< 0.003	< 0.00009	0.000002	0.63	< 0.0009	0.00009
OSK-W-19-1746-W1-765	0.000012	< 0.0002	0.012	3.72	0.0016	1.48	0.0164	0.00025	1.08	< 0.0001	< 0.003	0.00011	0.000059	0.99	0.0055	< 0.00004
OSK-W-17-663-W2-680	0.00001	< 0.0002	0.008	3.33	0.0013	0.797	0.00261	0.00051	1.45	< 0.0001	0.004	< 0.00009	0.000008	0.93	0.0013	0.00022
OSK-W-19-1857-W2-1030	0.000007	0.0003	0.008	3.65	0.003	1.19	0.00164	0.00029	1.28	< 0.0001	0.004	< 0.00009	0.000087	1.15	0.003	< 0.00004
OSK-W-19-1857-W2-1210	0.000004	< 0.0002	< 0.007	0.65	0.0009	2.88	0.00062	0.00007	1.66	< 0.0001	< 0.003	< 0.00009	0.000002	0.59	< 0.0009	< 0.00004
OSK-W-19-1897-496	0.000008	< 0.0002	< 0.007	2.56	0.0011	0.745	0.00306	0.0006	0.71	< 0.0001	0.004	< 0.00009	0.000012	0.66	0.0073	0.00011
OSK-W-19-909-W12-770	0.000068	0.0003	0.008	2.93	0.0038	1.7	0.00487	0.00026	2.43	0.0006	0.005	0.00019	0.000091	1.06	0.0018	< 0.00004
OSK-W-19-934-W3-940	0.000005	< 0.0002	< 0.007	4.69	0.0021	2.06	0.00828	0.00038	1.12	< 0.0001	0.005	< 0.00009	0.000039	0.92	0.0182	< 0.00004
OSK-W-19-934-W3-1045	0.000006	< 0.0002	0.01	3.67	0.0014	1.82	0.0129	0.00023	0.78	< 0.0001	0.004	< 0.00009	0.000127	0.93	0.0064	0.00006
OSK-W-21-2512-W3-610	0.000011	< 0.0002	< 0.007	3.04	0.0009	1.21	0.00257	0.00042	2.71	< 0.0001	0.003	< 0.00009	0.000112	1.07	< 0.0009	< 0.00004
OKS-W-21-2613-W1-855	0.000005	< 0.0002	< 0.007	0.25	0.0004	2.18	0.00022	0.00009	0.51	< 0.0001	0.003	< 0.00009	0.000004	0.47	< 0.0009	
OSK-W-21-2629-845	0.000016	< 0.0002		1.6	0.0018	2.92	0.00074	0.00038	2.05	< 0.0001	< 0.003	< 0.00009	0.000002	0.69	0.0014	< 0.00004
OSK-W-21-2605-1332	0.000012	< 0.0002		2.6	0.0024	1.88	0.0492	0.00033	1.32	< 0.0001	< 0.003	< 0.00009	0.000022	0.53	0.0071	< 0.00004
OSK-W-21-2629-948	0.000016	< 0.0002	0.007	3.19	0.002	2.41	0.00153	0.00005	1.71	< 0.0001	< 0.003	< 0.00009	0.000002	0.63	0.0034	0.00008
OBM-15-552-280	0.000048	< 0.0002	< 0.007	2.22	0.0008	1.61	0.00337	0.00008	2.04	0.0004	0.01	< 0.00009	0.000216		< 0.0009	
OBM-16-655-600	0.000009	< 0.0002	< 0.007	2.47	0.0008	1.23	0.00158	0.00004	1.76	< 0.0001	0.009	< 0.00009	0.000192	1.29	< 0.0009	0.00006
OBM-16-655-330	0.00001	0.0004	< 0.007	2.61	0.0009	1.78	0.00586	0.00026	0.66	0.0001	0.009	< 0.00009	0.00001	0.61	0.0023	0.0001
OBM-16-677-79	0.000034	< 0.0002	< 0.007	2.38	0.0012	1.8	0.00204	0.00016	1.89	0.0001	0.011	< 0.00009	0.000206		< 0.0009	0.00007
OSK-W-16-706-W2-905	0.000004	0.0005	< 0.007	2.39	0.0009	0.589	0.00085	0.00014	1.5	0.0001	0.008	< 0.00009	0.000005	1.1	0.0021	0.00001
OSK-W-17-1079-580	0.000006	< 0.0002	< 0.007	3.64	0.0012	0.331	0.00168	0.00014	1.07	< 0.0001	0.004	< 0.00009	0.000007	1.13	0.0045	0.00005
OSK-W-17-1073-366	0.000005	< 0.0002	< 0.007	0.09	0.0012	2.75	0.00234	0.00009	1.31	< 0.0001	< 0.003	< 0.00009	0.000007		< 0.0009	0.00003
OSK-W-17-1104-003	0.000005	< 0.0002		1.4	0.00017	0.205	0.00234	0.00003	1.7	< 0.0001	< 0.003	< 0.00009	0.000013	1.36	< 0.0009	
1 0010 00 17 1121 000 7	5.000000	0.0002	< 0.007	2.2	0.0008	1.83	0.00248	0.00005	1.88	< 0.0001	< 0.003	< 0.00009	0.000167		< 0.0009	

	Co	Cu	Fe	к	Li	Mg	Mn	Мо	Na	Ni	P (tot)	Pb	U	Si	Sb	Se
Identification de l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
OSK-W-17-1369-219.5	0.00001	< 0.0002	0.009	3.59	0.001	1.45	0.00738	0.0004	0.57	0.0001	0.004	< 0.00009	0.00004	0.89	0.0013	0.00006
OSK-W-17-968-145	0.000013	< 0.0002	< 0.007	1.45	0.0018	2.61	0.00109	0.00007	1.3	0.0003	< 0.003	< 0.00009	< 0.000002	0.71	0.0041	0.00015
OSK-W-18-1386-W4-885	0.000029	< 0.0002	0.04	2.91	0.0028	2.97	0.00567	0.00029	2.34	0.0003	0.005	< 0.00009	0.000007	0.9	0.0019	0.00013
OSK-W-18-1608-805	0.000015	< 0.0002	0.008	3.24	0.0013	2.23	0.00119	0.00006	1.62	0.0002	0.009	< 0.00009	0.000008	0.75	0.0087	0.00014
OSK-W-18-1713-470	0.000006	< 0.0002	< 0.007	2.39	0.0008	8.0	0.00093	0.00005	0.98	0.0001	0.008	< 0.00009	0.000009	0.85	0.0054	0.00006
OSK-W-18-1759-190	0.000007	< 0.0002	0.007	2.73	0.0016	1.66	0.00889	0.00013	0.86	< 0.0001	0.007	< 0.00009	0.000015	0.86	0.0046	0.00007
OSK-W-19-1181-W12-1140	0.000025	< 0.0002	< 0.007	3.05	0.0023	0.971	0.00407	0.00007	1.07	0.0004	0.007	0.00069	0.000011	1.08	0.0051	0.0001
OSK-W-19-1181-W5-845	0.000005	< 0.0002	< 0.007	1.97	0.0016	0.901	0.0019	0.00007	1.95	< 0.0001	< 0.003	< 0.00009	0.000193	1.29	0.0011	< 0.00004
OSK-W-19-1181-W5-970	0.000008	< 0.0002	< 0.007	1.05	0.0017	2.9	0.00181	0.0001	1.57	< 0.0001	0.006	< 0.00009	0.000003	0.65	< 0.0009	0.00008
OSK-W-19-1412-W3-715	0.000029	< 0.0002	< 0.007	1.6	0.0016	2.69	0.00111	0.00005	1.79	0.0002	0.005	< 0.00009	< 0.000002	0.8	0.0011	0.00007
OSK-W-19-1412-W3-765	0.000012	< 0.0002	< 0.007	0.98	0.0019	1.91	0.00306	0.00006	1.45	< 0.0001	0.005	< 0.00009	< 0.000002	0.53	0.0011	0.00005
WST-21-0647-161.5	0.000014	< 0.0002	0.009	2.05	0.0014	0.664	0.00116	0.00176	1.97	0.0001	< 0.003	< 0.00009	0.000157	2.03	< 0.0009	< 0.00004
WST-21-0647-313	0.000005	< 0.0002	0.01	2.96	0.0022	1.85	0.0108	0.00041	1.01	0.0001	< 0.003	0.00016	0.000048	1.42	0.0067	0.00015
WST-19-0160A-55	0.000006	< 0.0002	< 0.007	2.11	0.0014	1.47	0.00568	0.00023	0.94	0.0001	< 0.003	< 0.00009	0.000005	0.9	0.0046	0.00006
OSK-W-21-2606-615	0.000004	< 0.0002	< 0.007	2.27	0.0009	0.417	0.00089	0.00017	0.92	0.0001	< 0.003	< 0.00009	0.000003	1	0.0025	0.00016
OSK-W-21-2606-670	0.000005	< 0.0002	< 0.007	0.93	0.0004	0.74	0.00061	0.0002	1.06	0.0001	< 0.003	< 0.00009	< 0.000002	1.03	< 0.0009	< 0.00004
WST-21-0666-54	0.000006	< 0.0002	< 0.007	1.07	0.0023	2.96	0.00094	0.0003	2.16	< 0.0001	< 0.003	< 0.00009	< 0.000002	1.06	0.0013	0.0004
WST-22-1013-345	0.000006	< 0.0002	< 0.007	3.34	0.0021	1.07	0.00211	0.00031	1.37	0.0001	< 0.003	< 0.00009	0.000016	1.48	0.0071	0.00011
OSK-W-21-2551-W3-915	0.000008	< 0.0002	< 0.007	1.26	0.0046	0.84	0.00099	0.00013	2.67	< 0.0001	< 0.003	< 0.00009	0.000056	1.73	0.0022	0.00006
WST-21-0992-450	0.000005	< 0.0002	< 0.007	2.31	0.0015	1.3	0.00114	0.00022	1.72	< 0.0001	< 0.003	< 0.00009	0.000014	1.58	0.0019	< 0.00004
WST-21-0952-32	0.000004	< 0.0002	< 0.007	0.94	0.0013	2.36	0.00055	0.00011	1.28	< 0.0001	< 0.003	< 0.00009	< 0.000002	0.99	0.0012	< 0.00004
OSK-W-21-1949-W15-1080	0.000007	< 0.0002	< 0.007	3.57	0.0025	1.32	0.00262	0.00033	1.38	0.0001	0.003	< 0.00009	0.000015	2.05	0.0025	0.00011
WST-18-0024-50	0.000007	< 0.0002	< 0.007	3.41	0.0013	0.703	0.00336	0.0003	0.97	< 0.0001	< 0.003	< 0.00009	0.000006	1.01	0.0014	0.00027
OSK-W-21-2555-590	< 0.000004		< 0.007	0.31	0.0005	1.63	0.00057	0.00078	0.89	0.0001	< 0.003		< 0.000000		< 0.0009	< 0.00004
OSK-W-21-2544-838	0.000004	< 0.0002	< 0.007	3.5	0.0018	1.58	0.00864	0.00076	0.9	0.0001	< 0.003	< 0.00009	0.0000027	1.46	0.0091	0.00011
WST-20-0573-367	0.000006	< 0.0002	< 0.007	1.8	0.0014	1.28	0.00239	0.0002	2	0.0001	< 0.003	< 0.00009	0.000118		< 0.0009	0.00005
#08351	0.00006	< 0.0002	< 0.007	0.27	0.0019	2.2	0.00203	0.00018	3	0.0002	< 0.003	< 0.00009	0.000007		< 0.0009	0.00005
#08352	0.00001	0.0004	0.01	3.49	0.0045	1.66	0.00252	0.00045	2.46	0.0002	< 0.003	< 0.00009	0.000066	1.44	< 0.0009	0.00006
#08353	0.00001	< 0.0004	0.007	0.83	0.0043	2.09	0.00232	0.00043	2.12	< 0.0001	< 0.003	< 0.00009	0.000003	1.02	< 0.0009	0.00007
#08358	0.000010	0.0002	0.012	0.03	0.0015	1.95	0.00050	0.00039	0.28	0.0001	< 0.003	< 0.00009	0.000052	0.65	0.0016	0.00007
OBM-15-564 79	0.000014	0.0007	< 0.012	2.87	0.0013	0.653	0.00131	0.00035	1.76	0.0002	< 0.003	0.00003	0.000032	1.2	0.0076	0.00003
OBM-15-557 80	0.000041	0.00011	< 0.007	4.96	0.0023	0.359	0.00227	0.00023	0.68	< 0.0002	< 0.003	0.00021	0.000010	1.3	0.0078	0.00077
OBM-15-552 81	0.000012	0.00071	< 0.007	1.8	0.0012	0.461	0.00072	0.00022	2.05	< 0.0001	< 0.003	0.00003	0.0000034	1.23	0.0030	0.00077
OBM-15-554 82	0.000017	0.00071	< 0.007	2.14	0.0012	0.461	0.00079	0.00241	1.53	< 0.0001	< 0.003	< 0.00001	0.000009	1.23	0.0022	0.00078
OSK-W-16-311-W2 84	0.000008	0.00012	0.007	1.16	0.0011	6.99	0.00005	0.00251	0.39	0.001	< 0.003	0.01675	0.000016	0.61	0.0016	0.00039
OSK-W-16-311-W2_64	0.00066	0.00144	0.03	2.07	0.0025	2.58	0.03012	0.0096	0.39	< 0.001	0.003	0.01675	0.00011	0.61	0.0096	0.00226
OSK-W-16-706-W1_65	0.00083	0.00162	2.09	0.06	0.0018	1.41	1.26	0.00702	0.41	0.0101	< 0.003	0.00012	0.00067	0.57	0.0096	0.0034
OSK-W-16-706-W1_87	0.0003	0.00055	< 0.007	2.28	0.0018	0.334	0.00075	0.00246	2.35	0.0101	< 0.003	0.0134	0.000035	1.55	0.0019	0.0008
OSK-W-16-706-W1_88	0.000043	0.00038	< 0.007	2.20	0.0009	0.334	0.00075	0.00021	1.97	< 0.0002	< 0.003	< 0.00011	0.000035	1.45	0.0052	0.00023
OSK-W-16-706-W2 89	0.000011	0.00038	< 0.007	2.12	0.0013	0.307	0.000118	0.00136	1.59	0.0001	< 0.003	0.00001	0.000027	1.45	0.0022	0.00047
OSK-W-16-706-W2_89		0.00018	< 0.007	4.07	0.0019	1.34	0.00098	0.00018		< 0.0001	< 0.003	< 0.00001	0.000036	0.8	0.0015	0.0005
	0.000015			_		_			1.38	< 0.0001	< 0.003				0.0011	
OSK-W-16-708-W2_91	0.000012	0.00017	< 0.007	1.95	0.0009	0.45	0.00098	0.00016	1.7			< 0.00001	0.000012	1.2		0.00056
OSK-W-16-735-W2_92	0.000026	0.00028	< 0.007	2.52	0.0017	0.803	0.00078	0.00042	2.38	< 0.0001	< 0.003	< 0.00001	0.00011	1.62	0.0051	0.00014
OSK-W-16-743_93	0.000055	0.00049	< 0.007	4.49	0.0014	0.279	0.00184	0.00022	0.96	< 0.0001	< 0.003	< 0.00001	0.000027	1.33	0.0474	0.00028
OSK-W-16-746_94	0.000021	0.00009	< 0.007	4.51	0.0024	1.26	0.00862	0.00008	1.17	< 0.0001	< 0.003	< 0.00001	0.000011	0.81	0.001	0.00015
OSK-W-16-754_95	0.000022	0.00021	< 0.007	2.96	0.0008	0.315	0.00061	0.0003	2.08	< 0.0001	< 0.003	< 0.00001	0.000054	1.52	0.001	0.00028

Identification de	Co	Cu	Fe	К	Li	Mg	Mn	Мо	Na	Ni	P (tot)	Pb	U	Si	Sb	Se
l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
OSK-W-16-754_96	0.000004	0.00021	< 0.007	3.94	0.001	0.491	0.00046	0.00024	1.22	< 0.0001	< 0.003	< 0.00001	0.00001	1.34	0.0033	0.00021
OSK-W-17-774_97	0.000034	0.00016	< 0.007	4.17	0.0018	2.34	0.0227	0.00042	1.02	0.0001	< 0.003	< 0.00001	0.000016	0.76	0.0012	0.00024
OSK-W-17-774_98	0.000014	0.00058	< 0.007	2.83	0.0008	0.331	0.00047	0.00013	1.97	< 0.0001	< 0.003	0.00002	0.000023	1.66	0.0011	0.00015
OSK-W-17-789_99	0.00001	0.00042	0.011	4.84	0.0018	0.319	0.00087	0.00154	1.78	0.0001	0.003	0.00004	0.00008	1.47	0.0024	0.00021
OSK-W-17-789_100	0.000047	0.00045	< 0.007	3.97	0.0013	0.356	0.00085	0.00014	1.25	0.0002	< 0.003	0.00005	0.000029	1.4	0.0041	0.00014
OSK-W-17-812_101	0.000026	0.00015	< 0.007	3.6	0.0029	1.35	0.00268	0.00077	1.62	0.0002	< 0.003	< 0.00001	0.000115	1.52	0.0042	< 0.00004
OSK-W-17-812_102	0.000006	0.00015	< 0.007	2.61	0.0026	2.96	0.00433	0.00029	1.82	0.0001	< 0.003	< 0.00001	0.000018	1.27	0.0019	0.00009
OBM-15-552_103	< 0.000004	0.00039	< 0.007	3.58	0.0015	0.532	0.00059	0.0545	1.16	< 0.0001	< 0.003	< 0.00001	0.000009	1.24	0.0018	0.00055
OSK-W-16-311-W1 83	0.000007	0.00022	< 0.007	3.42	0.0014	0.393	0.00064	0.00052	1.48	< 0.0001	0.003	< 0.00001	0.000014	1.44	0.0022	0.00013

	Sn	Sr	Те	Ti	TI	Th	v	w	Y	Zn	NH3+NH4
Identification de l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg N/L
E-27-D-H	0.00127	0.0362	-	0.00007	< 0.000005	< 0.0001	0.00007	0.0007	0.000005	0.009	-
E-27-D-L	0.00092	0.0238	-	< 0.00005	< 0.000005	< 0.0001	0.00003	0.0035	0.000004	0.005	-
E-27-U-H	0.00015	0.0262	-	< 0.00005	< 0.000005	< 0.0001	0.00004	0.0003	0.000011	0.005	-
E-27-U-L	0.00038	0.0294	-	< 0.00005	< 0.000005	< 0.0001	0.00005	0.0007	< 0.000002	0.006	-
E-CA-D-H	0.00021	0.0265	-	0.0001	< 0.000005	< 0.0001	0.00007	0.0006	< 0.000002	0.004	-
E-CA-D-L	0.00022	0.0247	-	< 0.00005	< 0.000005	< 0.0001	0.00007	0.0009	0.000003	0.006	-
E-CA-U-H	0.00039	0.0609	-	< 0.00005	< 0.000005	< 0.0001	0.00003	0.0002	0.000002	0.008	-
E-CA-U-L	< 0.00001	0.0386	-	< 0.00005	< 0.000005	< 0.0001	0.00003	0.0002	0.000006	0.007	-
Under Dog A	< 0.00001	0.0222	-	< 0.00005	< 0.000005	< 0.0001	0.00009	0.0004	0.000023	< 0.002	-
Under Dog B	< 0.00001	0.018	-	0.00039	< 0.000005	< 0.0001	0.0003	0.0012	< 0.000002	< 0.002	-
Under Dog C	< 0.00001	0.0266	-	< 0.00005	< 0.000005	< 0.0001	0.00004	0.0026	< 0.000002	< 0.002	-
P3-I	0.00012	0.014	< 0.0001	< 0.00005	0.000058	< 0.0001	0.00084	0.0003	0.000026	0.005	-
P3-J	0.00011	0.0176	< 0.0001	< 0.00005	0.000029	< 0.0001	0.00098	0.0026	0.000023	< 0.002	-
P3-K	0.00015	0.0107	< 0.0001	< 0.00005	0.000043	0.0001	0.00021	0.0003	0.000024	0.003	-
P3-L	0.00012	0.0131	< 0.0001	0.00015	0.000038	< 0.0001	0.00044	0.0046	0.000012	< 0.002	-
EAG-13-485 2	0.00005	0.0283	< 0.0001	0.00005	< 0.000005	< 0.0001	0.00053	0.0008	0.000002	< 0.002	-
EAG-13-485 3	0.00008	0.0088	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00049	0.0007	0.000006	< 0.002	-
EAG-13-485 4	0.00005	0.0304	< 0.0001	0.00009	< 0.000005	< 0.0001	0.00081	0.0018	< 0.000002	< 0.002	-
OBM-15-557 10	0.00004	0.107	< 0.0001	0.00009	< 0.000005	< 0.0001	0.00076	0.0004	0.000005	< 0.002	-
OBM-15-559 11	0.00011		< 0.0001	0.00016	< 0.000005	< 0.0001	0.00004	9E-05	0.000026	< 0.002	-
OBM-15-559 12	0.00008	0.109	< 0.0001	0.00014	< 0.000005	< 0.0001	0.00103	8E-05	0.000034	0.003	-
OBM-15-559 13	0.00003	0.0357	< 0.0001	0.00006	< 0.000005	< 0.0001	0.00048	0.0005	0.000003	< 0.002	-
OBM-16-580 17	0.00011	0.0332	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00011	0.0011	0.000009	< 0.002	-
OBM-16-580_18	0.00003	0.008	< 0.0001	0.00006	< 0.000005	< 0.0001	0.0006	0.0002	0.000005	< 0.002	_
OBM-16-645 22	0.00005		< 0.0001	0.00009	< 0.000005	< 0.0001	0.00008	0.0003	0.000007	< 0.002	_
OBM-16-671 23	0.00004	0.111	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00052	0.0009	0.000006	< 0.002	_
OSK-W-16-715 27	0.00017	0.0175	< 0.0001	0.00011	< 0.000005	< 0.0001	0.00052	0.0002	0.000002	< 0.002	_
OSK-W-16-751 29	0.00003	0.0084	< 0.0001	0.00006	< 0.000005	< 0.0001	0.00011	7E-05	0.000022	< 0.002	_
OSK-W-16-751 30	0.00003	0.0207	0.0001	< 0.00005	< 0.000005	< 0.0001	0.00077	0.0002	0.000004	< 0.002	_
OSK-W-16-760 31	0.00004		< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00011	7E-05	0.000013	< 0.002	_
OSK-W-17-773 37	0.00011		< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00032	0.0004	0.000003	< 0.002	_
OSK-W-17-773 38	0.00001		< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00032	0.0004	< 0.000002	< 0.002	-
OSK-W-17-773 39	0.00005		< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00074	0.0001	0.000005	< 0.002	
OSK-W-17-773_55	0.00003		< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00072	0.0003	0.000003	< 0.002	
OSK-W-17-773 42	0.00005		< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00025	0.0003	0.000002	< 0.002	
OSK-W-17-774 44	0.00007		< 0.0001	0.0000	< 0.000005	< 0.0001	0.00023	0.0004	0.000002	< 0.002	_
OSK-W-17-779 46	0.00007	0.0066		< 0.0001	< 0.000005	< 0.0001	0.000037	0.0004	0.000017	< 0.002	-
OSK-W-17-779 47	0.00003	0.0803		< 0.00005	< 0.000005	< 0.0001	0.00095	0.0001	0.000017	< 0.002	
OSK-W-17-788 51	0.00004		< 0.0001	0.00008	< 0.000005	< 0.0001	0.00062	0.0003	0.000002	< 0.002	
EAG-13-485 53	0.00003		< 0.0001	0.00008	< 0.000005	< 0.0001	< 0.00002	3E-05	0.000016	< 0.002	
EAG-13-403_55	0.00005		< 0.0001	0.00001	< 0.000005	< 0.0001	0.00003	0.0001	0.000010	0.002	
EAG-13-513 57	0.00003	0.0338	< 0.0001	< 0.00011	< 0.000005	< 0.0001	0.00011	0.0001	0.000003	< 0.002	-
EAG-14-538 58	0.00017	0.0276	< 0.0001	0.00003	< 0.000005	< 0.0001	0.00011	0.0013	0.000003	< 0.002	
OBM-15-559 59	0.00006		< 0.0001	< 0.00022	< 0.000005	< 0.0001	0.00013	0.0002	< 0.000002	< 0.002	
OBM-15-566 60	0.00004		< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00027	0.0003	0.000002	< 0.002	
OBM-16-630 61	0.00004		< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.000044	0.0003	0.000002	< 0.002	

Identification de	Sn	Sr	Te	Ti	ΤI	Th	v	w	Y	Zn	NH3+NH4
l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg N/L
OBM-16-654 62	0.00005	0.0205	< 0.0001	0.00014	0.000009	< 0.0001	< 0.00001	< 0.00002	0.000113	0.005	-
OBM-16-671 63	0.00003	0.365	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00093	8E-05	0.000011	< 0.002	-
OBM-16-673 64	0.00003	0.0214	< 0.0001	0.00007	< 0.000005	< 0.0001	0.00002	0.0001	< 0.000002	< 0.002	-
OSK-W-16-760 67	0.00007	0.0295	< 0.0001	0.00008	< 0.000005	< 0.0001	0.00046	0.0005	0.000003	< 0.002	-
OBM-16-580 68	0.00007		< 0.0001	0.00012	< 0.000005	< 0.0001	0.00051	0.0012	0.000036	< 0.002	-
OBM-16-645 69	0.00003	0.0406	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00006	0.0035	0.000002	< 0.002	-
OBM-16-642 70	0.00004	0.0202	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00028	0.0006	0.000006	< 0.002	-
OSK-W-17-774 72	0.00018	0.39	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00041	0.0002	0.000002	< 0.002	-
OSK-W-17-1006 75	0.00004	0.0118	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00009	0.0003	0.000002	< 0.002	-
OSK-W-17-934 77	0.00008	0.0092	< 0.0001	0.00009	< 0.000005	< 0.0001	0.00055	0.0003	0.000011	< 0.002	-
Tails CND 1	0.00008		< 0.0001	0.00145	0.000007	< 0.0001	0.00007	0.0002	0.000035	< 0.002	-
Tails CND 4	0.00006		< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00002	0.0002	0.000002	< 0.002	-
Tails CND 5	0.00006	0.042	< 0.0001	0.00005	< 0.000005	< 0.0001	0.00003	0.0001	0.000003	< 0.002	-
Tails CND 6	0.00002	0.0365	< 0.0001	0.00006	< 0.000005	< 0.0001	0.00003	8E-05	0.000004	< 0.002	-
Triple Lynx LG	-	-	< 0.0001	0.00008	< 0.000005	< 0.0001	0.00032	0.0005	-	< 0.002	-
Lynx 4 LP-LG	-	-	0.0002	0.00024	< 0.000005	< 0.0001	0.00082	0.0004	_	< 0.002	-
Lynx 4 HP-LG	-	-	< 0.0001	0.0001	< 0.000005	< 0.0001	0.00028	0.0004	-	< 0.002	-
Triple Lynx MG/HG	-	-	< 0.0001	0.00006	0.000007	< 0.0001	0.00015	0.0004	_	< 0.002	-
Lynx 4 LP-MG/HG	_	_	< 0.0001	< 0.00005	0.000006	< 0.0001	0.00033	0.0003	_	< 0.002	_
Lynx 4 HP-MG/HG	-	-	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.0004	0.0005	-	< 0.002	-
GC10001	_	-	< 0.0001	0.00005	0.000005	< 0.0001	0.00041	0.0034	_	< 0.002	-
GC10002	-	-	< 0.0001	0.00009	0.000005	< 0.0001	0.00059	0.0011	-	< 0.002	-
GC10003	-	-	< 0.0001	0.00005	< 0.000005	< 0.0001	0.00142	0.0008	_	< 0.002	-
GC10004	-	-	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00036	0.0006	_	< 0.002	-
GC10005	-	-	< 0.0001	0.00005	< 0.000005	< 0.0001	0.00022	0.0006	-	< 0.002	-
GC10006	-	-	< 0.0001	0.0001	0.000005	< 0.0001	0.00043	0.0003	_	< 0.002	-
GC10007	-	-	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00059	0.0004	_	< 0.002	-
GC10008	-	-	< 0.0001	0.00008	< 0.000005	< 0.0001	0.00063	0.0007	_	< 0.002	-
GC10009	-	-	< 0.0001	0.0001	< 0.000005	< 0.0001	0.00065	0.0004	_	0.003	-
GC10010	-	-	< 0.0001	0.00009	< 0.000005	< 0.0001	0.00076	0.0002	-	< 0.002	-
GC10011	_	_	< 0.0001	0.00039	0.000006	< 0.0001	0.00091	0.0002	_	< 0.002	-
GC10012	-	-	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00061	0.0002	-	< 0.002	_
GC10013	_	-	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00044	0.0004	_	< 0.002	-
GC10014	_	_	< 0.0001	0.00013	< 0.000005	< 0.0001	0.00097	0.0003	_	< 0.002	_
GC10015	_	_	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00101	0.0018	_	< 0.002	_
GC10016	_	_	< 0.0001	0.00006	< 0.000005	< 0.0001	0.00054	0.0004	_	< 0.002	-
GC10017	-	_	< 0.0001	< 0.00005	0.000006	< 0.0001	0.00079	0.0004	-	< 0.002	-
GC10018	_	-	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00077	0.0004	_	0.002	-
GC10019	_	_	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00077	0.0004	_	< 0.002	-
GC10020	_	_	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00073	0.0002	_	< 0.002	-
GC10020	_	_	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00076	0.0002		< 0.002	
GC10021	_	_	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00070	0.0003	_	< 0.002	-
GC10022	_	_	< 0.0001	0.00006	< 0.000005	< 0.0001	0.00069	0.0003		< 0.002	
GC10023		-	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00003	9E-05		< 0.002	
GC10024 GC10025		-	< 0.0001	0.00003	< 0.000005	< 0.0001	0.0004	0.0001		< 0.002	-
GC10025 GC10026		-	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00015	0.0001	-	< 0.002	-

	Sn	Sr	Те	Ti	TI	Th	v	w	Y	Zn	NH3+NH4
Identification de l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg N/L
GC10027	-	-	< 0.0001	0.00009	0.000007	< 0.0001	0.00085	0.0001	-	< 0.002	-
GC10028	-	-	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00012	0.0001	-	< 0.002	-
GC10029	-	-	< 0.0001	0.00007	< 0.000005	< 0.0001	0.00057	0.0002	-	< 0.002	-
GC10030	-	-	< 0.0001	0.0001	< 0.000005	< 0.0001	0.00006	0.0003	-	< 0.002	-
GC10031	-	-	< 0.0001	0.00015	< 0.000005	< 0.0001	0.00004	0.0002	-	< 0.002	-
GC10032	-		< 0.0001	0.00018	0.000005	< 0.0001	0.00004	0.0001	-	< 0.002	-
CIL 11 CND	-	-	< 0.0001	0.00017	0.000009	< 0.0001	0.00011	0.0319	-	< 0.002	-
CIL 12 CND	-	-	0.0002	0.00007	0.000006	< 0.0001	0.00028	0.0229	-	0.079	-
CIL 13 CND	_	-	0.0001	0.00021	0.000006	< 0.0001	0.00069	0.0675	_	0.097	_
OSK-W-21-2613-1042	< 0.00006	0.0136	< 0.0001	0.0003	< 0.000005	< 0.0001	0.00027	0.0003	_	0.002	< 0.1
OSK-W-21-2587-1060	< 0.00006		< 0.0001	0.00017	< 0.000005	< 0.0001	0.00012	0.0004	_	< 0.002	< 0.1
WST-21-0879-639	< 0.00006			0.00017	< 0.000005	< 0.0001	0.00082	0.0002	_	< 0.002	< 0.1
OSK-W-19-1897-610	< 0.00006		< 0.0001	0.00009	< 0.000005	< 0.0001	0.00093	0.0002	_	< 0.002	< 0.1
OSK-W-19-1897-825	< 0.00006			0.00008	< 0.000005	< 0.0001	0.00096	0.0012	_	< 0.002	< 0.1
OSK-W-19-1897-983	< 0.00006			0.00001	< 0.000005	< 0.0001	0.00030	0.0003		< 0.002	< 0.1
OSK-W-20-2323-115	< 0.00006		< 0.0001	0.00021	< 0.000005	< 0.0001	0.00071	0.0005	_	< 0.002	< 0.1
OSK-W-19-1949-W1-948	< 0.00006		< 0.0001	0.00014	< 0.000005	< 0.0001	0.00043	0.0005		< 0.002	< 0.1
OSK-W-21-2252-W12-922	< 0.00006			0.00020	< 0.000005	< 0.0001	0.00073	0.0003		0.002	< 0.1
OSK-W-21-2252-W12-922	< 0.00006			0.00138	< 0.000005	< 0.0001	0.00012	0.0003		< 0.002	< 0.1
						< 0.0001			-	< 0.002	< 0.1
OSK-W-20-2283-W7-888	< 0.00006			0.00013	< 0.000005		0.00021	0.0003	-		• • • • • • • • • • • • • • • • • • • •
OSK-W-20-2256-W1-1051.7	< 0.00006		< 0.0001	0.00017	< 0.000005	< 0.0001	0.00058	0.0002		< 0.002	< 0.1
OSK-W-20-2375-W4-890	< 0.00006			0.00029	< 0.000005	< 0.0001	0.00067	0.0004		< 0.002	< 0.1
OSK-W-20-2350-125	< 0.00006		< 0.0001	0.00009	< 0.000005	< 0.0001	0.00103	0.0001	-	< 0.002	< 0.1
OSK-W-21-2444-545	< 0.00006		< 0.0001	0.0001	< 0.000005	< 0.0001	0.0005	0.0003	-	< 0.002	< 0.1
OSK-W-19-1746-W1-765	< 0.00006			0.00024	< 0.000005	< 0.0001	0.00005	0.0003	-	< 0.002	< 0.1
OSK-W-17-663-W2-680	< 0.00006		< 0.0001	0.00018	0.000009	< 0.0001	0.00064	0.0024	-	< 0.002	< 0.1
OSK-W-19-1857-W2-1030	< 0.00006		< 0.0001	0.00015	< 0.000005	< 0.0001	0.00101	0.0002	-	< 0.002	< 0.1
OSK-W-19-1857-W2-1210	< 0.00006		< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00073	0.0004	-	< 0.002	< 0.1
OSK-W-19-1897-496	< 0.00006		< 0.0001	0.00009	< 0.000005	< 0.0001	0.00036	0.0017	-	< 0.002	< 0.1
OSK-W-19-909-W12-770	< 0.00006		< 0.0001	0.00015	< 0.000005	< 0.0001	0.00029	0.0003	-	< 0.002	< 0.1
OSK-W-19-934-W3-940	< 0.00006		< 0.0001	0.00011	< 0.000005	< 0.0001	0.00009	0.0002	-	< 0.002	< 0.1
OSK-W-19-934-W3-1045	< 0.00006		< 0.0001	0.00022	< 0.000005	< 0.0001	0.00005	0.0002	-	< 0.002	< 0.1
OSK-W-21-2512-W3-610	< 0.00006		< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00093	0.0003	-	< 0.002	< 0.1
OKS-W-21-2613-W1-855	< 0.00006		< 0.0001	< 0.00005	0.000008	0.0003	0.00044	0.0002	-	< 0.002	< 0.1
OSK-W-21-2629-845	< 0.00006			< 0.00005	< 0.000005	< 0.0001	0.00129	0.0006	-	< 0.002	< 0.1
OSK-W-21-2605-1332	< 0.00006		< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00002	0.0003	-	< 0.002	< 0.1
OSK-W-21-2629-948	< 0.00006		< 0.0001	0.00006	< 0.000005	< 0.0001	0.00118	0.0016	-	< 0.002	< 0.1
OBM-15-552-280	< 0.00006		< 0.0001	0.00015	< 0.000005	< 0.0001	0.00122	0.0001	-	< 0.002	< 0.1
OBM-16-655-600	< 0.00006		< 0.0001	0.00014	< 0.000005	< 0.0001	0.00108	0.0002	-	< 0.002	< 0.1
OBM-16-655-330	< 0.00006		< 0.0001	0.00014	< 0.000005	< 0.0001	0.00006	0.0004	-	< 0.002	< 0.1
OBM-16-677-79	< 0.00006	0.154	< 0.0001	0.00008	< 0.000005	< 0.0001	0.00105	0.0001		< 0.002	< 0.1
OSK-W-16-706-W2-905	< 0.00006	0.0143	< 0.0001	0.00012	< 0.000005	< 0.0001	0.00088	0.0003	-	< 0.002	< 0.1
OSK-W-17-1079-580	< 0.00006	0.0097	< 0.0001	0.00017	< 0.000005	< 0.0001	0.00126	0.0002	-	< 0.002	< 0.1
OSK-W-17-1104-665	< 0.00006	0.121	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.0005	7E-05	-	< 0.002	< 0.1
OSK-W-17-1121-545	< 0.00006		< 0.0001	0.00019	< 0.000005	< 0.0001	0.00073	0.0002	-	< 0.002	< 0.1
OSK-W-17-1305-261	< 0.00006	0.201	< 0.0001	0.00006	< 0.000005	< 0.0001	0.00115	0.0002	-	< 0.002	< 0.1

Identification de	Sn	Sr	Te	Ti	ΤI	Th	v	w	Y	Zn	NH3+NH4
l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg N/L
OSK-W-17-1369-219.5	< 0.00006	0.0178	< 0.0001	0.0006	< 0.000005	< 0.0001	0.0002	0.0002	-	< 0.002	< 0.1
OSK-W-17-968-145	< 0.00006	0.0232	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00108	0.0002	-	< 0.002	< 0.1
OSK-W-18-1386-W4-885	< 0.00006	0.0138	< 0.0001	0.00063	< 0.000005	< 0.0001	0.00172	0.001	-	0.004	< 0.1
OSK-W-18-1608-805	< 0.00006	0.0109	< 0.0001	0.0001	< 0.000005	< 0.0001	0.00093	0.0007	-	< 0.002	< 0.1
OSK-W-18-1713-470	< 0.00006	0.016	< 0.0001	0.0004	0.000005	< 0.0001	0.001	0.0004	-	< 0.002	< 0.1
OSK-W-18-1759-190	< 0.00006	0.006	< 0.0001	0.00021	< 0.000005	< 0.0001	0.00027	0.0003	-	< 0.002	< 0.1
OSK-W-19-1181-W12-1140	< 0.00006	0.0092	< 0.0001	0.00014	< 0.000005	< 0.0001	0.00045	0.0004	-	< 0.002	< 0.1
OSK-W-19-1181-W5-845	< 0.00006	0.0773	< 0.0001	0.00015	< 0.000005	< 0.0001	0.00071	0.0004	-	< 0.002	< 0.1
OSK-W-19-1181-W5-970	< 0.00006	0.132	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00064	0.0004	-	< 0.002	< 0.1
OSK-W-19-1412-W3-715	< 0.00006	0.0224	< 0.0001	0.00005	< 0.000005	< 0.0001	0.00107	0.0005	-	< 0.002	< 0.1
OSK-W-19-1412-W3-765	< 0.00006	0.0254	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00021	0.0002	-	< 0.002	< 0.1
WST-21-0647-161.5	< 0.00006		< 0.0001	0.00007	< 0.000005	< 0.0001	0.00074	0.0003	-	< 0.002	< 0.1
WST-21-0647-313	< 0.00006		< 0.0001	0.0002	< 0.000005	< 0.0001	0.00005	0.0002	-	< 0.002	< 0.1
WST-19-0160A-55	< 0.00006		< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.0004	0.0006	_	< 0.002	< 0.1
OSK-W-21-2606-615	< 0.00006		< 0.0001	< 0.00005	0.000008	< 0.0001	0.00021	0.0004	_	< 0.002	< 0.1
OSK-W-21-2606-670	< 0.00006		< 0.0001	< 0.00005	0.000009	< 0.0001	0.00123	0.0002	_	< 0.002	< 0.1
WST-21-0666-54	< 0.00006	0.228	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00106	0.0002	_	< 0.002	< 0.1
WST-22-1013-345	< 0.00006		< 0.0001	0.0001	< 0.000005	< 0.0001	0.00049	0.0002	_	0.002	< 0.1
OSK-W-21-2551-W3-915	< 0.00006		< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.0006	0.0002	_	< 0.002	< 0.1
WST-21-0992-450	< 0.00006		< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00071	0.0003	-	< 0.002	0.1
WST-21-0952-32	< 0.00006		< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00062	0.0001	_	< 0.002	< 0.1
OSK-W-21-1949-W15-1080			< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00047	0.0002	_	< 0.002	< 0.1
WST-18-0024-50	< 0.00006		< 0.0001	0.00009	0.000005	< 0.0001	0.00037	0.0004	-	0.004	< 0.1
OSK-W-21-2555-590	< 0.00006		< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00063	0.0003	_	< 0.002	< 0.1
OSK-W-21-2544-838	< 0.00006		< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.0003	0.0002	-	< 0.002	< 0.1
WST-20-0573-367	< 0.00006		< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00094	0.0004	_	< 0.002	< 0.1
#08351	< 0.00006		< 0.0001	0.00008	0.000005	< 0.0001	0.00027	0.0001	-	< 0.002	1.6
#08352	< 0.00006		< 0.0001	0.0002	< 0.000005	< 0.0001	0.00091	0.0003	_	< 0.002	0.3
#08353	< 0.00006		< 0.0001	0.0002	< 0.000005	< 0.0001	0.00054	0.0001	_	< 0.002	0.2
#08358	< 0.00006		< 0.0001	0.0003	0.000016	0.0001	0.00038	0.0001	_	< 0.002	0.1
OBM-15-564 79	0.00002		< 0.0001	0.00007	0.000016	< 0.0001	0.00052	0.0001	_	< 0.002	-
OBM-15-557 80	0.00003		< 0.0001	0.00007	< 0.000005	< 0.0001	0.00083	0.0004	-	< 0.002	_
OBM-15-552 81	0.00002		< 0.0001	0.00021	< 0.000005	< 0.0001	0.00106	0.0016	_	< 0.002	_
OBM-15-554 82	0.00002	0.0217	< 0.0001	0.00016	< 0.000005	< 0.0001	0.00127	0.0015	_	< 0.002	_
OSK-W-16-311-W2 84	0.00065	0.174	< 0.0001	< 0.00005	0.00008	< 0.0001	0.000127	0.0081	_	0.285	_
OSK-W-16-706-W1 85	0.00031	0.104	< 0.0001	0.00018	0.00002	< 0.0001	0.00003	0.0027	_	< 0.002	
OSK-W-16-706-W1_86	0.00031	0.027	< 0.0001	0.00008	0.00002	< 0.0001	0.00003	0.0027		108	
OSK-W-16-706-W1 87	0.00023	0.027	0.0003	0.00007	< 0.000005	< 0.0001	0.00002	0.0003		< 0.002	
OSK-W-16-706-W1_88	0.00003		< 0.0003	0.00007	< 0.000005	< 0.0001	0.00062	0.0003		< 0.002	 -
OSK-W-16-706-W1_89	0.00003		< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00072	0.0003		< 0.002	
OSK-W-16-708-W1 90	0.00001	0.0139	< 0.0001	< 0.00005	0.000003	< 0.0001	0.00072	0.0003		< 0.002	
OSK-W-16-708-W2 91	0.00001		< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00046	3E-05	<u> </u>	< 0.002	-
OSK-W-16-735-W2_91	0.00003		< 0.0001	0.00003	< 0.000005	< 0.0001	0.00072	0.0002		< 0.002	
OSK-W-16-735-W2_92 OSK-W-16-743 93	0.00004		< 0.0001	0.00007	< 0.000005	< 0.0001	0.00103	0.0002	-	< 0.002	
OSK-W-16-743_93 OSK-W-16-746_94	0.00001	0.0096	< 0.0001	< 0.00027	0.000009	< 0.0001	0.00102	7E-05	-	< 0.002	-
	0.00003			< 0.00005	< 0.000009	< 0.0001	0.00033	0.0003	-	< 0.002	-
OSK-W-16-754_95	0.00003	0.0708	< 0.0001	< 0.00005	<u>\ 0.000005</u>	< 0.0001	0.00096	0.0003	_	< 0.002	

Identification de	Sn	Sr	Te	Ti	TI	Th	V	w	Y	Zn	NH3+NH4
l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg N/L
OSK-W-16-754_96	0.00001	0.0141	< 0.0001	0.00026	< 0.000005	< 0.0001	0.00084	0.0003	-	< 0.002	-
OSK-W-17-774_97	0.00003	1.41	< 0.0001	< 0.00005	0.000012	< 0.0001	0.00029	0.0002	-	< 0.002	-
OSK-W-17-774_98	0.00001	0.039	< 0.0001	0.00009	< 0.000005	< 0.0001	0.00086	2E-05	1	< 0.002	-
OSK-W-17-789_99	0.00008	0.0078	< 0.0001	0.00034	< 0.000005	< 0.0001	0.00135	0.0013	ı	< 0.002	1
OSK-W-17-789_100	0.00004	0.0095	< 0.0001	0.00008	< 0.000005	< 0.0001	0.00083	0.0001	1	< 0.002	1
OSK-W-17-812_101	0.00004	0.0131	< 0.0001	0.00008	< 0.000005	< 0.0001	0.0007	0.0002	1	< 0.002	1
OSK-W-17-812_102	0.00001	0.0152	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00059	0.0001	1	< 0.002	-
OBM-15-552_103	0.00002	0.0162	< 0.0001	0.00011	0.000007	< 0.0001	0.00093	0.001	1	< 0.002	1
OSK-W-16-311-W1 83	0.00002	0.0151	< 0.0001	0.00009	< 0.000005	< 0.0001	0.00146	0.0003	-	< 0.002	-

Identification de	Type de	Poids de l'échantillon	Volume d'eau D.I.	pH final	рН	Conductivité	Alcalinité	НСО₃	CO ₃	OH.	SO ₄	CI	P total réactif	Br
l'échantillon	l'échantillon	g	mL	pas d'unité	pas d'unité	μS/cm	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L	mg/L	mg/L	mg/L
E-27-D-H	Minerai	100	400	7.75	8.09	652	109	-	-	-	150	4.3	< 0.03	< 3
E-27-D-L	Minerai	100	400	7.84	8.1	587	124	-	-	-	120	3.1	< 0.03	< 3
E-27-U-H	Minerai	100	400	7.66	8.11	944	122	-	-	-	260	4.2	< 0.03	< 3
E-27-U-L	Minerai	100	400	7.87	8.12	841	119	-	-	-	200	3.8	< 0.03	< 3
E-CA-D-H	Minerai	100	400	8.13	8.17	712	119	-	-	-	130	6.1	< 0.03	< 3
E-CA-D-L	Minerai	100	400	8.14	8.28	732	152	-	-	-	140	6.8	< 0.03	< 3
E-CA-U-H	Minerai	100	400	7.99	8.15	780	126	-	-	-	160	3.8	< 0.03	< 3
E-CA-U-L	Minerai	100	400	8.11	8.24	686	123	-	-	-	100	4	< 0.03	< 3
Under Dog A	Minerai	95	380	8.1	8.02	349	76	76	< 2	-	52	7.9	< 0.03	< 3
Under Dog B	Minerai	95	380	8.17	7.96	320	67	67	< 2	-	49	9.6	< 0.03	< 3
Under Dog C	Minerai	95	380	7.45	7.79	735	121	121	< 2	-	190	5.4	< 0.03	< 3
P3-I	Minerai	100	400	8	8.36	482	161	158	3	-	47	9	< 0.03	< 3
P3-J	Minerai	100	400	8.23	8.35	535	180	177	3	-	50	9.3	< 0.03	< 3
P3-K	Minerai	100	400	8.27	8.28	507	163	163	< 2	-	58	8.3	< 0.03	< 3
P3-L	Minerai	100	400	8.36	8.35	472	160	158	3	-	44	8.7	< 0.03	< 3
EAG-13-485 2	Stériles	100	400	8.51	8.51	323	146	138	8	-	13	6.9	-	< 3
EAG-13-485 3	Stériles	100	400	8.41	8.14	325	79	79	< 2	-	29	7.9	-	< 3
EAG-13-485 4	Stériles	100	400	8.56	8.41	374	139	133	6	-	26	6.8	-	< 3
OBM-15-557 10	Stériles	100	400	8.48	8.43	386	144	138	6	-	46	4.6	_	< 3
OBM-15-559 11	Stériles	100	400	8.68	8.43	311	100	95	5	-	29	8	-	< 3
OBM-15-559 12	Stériles	100	400	8.81	8.39	342	85	82	2	_	68	9.3	_	< 3
OBM-15-559 13	Stériles	100	400	8.58	8.47	291	111	106	5		12	9.1	_	< 3
OBM-16-580 17	Stériles	100	400	7.91	8.01	797	133	133	< 2	-	210	4.9	_	< 3
OBM-16-580 18	Stériles	100	400	8.81	8.32	299	71	70	< 2	_	24	22	-	< 3
OBM-16-645 22	Stériles	100	400	8.46	8.31	359	134	132	2	_	34	4.3	_	< 3
OBM-16-671 23	Stériles	100	400	8.51	8.34	396	145	143	2	-	33	6.3	_	< 3
OSK-W-16-715 27	Stériles	100	400	8.48	8.6	429	168	155	14		40	6.5	-	< 3
OSK-W-16-751 29	Stériles	100	400	8.67	8.58	369	146	134	12	-	30	4	_	< 3
OSK-W-16-751 30	Stériles	100	400	8.64	8.28	274	125	125	< 2		9.1	3.2		< 3
OSK-W-16-760 31	Stériles	100	400	8.64	8.45	334	126	119	7	_	22	5.2		< 3
OSK-W-17-773 37	Stériles	100	400	8.27	8.54	443	248	227	21	_	7.8	5.1	_	< 3
OSK-W-17-773 38	Stériles	100	400	8.55	8.53	367	146	136	10		36	6		< 3
OSK-W-17-773 39	Stériles	100	400	8.69	8.6	377	175	162	13	_	17	4.4		< 3
OSK-W-17-773 41	Stériles	100	400	8.68	8.41	252	108	106	3		9.1	3		< 3
OSK-W-17-773 42	Stériles	100	400	8.48	8.49	401	159	149	10	_	26	12		< 3
OSK-W-17-773_42 OSK-W-17-774_44	Stériles	100	400	9.12	8.51	232	76	71	4	-	14	9.2		< 3
OSK-W-17-779 46	Stériles	100	400	8.89	8.16	297	121	121	< 2		5.5	4.2		< 3
OSK-W-17-779_40	Stériles	100	400	8.56	7.84	431	33	33	< 2	_	170	3		< 3
OSK-W-17-779_47 OSK-W-17-788_51	Stériles	100	400	8.8	8.65	327	157	145	12	-	8	4.6	<u> </u>	< 3
EAG-13-485 53	Stériles	100	400	8.31	8.27	499	118	118	< 2	-	95	4.3	<u>-</u>	< 3
EAG-13-465_55 EAG-13-497_56	Stériles	100	400	7.93	8.25	482	91	91	< 2	-	93	6.5		< 3
EAG-13-497_50 EAG-13-513_57	Stériles	100	400	8.24	8.07	621	105	105	< 2		150	5.3		< 3
EAG-14-538 58	Stériles	100	400	8.34	8.2	375	80	80	< 2	-	64	7.3		< 3
OBM-15-559 59	Stériles	100	400	8.81	8.15	415	71	71	< 2	-	65	21		< 3
OBM-15-566 60	Stériles	100	400	8.8	8.75	351	166	146	21	-	4.7	5.9		< 3
OBM-16-630 61	Stériles	100	400	8.37	8.75	384	104	102	2		54		.	< 3
		100	400	6.62	6.97	568	9	9	< 2	-	200	3.9		< 3
OBM-16-654_62	Stériles					525								
OBM-16-671_63	Stériles	100	400	8.52	8.29	525	106	106	< 2	-	140	4.6	-	< 3

Identification de	Type de	Poids de l'échantillon	Volume d'eau D.I.	pH final	pН	Conductivité	Alcalinité	НСО₃	CO ₃	OH.	SO ₄	CI	P total réactif	Br
l'échantillon	l'échantillon	g	mL	pas d'unité	pas d'unité	μS/cm	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L	mg/L	mg/L	mg/L
OBM-16-673 64	Stériles	100	400	7.76	8.12	741	124	124	< 2	-	190	6.3	-	< 3
OSK-W-16-760_67	Stériles	100	400	8.34	8	436	75	75	< 2	-	46	23	-	< 3
OBM-16-580_68	Stériles	100	400	8.43	8.19	383	77	77	< 2	-	60	6.3	-	< 3
OBM-16-645_69	Stériles	100	400	8.18	8.35	587	197	192	5	-	71	5.4	-	< 3
OBM-16-642_70	Stériles	100	400	8.29	8.45	588	184	175	9	-	80	6.8	-	< 3
OSK-W-17-774_72	Stériles	100	400	8.69	8.46	408	127	121	6	-	53	6	-	< 3
OSK-W-17-1006_75	Stériles	100	400	8.51	8.49	442	178	168	11	-	42	4.4	-	< 3
OSK-W-17-934_77	Stériles	100	400	8.72	8.52	347	137	129	8	-	28	4.8	-	< 3
Tails CND 1	Résidus	100	400	7.06	7.91	1470	193	193	< 2	< 2	720	< 2	0.05	< 3
Tails CND 4	Résidus	100	400	7.03	7.89	1570	204	204	< 2	< 2	800	< 2	< 0.03	< 3
Tails CND 5	Résidus	100	400	7.45	8.05	883	141	141	< 2	< 2	350	< 2	< 0.03	< 3
Tails CND 6	Résidus	100	400	7.31	7.97	1040	134	134	< 2	< 2	470	< 2	< 0.03	< 3
Triple Lynx LG	Minerai	100	400	-	8.2	293	86	-	-	-	33	4.6	< 0.03	< 3
Lynx 4 LP-LG	Minerai	100	400	-	8.14	278	77	-	-	-	33	5.8	< 0.03	< 3
Lynx 4 HP-LG	Minerai	100	400	-	8.2	342	96	-	-	-	42	4.2	< 0.03	< 3
Triple Lynx MG/HG	Minerai	100	400	-	8.2	337	92	-	-	-	44	5	< 0.03	< 3
Lynx 4 LP-MG/HG	Minerai	100	400	-	8.15	390	101	-	-	-	58	5.6	< 0.03	< 3
Lynx 4 HP-MG/HG	Minerai	100	400	-	8.25	437	119	-	-	-	67	5.1	< 0.03	< 3
GC10001	Stériles	100	400	-	8.5	380	138	-	-	-	33	5.3	< 0.03	< 3
GC10002	Stériles	100	400	-	8.34	359	108	-	-	-	39	4.5	< 0.03	< 3
GC10003	Stériles	100	400	-	8.52	362	173	-	-	-	9	5.8	< 0.03	< 3
GC10004	Stériles	100	400	-	8.51	365	144	-	-	-	26	3.8	< 0.03	< 3
GC10005	Stériles	100	400	-	8.35	445	123	-	-	-	61	5.1	< 0.03	< 3
GC10006	Stériles	100	400	-	8.53	346	145	-	-	-	13	5.7	< 0.03	< 3
GC10007	Stériles	100	400	-	8.6	316	131	-	-	-	16	4.9	< 0.03	< 3
GC10008	Stériles	100	400	-	8.35	271	83	-	-	-	26	5.2	< 0.03	< 3
GC10009	Stériles	100	400	-	8.53	313	116	-	-	-	23	3.9	< 0.03	< 3
GC10010	Stériles	100	400	-	8.46	345	127	-	-	-	32	5.5	< 0.03	< 3
GC10011	Stériles	100	400	-	8.6	244	84	-	-	-	13	6.6	0.04	< 3
GC10012	Stériles	100	400	-	8.31	362	93	-	-	-	65	2.1	< 0.03	< 3
GC10013	Stériles	100	400	-	8.42	363	143	-	-	-	17	8.3	< 0.03	< 3
GC10014	Stériles	100	400	-	8.11	274	71	-	-	-	47	4.6	< 0.03	< 3
GC10015	Stériles	100	400	-	8.25	184	84	-	-	-	2.4	5.6	< 0.03	< 3
GC10016	Stériles	100	400	-	8.39	182	90	-	-	-	3.5	2.7	0.07	< 3
GC10017	Stériles	100	400	-	8.4	456	167	-	-	-	39	6.5	< 0.03	< 3
GC10018	Stériles	100	400	<u> </u>	8.41	500	202			_	37	7	< 0.03	< 3
GC10019	Stériles	100	400	-	8.12	207	71	-	-	-	16	2.7	< 0.03	< 3
GC10020	Stériles	100	400	-	8.41	270	117	-	-	_	8.8	3.9	< 0.03	< 3
GC10020 GC10021	Stériles	100	400	-	8.34	323	121	-	_	_	27	< 2	< 0.03	< 3
GC10022	Stériles	100	400	-	8.19	262	90	-	_	_	22	2.2	< 0.03	< 3
GC10022	Stériles	100	400	-	8.51	388	185		<u> </u>	_	6.7	3.2	< 0.03	< 3
GC10024	Stériles	100	400	-	7.55	493	27			_	210	< 2	< 0.03	< 3
GC10025	Stériles	100	400	-	8.48	283	112	_		_	12	4.9	< 0.03	< 3
GC10026	Stériles	100	400	-	8.31	443	138			_	53	4.8	< 0.03	< 3
GC10020 GC10027	Stériles	100	400	-	8.29	318	102		-		26	6.8	< 0.03	< 3
GC10027 GC10028	Stériles	100	400	- -	8.37	332	131			-	7.5	5.7	< 0.03	< 3
GC10028 GC10029	Stériles	100	400	-	8.28	418	127	-		-	44	8.2	< 0.03	< 3
GC10029 GC10030	Stériles	100	400	-	8.32	352	120		-	-	29	6.1	< 0.03	< 3
90 10030	J Stellies	100	400		0.32	JUZ	120					U. I	> 0.03	

Pick-natillon	03 < 3 03 < 3
GC10032 Stériles 100 400 - 8.41 296 108 - - - 15 6 < C	03 < 3 03 < 3 03 < 3 03 < 3 03 < 3 03 < 3 03 < 3
CIL 11 CND Résidus 100 400 - 8.08 563 75 - - - 170 2.3 < C CIL 12 CND Résidus 100 400 - 8.18 462 100 - - - 110 2.2 < C	03 < 3 03 < 3 03 < 3 03 < 3 03 < 3 03 < 3
CIL 12 CND Résidus 100 400 - 8.18 462 100 - - - 110 2.2 < C CIL 13 CND Résidus 100 400 - 8.22 603 143 - - - 140 2.8 < C	03 < 3 03 < 3 03 < 3 03 < 3 03 < 3
CIL 13 CND Résidus 100 400 - 8.22 603 143 - - - 140 2.8 < C RC-F03-21 Mort-terrain 100 400 - 8.38 435 163 159 4 - < 20	03 < 3 03 < 3 03 < 3 03 < 3
RC-F03-21 Mort-terrain 100 400 - 8.38 435 163 159 4 - < 20 < 20 < CO < CO)3 < 3)3 < 3)3 < 3
VR2-F01-21 CR-7 Mort-terrain 100 400 - 8.33 513 149 146 3 - 47 < 20 < 0 VR3-F01-21 CR-5 Mort-terrain 100 400 - 8.05 192 83 83 < 2	03 < 3
VR3-F01-21 CR-5 Mort-terrain 100 400 - 8.05 192 83 83 < 2 - < 20 < 20 < 0 OSK-W-19-1746-W1-765 Stériles 100 400 - 8.26 355 109 109 < 2)3 < 3
OSK-W-19-1746-W1-765 Stériles 100 400 - 8.26 355 109 109 < 2 - < 20 < 20 < 0 OSK-W-17-663-W2-680 Stériles 100 400 - 7.88 625 76 76 < 2	
OSK-W-17-663-W2-680 Stériles 100 400 - 7.88 625 76 76 <2 - 130 <20 <0 OSK-W-19-1857-W2-1030 Stériles 100 400 - 8.06 313 99 99 <2	13 < 3
OSK-W-19-1857-W2-1030 Stériles 100 400 - 8.06 313 99 99 < 2 - < 20 < 20 < 0 OSK-W-19-1857-W2-1210 Stériles 100 400 - 7.88 323 87 87 < 2	
OSK-W-19-1857-W2-1210 Stériles 100 400 - 7.88 323 87 87 < 2 - 59 < 20 < 0 OSK-W-19-1897-496 Stériles 100 400 - 7.88 423 79 79 < 2)3 < 3
OSK-W-19-1897-496 Stériles 100 400 - 7.88 423 79 79 < 2 - 63 < 20 < 0 OSK-W-19-909-W12-770 Stériles 100 400 - 8.27 417 101 101 < 2)3 < 3
OSK-W-19-909-W12-770 Stériles 100 400 - 8.27 417 101 101 <2 - <20 <20 0.0 OSK-W-19-934-W3-940 Stériles 100 400 - 8.25 454 143 143 <2)3 < 3
OSK-W-19-934-W3-940 Stériles 100 400 - 8.25 454 143 143 <2 - 27 <20 <0 OSK-W-19-934-W3-1045 Stériles 100 400 - 8.11 415 114 114 <2)3 < 3
OSK-W-19-934-W3-1045 Stériles 100 400 - 8.11 415 114 114 <2 - 37 < 20 < 0 OSK-W-21-2512-W3-610 Stériles 100 400 - 8.15 468 101 101 <2	5 < 3
OSK-W-21-2512-W3-610 Stériles 100 400 - 8.15 468 101 101 < 2 - 84 < 20 < 0 OKS-W-21-2613-W1-855 Stériles 100 400 - 7.9 167 71 71 < 2)3 < 3
OKS-W-21-2613-W1-855 Stériles 100 400 - 7.9 167 71 71 <2 - <20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20)3 < 3
OSK-W-21-2629-845 Stériles 100 400 - 8.31 390 163 163 < 2 - < 20 < 20 < 0 OSK-W-21-2605-1332 Stériles 100 400 - 8.25 570 157 157 < 2)3 < 3
OSK-W-21-2605-1332 Stériles 100 400 - 8.25 570 157 157 < 2 - 60 < 20 < 0)3 < 3
)3 < 3
OSK-W-21-2629-948 Stériles 100 400 - 8.36 539 203 199 4 - < 20 < 20 < 0)3 < 3
1 OOK 17 ET E0E0 070 OLOHOO 100 700 - 0.00 000 E00 100 4 - 120 120 1)3 < 3
OSK-W-21-2613-1042 Stériles 100 400 - 8.2 366 111 111 < 2 - 25 < 20 0.	4 < 3
OSK-W-21-2587-1060 Stériles 100 400 - 8.41 463 148 144 4 - 37 < 20 < 0)3 < 3
WST-21-0879-639 Stériles 100 400 - 8.48 489 221 211 10 - < 20 < 20 < 0)3 < 3
OSK-W-19-1897-610 Stériles 100 400 - 8.22 409 113 113 < 2 - 65 < 20 < 0)3 < 3
OSK-W-19-1897-825 Stériles 100 400 - 8.24 371 118 118 < 2 - 35 < 20 < 0)3 < 3
OSK-W-19-1897-983 Stériles 100 400 - 7.99 341 73 73 < 2 - 44 < 20 < 0)3 < 3
OSK-W-20-2323-115 Stériles 100 400 - 8.1 287 89 89 < 2 - 23 < 20 < 0)3 < 3
OSK-W-19-1949-W1-948 Stériles 100 400 - 8.36 340 156 153 3 - < 20 < 20 < 0)3 < 3
OSK-W-21-2252-W12-922 Stériles 100 400 - 8.21 403 93 93 < 2 - 50 < 20 0.	3 < 3
OSK-W-21-2252-1013 Stériles 100 400 - 8.37 350 136 132 4 - < 20 < 20 < 0)3 < 3
OSK-W-20-2283-W7-888 Stériles 100 400 - 8.17 346 106 106 < 2 - 27 < 20 < 0)3 < 3
OSK-W-20-2256-W1-1051.7 Stériles 100 400 - 8.28 386 131 131 < 2 - 26 < 20 < 0)3 < 3
OSK-W-20-2375-W4-890 Stériles 100 400 - 8.36 533 89 87 3 - 70 < 20 < 0)3 < 3
OSK-W-20-2350-125 Stériles 100 400 - 8.61 505 231 215 16 - < 20 < 20 < 0)3 < 3
OSK-W-21-2444-545 Stériles 100 400 - 8 541 68 68 < 2 - 170 < 20 < 0)3 < 3
WST-21-0647-161.5 Stériles 100 400 - 8.05 239 88 88 < 2 - < 20 < 20 < 0)3 < 3
WST-21-0647-313 Stériles 100 400 - 7.94 279 76 76 < 2 - 22 < 20 < 0)3 < 3
WST-19-0160A-55 Stériles 100 400 - 8.1 404 122 122 < 2 - 36 < 20 < 0)3 < 3
OSK-W-21-2606-615 Stériles 100 400 - 7.81 326 63 63 < 2 - 53 < 20 < 0)3 < 3
OSK-W-21-2606-670 Stériles 100 400 - 7.81 152 53 53 <2 - <20 <20 <0	
WST-21-0666-54 Stériles 100 400 - 8.38 600 215 209 6 - 33 < 20 0.	
WST-22-1013-345 Stériles 100 400 - 8.07 447 93 93 <2 - 47 <20 <0	
OSK-W-21-2551-W3-915 Stériles 100 400 - 8.34 392 152 150 2 - < 20 < 20 < 0	
WST-21-0992-450 Stériles 100 400 - 8.29 518 156 156 < 2 - 45 < 20 < 0	
WST-21-0952-32 Stériles 100 400 - 8.21 391 141 141 <2 - 24 <20 <0	03 < 3
OSK-W-21-1949-W15-1080 Stériles 100 400 - 8.23 470 132 132 < 2 - 34 < 20 < 0	03 < 3
WST-18-0024-50 Stériles 100 400 - 7.94 744 90 90 <2 - 190 <20 <0)3 < 3)3 < 3)3 < 3

Identification de	Type de	Poids de l'échantillon	Volume d'eau D.I.	pH final	рН	Conductivité	Alcalinité	НСО₃	CO ₃	OH.	SO ₄	CI	P total réactif	Br
l'échantillon	l'échantillon	g	mL	pas d'unité	pas d'unité	μS/cm	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L	mg/L	mg/L	mg/L
OSK-W-21-2555-590	Stériles	100	400	-	7.84	192	86	86	< 2	-	< 20	< 20	< 0.03	< 30
OSK-W-21-2544-838	Stériles	100	400	-	8.09	371	106	106	< 2	-	27	< 20	< 0.03	< 30
WST-20-0573-367	Stériles	100	400	-	8.3	428	147	147	< 2	-	28	< 20	< 0.03	< 30
OBM-15-552-280	Stériles	100	400	-	8.62	399	143	134	9	-	31	< 20	0.03	< 30
OBM-16-655-600	Stériles	100	400	-	8.41	364	140	136	4	-	25	< 20	< 0.03	< 30
OBM-16-655-330	Stériles	100	400	-	8.49	452	184	176	9	-	24	< 20	< 0.03	< 30
OBM-16-677-79	Stériles	100	400	-	8.73	481	203	186	17	-	23	< 20	< 0.03	< 30
OSK-W-16-706-W2-905	Stériles	100	400	-	8.29	448	110	110	< 2	-	56	< 20	< 0.03	< 30
OSK-W-17-1079-580	Stériles	100	400	-	8.5	385	155	148	7	-	< 20	< 20	0.04	< 30
OSK-W-17-1104-665	Stériles	100	400	-	7.9	778	46	46	< 2	-	340	< 20	< 0.03	< 30
OSK-W-17-1121-545	Stériles	100	400	-	8.53	219	89	85	4	-	< 20	< 20	< 0.03	< 30
OSK-W-17-1305-261	Stériles	100	400	-	8.56	369	135	128	7	-	30	< 20	< 0.03	< 30
OSK-W-17-1369-219.5	Stériles	100	400	-	8.04	242	72	72	< 2	-	21	< 20	0.03	< 30
OSK-W-17-968-145	Stériles	100	400	-	8.54	562	194	184	10	-	45	< 20	< 0.03	< 30
OSK-W-18-1386-W4-885	Stériles	100	400	-	8.59	851	321	300	22	-	76	< 20	< 0.03	< 30
OSK-W-18-1608-805	Stériles	100	400	-	8.63	650	283	262	21	-	< 20	< 20	0.04	< 30
OSK-W-18-1713-470	Stériles	100	400	-	8.37	374	111	108	2	-	21	< 20	< 0.03	< 30
OSK-W-18-1759-190	Stériles	100	400	-	8.72	447	124	113	10	-	29	< 20	0.04	< 30
OSK-W-19-1181-W12-1140	Stériles	100	400	-	8.59	473	160	152	8	-	31	< 20	< 0.03	< 30
OSK-W-19-1181-W5-845	Stériles	100	400	-	8.59	482	195	186	10	-	< 20	< 20	< 0.03	< 30
OSK-W-19-1181-W5-970	Stériles	100	400	-	8.35	720	137	134	3	-	200	< 20	< 0.03	< 30
OSK-W-19-1412-W3-715	Stériles	100	400	-	8.66	497	246	227	18	-	< 20	< 20	0.03	< 30
OSK-W-19-1412-W3-765	Stériles	100	400	-	8.43	600	209	200	9	-	< 20	< 20	0.04	< 30
#08351	Stériles	100	400	-	8.52	481	131	125	6	-	43	< 20	< 0.03	< 30
#08352	Stériles	100	400	-	8.57	1210	337	315	22	-	170	< 20	< 0.03	< 30
#08353	Stériles	100	400	-	8.51	393	136	129	7	-	< 20	< 20	< 0.03	< 30
#08358	Stériles	100	400	-	8.01	424	57	57	< 2	-	140	< 20	< 0.03	< 30
OBM-15-564 79	Stériles	100	400	8.35	8.09	284	62	-	-	-	21	9.5		< 3
OBM-15-557 80	Stériles	100	400	8.43	8.21	371	75	-	-	-	46	5.5	-	< 3
OBM-15-552 81	Stériles	100	400	8.49	8.18	459	75	-	-	-	57	22		< 3
OBM-15-554 82	Stériles	100	400	8.28	8.11	462	74	-	-	-	72	14	-	< 3
OSK-W-16-311-W2 84	Stériles	100	400	8.69	8.43	360	113	-	-	-	27	6.7	-	< 3
OSK-W-16-706-W1 85	Stériles	100	400	8.48	8.33	405	115	-	-	-	38	10	-	< 3
OSK-W-16-706-W1 86	Stériles	75	300	8.46	8.27	458	97	-	-	-	61	15	-	< 3
OSK-W-16-706-W1 87	Stériles	100	400	8.94	8.43	314	76	-	-	-	23	15	-	< 3
OSK-W-16-706-W1 88	Stériles	100	400	8.46	8.05	521	57	-	-	-	110	19	-	< 3
OSK-W-16-706-W2 89	Stériles	100	400	8.58	8.18	425	77	-	-	-	57	14	-	< 3
OSK-W-16-708-W1 90	Stériles	100	400	7.91	8.11	978	102	-	-	-	280	17	-	< 3
OSK-W-16-708-W2 91	Stériles	100	400	8.37	8.11	478	74	-	-	-	60	31	-	< 3
OSK-W-16-735-W2_92	Stériles	100	400	8.81	8.61	331	123	-	-	-	13	10	-	< 3
OSK-W-16-743 93	Stériles	100	400	8.41	8.17	385	76	-	_	_	45	7.9	-	< 3
OSK-W-16-746 94	Stériles	100	400	7.88	7.74	1890	40	-	-	-	900	10	-	< 3
OSK-W-16-754 95	Stériles	100	400	8.54	8.13	424	70	-	_	_	48	33	-	< 3
OSK-W-16-754 96	Stériles	100	400	8.4	8.14	409	75	-	_	_	43	12	-	< 3
OSK-W-17-774 97	Stériles	100	400	7.75	7.58	3150	32	-	_	-	2100	11	-	< 3
OSK-W-17-774_98	Stériles	100	400	8.9	8.31	371	68	_		_	41	26		< 3
OSK-W-17-774_90	Stériles	100	400	8.57	8.28	362	77			-	35	9.6	-	< 3
OSK-W-17-763_55	Stériles	100	400	8.51	8.26	395	87	_			43	8.4		< 3
0011-11-109_100	Otornes	100	700	0.01	0.20	U90	U1			<u> </u>	1 70	U. T		_ ` '

Identification de	Type de	Poids de l'échantillon	Volume d'eau D.I.	pH final	рН	Conductivité	Alcalinité	НСО₃	CO ₃	OH.	SO ₄	CI	P total réactif	Br
l'échantillon	l'échantillon	g	mL	pas d'unité	pas d'unité	μS/cm	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L	mg/L	mg/L	mg/L
OSK-W-17-812_101	Stériles	100	400	8.65	8.57	353	159		-	-	10	4.6	-	< 3
OSK-W-17-812_102	Stériles	100	400	8.43	8.48	528	198	-	-	-	46	6.8	-	< 3
OBM-15-552_103	Stériles	100	400	8.26	8.13	511	79		-	-	79	13	-	< 3
OSK-W-16-311-W1_83	Stériles	100	400	8.39	8.14	387	74	-	-	-	44	15	-	< 3
BD-TR02-21-150-170	Mort-terrain	-	-	-	8.522	550	270	268	2.48	-	14.9	9.3	-	<0.1
TU-TR01-21-52-190	Mort-terrain	0	-	-	8.628	521	234	227	7.23	-	9.9	11.5	-	<0.1
MT-1	Mort-terrain	100	400	-	7.62	162	45	45	< 2	-	< 20	< 20	0.14	< 30
MT-1-DupA	Mort-terrain	100	400	-	7.68	173	49	49	< 2	-	< 20	< 20	0.15	< 30
MT-2	Mort-terrain	100	400	-	7.59	188	53	53	< 2	-	< 20	< 20	0.21	< 30
MT-3	Mort-terrain	100	400	-	7.72	190	54	54	< 2	-	22	< 20	0.17	< 30
MT-4	Mort-terrain	100	400	-	7.78	204	56	56	< 2	-	24	< 20	0.18	< 30
MT-5	Mort-terrain	100	400	-	7.7	202	55	55	< 2	-	21	< 20	0.14	< 30
MT-6	Mort-terrain	100	400	-	7.8	204	72	72	< 2	-	< 20	< 20	0.13	< 30
MT-7	Mort-terrain	100	400	-	7.82	198	64	64	< 2	-	< 20	< 20	0.1	< 30
MT-8	Mort-terrain	100	400	-	7.85	228	86	86	< 2	-	< 20	< 20	0.13	< 30
MT-8-DUP-S	Mort-terrain	100	400	-	7.78	200	66	66	< 2	-	< 20	< 20	0.14	< 30
TP-1-S	Mort-terrain	100	400	-	7.91	188	56	56	< 2	-	< 20	< 20	0.08	< 30
TP-1-TS	Mort-terrain	100	400	-	7.95	252	83	83	< 2	-	< 20	< 20	0.17	< 30
TP-2-S	Mort-terrain	100	400	-	8.32	192	57	57	< 2	-	< 20	< 20	0.19	< 30
TP-2-TS	Mort-terrain	100	400	-	7.54	168	39	39	< 2	-	24	< 20	0.08	< 30
TP-3-S	Mort-terrain	100	400	-	8.04	177	53	53	< 2	-	< 20	< 20	0.46	< 30
TP-3-TS	Mort-terrain	100	400	-	7.9	186	52	52	< 2	-	25	< 20	0.09	< 30
TP-7-TS	Mort-terrain	100	400	-	7.95	271	113	113	< 2	-	< 20	< 20	0.09	< 30
TP-8-TS	Mort-terrain	100	400	-	8.04	287	106	106	< 2	-	< 20	< 20	0.08	< 30
TP-10-S	Mort-terrain	100	400	-	7.86	180	63	63	< 2	-	< 20	< 20	0.28	< 30
TP-10-S-DUPA	Mort-terrain	100	400	-	8.1	198	73	73	< 2	-	< 20	< 20	0.25	< 30
TP-10-TS	Mort-terrain	30	120	-	7.63	179	52	52	< 2	-	23	< 20	0.04	< 30
TP-10-TS-DUPA	Mort-terrain	38	151	-	7.78	216	68	68	< 2	-	25	< 20	< 0.03	< 30
TP-11-S	Mort-terrain	100	400	-	7.76	165	44	44	< 2	-	< 20	< 20	0.09	< 30
TP-6-TS	Mort-terrain	93	372	-	8.05	586	218	218	< 2	-	23	20	0.34	< 30
TP-7-S	Mort-terrain	100	400	-	7.88	178	68	68	< 2	-	< 20	< 20	0.15	< 30
TP-9-TS	Mort-terrain	100	400	-	7.76	707	266	266	< 2	-	< 20	< 20	0.19	< 30
TP-5-TS	Mort-terrain	100	400	-	7.81	183	54	54	< 2	-	< 20	< 20	0.13	< 30
TP-6-S	Mort-terrain	100	400	-	8.06	227	69	69	< 2	-	< 20	< 20	0.1	< 30
TP-9-S	Mort-terrain	100	400	-	8.02	174	68	68	< 2	-	< 20	< 20	0.1	< 30
TP-11-TS	Mort-terrain	100	400	-	7.96	139	52	52	< 2	-	< 20	< 20	0.23	< 30
TP-5-TS-DUPA	Mort-terrain	100	400	-	7.76	171	48	48	< 2	-	< 20	< 20	0.17	< 30
TP-5-S	Mort-terrain	100	400	-	7.93	200	59	59	< 2	-	< 20	< 20	0.19	< 30
TP-5-S-DUPA	Mort-terrain	100	400	-	8.03	222	70	70	< 2	-	< 20	< 20	0.2	< 30

Identification de	NO ₂	NO ₃	NO ₂ + NO ₃	F	CN(T)	CN Disponible	Hg	Al	As	Ag	Ва	В	Ве	Bi	Ca	Cd
l'échantillon	mg N/L	mg N/L	mg N/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
E-27-D-H	< 0.3	< 0.6	< 0.6	0.34	-	-	0.00077	0.066	0.0038	0.0129	0.0113	0.089	< 0.000007	0.000039	66.9	0.000335
E-27-D-L	< 0.3	< 0.6	< 0.6	0.32	-	-	< 0.00001	0.071	0.0128	0.00264	0.00664	0.02	< 0.000007	0.000037	63.2	0.000186
E-27-U-H	< 0.3	< 0.6	< 0.6	0.39	-	-	0.00016	0.047	0.01	0.00264	0.0252	0.04	< 0.000007	0.000009	84.8	0.00141
E-27-U-L	< 0.3	< 0.6	< 0.6	0.62	-	-	0.0003	0.082	0.016	0.0147	0.017	0.03	< 0.000007	0.000008	54.9	0.00165
E-CA-D-H	< 0.3	< 0.6	< 0.6	0.65	-	-	0.00035	0.147	0.0099	0.0183	0.0112	0.026	< 0.000007	0.000011	43.5	0.00157
E-CA-D-L	< 0.3	< 0.6	< 0.6	0.61	_	-	0.00011	0.176	0.0167	0.0095	0.0119	0.054	< 0.000007	< 0.000007	43.7	0.000248
E-CA-U-H	< 0.3	< 0.6	< 0.6	0.64	-	-	0.00128	0.076	0.0243	0.0317	0.0256	0.107	< 0.000007	0.000024	57.4	0.00385
E-CA-U-L	< 0.3	< 0.6	< 0.6	0.85	-	-	< 0.00001	0.112	0.0176	0.0185	0.0472	0.03	< 0.000007	0.000007	37	0.0028
Under Dog A	< 0.3	< 0.6	< 0.6	0.44	_	-	< 0.00001	0.161	0.0079	0.00112	0.0046	0.062	0.00001	0.000051	35.5	0.000301
Under Dog B	< 0.3	< 0.6	< 0.6	0.43	-	-	< 0.00001	0.213	0.0088	0.00136	0.00422	0.09	0.00001	0.000214	32.6	0.000052
Under Dog C	< 0.3	< 0.6	< 0.6	0.28	_	-	< 0.00001	0.025	0.0083	< 0.00005	0.0055	0.183	0.000009	0.000034	120	0.000288
P3-I	< 0.3	< 0.6	< 0.6	0.42		-	0.00001	0.341	0.0184	0.00198	0.00832	0.059	< 0.000007	0.000018	22.8	0.000015
P3-J	< 0.3	< 0.6	< 0.6	0.34	_	_	0.00003	0.248	0.024	0.00451	0.0123	0.049	< 0.000007	0.000055	27.1	0.000054
P3-K	< 0.3	< 0.6	< 0.6	0.42	_	_	0.00002	0.282	0.0126	0.00615	0.0120	0.045	< 0.000007	0.000011	28.5	0.00002
P3-L	< 0.3	< 0.6	< 0.6	0.42	_	_	0.00002	0.346	0.0125	0.00959	0.0124	0.043	< 0.000007	< 0.00007	24.1	0.00002
EAG-13-485 2	0.64	< 0.6	0.64	0.3	_	-	< 0.00004	0.32	0.0133	< 0.00005	0.00559	0.007	< 0.000007	0.000007	13.9	< 0.00002
EAG-13-485 3	< 0.3	< 0.6	< 0.6	0.51	-	-	< 0.00001	0.406	0.0004	0.00003	0.00353	0.007	< 0.000007	0.00003	19.1	0.000005
EAG-13-485_4	0.34	< 0.6	< 0.6	0.83	-	-	< 0.00001	0.361	0.0004	0.000117	0.00532	0.013	< 0.000007	< 0.00007	15.4	< 0.000023
OBM-15-557 10	< 0.34	< 0.6	< 0.6	0.58	-	-	< 0.00001	0.355	0.003	< 0.00029	0.00346	0.013	< 0.000007	< 0.000007	18.2	0.000003
	< 0.3	< 0.6	< 0.6	0.56			< 0.00001	0.637	0.0000	0.00007	0.0371	0.028	< 0.000007	< 0.000007	12.3	0.000003
OBM-15-559_11					-	-										
OBM-15-559_12	< 0.3	< 0.6	< 0.6	0.73	-	-	< 0.00001	0.618	0.0027	< 0.00005	0.0209	0.014	< 0.000007	< 0.000007	15.2	0.000007
OBM-15-559_13	0.32	< 0.6	< 0.6	0.47	-	-	< 0.00001	0.35	0.0016	< 0.00005	0.00522	0.011	< 0.000007	< 0.000007	12.4	< 0.000003
OBM-16-580_17	< 0.3	< 0.6	< 0.6	0.44	-	-	0.00223	0.094	0.0075	0.0115	0.00832	0.042	< 0.000007	0.000024	80.9	0.000031
OBM-16-580_18	< 0.3	< 0.6	< 0.6	0.61	-	-	< 0.00001	0.774	0.0077	0.00025	0.00311	0.018	< 0.000007	< 0.000007	9.42	0.000005
OBM-16-645_22	< 0.3	< 0.6	< 0.6	0.53	-	-	< 0.00001	0.373	0.0124	0.00021	0.00491	0.014	< 0.000007	< 0.000007	22.3	0.000023
OBM-16-671_23	< 0.3	< 0.6	< 0.6	0.61	-	-	< 0.00001	0.317	0.0029	< 0.00005	0.158	0.016	< 0.000007	< 0.000007	16	0.000003
OSK-W-16-715_27	< 0.3	< 0.6	< 0.6	0.56	-	-	< 0.00001	0.394	0.0089	< 0.00005	0.00775	0.02	< 0.000007	< 0.000007	19.5	0.000004
OSK-W-16-751_29	< 0.3	< 0.6	< 0.6	0.4	-	-	< 0.00001	0.588	0.0077	< 0.00005	0.0105	0.019	< 0.000007	< 0.000007	19.9	0.000039
OSK-W-16-751_30	0.47	< 0.6	< 0.6	0.15	-	-	< 0.00001	0.436	0.0016	< 0.00005	0.00186	0.039	< 0.000007	< 0.000007	12.1	0.000006
OSK-W-16-760_31	< 0.3	< 0.6	< 0.6	0.62	-	-	< 0.00001	0.54	0.0051	0.00104	0.00541	0.027	< 0.000007	< 0.000007	16.6	0.000103
OSK-W-17-773_37	< 0.3	< 0.6	< 0.6	0.22	-	-	< 0.00001	0.182	0.0008	< 0.00005	0.011	0.038	< 0.000007	< 0.000007	29.5	< 0.000003
OSK-W-17-773_38	< 0.3	< 0.6	< 0.6	0.35	-	-	< 0.00001	0.463	0.012	< 0.00005	0.0018	0.035	< 0.000007	< 0.000007	14	< 0.000003
OSK-W-17-773_39	< 0.3	< 0.6	< 0.6	0.37	-	-	< 0.00001	0.56	0.0229	< 0.00005	0.00214	0.059	< 0.000007	< 0.000007	16.3	0.000004
OSK-W-17-773_41	0.4	< 0.6	< 0.6	0.24	-	-	< 0.00001	0.444	0.0028	< 0.00005	0.00755	0.016	< 0.000007	< 0.000007	12	< 0.000003
OSK-W-17-773_42	< 0.3	< 0.6	< 0.6	0.35	-	-	< 0.00001	0.287	0.0019	< 0.00005	0.00443	0.011	< 0.000007	< 0.000007	18.3	< 0.000003
OSK-W-17-774_44	< 0.3	< 0.6	< 0.6	0.78	-	-	< 0.00001	1.33	0.0081	< 0.00005	0.00328	0.014	< 0.000007	< 0.000007	6.12	< 0.000003
OSK-W-17-779_46	< 0.3	< 0.6	< 0.6	0.62	-	-	< 0.00001	0.909	0.0542	< 0.00005	0.00333	0.02	< 0.000007	< 0.000007	11.7	0.000012
OSK-W-17-779 47	0.38	< 0.6	< 0.6	0.07	-	-	< 0.00001	0.354	0.0005	< 0.00005	0.00583	0.01	< 0.000007	< 0.000007	57.3	0.000003
OSK-W-17-788 51	< 0.3	< 0.6	< 0.6	0.45	-	-	< 0.00001	0.675	0.0082	< 0.00005	0.0027	0.029	< 0.000007	< 0.000007	11.1	< 0.000003
EAG-13-485 53	< 0.3	< 0.6	< 0.6	0.55	-	-	0.00068	0.185	0.0282	0.0186	0.0204	0.016	< 0.000007	0.00001	29.5	0.000774
EAG-13-497 56	< 0.3	< 0.6	< 0.6	0.65	-	-	0.00001	0.163	0.0091	0.00025	0.00816	0.02	< 0.000007	< 0.000007	39.9	0.000045
EAG-13-513 57	< 0.3	< 0.6	< 0.6	0.44	-	-	< 0.00001	0.095	0.0149	0.0003	0.00932	0.023	< 0.000007	< 0.000007	71.9	0.000061
EAG-14-538 58	< 0.3	< 0.6	< 0.6	0.72	-	-	0.00036	0.202	0.0471	0.0114	0.00281	0.013	< 0.000007	0.000024	21.8	0.000024
OBM-15-559 59	< 0.3	< 0.6	< 0.6	0.65	-	-	< 0.00001	0.292	0.001	0.00079	0.00417	0.03	< 0.000007	0.000008	31.7	0.000007
OBM-15-566 60	0.35	< 0.6	< 0.6	0.44	-	-	< 0.00001	0.583	0.0174	< 0.00005	0.00583	0.012	< 0.000007	0.000008	13	0.000005
OBM-16-630_61	< 0.3	< 0.6	< 0.6	0.55	-	-	0.00001	0.316	0.013	0.00636	0.00695	0.018	< 0.000007	0.000131	22.7	0.000026
	< 0.3	< 0.6	< 0.6	0.09	-	_	< 0.00001	0.01	0.0085	< 0.00005	0.00785	0.022	0.000014	< 0.000007	35.6	0.000807
OBM-16-654 62	S 11.5															

Identification de	NO ₂	NO ₃	NO ₂ + NO ₃	F	CN(T)	CN Disponible	Hg	Al	As	Ag	Ва	В	Be	Bi	Ca	Cd
l'échantillon	mg N/L	mg N/L	mg N/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
OBM-16-673 64	< 0.3	< 0.6	< 0.6	0.43	-	-	< 0.00001	0.068	0.003	0.00033	0.0233	0.026	< 0.000007	0.000007	81.7	0.000131
OSK-W-16-760 67	< 0.3	< 0.6	< 0.6	0.44	-	-	< 0.00001	0.219	0.0062	0.001	0.00792	0.039	< 0.000007	0.000029	39.4	0.000249
OBM-16-580 68	< 0.3	< 0.6	< 0.6	0.54	-	-	< 0.00001	0.362	0.0032	0.00268	0.00427	0.032	< 0.000007	0.000026	23.7	0.000022
OBM-16-645 69	< 0.3	< 0.6	< 0.6	0.49	-	-	< 0.00001	0.176	0.0026	0.00099	0.00734	0.036	< 0.000007	0.000007	45.6	0.000045
OBM-16-642 70	< 0.3	< 0.6	< 0.6	0.8	-	-	< 0.00001	0.248	0.0011	0.00025	0.0121	0.017	< 0.000007	< 0.000007	32.7	0.000011
OSK-W-17-774 72	< 0.3	< 0.6	< 0.6	0.95	-	-	< 0.00001	0.484	0.0031	0.00017	0.19	0.018	< 0.000007	< 0.000007	19.4	0.000048
OSK-W-17-1006 75	< 0.3	< 0.6	< 0.6	0.42	-	-	< 0.00001	0.43	0.0179	0.00005	0.00465	0.049	< 0.000007	< 0.000007	25.7	0.000003
OSK-W-17-934_77	< 0.3	< 0.6	< 0.6	0.42	-	-	< 0.00001	0.772	0.0458	< 0.00005	0.00468	0.038	< 0.000007	< 0.000007	14.6	0.000013
Tails CND 1	< 0.3	< 0.6	< 0.6	0.37	< 0.01	< 0.01	< 0.00001	0.001	0.0061	< 0.00005	0.058	0.015	< 0.000007	< 0.000007	302	0.00259
Tails CND 4	< 0.3	< 0.6	< 0.6	0.24	< 0.01	< 0.01	< 0.00001	0.001	0.0085	< 0.00005	0.0347	0.019	< 0.000007	< 0.000007	314	0.00147
Tails CND 5	< 0.3	< 0.6	< 0.6	0.5	0.02	< 0.01	< 0.00001	0.005	0.0013	< 0.00005	0.0117	0.019	< 0.000007	< 0.000007	152	0.00012
Tails CND 6	< 0.3	< 0.6	< 0.6	0.59	< 0.01	< 0.01	< 0.00001	0.005	0.0007	< 0.00005	0.0111	0.022	< 0.000007	0.000009	218	0.000309
Triple Lynx LG	< 0.3	< 0.6	< 0.6	0.67		-	< 0.00001	0.292	0.0138	0.00071	0.00495	0.056	< 0.000007	0.000027	20.1	0.000015
Lynx 4 LP-LG	< 0.3	< 0.6	< 0.6	0.32	-	-	0.00001	0.289	0.0068	0.00055	0.00237	0.031	< 0.000007	0.00005	18	0.000034
Lynx 4 HP-LG	< 0.3	< 0.6	< 0.6	0.47	-	-	< 0.00001	0.202	0.01	0.0003	0.00307	0.042	< 0.000007	0.000016	24.3	0.000036
Triple Lynx MG/HG	< 0.3	< 0.6	< 0.6	0.46		-	< 0.00001	0.213	0.0091	0.00053	0.005	0.034	< 0.000007	0.000038	23.6	0.000037
Lynx 4 LP-MG/HG	< 0.3	< 0.6	< 0.6	0.33	-	-	0.00001	0.166	0.0102	0.00129	0.00366	0.036	< 0.000007	0.000028	29.1	0.000068
Lynx 4 HP-MG/HG	< 0.3	< 0.6	< 0.6	0.27		-	0.00004	0.137	0.0223	0.00122	0.0044	0.061	< 0.000007	0.000007	34.5	0.000035
GC10001	< 0.3	< 0.6	< 0.6	0.38	-	-	< 0.00001	0.359	0.0142	0.00028	0.00279	0.037	< 0.000007	0.000016	21.2	0.000026
GC10002	< 0.3	< 0.6	< 0.6	0.38	-	-	< 0.00001	0.414	0.0268	0.00058	0.00639	0.034	< 0.000007	0.000172	19.6	0.000081
GC10003	< 0.3	< 0.6	< 0.6	0.29	-	-	< 0.00001	0.391	0.0126	< 0.00005	0.00243	0.059	< 0.000007	0.000013	14.3	< 0.000003
GC10004	< 0.3	< 0.6	< 0.6	0.47	-	-	< 0.00001	0.424	0.0318	0.00013	0.00516	0.027	< 0.000007	0.000027	20.1	0.000005
GC10005	< 0.3	< 0.6	< 0.6	0.42	-	-	0.00001	0.278	0.0279	0.00146	0.0037	0.041	< 0.000007	0.000123	30.4	0.000033
GC10006	< 0.3	< 0.6	< 0.6	0.26	-	-	< 0.00001	0.418	0.0162	0.00011	0.0021	0.032	< 0.000007	0.000039	12.1	0.000008
GC10007	< 0.3	< 0.6	< 0.6	0.27	-	-	< 0.00001	0.456	0.0211	< 0.00005	0.00307	0.05	< 0.000007	0.000015	14.9	0.000023
GC10008	< 0.3	< 0.6	< 0.6	0.58	-	-	0.00001	0.532	0.0222	0.00011	0.002	0.02	< 0.000007	0.000035	10.6	0.000045
GC10009	< 0.3	< 0.6	< 0.6	0.31	-	-	< 0.00001	0.494	0.0155	< 0.00005	0.00196	0.023	< 0.000007	0.000018	12.5	0.000026
GC10010	< 0.3	< 0.6	< 0.6	0.3	-	-	< 0.00001	0.524	0.0133	0.00006	0.0015	0.047	< 0.000007	0.000018	13.9	0.000014
GC10011	< 0.3	< 0.6	< 0.6	0.42	-	-	< 0.00001	1.02	0.16	< 0.00005	0.00222	0.035	< 0.000007	0.000013	6.23	0.000009
GC10012	< 0.3	< 0.6	< 0.6	0.19	-	-	< 0.00001	0.463	0.0113	0.00009	0.00294	0.016	< 0.000007	0.000018	20.9	0.000006
GC10013	< 0.3	< 0.6	< 0.6	0.45	-	-	< 0.00001	0.408	0.0079	0.00007	0.0061	0.017	< 0.000007	0.000007	14.7	0.000005
GC10014	< 0.3	< 0.6	< 0.6	< 0.06	-	-	< 0.00001	0.333	0.0041	< 0.00005	0.0149	0.018	< 0.000007	0.000007	21	< 0.000003
GC10015	< 0.3	< 0.6	< 0.6	0.13	-	-	< 0.00001	0.372	0.0009	< 0.00005	0.00604	0.015	< 0.000007	< 0.000007	12.5	< 0.000003
GC10016	< 0.3	< 0.6	< 0.6	0.11	-	-	< 0.00001	0.257	0.0023	< 0.00005	0.00149	0.017	< 0.000007	< 0.000007	11.5	< 0.000003
GC10017	< 0.3	< 0.6	< 0.6	0.22	-	-	< 0.00001	0.28	0.0054	< 0.00005	0.00553	0.029	< 0.000007	0.000011	24.1	< 0.000003
GC10018	< 0.3	< 0.6	< 0.6	0.1	-	-	< 0.00001	0.18	0.0041	< 0.00005	0.00558	0.036	< 0.000007	0.000013	22.4	< 0.000003
GC10019	< 0.3	< 0.6	< 0.6	< 0.06	-	-	< 0.00001	0.327	0.004	< 0.00005	0.00639	0.016	< 0.000007	0.00004	15.9	< 0.000003
GC10020	< 0.3	< 0.6	< 0.6	0.18	-	-	< 0.00001	0.257	0.0028	< 0.00005	0.00751	0.02	< 0.000007	< 0.000007	13.3	< 0.000003
GC10021	< 0.3	< 0.6	< 0.6	0.14	-	-	< 0.00001	0.229	0.0077	0.00025	0.0039	0.038	< 0.000007	0.000015	18.8	< 0.000003
GC10022	< 0.3	< 0.6	< 0.6	0.11	-	-	< 0.00001	0.288	0.008	0.00198	0.00289	0.02	< 0.000007	0.000048	18.8	< 0.000003
GC10023	< 0.3	< 0.6	< 0.6	0.24	-	-	< 0.00001	0.255	0.0828	0.00007	0.00258	0.028	< 0.000007	< 0.000007	18.5	< 0.000003
GC10024	< 0.3	< 0.6	< 0.6	< 0.06	-	-	< 0.00001	0.181	0.001	< 0.00005	0.00542	0.015	< 0.000007	< 0.000007	66.5	< 0.000003
GC10025	< 0.3	< 0.6	< 0.6	0.48	-	-	< 0.00001	0.547	0.0448	< 0.00005	0.00246	0.02	< 0.000007	0.000009	11.7	0.000091
GC10026	< 0.3	< 0.6	< 0.6	0.44	-	-	< 0.00001	0.346	0.0337	0.00045	0.00285	0.018	< 0.000007	0.000192	26.6	0.000003
GC10027	< 0.3	< 0.6	< 0.6	0.64	-	-	< 0.00001	0.455	0.108	0.00011	0.00225	0.026	< 0.000007	0.000072	13.2	0.000017
GC10028	< 0.3	< 0.6	< 0.6	0.5	-	-	< 0.00001	0.3	0.0038	< 0.00005	0.00321	0.022	< 0.000007	0.00017	15.9	0.000014
GC10029	< 0.3	< 0.6	< 0.6	0.34	-	-	< 0.00001	0.344	0.0093	0.00019	0.00363	0.03	< 0.000007	0.000086	19.4	< 0.000003
GC10030	< 0.3	< 0.6	< 0.6	0.78	-	-	0.00001	0.504	0.0144	0.00017	0.00497	0.018	< 0.000007	0.000028	18.7	0.000009

Identification de	NO ₂	NO ₃	NO ₂ + NO ₃	F	CN(T)	CN Disponible	Hg	Al	As	Ag	Ва	В	Ве	Bi	Ca	Cd
l'échantillon	mg N/L	mg N/L	mg N/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
GC10031	< 0.3	< 0.6	< 0.6	0.47	-	-	< 0.00001	0.754	0.0098	< 0.00005	0.00247	0.019	< 0.000007	0.000034	9.15	< 0.000003
GC10032	< 0.3	< 0.6	< 0.6	0.46	-	-	< 0.00001	0.63	0.0046	< 0.00005	0.00376	0.02	< 0.000007	0.000053	11.9	0.000007
CIL 11 CND	< 0.3	< 0.6	< 0.6	0.09	-	-	0.00093	0.037	0.0076	0.00962	0.0377	0.016	< 0.000007	< 0.000007	54.3	0.000041
CIL 12 CND	< 0.3	< 0.6	< 0.6	0.13	-	-	0.00038	0.018	0.0033	0.00024	0.00398	0.012	< 0.000007	0.000043	51.1	0.00871
CIL 13 CND	< 0.3	0.86	0.86	0.07	-	-	< 0.00001	0.015	0.0035	< 0.00005	0.00433	0.014	< 0.000007	0.000018	91.4	0.00624
RC-F03-21	< 3	< 6	< 6	0.13	-	-	< 0.00001	0.208	0.0004	0.00006	0.00247	0.024	< 0.000007	< 0.00001	21.4	< 0.000003
VR2-F01-21_CR-7	< 3	< 6	< 6	0.28	-	-	< 0.00001	0.137	0.0006	0.00023	0.00508	0.021	< 0.000007	< 0.00001	34.5	< 0.000003
VR3-F01-21_CR-5	< 3	< 6	< 6	0.06	-	-	0.00002	1.18	< 0.0002	< 0.00005	0.00037	0.053	< 0.000007	< 0.00001	6.19	< 0.000003
OSK-W-19-1746-W1-765	< 3	< 6	< 6	1.13	-	-	< 0.00001	2.95	0.0134	< 0.00005	0.00807	0.025	0.000013	< 0.00001	6.35	0.000015
OSK-W-17-663-W2-680	< 3	< 6	< 6	0.66	-	-	< 0.00001	0.272	0.0023	0.0031	0.01197	0.016	0.000007	< 0.00001	45	0.000011
OSK-W-19-1857-W2-1030	< 3	< 6	< 6	0.63	-	-	< 0.00001	0.968	0.0126	< 0.00005	0.00177	0.037	< 0.000007	< 0.00001	12.9	0.000022
OSK-W-19-1857-W2-1210	< 3	< 6	< 6	0.12	-	-	< 0.00001	0.397	0.001	< 0.00005	0.00381	0.024	< 0.000007	0.00002	18.9	0.000041
OSK-W-19-1897-496	< 3	< 6	< 6	0.47	-	-	< 0.00001	0.314	0.0021	0.00086	0.08125	0.024	< 0.000007	0.00016	30.7	0.000024
OSK-W-19-909-W12-770	< 3	< 6	< 6	0.82	-	-	< 0.00001	1.32	0.0209	< 0.00005	0.00208	0.054	< 0.000007	< 0.00001	8.45	0.000007
OSK-W-19-934-W3-940	< 3	< 6	< 6	0.95	-	-	0.00004	1.1	0.0049	0.00006	0.00395	0.024	< 0.000007	< 0.00001	13.2	0.000007
OSK-W-19-934-W3-1045	< 3	< 6	< 6	1.01	-	-	< 0.00001	1.34	0.0122	0.00027	0.00238	0.024	< 0.000007	< 0.00001	10.2	0.000013
OSK-W-21-2512-W3-610	< 3	< 6	< 6	1.18	-	-	< 0.00001	1.09	0.0015	< 0.00005	0.01441	0.029	< 0.000007	< 0.00001	9.12	0.000005
OKS-W-21-2613-W1-855	< 3	< 6	< 6	0.13	-	-	< 0.00001	0.27	0.0019	< 0.00005	0.504	0.012	0.000014	< 0.00001	15.9	0.000003
OSK-W-21-2629-845	< 3	< 6	< 6	0.38	-	-	< 0.00001	0.748	0.0023	< 0.00005	0.00473	0.069	< 0.000007	< 0.00001	8.99	< 0.000003
OSK-W-21-2605-1332	< 3	< 6	< 6	0.74	-	-	< 0.00001	0.542	0.0042	0.0001	0.00585	0.034	< 0.000007	< 0.00001	27.4	0.000008
OSK-W-21-2629-948	< 3	< 6	< 6	0.45	-	-	< 0.00001	0.486	0.0358	0.00008	0.00796	0.057	< 0.000007	< 0.00001	13.3	0.000003
OSK-W-21-2613-1042	< 3	< 6	< 6	0.75	-	-	< 0.00001	0.573	0.0729	0.0008	0.00788	0.023	< 0.000007	< 0.00001	18	0.000018
OSK-W-21-2587-1060	< 3	< 6	< 6	1.96	-	-	< 0.00001	1.24	0.018	< 0.00005	0.0101	0.019	< 0.000007	< 0.00001	10.2	< 0.000003
WST-21-0879-639	< 3	< 6	< 6	0.41	-	-	< 0.00001	0.485	0.0044	0.00007	0.00325	0.026	< 0.000007	< 0.00001	8.99	< 0.000003
OSK-W-19-1897-610	< 3	< 6	< 6	0.83	-	-	< 0.00001	0.476	0.0029	< 0.00005	0.0163	0.015	< 0.000007	< 0.00001	16	< 0.000003
OSK-W-19-1897-825	< 3	< 6	< 6	0.7	-	-	< 0.00001	0.434	0.0024	0.0002	0.00451	0.011	< 0.000007	< 0.00001	14.9	0.000012
OSK-W-19-1897-983	< 3	< 6	< 6	0.68	-	-	0.00001	0.415	0.0069	0.00314	0.00224	0.025	< 0.000007	0.00004	17	< 0.000003
OSK-W-20-2323-115	< 3	< 6	< 6	0.55	-	-	< 0.00001	0.419	0.0006	0.00033	0.00327	0.011	< 0.000007	< 0.00001	15.6	< 0.000003
OSK-W-19-1949-W1-948	< 3	< 6	< 6	0.21	-	-	< 0.00001	0.389	0.0127	< 0.00005	0.00292	0.031	< 0.000007	< 0.00001	13.7	< 0.000003
OSK-W-21-2252-W12-922	< 3	< 6	< 6	1.3	-	-	< 0.00001	0.875	0.0798	0.00016	0.00308	0.026	< 0.000007	< 0.00001	6.48	0.000081
OSK-W-21-2252-1013	< 3	< 6	< 6	0.8	-	-	< 0.00001	1.03	0.0086	< 0.00005	0.00375	0.019	< 0.000007	< 0.00001	10.8	0.000047
OSK-W-20-2283-W7-888	< 3	< 6	< 6	0.69	-	-	< 0.00001	0.588	0.0211	0.00017	0.00434	0.019	< 0.000007	< 0.00001	15.8	0.000138
OSK-W-20-2256-W1-1051.7	< 3	< 6	< 6	0.56	-	-	< 0.00001	< 0.001	0.0071	0.00042	0.0033	0.036	< 0.000007	< 0.00001	15	0.000239
OSK-W-20-2375-W4-890	< 3	< 6	< 6	1.33	-	-	< 0.00001	0.679	0.0201	0.00008	0.00197	0.032	< 0.000007	< 0.00001	13.1	0.000034
OSK-W-20-2350-125	< 3	< 6	< 6	0.72	-	-	< 0.00001	0.71	0.003	< 0.00005	0.004	0.023	< 0.000007	< 0.00001	8.06	0.000029
OSK-W-21-2444-545	< 3	< 6	< 6	0.55	-	-	< 0.00001	0.408	0.0011	< 0.00005	0.0148	0.004	< 0.000007	< 0.00001	26.4	0.000013
WST-21-0647-161.5	< 3	< 6	< 6	0.92	-	-	< 0.00001	1.26	0.008	< 0.00005	0.0026	0.027	Report No.	< 0.00001	6.36	< 0.000003
WST-21-0647-313	< 3	< 6	< 6	0.59	-	-	0.00001	0.956	0.0233	0.00013	0.00277	0.026	< 0.000007	< 0.00001	12.1	0.000043
WST-19-0160A-55	< 3	< 6	< 6	0.35	-	_	< 0.00001	0.236	0.0007	0.00041	0.00771	0.018	< 0.000007	< 0.00001	35.5	0.00002
OSK-W-21-2606-615	< 3	< 6	< 6	0.36	-	-	< 0.00001	0.394	0.0058	0.00082	0.0036	0.021	< 0.000007	< 0.00001	27.4	0.000009
OSK-W-21-2606-670	< 3	< 6	< 6	0.26	-	_	0.00001	0.461	0.0009	< 0.00005	0.0012	0.011	< 0.000007	< 0.00001	11.4	0.000003
WST-21-0666-54	< 3	< 6	< 6	0.38	-	-	< 0.00001	0.419	0.0021	< 0.00005	0.00461	0.064	< 0.000007	< 0.00001	13.4	0.000012
WST-22-1013-345	< 3	< 6	< 6	1.02	-	_	< 0.00001	0.887	0.0135	0.00024	0.00658	0.045	< 0.000007	< 0.00001	12.8	0.000075
OSK-W-21-2551-W3-915	< 3	< 6	< 6	0.57	_	-	< 0.00001	1.76	0.076	< 0.00024	0.00109	0.082	< 0.000007	< 0.00001	5.56	0.00001
WST-21-0992-450	< 3	< 6	< 6	0.77	_	_	0.00001	0.818	0.0304	0.00006	0.00333	0.033	< 0.000007	< 0.00001	11.4	0.000007
WST-21-0952-32	< 3	< 6	< 6	0.23		_	< 0.00001	0.542	0.0045	< 0.00005	0.00335	0.036	< 0.000007	< 0.00001	10	< 0.000007
OSK-W-21-1949-W15-1080	< 3	< 6	< 6	1.01		-	< 0.00001	1.12	0.0168	0.00006	0.00323	0.028	< 0.000007	< 0.00001	10.7	0.000042
WST-18-0024-50	< 3	< 6	< 6	0.69			< 0.00001	0.192	0.0031	0.0004	0.00343	0.028	< 0.000007	< 0.00001	54.6	0.000042
VVO1-10-0024-30	٠ ٥	` ' U	` U	0.08	<u> </u>		\ 0.00001	0.182	0.0031	0.0004	0.00800	0.010	· 0.000001	~ U.UUUU I	J+.U	0.000011

Identification de	NO ₂	NO ₃	NO ₂ + NO ₃	F	CN(T)	CN Disponible	Hg	Al	As	Ag	Ва	В	Be	Bi	Ca	Cd
l'échantillon	mg N/L	mg N/L	mg N/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
OSK-W-21-2555-590	< 3	< 6	< 6	0.27	-	-	< 0.00001	0.238	0.002	< 0.00005	0.145	0.01	< 0.000007	< 0.00001	12.1	< 0.000003
OSK-W-21-2544-838	< 3	< 6	< 6	0.7	-	-	< 0.00001	0.658	0.0179	0.00023	0.00761	0.032	< 0.000007	< 0.00001	19.8	0.000035
WST-20-0573-367	< 3	< 6	< 6	0.95	-	-	< 0.00001	1.22	0.0046	< 0.00005	0.0137	0.031	< 0.000007	< 0.00001	9.97	0.000004
OBM-15-552-280	< 3	< 6	< 6	0.95	-	-	< 0.00001	1.3	0.0016	< 0.00005	0.0489	0.018	< 0.000007	< 0.00001	8.91	< 0.000003
OBM-16-655-600	< 3	< 6	< 6	0.86	-	-	< 0.00001	0.659	0.0025	< 0.00005	0.00962	0.016	< 0.000007	< 0.00001	8.81	0.000003
OBM-16-655-330	< 3	< 6	< 6	0.52	-	-	< 0.00001	0.261	0.0003	0.00006	0.012	0.012	< 0.000007	< 0.00001	23.9	< 0.000003
OBM-16-677-79	< 3	< 6	< 6	1.14	-	-	< 0.00001	0.887	0.0015	< 0.00005	0.0476	0.018	< 0.000007	< 0.00001	6.59	0.000003
OSK-W-16-706-W2-905	< 3	< 6	< 6	1.43	-	-	< 0.00001	0.68	0.0018	0.00049	0.0047	0.02	< 0.000007	< 0.00001	9.33	0.000013
OSK-W-17-1079-580	< 3	< 6	< 6	0.43	-	-	< 0.00001	0.408	0.0017	< 0.00005	0.00254	0.018	< 0.000007	< 0.00001	8.95	0.000004
OSK-W-17-1104-665	< 3	< 6	< 6	< 0.06	-	-	< 0.00001	0.34	0.0007	< 0.00005	0.0013	0.005	< 0.000007	< 0.00001	61.6	< 0.000003
OSK-W-17-1121-545	< 3	< 6	< 6	0.91	-	-	< 0.00001	1.65	0.0065	< 0.00005	0.00103	0.02	< 0.000007	< 0.00001	1.97	< 0.000003
OSK-W-17-1305-261	< 3	< 6	< 6	0.79	-	-	< 0.00001	0.688	0.0022	< 0.00005	0.0918	0.014	< 0.000007	< 0.00001	9.81	< 0.000003
OSK-W-17-1369-219.5	< 3	< 6	< 6	0.55	-	-	0.00002	0.608	0.0768	0.0002	0.00453	0.009	0.000007	0.00003	8.3	0.000074
OSK-W-17-968-145	< 3	< 6	< 6	0.36	-	-	< 0.00001	0.54	0.0829	0.00018	0.00211	0.016	< 0.000007	< 0.00001	8.93	< 0.000003
OSK-W-18-1386-W4-885	< 3	< 6	< 6	0.42	-	-	< 0.00001	0.402	0.0242	0.00015	0.00268	0.037	< 0.000007	< 0.00001	11.3	0.000003
OSK-W-18-1608-805	< 3	< 6	< 6	0.43	-	-	< 0.00001	0.442	0.0166	< 0.00005	0.0074	0.032	< 0.000007	< 0.00001	10.3	0.00001
OSK-W-18-1713-470	< 3	< 6	< 6	0.7	-	-	< 0.00001	0.598	0.0071	0.00007	0.00328	0.017	< 0.000007	< 0.00001	7.86	0.000007
OSK-W-18-1759-190	< 3	< 6	< 6	1.08	-	-	< 0.00001	1.22	0.0743	< 0.00005	0.00418	0.028	< 0.000007	< 0.00001	5.71	0.000008
OSK-W-19-1181-W12-1140	< 3	< 6	< 6	1.32	-	-	< 0.00001	1.36	0.0128	< 0.00005	0.00249	0.024	< 0.000007	< 0.00001	5.86	0.000026
OSK-W-19-1181-W5-845	< 3	< 6	< 6	1.64	-	-	< 0.00001	1.31	0.0054	< 0.00005	0.00266	0.03	< 0.000007	< 0.00001	3.84	0.000004
OSK-W-19-1181-W5-970	< 3	< 6	< 6	0.15	-	-	< 0.00001	0.351	0.0012	< 0.00005	0.00866	0.024	< 0.000007	< 0.00001	21.9	< 0.000003
OSK-W-19-1412-W3-715	< 3	< 6	< 6	0.36	-	-	< 0.00001	0.753	0.0038	< 0.00005	0.00245	0.045	< 0.000007	< 0.00001	5.02	< 0.000003
OSK-W-19-1412-W3-765	< 3	< 6	< 6	0.3	-	-	< 0.00001	0.232	0.0013	< 0.00005	0.00375	0.051	< 0.000007	< 0.00001	17.2	< 0.000003
#08351	< 3	17.1	17.1	< 0.06	-	-	< 0.00001	0.551	0.0009	< 0.00005	0.00257	0.028	< 0.000007	< 0.00001	6.49	0.00003
#08352	< 3	< 6	< 6	0.63	-	-	< 0.00001	0.405	0.0022	0.00013	0.0104	0.068	< 0.000007	< 0.00001	19.6	0.000009
#08353	< 3	< 6	< 6	0.13	-	-	< 0.00001	0.389	0.0011	< 0.00005	0.00205	0.032	< 0.000007	< 0.00001	7.56	0.000005
#08358	< 3	< 6	< 6	0.26	-	-	< 0.00001	0.994	0.0014	< 0.00005	0.022	0.014	< 0.000007	< 0.00001	24.2	0.00001
OBM-15-564 79	< 0.3	< 0.6	-	0.41	-	-	< 0.00001	0.356	0.01	0.00237	0.00238	0.029	< 0.000007	0.000008	19.3	0.000151
OBM-15-557 80	< 0.3	< 0.6	-	0.56	-	-	< 0.00001	0.371	0.0053	0.00152	0.0033	0.052	< 0.000007	0.000042	18	< 0.000003
OBM-15-552 81	< 0.3	< 0.6	-	0.75	-	-	0.00017	0.425	0.0033	0.00183	0.00413	0.039	< 0.000007	0.000008	20.5	0.000023
OBM-15-554 82	< 0.3	< 0.6	-	0.48	-	-	< 0.00001	0.262	0.0005	0.0004	0.00614	0.063	< 0.000007	0.000008	30.4	0.000003
OSK-W-16-311-W2 84	< 0.3	< 0.6	-	0.72	-	-	< 0.00001	0.722	0.0053	0.00071	0.00303	0.025	< 0.000007	< 0.000007	10.9	0.000006
OSK-W-16-706-W1_85	< 0.3	< 0.6	-	0.7	-	-	0.00001	0.42	0.0046	0.00052	0.00441	0.017	< 0.000007	< 0.000007	16.8	0.000007
OSK-W-16-706-W1_86	< 0.3	< 0.6	-	0.72	-	-	0.00001	0.392	0.0034	0.00227	0.00428	0.022	< 0.000007	80000.0	19.5	0.000007
OSK-W-16-706-W1_87	< 0.3	< 0.6	-	0.63	-	-	0.00002	1.39	0.021	0.00619	0.00168	0.036	< 0.000007	0.000013	6.96	0.000019
OSK-W-16-706-W1 88	< 0.3	< 0.6	-	0.92	-	-	0.00012	0.49	0.0037	0.0013	0.00608	0.029	< 0.000007	0.000007	28.4	0.000014
OSK-W-16-706-W2 89	< 0.3	< 0.6	-	0.86	-	-	0.00001	0.429	0.0031	0.0004	0.00391	0.03	< 0.000007	0.000011	22.7	0.000014
OSK-W-16-708-W1 90	< 0.3	< 0.6	-	0.25	-	-	< 0.00001	0.076	0.0004	0.00013	0.03516	0.033	< 0.000007	< 0.000007	117	0.000014
OSK-W-16-708-W2 91	< 0.3	< 0.6	-	0.58	-	-	0.00002	0.295	0.0013	0.00043	0.00346	0.031	< 0.000007	< 0.000007	31.2	0.000009
OSK-W-16-735-W2 92	< 0.3	< 0.6	-	0.74	-	-	0.00001	0.9	0.0136	0.00161	0.00266	0.033	< 0.000007	< 0.000007	7.46	0.000021
OSK-W-16-743 93	< 0.3	< 0.6	-	0.94	-	-	0.00063	0.369	0.158	0.022	0.00368	0.034	< 0.000007	0.000011	17.1	0.000049
OSK-W-16-746_94	< 0.3	< 0.6	-	0.38	-	-	< 0.00001	0.137	0.0004	0.00019	0.0409	0.01	< 0.000007	< 0.000007	369	0.000019
OSK-W-16-754 95	< 0.3	< 0.6	-	0.88	-	-	0.00003	0.558	0.0035	0.00048	0.00457	0.027	< 0.000007	0.000015	17.2	0.000031
OSK-W-16-754 96	< 0.3	< 0.6	-	0.73	-	-	0.00001	0.34	0.0033	0.00178	0.00342	0.046	< 0.000007	0.000009	19	0.000007
OSK-W-17-774 97	< 0.3	< 0.6	-	0.26	-	-	0.00006	0.111	0.0005	0.00067	0.0498	0.008	< 0.000007	< 0.000007	798	0.000023
OSK-W-17-774 98	< 0.3	< 0.6	-	0.74	-	-	< 0.00001	1.12	0.0046	0.00012	0.00304	0.028	< 0.000007	< 0.000007	8.9	0.000013
OSK-W-17-789 99	< 0.3	< 0.6	-	0.96	-	-	0.00002	0.686	0.0084	0.00256	0.00175	0.044	< 0.000007	0.000014	12.3	0.000019
OSK-W-17-789 100	< 0.3	< 0.6	-	0.79		_	0.00031	0.669	0.0108	0.006	0.00271	0.042	< 0.000007	0.000007	14.5	0.000008

Identification de	NO ₂	NO ₃	NO ₂ + NO ₃	F	CN(T)	CN Disponible	Hg	Al	As	Ag	Ва	В	Be	Bi	Ca	Cd
l'échantillon	mg N/L	mg N/L	mg N/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
OSK-W-17-812_101	< 0.3	< 0.6	-	0.38	-	-	< 0.00001	0.739	0.0648	< 0.00005	0.00179	0.087	< 0.000007	< 0.000007	11.5	0.000006
OSK-W-17-812_102	< 0.3	< 0.6	-	0.35	-	-	< 0.00001	0.432	0.0302	0.00006	0.00489	0.111	< 0.000007	< 0.000007	24.3	0.000004
OBM-15-552_103	< 0.3	< 0.6	-	1.16	-	-	0.00033	0.224	0.0017	0.00195	0.0048	0.059	< 0.000007	0.000007	33	0.000123
OSK-W-16-311-W1_83	< 0.3	< 0.6	-	0.56	-	-	< 0.00001	0.417	0.008	0.00249	0.00294	0.016	< 0.000007	< 0.000007	22.7	0.000056
BD-TR02-21-150-170	<0.5	0.5		0.4	-	-	<0.0001	4.81	0.001	0.003	0.062	<0.05	<0.001	<0.5	47	<0.001
TU-TR01-21-52-190	<0.5	<0.05	-	0.5	-	-	<0.0001	3.78	0.0018	<0.002	0.094	0.065	<0.001	<0.5	19	<0.001
MT-1	< 3	< 6	-	0.15	-	-	< 0.00001	0.95	< 0.002	< 0.0005	0.0046	0.57	0.00008	0.0049	2.6	0.00008
MT-1-DupA	< 3	< 6	-	0.17	-	-	< 0.00001	1.34	0.003	< 0.0005	0.0065	0.59	0.00007	0.0001	2.8	< 0.00003
MT-2	< 3	< 6		0.17	-	-	< 0.00001	2.04	0.002	< 0.0005	0.0149	0.72	< 0.00007	< 0.0001	4.8	0.00008
MT-3	< 3	< 6		0.18	-	-	< 0.00001	1.21	< 0.002	< 0.0005	0.0098	0.76	0.0001	0.0003	4.4	0.00012
MT-4	< 3	< 6		0.19	-	-	< 0.00001	1.41	0.003	< 0.0005	0.0068	0.72	0.00007	0.0001	3.6	< 0.00003
MT-5	< 3	< 6	-	0.17	-	-	< 0.00001	0.87	< 0.002	< 0.0005	0.0061	0.53	< 0.00007	< 0.0001	3.5	0.00007
MT-6	< 3	< 6	-	0.19	-	-	< 0.00001	1.57	0.003	< 0.0005	0.0141	0.79	< 0.00007	< 0.0001	8.3	0.00009
MT-7	< 3	< 6	-	0.18	-	-	< 0.00001	0.99	0.002	< 0.0005	0.0083	0.67	< 0.00007	< 0.0001	6.9	< 0.00003
MT-8	< 3	< 6	-	0.18	-	-	< 0.00001	0.97	< 0.002	< 0.0005	0.0116	0.68	< 0.00007	< 0.0001	9.8	0.00006
MT-8-DUP-S	< 3	< 6	-	0.21	-	-	< 0.00001	1.12	0.002	< 0.0005	0.0055	0.81	< 0.00007	< 0.0001	4.6	0.00008
TP-1-S	< 3	< 6	-	0.34	-	-	< 0.00001	2.43	0.002	< 0.0005	0.0105	0.56	0.00008	< 0.0001	1.7	0.00005
TP-1-TS	< 3	< 6	-	0.23	-	-	< 0.00001	1.31	0.003	< 0.0005	0.0116	0.92	< 0.00007	< 0.0001	5.3	0.00009
TP-2-S	< 3	< 6	-	0.43	-	-	< 0.00001	2.86	0.002	< 0.0005	0.02	0.42	< 0.00007	< 0.0001	2.2	< 0.00003
TP-2-TS	< 3	< 6	-	0.24	-	-	< 0.00001	0.96	< 0.002	< 0.0005	0.0016	0.6	< 0.00007	0.0049	1.1	< 0.00003
TP-3-S	< 3	< 6	-	0.46	-	-	< 0.00001	4.88	0.003	< 0.0005	0.0335	0.4	0.00011	< 0.0001	1.4	< 0.00003
TP-3-TS	< 3	< 6	-	0.19	-	-	< 0.00001	1.05	0.002	< 0.0005	0.0022	0.62	0.00012	0.0001	1.9	0.00012
TP-7-TS	< 3	< 6	-	0.24	-	-	< 0.00001	0.87	< 0.002	< 0.0005	0.0211	0.81	< 0.00007	< 0.0001	19.3	< 0.00003
TP-8-TS	< 3	< 6	-	0.21	-	-	< 0.00001	0.86	0.005	< 0.0005	0.0155	0.75	< 0.00007	< 0.0001	15.1	< 0.00003
TP-10-S	< 3	< 6	-	0.4	-	-	< 0.00001	5.31	< 0.002	< 0.0005	0.037	0.41	< 0.00007	< 0.0001	3.8	0.00004
TP-10-S-DUPA	< 3	< 6	-	0.36	-	-	< 0.00001	8.29	< 0.002	< 0.0005	0.0611	0.44	0.00012	0.0001	5.5	0.00009
TP-10-TS	< 3	< 6	-	0.27	-	-	< 0.00001	0.27	0.005	< 0.0005	0.0113	0.89	< 0.00007	< 0.0001	10.6	< 0.00003
TP-10-TS-DUPA	< 3	< 6	-	0.31	-	-	< 0.00001	0.29	0.007	< 0.0005	0.0187	0.93	< 0.00007	< 0.0001	14.5	< 0.00003
TP-11-S	< 3	< 6	-	0.16	-	-	< 0.00001	2.77	< 0.002	< 0.0005	0.0058	0.53	< 0.00007	< 0.0001	1.5	< 0.00003
TP-6-TS	< 3	< 6	-	0.27	-	-	0.00004	0.46	0.007	< 0.0005	0.0378	0.92	< 0.00007	< 0.0001	47.8	0.00004
TP-7-S	< 3	< 6	-	0.19	-	-	0.00003	8.66	0.003	< 0.0005	0.045	0.4	0.00015	< 0.0001	7.2	0.00004
TP-9-TS	< 3	< 6	-	0.25	-	-	0.00003	0.37	0.006	< 0.0005	0.0891	0.86	< 0.00007	< 0.0001	60.7	0.00008
TP-5-TS	< 3	< 6	-	0.18	-	-	0.00002	2	< 0.002	< 0.0005	0.0051	0.53	< 0.00007	< 0.0001	1.4	< 0.00003
TP-6-S	< 3	< 6	-	0.42	-	-	0.00002	2.16	0.009	< 0.0005	0.0147	0.65	< 0.00007	< 0.0001	2.4	0.00004
TP-9-S	< 3	< 6	-	0.33	-	-	0.00002	4.6	< 0.002	< 0.0005	0.0373	0.38	< 0.00007	< 0.0001	4.5	0.00005
TP-11-TS	< 3	< 6	-	0.28	-	-	0.00002	9.68	< 0.002	< 0.0005	0.0338	0.42	< 0.00007	< 0.0001	1.8	< 0.00003
TP-5-TS-DUPA	< 3	< 6	-	0.17	-	-	0.00002	2.93	< 0.002	< 0.0005	0.005	0.4	< 0.00007	0.0027	1.5	0.00003
TP-5-S	< 3	< 6	-	0.32	-	-	0.00001	4.49	0.002	< 0.0005	0.0258	0.47	< 0.00007	< 0.0001	1.9	< 0.00003
TP-5-S-DUPA	< 3	< 6	-	0.38	-	-	0.00001	4.05	< 0.002	< 0.0005	0.0273	0.56	0.00009	< 0.0001	2.1	< 0.00003

Identification de	Cr	Co	Cu	Fe	К	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Si	Sb	Se
l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
E-27-D-H	0.00029	0.000236	0.0256	0.068	49.7	0.0092	16.6	0.329	0.00547	12.5	0.0006	-	0.00157	-	0.0718	0.0353
E-27-D-L	0.00006	0.000065	0.00232	< 0.007	44	0.0095	17.4	0.356	0.00266	10.7	0.0003	-	0.00008	-	0.142	0.0127
E-27-U-H	0.0001	0.000125	0.00245	< 0.007	102	0.0132	24.8	0.601	0.00505	27	0.001	-	0.00008	-	0.0859	0.0142
E-27-U-L	0.00014	0.000089	0.00329	< 0.007	105	0.0167	23.6	0.203	0.00556	30.3	0.0003	-	0.00002	-	0.116	0.0109
E-CA-D-H	0.00018	0.000043	0.00807	< 0.007	97.6	0.016	16.5	0.0584	0.00695	19.9	0.0002	-	0.00009	-	0.115	0.00874
E-CA-D-L	0.00014	0.000072	0.00266	< 0.007	93.4	0.0162	24.5	0.0586	0.00651	23.3	0.0002	_	0.00004	-	0.182	0.00761
E-CA-U-H	0.00009	0.000064	0.007	< 0.007	87.1	0.0277	20.4	0.152	0.0144	25.4	0.0001	_	0.00029	<u> </u>	0.729	0.0929
E-CA-U-L	0.00011	0.000033	0.00362	0.019	88.3	0.0177	14.2	0.075	0.0168	30.3	< 0.0001	-	0.00017	-	0.407	0.048
Under Dog A	0.00015	0.000704	0.00239	0.015	31.3	0.0077	3.32	0.0744	0.0169	10.7	0.0011	0.009	0.00013	2.41	0.214	0.00487
Under Dog B	0.00010	< 0.000004	0.0017	0.018	28	0.0053	2.27	0.0389	0.0104	10.1	0.0004	0.004	0.00007	2.3	0.0234	0.0125
Under Dog C	0.00003	0.000897	0.00315	0.009	31.6	0.0055	5.03	0.656	0.00652	10.8	0.001	< 0.003	< 0.00001	3.41	0.0315	0.00581
P3-I	0.00003	0.000097	0.00076	< 0.003	66.3	0.0085	12.6	0.030	0.00599	27.9	0.0002	0.007	0.00001	2.19	0.0482	0.00361
P3-J	0.00018	0.000041	0.00076	< 0.007	73.7	0.0003	16.2	0.0142	0.00591	22.3	0.0002	0.007	0.00002	2.45	0.162	0.00915
P3-K	0.00009	0.000040	0.0074	< 0.007	64	0.0102	13.5	0.0194	0.00391	24.5	0.0002	0.003	0.00003	2.43	0.0529	0.00631
P3-L	0.00009	0.000033	0.00074	< 0.007	63	0.0091	12.1	0.0154	0.00423	24.6	0.0003	0.007	0.00005	2.15	0.0329	0.00612
		0.000026	0.0004	< 0.007	7.29	0.0091		0.0131				< 0.007	0.00003			
EAG-13-485_2	0.00246						26.6		0.00101	15.2	0.0003			2.01	0.0089	0.00017
EAG-13-485_3	0.00036	< 0.000004	0.00072	0.008	41.1	0.0057	6.22	0.0098	0.00113	12	< 0.0001	< 0.003	< 0.00001	1.96	0.0624	0.00021
EAG-13-485_4	0.00105	0.000011	0.0006	< 0.007	51	0.0068	17.1	0.0058	0.00177	20.8	0.0001	0.007	< 0.00001	2.32	0.0083	0.00136
OBM-15-557_10	0.00014	0.00001	0.00042	< 0.007	41.7	0.0148	11.9	0.0092	0.00254	28.6	0.0002	< 0.003	0.00002	3.07	0.0104	0.00006
OBM-15-559_11	0.00012	< 0.000004	0.00111	< 0.007	45.5	0.014	5.21	0.0061	0.00441	14.3	< 0.0001	0.005	0.00011	2.65	0.0392	0.00026
OBM-15-559_12	0.0002	0.000179	0.00317	< 0.007	35.1	0.0042	7.03	0.0045	0.00133	29.6	0.0007	0.006	0.00008	2.83	0.0026	< 0.00004
OBM-15-559_13	0.00046	0.000018	0.00028	< 0.007	28.5	0.0019	13.5	0.0031	0.00283	14	0.0001	< 0.003	< 0.00001	1.91	0.0039	0.00019
OBM-16-580_17	0.00009	0.000118	0.01699	0.008	83.5	0.0087	27	0.0832	0.00372	10.9	0.001	< 0.003	0.00002	4.61	0.0313	0.0252
OBM-16-580_18	0.00032	< 0.000004	0.00137	< 0.007	37.2	0.0046	2.6	0.0014	0.00091	25	0.0001	< 0.003	0.00006	2.4	0.0189	0.00055
OBM-16-645_22	0.00006	< 0.000004	0.00114	< 0.007	50.6	0.012	10.4	0.0438	0.00587	10.5	< 0.0001	< 0.003	0.00003	2.42	0.0786	0.0003
OBM-16-671_23	0.00125	0.000072	0.00046	< 0.007	49.1	0.0041	17.3	0.0074	0.00195	11.5	0.0005	< 0.003	< 0.00001	2.34	0.0476	0.00146
OSK-W-16-715_27	0.00025	< 0.000004	0.00054	< 0.007	63.9	0.005	14.6	0.0106	0.00328	19.9	< 0.0001	< 0.003	0.00001	2.79	0.033	0.00051
OSK-W-16-751_29	0.00011	< 0.000004	0.00048	< 0.007	45.8	0.0074	9.41	0.0066	0.0323	21.5	0.0003	< 0.003	0.00006	2.38	0.0105	0.0002
OSK-W-16-751_30	0.00119	< 0.000004	0.00018	< 0.007	9.18	0.0066	14.1	0.0023	0.00089	24.5	0.0001	< 0.003	0.00001	1.76	0.0025	0.00011
OSK-W-16-760_31	0.0001	0.000006	0.00091	< 0.007	47	0.0114	7.5	0.0171	0.0187	16.3	0.0002	< 0.003	0.00004	2.2	0.046	0.00082
OSK-W-17-773 37	< 0.00003	0.000068	0.00043	< 0.007	14	0.0115	27.3	0.0378	0.00033	34.2	< 0.0001	< 0.003	< 0.00001	2.57	0.0037	0.00023
OSK-W-17-773 38	0.00024	0.000006	0.00032	< 0.007	27.9	0.0192	9.01	0.0083	0.00107	43.7	0.0001	< 0.003	0.00001	2.65	0.008	0.00008
OSK-W-17-773 39	0.00039	< 0.000004	0.00084	< 0.007	41.5	0.0083	9.68	0.0082	0.00306	36.4	< 0.0001	< 0.003	< 0.00001	2.53	0.0698	0.00022
OSK-W-17-773 41	0.00235	< 0.000004	0.0002	< 0.007	30.3	0.0068	12.5	0.0024	0.00057	6.12	< 0.0001	< 0.003	< 0.00001	1.58	0.0046	0.00011
OSK-W-17-773 42	0.0003	0.000016	0.00025	< 0.007	29.1	0.0111	26.6	0.0062	0.00159	17.6	< 0.0001	< 0.003	< 0.00001	2.18	0.0038	0.00034
OSK-W-17-774 44	0.00052	< 0.000004	0.00044	< 0.007	26.7	0.0015	1.94	0.0012	0.00122	30.9	0.0001	0.005	< 0.00001	2.26	0.0174	0.00006
OSK-W-17-779 46	0.00006	< 0.000004	0.00057	< 0.007	47	0.0055	4.34	0.0037	0.005	16.6	< 0.0001	< 0.003	< 0.00001	2.47	0.0314	0.00005
OSK-W-17-779 47	0.00022	0.000004	0.00024	< 0.007	2.62	0.0076	21.5	0.0125	0.00111	7.3	< 0.0001	< 0.003	< 0.00001	1.81	0.0009	0.00019
OSK-W-17-788 51	0.00028	< 0.000004	0.00043	< 0.007	35.5	0.0037	7.24	0.0054	0.0005	33	< 0.0001	< 0.003	0.00001	2.33	0.0127	0.00008
EAG-13-485 53	0.00007	< 0.000004	0.00322	< 0.007	60.4	0.0085	10.6	0.0358	0.00496	19.2	< 0.0001	0.007	0.00005	3.84	0.554	0.0016
EAG-13-497 56	0.00007	< 0.000004	0.00322	< 0.007	52.7	0.0132	14.8	0.0931	0.00744	16.7	< 0.0001	< 0.007	< 0.00001	3.83	0.0965	0.00045
EAG-13-513 57	< 0.00003	0.000066	0.00109	< 0.007	71.1	0.0091	9.08	0.0331	0.00744	11.7	0.0002	< 0.003	0.00003	3.63	0.0331	0.00043
EAG-14-538 58	0.00013	< 0.000004	0.00103	< 0.007	57.8	0.0058	3.02	0.173	0.00303	19.3	< 0.0002	0.005	0.00005	3.6	0.0992	0.00000
OBM-15-559 59	0.00013	< 0.000004	0.00226	< 0.007	33.3	0.0036	11.9	0.0173	0.00938	21.9	< 0.0001	< 0.003	< 0.00003	2.31	0.0992	0.0102
OBM-15-559_59 OBM-15-566_60	0.00013	0.000074	0.0536	0.026	63.9	0.0029	10.7	0.0073	0.00753	14.1	0.0017	< 0.003	0.00057	2.71	0.0072	0.00008
					55.6		8.72	0.0059		13.7				2.71		
OBM-16-630_61	0.00008	< 0.000004	0.00201	0.008		0.0111			0.00527		< 0.0001	< 0.003	0.00004		0.107	0.00567
OBM-16-654_62	0.00003	0.000529	0.00041	< 0.007	83.1	0.006	9.74	0.798	0.00079	18.3	0.0034	0.003	0.00004	14.7	0.0207	0.00194
OBM-16-671 63	0.00037	0.000117	0.00079	< 0.007	46.5	0.007	18.2	0.0123	0.00181	29.8	0.0005	0.004	< 0.00001	2.86	0.0079	0.00007

Identification de	Cr	Co	Cu	Fe	к	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Si	Sb	Se
l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
OBM-16-673 64	0.00003	0.000006	0.00085	< 0.007	69.5	0.0076	15	0.0851	0.00403	26	< 0.0001	< 0.003	0.0001	5.57	0.0193	0.00466
OSK-W-16-760 67	0.00014	0.000198	0.00056	< 0.007	20.2	0.0329	17.6	0.0195	0.00508	20	0.0003	< 0.003	0.00011	2.35	0.0435	0.00114
OBM-16-580 68	0.00026	0.000024	0.00195	< 0.007	35.4	0.0087	10.2	0.0058	0.00215	20.9	0.0004	< 0.003	0.00004	2.38	0.0092	0.00293
OBM-16-645 69	0.00004	0.00005	0.00101	< 0.007	64	0.0112	28.1	0.0726	0.00353	12.7	0.0002	< 0.003	0.00002	3.06	0.0401	0.00255
OBM-16-642 70	0.00015	0.000021	0.00167	< 0.007	84.3	0.0093	27.3	0.0144	0.0121	13	0.0003	0.004	0.0001	3.22	0.0225	0.00419
OSK-W-17-774 72	0.00013	< 0.000004	0.0026	< 0.007	58.7	0.0077	12.6	0.0033	0.0893	20.7	< 0.0001	< 0.003	0.00002	2.72	0.0094	0.00466
OSK-W-17-1006 75	0.00014	< 0.000004	0.00061	< 0.007	55.5	0.0068	13.9	0.0133	0.00147	24.4	< 0.0001	< 0.003	0.00002	2.85	0.0404	0.00047
OSK-W-17-934 77	0.00047	< 0.000004	0.00116	0.032	48.7	0.0108	6.07	0.0072	0.00231	27.2	< 0.0001	0.004	0.00006	2.88	0.0794	0.00037
Tails CND 1	0.00005	0.00715	0.00699	0.008	5.78	0.0106	33.8	2.09	0.00279	7.14	0.0245	< 0.003	0.00018	2.96	0.0054	0.00183
Tails CND 4	< 0.00003	0.00736	0.00395	< 0.007	7.38	0.0091	37.9	1.89	0.00286	12	0.0167	< 0.003	0.00008	3.06	0.0111	0.00107
Tails CND 5	0.00008	0.00271	0.00228	0.008	7.08	0.0056	24.2	0.455	0.0061	10	0.0033	< 0.003	0.00011	2.49	0.0212	0.00268
Tails CND 6	0.00004	0.00235	0.00366	< 0.007	7.98	0.0052	5.84	0.565	0.00481	9.08	0.0054	< 0.003	0.00016	3.06	0.0245	0.00183
Triple Lynx LG	0.000054	< 0.00008	0.0007	< 0.007	26.8	0.014	6.74	0.0235	0.0184	10.2	< 0.0001	< 0.003	0.00015	2.31	0.0383	0.00197
Lynx 4 LP-LG	0.000082	< 0.00008	0.0004	0.012	24.4	0.0138	6.68	0.0178	0.0102	9.62	0.0003	< 0.003	0.00033	2.11	0.066	0.0045
Lynx 4 HP-LG	0.000059	0.00009	0.0004	< 0.007	29.8	0.0087	9.29	0.0444	0.0171	9.97	0.0006	< 0.003	0.00005	2.47	0.0476	0.00122
Triple Lynx MG/HG	0.000064	< 0.00008	0.0004	< 0.007	27.8	0.0104	9.19	0.0317	0.0171	9.87	0.0003	< 0.003	0.00012	2.3	0.0376	0.00241
Lynx 4 LP-MG/HG	0.000071	< 0.00008	0.0005	< 0.007	28.3	0.0116	11.8	0.0535	0.0166	10.1	0.0003	< 0.003	0.00006	2.5	0.0821	0.00241
Lvnx 4 HP-MG/HG	0.000071	< 0.00008	0.0003	< 0.007	27.7	0.0110	16.5	0.0333	0.0100	10.1	0.0003	< 0.003	0.00000	2.64	0.106	0.00557
GC10001	0.000102	0.00009	0.0000	< 0.007	38.6	0.0097	10.5	0.0494	0.00393	22	0.0022	0.006	0.00014	2.37	0.0325	0.00094
GC10001 GC10002	0.000039	< 0.00009	0.0032	0.007	42.8	0.0037	7.58	0.0003	0.00393	19	0.0003	0.007	0.00004	2.47	0.0323	0.00035
GC10002 GC10003		0.00018	0.0013	< 0.007	26.7	0.0119	12	0.0104	0.00364	34.6	0.0002	0.007		2.47	0.028	0.00033
GC10003 GC10004	0.000087	0.00018				0.0129	10.5	0.0047	0.00125	14.5	0.0001		0.00003		0.0141	
	0.000038		0.0018	0.025	53.7							0.011	0.00004	2.26		0.00153
GC10005	0.000037	< 0.00008	0.0025	< 0.007	44.8	0.0098	11.8	0.0215	0.00621	18.9	0.0003	0.005	0.00003	2.67	0.0476	0.00092
GC10006	0.000055	0.0001	0.0013	< 0.007	45.5	0.0106	9.36	0.0063	0.00157	23	0.0002	0.008	0.00003	2.39	0.0464	0.00037
GC10007	0.000037	0.00012	0.0006	0.007	27.8	0.0171	7.94	0.0058	0.00275	27	0.0005	0.006	0.00007	2.42	0.0127	0.00006
GC10008	0.000046	0.00012	0.0009	< 0.007	26.1	0.0103	4.17	0.0053	0.00335	23.9	0.0002	0.007	0.00048	2.55	0.0092	0.0001
GC10009	0.000034	0.00009	0.0007	< 0.007	45.9	0.0084	7.52	0.0087	0.00126	17.2	< 0.0001	0.005	0.00102	2.44	0.0121	0.00013
GC10010	0.000019	0.00011	0.0008	< 0.007	19	0.0309	6.15	0.0057	0.00271	40.7	0.0002	0.005	0.00002	2.48	0.0157	0.00004
GC10011	0.000025	0.00012	0.0007	0.017	30.6	0.0106	1.6	0.0021	0.00276	24.2	0.0001	0.018	0.00007	2.35	0.0059	0.00006
GC10012	0.000029	0.00009	0.001	< 0.007	26	0.0257	8.32	0.0086	0.00623	26.2	0.0001	0.011	0.00003	2.37	0.0105	0.00013
GC10013	0.000022	0.00013	0.0003	< 0.007	53.8	0.0087	11	0.0059	0.00267	13.7	0.0002	0.006	0.00002	2.52	0.107	0.00017
GC10014	0.000018	0.00033	< 0.0002	< 0.007	18.4	0.0051	9.74	0.0053	0.0012	9.37	< 0.0001	0.005	0.00001	1.5	0.0061	0.00025
GC10015	0.000066	0.00019	0.0012	0.01	8.23	0.0045	9.23	0.0038	0.00104	8.59	0.0002	0.003	0.00003	1.14	< 0.0009	0.00006
GC10016	0.000009	0.00085	0.0003	< 0.007	10.5	0.0034	8.42	0.0015	0.00123	9.88	0.0001	0.006	0.00004	1.42	0.0023	0.00023
GC10017	0.000082	0.00021	0.0007	0.012	46.9	0.0138	18.3	0.0122	0.00231	20.5	0.0005	0.008	< 0.00001	2.5	0.0047	0.00015
GC10018	0.000115	0.00027	0.0003	< 0.007	33.3	0.0094	31.9	0.0135	0.00289	22.6	0.0001	0.008	< 0.00001	2.35	0.0033	0.00034
GC10019	0.000025	0.00031	0.0006	< 0.007	14.8	0.0047	7.78	0.0032	0.00066	6.37	< 0.0001	0.004	< 0.00001	1.27	0.0045	0.00012
GC10020	0.000026	0.00197	0.0043	0.018	19.1	0.0097	15	0.0022	0.00095	12.9	0.0002	0.006	0.00014	1.69	0.0061	0.00012
GC10021	0.00005	0.00063	0.0003	< 0.007	22.1	0.0072	15.8	0.0045	0.00043	12.8	0.0003	0.007	< 0.00001	1.9	0.0163	0.00029
GC10022	0.00003	0.00023	0.0005	< 0.007	21.1	0.0047	10.3	0.0056	0.0006	6.81	< 0.0001	< 0.003	< 0.00001	1.47	0.0093	0.00033
GC10023	0.000514	0.00043	< 0.0002	< 0.007	42.7	0.0065	20.4	0.0099	0.00032	11.6	0.0013	0.005	< 0.00001	2.1	0.0251	0.00044
GC10024	0.000076	0.00044	0.0006	0.024	0.848	0.0067	20.8	0.0064	0.00257	5.79	0.0005	0.004	0.00001	1.6	0.001	0.00007
GC10025	0.000023	< 0.00008	0.0023	< 0.007	46.2	0.0079	5.23	0.0041	0.00257	10.4	0.0004	0.004	0.0004	2.38	0.0319	0.00016
GC10026	0.000017	< 0.00008	0.0006	< 0.007	49.5	0.016	11.8	0.0138	0.00523	18.4	< 0.0001	0.006	< 0.00001	2.5	0.0371	0.00017
GC10027	0.000071	0.00036	0.0005	< 0.007	48.4	0.0113	6.16	0.0058	0.0114	13.6	0.0007	0.007	0.00008	2.48	0.0205	0.00038
GC10028	0.000018	< 0.00008	0.0003	< 0.007	47	0.0111	9.08	0.0276	0.0034	12	0.0002	0.008	0.00004	2.53	0.019	0.00016
GC10029	0.000044	0.00012	0.0006	< 0.007	42.4	0.0148	10.9	0.0084	0.00278	24.3	0.0002	0.007	0.00001	2.39	0.0086	0.00009
GC10020	0.000018	< 0.000012	0.0012	< 0.007	49.3	0.011	6.68	0.0213	0.00273	13	0.0003	0.005	0.00012	1.93	0.0411	0.00072

Identification de	Cr	Со	Cu	Fe	К	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Si	Sb	Se
l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
GC10031	0.000008	< 0.00008	0.0003	< 0.007	42.6	0.0089	3.23	0.0029	0.00082	11.8	0.0001	0.006	0.00004	2.35	0.0502	0.00034
GC10032	< 0.000004	0.00012	0.0003	< 0.007	47.6	0.0083	4.7	0.005	0.00344	12.9	0.0001	0.003	0.00004	2.29	0.0844	0.00021
CIL 11 CND	0.0016	0.00084	0.0118	0.164	3.94	0.0041	7.23	0.0374	0.00706	46.6	0.0021	< 0.003	0.00013	2.37	0.0224	0.00251
CIL 12 CND	0.0158	0.00017	1.28	0.259	3.41	0.0044	11.9	0.211	0.00539	23.7	0.0744	< 0.003	0.0531	2.29	0.0302	0.0027
CIL 13 CND	0.0368	0.00025	0.328	1.88	2.63	0.0031	19.3	1.05	0.0028	4.74	0.274	< 0.003	0.0437	2.6	0.016	0.0021
RC-F03-21	< 0.00008	0.000016	0.0005	< 0.007	23.6	0.006	11	0.0164	0.0015	38.5	0.0002	< 0.003	< 0.00009	2.05	0.002	0.00062
VR2-F01-21 CR-7	0.00011	0.000048	0.0003	< 0.007	19.2	0.0103	13.3	0.0606	0.00476	39.8	0.0001	< 0.003	< 0.00009	2.7	0.0051	0.00078
VR3-F01-21 CR-5	< 0.00008	< 0.000004	< 0.0002	0.01	4.86	0.0017	1	0.0015	0.00142	32.9	< 0.0001	< 0.003	< 0.00009	1.3	0.0031	0.00018
OSK-W-19-1746-W1-765	0.00014	0.000023	0.0008	0.086	78.5	0.0057	1.49	0.0046	0.0111	32.4	0.0003	0.015	0.00029	1.09	0.0416	0.00028
OSK-W-17-663-W2-680	0.00026	0.000025	0.0016	0.016	79.6	0.0137	12.6	0.0187	0.0146	26.1	< 0.0001	0.015	< 0.00009	1.36	0.003	0.00145
OSK-W-19-1857-W2-1030	0.00033	0.000027	0.0029	0.031	54.9	0.0129	5.06	0.0048	0.00487	23.8	0.0002	0.014	0.00024	1.85	0.0191	0.00018
OSK-W-19-1857-W2-1210	0.00058	0.000079	0.0043	0.059	6.99	0.0063	20.8	0.0054	0.00091	22.6	0.0003	< 0.003	0.00186	1.28	0.0016	0.00015
OSK-W-19-1897-496	0.00009	0.000022	0.001	0.033	49.7	0.0097	12.6	0.0338	0.00492	12.5	< 0.0001	0.003	0.00025	1.51	0.0273	0.00079
OSK-W-19-909-W12-770	0.00033	0.000084	0.0015	0.013	52.6	0.0212	4.08	0.0042	0.00232	76.2	0.0009	0.008	< 0.00020	1.34	0.0092	0.00005
OSK-W-19-934-W3-940	0.0002	< 0.000004	0.0003	< 0.007	93.7	0.008	5.78	0.0057	0.00701	30.8	< 0.0001	0.004	< 0.00009	1.18	0.0898	0.00019
OSK-W-19-934-W3-1045	0.00031	0.000009	0.0009	0.013	101	0.0067	3.6	0.0032	0.00306	18.6	< 0.0001	0.007	0.00053	1.54	0.0584	0.00046
OSK-W-21-2512-W3-610	0.00038	0.00001	0.0002	0.007	54.5	0.0045	4.66	0.0025	0.00206	63.3	< 0.0001	0.006	< 0.00009	1.73	0.003	< 0.00004
OKS-W-21-2613-W1-855	0.00131	0.000021	< 0.0002	0.022	1.2	0.0056	12.6	0.0009	0.00014	3.73	0.0002	< 0.003	< 0.00009	1.64	0.002	< 0.00004
OSK-W-21-2629-845	0.00245	0.000021	0.0003	0.007	35.2	0.0151	16.2	0.0038	0.0019	50.1	0.0002	< 0.003	< 0.00009	1.48	0.0143	0.00029
OSK-W-21-2605-1332	0.0001	0.000019	0.0003	0.014	93.3	0.0122	13.6	0.0604	0.00999	28.3	0.0002	0.005	< 0.00009	1.81	0.0243	0.00057
OSK-W-21-2629-948	0.00178	0.000275	0.0002	0.007	76.7	0.0167	20.4	0.0153	0.00057	48.1	0.0003	0.003	< 0.00009	2.07	0.0231	0.00185
OSK-W-21-2623-346	< 0.00008	0.000273	0.0002	0.007	50.8	0.0091	5.46	0.0286	0.00597	14.2	< 0.0001	0.005	< 0.00009	2.36	0.0886	0.00038
OSK-W-21-2587-1060	0.00012	< 0.000007	< 0.0002	< 0.007	89.2	0.008	3.55	0.0053	0.00233	23	< 0.0001	< 0.003	< 0.00009	1.76	0.0233	0.00094
WST-21-0879-639	0.0019	0.00004	< 0.0002	< 0.007	38.1	0.0095	23.5	0.0068	0.00235	36.6	0.0003	0.004	< 0.00009	2.19	0.0250	0.00131
OSK-W-19-1897-610	0.00017	0.000023	< 0.0002	< 0.007	38.4	0.005	8.73	0.0059	0.00393	29.4	< 0.0001	0.006	< 0.00009	3.2	0.0032	< 0.00004
OSK-W-19-1897-825	0.00017	0.000012	0.0012	< 0.007	26	0.0067	8.64	0.0067	0.0127	30.6	< 0.0001	< 0.003	< 0.00009	2.93	0.0156	0.00124
OSK-W-19-1897-983	0.00010	< 0.000012	0.0012	< 0.007	43.4	0.0059	3.37	0.0063	0.00678	17.9	< 0.0001	< 0.003	< 0.00009	2.47	0.021	0.0061
OSK-W-20-2323-115	< 0.00008	0.000009	0.0003	< 0.007	25.7	0.0045	6.54	0.0108	0.00228	17	< 0.0001	< 0.003	< 0.00009	1.68	0.0036	0.00137
OSK-W-19-1949-W1-948	0.00023	0.000387	0.0009	< 0.007	29.1	0.0092	17	0.0065	0.00081	15.3	0.0011	< 0.003	< 0.00009	1.66	0.0329	0.00028
OSK-W-21-2252-W12-922	0.00011	0.000013	0.0011	0.009	68.9	0.0094	2.43	0.0122	0.00361	27.5	0.0005	0.008	0.00019	1.91	0.0201	0.00032
OSK-W-21-2252-1013	< 0.00008	0.000039	0.0011	< 0.007	57.3	0.0061	6.25	0.0052	0.00154	17.4	0.0005	0.003	0.00018	2.03	0.0617	0.00021
OSK-W-20-2283-W7-888	< 0.00008	0.000012	0.0012	< 0.007	52.4	0.0085	5.28	0.0196	0.00683	12.7	0.0005	0.003	0.00025	1.9	0.0615	0.00086
OSK-W-20-2256-W1-1051.7	0.00011	0.000012	0.0014	< 0.007	57	0.0105	8.05	0.0078	0.0209	19.7	0.0005	0.005	0.00028	2.26	0.076	0.00182
OSK-W-20-2375-W4-890	0.00028	0.000024	0.0019	0.017	81.2	0.0088	4.5	0.0071	0.00741	45	0.0005	0.009	< 0.00009	1.94	0.0192	0.00031
OSK-W-20-2350-125	0.00018	0.000096	0.0016	< 0.007	57.1	0.0054	7.88	0.0068	0.0039	59.8	0.0005	0.008	< 0.00009	2.02	0.0095	0.0001
OSK-W-21-2444-545	0.00042	0.000096	0.001	< 0.007	10	0.0155	34.7	0.0082	0.0127	23.8	0.0007	0.004	< 0.00009	1.55	0.0061	0.00057
WST-21-0647-161.5	0.00042	0.000019	0.0006	0.009	27.2	0.007	2.91	0.0021	0.00116	34.3	< 0.0001	0.004	< 0.00009	2.08	0.0047	0.00007
WST-21-0647-313	0.00022	0.000013	0.0006	< 0.007	47.1	0.0087	4.24	0.0057	0.00737	18.1	< 0.0001	0.005	0.00044	1.77	0.116	0.00184
WST-19-0160A-55	< 0.00022	0.000013	0.0003	0.007	26.3	0.0068	19.4	0.0037	0.00737	13.9	0.0003	< 0.003	< 0.00044	1.53	0.046	0.00067
OSK-W-21-2606-615	0.00008	0.00003	0.0005	0.009	40.5	0.0055	5.22	0.0101	0.00343	13.2	< 0.0001	0.003	< 0.00009	1.48	0.0109	0.00087
OSK-W-21-2606-670	0.00055	0.00003	0.0003	< 0.003	5.79	0.0033	6.23	0.0021	0.00343	11.6	< 0.0001	< 0.003	< 0.00009	1.06	0.0022	0.00007
WST-21-0666-54	0.00033	0.000017	0.0003	< 0.007	25	0.0025	27	0.0021	0.02032	88	< 0.0001	0.004	< 0.00009	1.53	0.0022	0.00013
WST-22-1013-345	0.00131	0.000048	0.0003	0.011	81.6	0.0173	4.4	0.0052	0.02569	35.2	0.0001	0.004	< 0.00009	1.46	0.0722	0.00097
OSK-W-21-2551-W3-915	0.00047	0.000029	0.0002	0.011	20.4	0.0113	2.12	0.0032	0.02303	87.9	< 0.0001	0.013	0.00052	1.71	0.0722	0.00097
WST-21-0992-450	0.0004	0.000032	0.0003	< 0.013	66.8	0.0102	8.61	0.002	0.00383	64.6	< 0.0001	0.007	< 0.00009	1.74	0.0545	0.00003
WST-21-0992-430 WST-21-0952-32	0.00034	0.00001	< 0.0000	< 0.007	20.9	0.0079	25.7	0.0034	0.00383	37.4	< 0.0001	0.007	< 0.00009	1.12	0.0343	0.00022
OSK-W-21-1949-W15-1080	0.00055	0.00003	0.0004	< 0.007	99.2	0.0192	5.4	0.0027	0.0004	33.9	< 0.0001	0.003	0.00009	1.12	0.0108	0.00027
WST-18-0024-50	0.00033	0.000012	0.0004	0.007	102	0.0133	11.3	0.0036	0.00895	32.6	< 0.0001	0.011	< 0.0002	2.23	0.0301	0.00037
VV S 1 - 10-UU24-3U	0.00011	0.000016	0.0000	0.011	102	0.0122	11.5	0.0200	0.00095	JZ.0	<u> </u>	0.000	<u> </u>	2.23	0.0108	0.00228

Identification de	Cr	Со	Cu	Fe	K	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Si	Sb	Se
l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
OSK-W-21-2555-590	0.00127	0.000016	< 0.0002	< 0.007	3.18	0.0041	15	0.0023	0.00065	9.91	< 0.0001	< 0.003	< 0.00009	1.43	0.0015	0.00009
OSK-W-21-2544-838	0.00011	0.000015	0.0002	0.014	62.3	0.011	7.7	0.0221	0.01061	15.6	< 0.0001	0.006	0.00013	1.77	0.0942	0.00201
WST-20-0573-367	0.0009	0.000019	0.0004	0.009	62.2	0.0061	5.97	0.0039	0.00178	57.4	< 0.0001	0.015	< 0.00009	1.74	0.0061	0.00009
OBM-15-552-280	0.00024	0.000042	0.0005	0.009	39.1	0.0035	6.6	0.0059	0.0029	35.3	0.0003	0.006	< 0.00009	2.02	0.001	0.00005
OBM-16-655-600	0.0002	0.000028	0.0002	< 0.007	39.3	0.0031	5.79	0.0035	0.00135	27	0.0001	0.005	< 0.00009	2.04	0.0013	0.0001
OBM-16-655-330	< 0.00008	0.00004	< 0.0002	0.011	48.7	0.0064	14.5	0.0401	0.00313	10.6	< 0.0001	< 0.003	< 0.00009	1.8	0.0081	0.00031
OBM-16-677-79	0.00084	0.000028	< 0.0002	< 0.007	59.5	0.0063	5.68	0.0028	0.00158	39.1	0.0001	0.004	< 0.00009	1.6	0.0029	0.00006
OSK-W-16-706-W2-905	0.00065	0.000008	0.0009	0.009	60.7	0.0088	4.66	0.0027	0.0122	28.4	0.0001	< 0.003	< 0.00009	1.68	0.0135	0.00095
OSK-W-17-1079-580	0.00164	0.000036	< 0.0002	< 0.007	44.6	0.0035	15.5	0.0047	0.00113	13.9	0.0002	< 0.003	< 0.00009	1.5	0.0111	0.00048
OSK-W-17-1104-665	0.00026	0.000049	< 0.0002	< 0.007	0.899	0.0283	45.7	0.0127	0.00087	19.8	0.0004	< 0.003	< 0.00009	1.5	0.0014	0.00047
OSK-W-17-1121-545	0.00021	0.000014	< 0.0002	< 0.007	16.3	0.0045	0.287	0.0005	0.00039	28.9	0.0002	< 0.003	< 0.00009	2.44	0.0031	0.00004
OSK-W-17-1305-261	0.00021	0.00003	< 0.0002	< 0.007	34.3	0.0044	6.32	0.0039	0.00038	29.8	0.0002	0.006	< 0.00009	2.29	0.0015	< 0.00004
OSK-W-17-1369-219.5	0.00024	0.000028	0.0015	0.076	34.7	0.0051	3.46	0.0061	0.00619	8.7	0.0008	0.014	0.00017	2.9	0.0317	0.00034
OSK-W-17-968-145	0.00319	0.000097	0.0002	< 0.007	48.1	0.0226	18.4	0.0058	0.00121	44.8	0.0006	0.003	< 0.00009	1.5	0.0937	0.00135
OSK-W-18-1386-W4-885	0.00166	0.000056	0.0004	< 0.007	80.5	0.0158	20.9	0.0281	0.00134	76.4	0.0005	0.004	< 0.00009	2.09	0.0364	0.00117
OSK-W-18-1608-805	0.00083	0.00019	< 0.0002	< 0.007	100	0.0123	15.5	0.0127	0.00139	31.6	0.0004	0.015	< 0.00009	1.78	0.032	0.00086
OSK-W-18-1713-470	0.0021	0.000028	< 0.0002	< 0.007	62	0.0069	6.75	0.0043	0.00168	14.4	0.0002	< 0.003	< 0.00009	1.39	0.0221	0.00029
OSK-W-18-1759-190	0.00051	0.000009	0.0006	0.011	70.8	0.0052	2.03	0.0016	0.00176	30.6	0.0002	0.004	< 0.00009	1.42	0.0723	0.00024
OSK-W-19-1181-W12-1140	0.00032	0.000012	0.0004	< 0.007	76.9	0.0144	2.33	0.0021	0.00227	29.5	0.0003	0.004	< 0.00009	1.57	0.0444	0.00047
OSK-W-19-1181-W5-845	0.00038	0.000016	0.0002	< 0.007	49.3	0.0116	2.63	0.0016	0.00054	54.7	0.0002	0.004	< 0.00009	1.53	0.0074	0.00005
OSK-W-19-1181-W5-970	0.00025	0.000031	0.0003	< 0.007	34.4	0.0251	32.7	0.0082	0.00091	45.2	0.0002	< 0.003	< 0.00009	1.7	0.004	0.0006
OSK-W-19-1412-W3-715	0.00242	0.000087	< 0.0002	< 0.007	34.6	0.0217	14.2	0.003	0.00046	53.4	0.0004	< 0.003	< 0.00009	1.35	0.0038	0.00011
OSK-W-19-1412-W3-765	< 0.00008	0.000095	0.0002	< 0.007	31.4	0.0198	24.5	0.0332	0.00169	52.5	0.0002	< 0.003	< 0.00009	2.29	0.0069	0.00043
#08351	0.00641	0.000138	0.0003	< 0.007	0.832	0.0438	25.6	0.0022	0.0457	44.5	0.0004	< 0.003	< 0.00009	1.05	0.0015	0.00075
#08352	0.00022	0.000023	0.0005	< 0.007	140	0.0309	14.6	0.0118	0.0102	102	0.0004	0.008	< 0.00009	1.99	0.0082	0.00041
#08353	0.00558	0.000079	< 0.0002	< 0.007	14.2	0.0199	17.1	0.0017	0.0026	38.9	0.0002	< 0.003	< 0.00009	1.48	0.0026	0.00025
#08358	0.0113	0.000033	0.0004	0.007	0.612	0.0251	30.6	0.0038	0.01	3.67	0.0003	< 0.003	0.00016	1.34	0.0016	0.00006
OBM-15-564 79	0.00005	0.000018	0.00159	0.014	21.4	0.0154	4.22	0.0082	0.00481	17.3	0.0004	0.006	0.00069	-	0.0585	0.00047
OBM-15-557 80	0.00008	0.000039	0.00147	0.022	63.3	0.0054	3.41	0.0035	0.00328	8.92	0.0001	0.005	0.00006	-	0.0328	0.00466
OBM-15-552 81	0.00009	0.000044	0.00951	0.01	29.9	0.0121	5.43	0.0056	0.0836	45.7	0.0003	0.003	0.00002	-	0.0113	0.00494
OBM-15-554 82	< 0.00003	0.000031	0.00053	0.01	35.3	0.0066	10.7	0.0159	0.00368	25	0.0002	< 0.003	0.00001	-	0.0056	0.00245
OSK-W-16-311-W2 84	0.00018	< 0.000004	0.0008	< 0.007	41.8	0.0082	5.16	0.005	0.0044	32.8	< 0.0001	< 0.003	< 0.00001	-	0.0696	0.00107
OSK-W-16-706-W1 85	0.00005	< 0.000004	0.00408	< 0.007	33.9	0.0089	8.51	0.009	0.0276	35.9	0.0001	0.005	0.00002	-	0.0297	0.00094
OSK-W-16-706-W1 86	0.00005	0.000152	0.00266	0.01	41.7	0.0077	4.84	0.0063	0.0159	32.3	0.0001	0.004	0.00004	-	0.0245	0.00221
OSK-W-16-706-W1 87	0.00015	< 0.000004	0.0061	< 0.007	24.3	0.005	1.15	0.0011	0.00181	41.4	0.0003	< 0.003	0.00004	-	0.036	0.00168
OSK-W-16-706-W1 88	0.0001	< 0.000004	0.00473	< 0.007	42.4	0.0143	3.93	0.0044	0.0443	44	< 0.0001	< 0.003	0.00001	-	0.0124	0.00304
OSK-W-16-706-W2 89	0.00005	< 0.000004	0.00177	< 0.007	47.2	0.0063	3.59	0.0042	0.00533	29.3	0.0002	< 0.003	0.00004	-	0.011	0.00239
OSK-W-16-708-W1 90	< 0.00003	0.000126	0.00112	< 0.007	49.9	0.0178	33.2	0.0764	0.0297	23.8	0.0006	< 0.003	< 0.00001	-	0.0031	0.0029
OSK-W-16-708-W2 91	0.00005	0.000011	0.00166	< 0.007	35.1	0.0072	6.11	0.0063	0.00476	35.4	0.0001	< 0.003	0.00002	-	0.0081	0.00181
OSK-W-16-735-W2 92	0.00016	< 0.000011	0.0057	< 0.007	32.5	0.0087	3.87	0.0022	0.0132	39.9	< 0.0001	0.006	0.00004	-	0.0477	0.0014
OSK-W-16-743 93	0.00008	< 0.000004	0.0037	< 0.007	66.2	0.0007	2.25	0.0022	0.0132	15	< 0.0001	0.005	0.00005	_	2.24	0.00424
OSK-W-16-746 94	< 0.00003	0.000118	0.00219	< 0.007	62.9	0.0298	47	0.118	0.00627	22.8	0.0003	< 0.003	< 0.00001	-	0.0058	0.00154
OSK-W-16-754 95	0.00006	0.0000110	0.00603	< 0.007	34.2	0.0057	2.59	0.0028	0.0131	43.1	0.0003	0.003	0.00005	-	0.0076	0.00149
OSK-W-16-754_95	0.00000	< 0.000024	0.00003	< 0.007	59.2	0.0037	5.42	0.0025	0.00767	15.8	< 0.0003	< 0.003	0.00003	-	0.0070	0.00149
OSK-W-17-774 97	0.00004	0.000247	0.00677	< 0.007	41.4	0.0205	69	0.208	0.00707	15.9	0.0006	< 0.003	< 0.00001	-	0.0027	0.00204
OSK-W-17-774_97	0.00004	< 0.000247	0.00077	< 0.007	44.5	0.0203	1.7	0.200	0.00094	35.6	0.0000	0.003	0.00004	-	0.0027	0.00204
OSK-W-17-74_98	0.00009	< 0.000004	0.00272	0.007	57.5	0.0074	2.15	0.0014	0.00094	23	0.0002	0.005	0.00004	-	0.0109	0.0008
OSK-W-17-789_99	0.0001	0.000004	0.00738	< 0.009	59.1	0.0074	2.13	0.002	0.00754	26.1	0.0005	< 0.003	0.00047	-	0.0224	0.0019
U3N-W-17-708_100	0.00003	0.000021	0.0111	\ 0.00 <i>1</i>	J9. I	0.0079	2.91	0.007	0.00754	∠U. I	0.0003	· 0.003	0.00047		0.0000	0.00101

Identification de	Cr	Co	Cu	Fe	K	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Si	Sb	Se
l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
OSK-W-17-812_101	0.00037	0.000011	0.00041	< 0.007	45.3	0.0106	5.32	0.0044	0.00196	36.2	0.0002	0.006	< 0.00001	-	0.0373	0.00014
OSK-W-17-812_102	0.00016	< 0.000004	0.00043	< 0.007	44.2	0.0149	11.5	0.0122	0.00264	54.2	0.0002	< 0.003	< 0.00001	-	0.027	0.00044
OBM-15-552_103	0.00005	< 0.000004	0.0128	0.007	57.4	0.021	9.49	0.0074	0.396	22	0.0001	< 0.003	0.00002	-	0.0112	0.00343
OSK-W-16-311-W1_83	0.00004	< 0.000004	0.00149	< 0.007	42.6	0.0081	4.34	0.0053	0.0117	22.2	< 0.0001	< 0.003	0.00005	-	0.0251	0.00088
BD-TR02-21-150-170	<0.015	<0.005	0.041	1.54	17.7	<0.1	14.5	0.073	<0.01	56.7	<0.01	<3.00	0.002	-	<0.006	<0.003
TU-TR01-21-52-190	<0.015	< 0.005	0.021	2.7	21.4	<0.1	4.07	0.068	0.012	82.1	<0.01	<3.00	<0.001	-	<0.006	< 0.003
MT-1	0.0079	0.00065	0.005	0.63	3.5	0.001	1.24	0.0373	0.0007	27	0.002	0.06	< 0.0009	23.4	< 0.009	< 0.04
MT-1-DupA	0.0105	0.00077	0.008	0.99	3.31	0.001	1.37	0.0408	0.0006	29.5	0.003	0.11	< 0.0009	23.5	< 0.009	< 0.04
MT-2	0.0175	0.00127	0.005	1.24	5.89	0.003	2.03	0.146	0.0006	30.5	0.004	0.17	0.0012	36	< 0.009	< 0.04
MT-3	0.0111	0.00124	0.005	0.79	4.47	0.001	2.03	0.115	0.0005	32.3	0.006	0.11	< 0.0009	32.6	< 0.009	< 0.04
MT-4	0.0103	0.0009	0.006	0.91	4.23	0.001	1.73	0.0605	0.0006	35.4	0.002	0.07	< 0.0009	24.7	< 0.009	< 0.04
MT-5	0.0069	0.00085	0.007	0.68	3.85	< 0.001	1.56	0.094	0.0008	27.6	0.002	0.04	< 0.0009	19.2	< 0.009	< 0.04
MT-6	0.0113	0.0012	0.013	1.67	4.32	< 0.001	3.71	0.177	0.0008	32.5	0.005	0.08	< 0.0009	21.4	< 0.009	< 0.04
MT-7	0.0076	0.00091	0.005	0.92	3.91	< 0.001	3.04	0.154	0.0006	30.7	0.003	0.03	0.0014	19	< 0.009	< 0.04
MT-8	0.006	0.00097	0.007	0.7	4.08	< 0.001	3.58	0.231	0.0006	29.7	0.002	0.05	< 0.0009	16.4	< 0.009	< 0.04
MT-8-DUP-S	0.0109	0.0011	0.026	0.91	4.91	0.001	2.27	0.231	0.0005	38.4	0.004	0.08	0.0014	24.7	< 0.009	< 0.04
TP-1-S	0.0078	0.00046	0.009	1.64	3.92	< 0.001	0.58	0.0141	0.0023	38.7	0.003	0.08	< 0.0009	12.1	< 0.009	< 0.04
TP-1-TS	0.0237	0.00544	0.011	3.44	6.83	< 0.001	2.39	0.211	0.002	49.4	0.04	0.14	0.0012	35.7	< 0.009	< 0.04
TP-2-S	0.0042	0.00077	0.007	1.18	4.74	< 0.001	0.77	0.021	0.0014	42.2	< 0.001	0.18	< 0.0009	13.4	< 0.009	< 0.04
TP-2-TS	0.0034	0.00015	0.004	0.32	1.87	< 0.001	0.79	0.003	< 0.0004	33.4	< 0.001	< 0.03	< 0.0009	18.7	< 0.009	< 0.04
TP-3-S	0.0076	0.00158	0.006	2.71	3.33	0.002	1.06	0.044	0.0014	39.2	0.003	0.49	0.001	19.6	< 0.009	< 0.04
TP-3-TS	0.0053	0.00036	0.005	0.51	1.57	< 0.001	0.91	0.0067	< 0.0004	36.1	< 0.001	< 0.03	< 0.0009	19.9	< 0.009	< 0.04
TP-7-TS	0.0059	0.0116	0.008	1.31	2.48	0.001	2.04	0.475	0.0018	35.9	0.002	0.27	< 0.0009	19.1	< 0.009	< 0.04
TP-8-TS	0.0061	0.00361	0.017	1.84	5.61	0.003	3.3	1.03	0.0007	34.1	0.007	0.11	< 0.0009	13.8	< 0.009	< 0.04
TP-10-S	0.0229	0.00143	0.025	2.73	4.69	< 0.001	1.55	0.0335	0.0039	36.4	0.007	0.21	< 0.0009	17.8	< 0.009	< 0.04
TP-10-S-DUPA	0.0343	0.0022	0.033	3.84	5.4	0.002	2.42	0.0447	0.0037	44.4	0.01	0.24	0.0013	18.2	< 0.009	< 0.04
TP-10-TS	0.0076	0.00048	0.006	0.31	1.41	0.001	1.93	0.0432	0.0011	32.8	0.002	0.18	< 0.0009	4.6	< 0.009	< 0.04
TP-10-TS-DUPA	0.0071	0.00055	0.007	0.24	1.76	0.001	2.57	0.0676	< 0.0004	33.8	0.002	0.2	< 0.0009	6	< 0.009	< 0.04
TP-11-S	0.0053	0.00047	0.006	1.18	3.2	< 0.001	0.92	0.0096	0.0006	33	0.002	< 0.03	< 0.0009	14.6	< 0.009	< 0.04
TP-6-TS	0.0045	0.00138	0.006	0.51	7.25	0.013	4.6	0.235	0.0013	59.5	0.003	0.81	< 0.0009	24.4	< 0.009	< 0.04
TP-7-S	0.0241	0.00214	0.022	7.16	5.71	0.004	1.84	1.07	0.0029	33.2	0.01	0.15	0.0032	20.6	< 0.009	< 0.04
TP-9-TS	0.0062	0.00695	0.004	7.14	17.3	0.009	19.6	2.39	0.0022	46.5	0.011	0.56	< 0.0009	30.3	< 0.009	< 0.04
TP-5-TS	0.0074	0.00028	0.004	1.31	1.8	< 0.001	0.55	0.0092	0.0006	32.3	0.001	0.05	< 0.0009	18.9	< 0.009	< 0.04
TP-6-S	0.0064	0.00082	0.021	1.43	4.35	< 0.001	0.78	0.0163	0.0014	47.8	0.002	0.13	< 0.0009	13.3	< 0.009	< 0.04
TP-9-S	0.0136	0.00247	0.019	4.2	3.4	0.001	1.61	0.269	0.0032	34.9	0.007	0.05	0.001	20.2	< 0.009	< 0.04
TP-11-TS	0.0128	0.00188	0.011	4.64	2.93	0.001	0.96	0.051	0.0023	32.1	0.005	0.23	0.0011	17.6	< 0.009	< 0.04
TP-5-TS-DUPA	0.0097	0.00056	0.006	2.08	2.99	< 0.001	0.86	0.0144	0.0004	34.5	0.002	0.12	< 0.0009	20.8	< 0.009	< 0.04
TP-5-S	0.0072	0.00106	0.007	2.65	4.37	0.001	1.08	0.0289	0.0023	40.9	0.002	0.18	< 0.0009	17.8	< 0.009	< 0.04
TP-5-S-DUPA	0.007	0.00098	0.008	2.33	4.95	0.001	1.1	0.0273	0.0023	46.7	0.002	0.2	< 0.0009	18.7	< 0.009	< 0.04

Identification de	Sn	Sr	Те	Ti	TI	Th	U	V	w	Y	Zn	NH3+NH4
l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg N/L
E-27-D-H	0.0117	0.207	-	0.00042	0.000061	< 0.0001	0.00115	0.00042	0	0	0	-
E-27-D-L	0.00058	0.111	-	0.00019	0.000043	< 0.0001	0.00118	0.0003	0.0931	0.000044	< 0.002	-
E-27-U-H	0.00018	0.188	-	0.00017	0.000044	< 0.0001	0.0012	0.00075	0.00525	0.000034	0.021	-
E-27-U-L	0.00016	0.17	-	0.00016	0.000053	< 0.0001	0.000742	0.00202	0.00939	0.000012	0.024	-
E-CA-D-H	0.00021	0.128	-	0.00032	0.000052	< 0.0001	0.00033	0.00129	0.105	0.000007	0.018	-
E-CA-D-L	0.00016	0.137	-	0.00038	0.000061	< 0.0001	0.000245	0.00098	0.00881	0.000003	0.005	-
E-CA-U-H	0.00018	0.255	-	0.00033	0.000059	< 0.0001	0.000563	0.00068	0.00383	0.000035	0.104	-
E-CA-U-L	0.00032	0.198	-	0.00016	0.000049	< 0.0001	0.00161	0.00113	0.00366	0.000024	0.057	-
Under Dog A	0.00016	0.09	-	0.00053	0.000083	0.0001	0.00144	0.00049	0.00355	0.000024	0.022	-
Under Dog B	0.00015	0.0864	-	0.00059	0.000068	0.0001	0.00306	0.0003	0.00296	0.000019	0.016	-
Under Dog C	0.00008	0.239	-	0.00025	0.000082	0.0001	0.000715	0.00005	0.00162	0.000053	0.019	-
P3-I	0.00006	0.0771	< 0.0001	0.00008	0.00007	< 0.0001	0.000827	0.0022	0.00547	0.000011	< 0.002	-
P3-J	0.00004	0.0907	0.0001	0.00011	0.000081	< 0.0001	0.000382	0.00235	0.0232	0.000009	0.003	-
P3-K	0.00109	0.0666	0.0003	0.00007	0.000059	< 0.0001	0.000686	0.00161	0.00437	0.000018	< 0.002	-
P3-L	0.00008	0.0537	0.0008	0.00009	0.000061	< 0.0001	0.000843	0.00153	0.00705	0.000015	< 0.002	-
EAG-13-485 2	0.00006	0.0938	< 0.0001	< 0.00005	0.000008	< 0.0001	0.00001	0.00113	0.00276	0.000003	< 0.002	-
EAG-13-485 3	0.00004	0.0376	< 0.0001	0.00015	0.000034	< 0.0001	0.000072	0.00244	0.00785	0.000005	< 0.002	-
EAG-13-485 4	0.00005	0.117	< 0.0001	0.00014	0.000061	< 0.0001	0.000062	0.00266	0.02651	0.000006	< 0.002	-
OBM-15-557 10	0.00003	0.629	< 0.0001	0.00014	0.000047	< 0.0001	0.000826	0.00245	0.00553	0.000014	< 0.002	-
OBM-15-559 11	0.00006	0.0408	< 0.0001	0.00043	0.00005	< 0.0001	0.00243	0.00096	0.00241	0.000066	< 0.002	-
OBM-15-559 12	0.00008	1.47	< 0.0001	0.00009	0.000059	< 0.0001	0.00128	0.00411	0.00204	0.000014	< 0.002	-
OBM-15-559 13	0.00002	0.126	< 0.0001	0.00014	0.000049	< 0.0001	0.00001	0.00121	0.0017	0.000004	< 0.002	-
OBM-16-580 17	0.00006	0.187	< 0.0001	0.00008	0.000138	< 0.0001	0.00016	0.00099	0.005	0.000012	< 0.002	-
OBM-16-580_18	0.00008	0.0262	< 0.0001	0.00021	0.000052	< 0.0001	0.000229	0.00378	0.00358	0.000005	< 0.002	-
OBM-16-645 22	0.00004	0.0512	< 0.0001	0.00008	0.000056	< 0.0001	0.00137	0.00047	0.00356	0.000026	< 0.002	-
OBM-16-671 23	0.00004	0.279	< 0.0001	0.00007	0.000112	< 0.0001	0.000043	0.00131	0.0056	0.000005	< 0.002	-
OSK-W-16-715 27	0.00003	0.083	< 0.0001	0.00026	0.000095	< 0.0001	0.000529	0.00214	0.00339	0.000006	< 0.002	-
OSK-W-16-751 29	0.00006	0.0431	< 0.0001	0.00008	0.000056	< 0.0001	0.00595	0.00081	0.00176	0.000039	< 0.002	-
OSK-W-16-751 30	0.00007	0.0926	< 0.0001	0.00012	0.000005	< 0.0001	0.000013	0.00172	0.00051	0.000003	< 0.002	-
OSK-W-16-760 31	0.00008	0.0295	< 0.0001	0.00009	0.000059	< 0.0001	0.00407	0.00062	0.0015	0.000031	< 0.002	-
OSK-W-17-773 37	0.00008	0.102	< 0.0001	< 0.00005	0.000019	< 0.0001	0.000008	0.00065	0.00058	0.000002	< 0.002	-
OSK-W-17-773 38	0.00009	0.0344	< 0.0001	0.00006	0.000022	< 0.0001	0.000471	0.00273	0.00248	0.000002	< 0.002	_
OSK-W-17-773 39	0.0001	0.03	< 0.0001	0.00005	0.00005	< 0.0001	0.000699	0.00199	0.00225	0.000004	< 0.002	-
OSK-W-17-773 41	0.00012	0.0718	< 0.0001	< 0.00005	0.000042	< 0.0001	0.000007	0.00154	0.00066	0.000002	< 0.002	_
OSK-W-17-773 42	0.00009	0.122	< 0.0001	0.00007	0.000028	< 0.0001	0.000009	0.00071	0.00316	0.000002	< 0.002	_
OSK-W-17-774 44	0.00009	0.0698	< 0.0001	0.00018	0.000012	< 0.0001	0.00139	0.00822	0.00582	0.000002	< 0.002	-
OSK-W-17-779 46	0.00006	0.0161	< 0.0001	0.00008	0.000072	< 0.0001	0.00226	0.00034	0.00195	0.000031	< 0.002	-
OSK-W-17-779 47	0.00009	0.537	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00001	0.00172	0.0003	< 0.000002	< 0.002	_
OSK-W-17-788 51	0.00013	0.0245	< 0.0001	0.00007	0.000047	< 0.0001	0.000523	0.00155	0.00347	0.000002	< 0.002	_
EAG-13-485 53	0.00016	0.322	< 0.0001	0.0002	0.000053	< 0.0001	0.00185	0.0011	0.00398	0.000008	0.011	_
EAG-13-497 56	0.00009	0.158	< 0.0001	0.0002	0.000016	< 0.0001	0.00214	0.00011	0.00000	0.000047	< 0.002	-
EAG-13-513 57	0.00003	0.118	< 0.0001	0.00026	0.000052	< 0.0001	0.000214	0.00012	0.00121	0.000047	< 0.002	-
EAG-14-538 58	0.00009	0.108	0.0003	0.00015	0.000061	< 0.0001	0.00262	0.00478	0.00519	0.000007	< 0.002	_
OBM-15-559 59	0.00008	0.097	< 0.0003	0.00013	0.000028	< 0.0001	0.000067	0.00476	0.00374	0.000007	< 0.002	-
OBM-15-566 60	0.00541	0.0393	< 0.0001	0.00009	0.000026	< 0.0001	0.000187	0.00205	0.00574	0.000009	0.002	-
OBM-16-630 61	0.00041	0.0544	0.0001	0.00003	0.000120	< 0.0001	0.00284	0.00203	0.00332	0.000003	< 0.002	
OBM-16-654 62	0.00013	0.0344	< 0.0001	0.00023	0.000036	< 0.0001	0.00284	0.00043	0.000440	0.000043	0.002	-
OBM-16-671 63	0.00014	3.99	< 0.0001	0.0001	0.000210	< 0.0001	0.000023	0.00031	0.00012	0.000143	< 0.003	
ODIVI-10-07 1_03	0.00011	3.99	<u> </u>	0.00000	0.00011/	<u> </u>	0.00042	0.00221	0.00147	0.000008	<u> </u>	

Identification de	Sn	Sr	Те	Ti	TI	Th	U	V	w	Υ	Zn	NH3+NH4
l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg N/L
OBM-16-673 64	0.00012	0.279	< 0.0001	0.00019	0.000038	< 0.0001	0.000986	0.00034	0.00169	0.000012	< 0.002	-
OSK-W-16-760 67	0.00009	0.118	< 0.0001	0.00019	0.000012	< 0.0001	0.000012	0.00098	0.00229	0.000003	0.008	-
OBM-16-580 68	0.00009	0.0669	0.0003	0.00033	0.000046	< 0.0001	0.000049	0.00238	0.0171	0.00002	< 0.002	-
OBM-16-645_69	0.00009	0.162	< 0.0001	0.00015	0.000071	< 0.0001	0.00011	0.00069	0.0195	0.000007	< 0.002	-
OBM-16-642 70	0.00008	0.119	< 0.0001	0.00011	0.000075	< 0.0001	0.000192	0.00192	0.00908	0.000009	< 0.002	-
OSK-W-17-774 72	0.00037	1.79	< 0.0001	0.00017	0.000089	< 0.0001	0.000397	0.0018	0.00691	0.000005	< 0.002	-
OSK-W-17-1006 75	0.00012	0.0435	< 0.0001	0.00006	0.000063	< 0.0001	0.000561	0.00114	0.00436	0.000013	< 0.002	-
OSK-W-17-934 77	0.00011	0.0306	< 0.0001	0.00029	0.000058	< 0.0001	0.000812	0.00403	0.00479	0.000021	< 0.002	-
Tails CND 1	0.00003	0.319	< 0.0001	< 0.00005	0.000021	< 0.0001	0.000366	< 0.00001	0.00013	0.000016	0.144	-
Tails CND 4	0.00006	0.423	< 0.0001	< 0.00005	0.000017	< 0.0001	0.000451	0.00002	0.00006	0.000013	0.052	-
Tails CND 5	0.00004	0.308	< 0.0001	0.00006	0.000029	< 0.0001	0.000433	0.00001	0.00007	0.000007	0.004	-
Tails CND 6	0.00004	0.29	< 0.0001	0.00006	0.000031	< 0.0001	0.000662	0.00002	0.00008	0.000009	0.014	-
Triple Lynx LG	< 0.00006	0.0452	< 0.0001	0.00011	0.000027	< 0.0001	0.00147	0.00045	0.00234	-	< 0.002	-
Lynx 4 LP-LG	< 0.00006	0.0374	< 0.0001	0.00026	0.000025	< 0.0001	0.000246	0.00074	0.00191	-	< 0.002	-
Lynx 4 HP-LG	< 0.00006	0.0473	< 0.0001	0.0001	0.000024	< 0.0001	0.000785	0.00084	0.00175	-	< 0.002	-
Triple Lynx MG/HG	< 0.00006	0.0567	< 0.0001	0.00008	0.000024	< 0.0001	0.000605	0.00049	0.00282	-	< 0.002	-
Lynx 4 LP-MG/HG	< 0.00006	0.0595	0.0001	0.00007	0.000029	< 0.0001	0.000388	0.00099	0.00182	-	0.002	_
Lynx 4 HP-MG/HG	< 0.00006	0.0804	0.0002	0.00007	0.000031	< 0.0001	0.000347	0.00111	0.00325	-	< 0.002	_
GC10001	< 0.00006	0.0418	< 0.0001	0.0001	0.000038	< 0.0001	0.000719	0.00086	0.0028	-	< 0.002	_
GC10002	0.00009	0.0407	< 0.0001	0.00017	0.000049	< 0.0001	0.001051	0.00126	0.00219	-	< 0.002	_
GC10003	< 0.00006	0.0472	< 0.0001	0.00007	0.000035	< 0.0001	0.000237	0.00327	0.00423	_	< 0.002	_
GC10004	0.00007	0.0353	< 0.0001	0.00015	0.000068	< 0.0001	0.000587	0.00172	0.0031	_	< 0.002	_
GC10005	0.00006	0.0485	< 0.0001	0.00014	0.000047	< 0.0001	0.001088	0.00059	0.0041	-	< 0.002	_
GC10006	0.00007	0.0333	< 0.0001	0.00008	0.000057	< 0.0001	0.000646	0.00091	0.00165	_	< 0.002	_
GC10007	0.00007	0.0425	< 0.0001	0.00011	0.000036	< 0.0001	0.000549	0.00247	0.00238	_	< 0.002	_
GC10008	< 0.00006	0.0447	< 0.0001	0.00009	0.000029	< 0.0001	0.000775	0.00271	0.00518	_	< 0.002	
GC10009	< 0.00006	0.0393	< 0.0001	0.00013	0.000026	< 0.0001	0.0003	0.002	0.00114	_	< 0.002	
GC10010	< 0.00006	0.0245	< 0.0001	0.00008	0.000017	< 0.0001	0.000356	0.00265	0.00145	-	< 0.002	_
GC10010	0.00008	0.0174	< 0.0001	0.00064	0.000032	< 0.0001	0.000425	0.00589	0.00205	_	< 0.002	_
GC10012	0.00008	0.0898	< 0.0001	0.0001	0.000021	< 0.0001	0.000116	0.00156	0.00091	_	0.002	_
GC10012 GC10013	< 0.00006	0.0508	< 0.0001	0.0001	0.000021	< 0.0001	0.000314	0.00130	0.00361	_	< 0.002	_
GC10013	0.00014	0.173	< 0.0001	0.00011	0.000037	< 0.0001	0.0000014	0.00111	0.00054		< 0.002	_
GC10015	0.00011	0.0734	< 0.0001	0.00007	0.000002	< 0.0001	0.000033	0.00107	0.00373	_	< 0.002	_
GC10016	0.00011	0.103	< 0.0001	< 0.00007	0.000025	< 0.0001	0.000003	0.00074	0.00073		< 0.002	
GC10017	0.00006	0.0713	< 0.0001	0.00044	0.000025	< 0.0001	0.000332	0.00174	0.00007	_	< 0.002	
GC10017	< 0.00006	0.0849	< 0.0001	0.000044	0.000053	< 0.0001	0.000035	0.00123	0.0013	_	< 0.002	
GC10018 GC10019	0.00009	0.224	< 0.0001	< 0.00005	0.000033	< 0.0001	< 0.000033	0.00117	0.0027	-	< 0.002	
GC10019 GC10020	0.00008	0.0993	< 0.0001	< 0.00005	0.000023	< 0.0001	0.000003	0.00111	0.00027	-	0.002	<u> </u>
GC10020 GC10021	< 0.00006	0.0993	< 0.0001	< 0.00005	0.000034	< 0.0001	0.000003	0.000111	0.00037	-	< 0.003	-
GC10021 GC10022	< 0.00006	0.0911	< 0.0001	< 0.00005	0.000038	< 0.0001	0.000004	0.00097	0.00092	-	< 0.002	_
GC10022 GC10023	< 0.00006	0.073	< 0.0001	0.00005	0.000043	< 0.0001	0.00001	0.00155	0.00063	-	< 0.002	-
GC10023 GC10024	0.00007	1.31	< 0.0001	0.00003	0.000072	< 0.0001	0.000006	0.00068	0.00064	-	< 0.002	-
GC10024 GC10025	< 0.00007	0.0191	< 0.0001	< 0.0004	0.000008	< 0.0001	0.000014	0.00052	0.0004	-	< 0.002	-
GC10025 GC10026	0.00007	0.0191	< 0.0001	0.00009	0.00005	< 0.0001	0.000486	0.00052	0.00155	-	< 0.002	-
GC10027	< 0.00006	0.0384	< 0.0001	0.00015	0.000052	< 0.0001	0.00115	0.00334	0.0013	-	< 0.002	-
GC10028	0.00007	0.0287	0.0001	< 0.00005	0.000049	< 0.0001	0.00127	0.00023	0.00122	-	0.002	-
GC10029	0.00008	0.0571	< 0.0001	0.00015	0.000059	< 0.0001	0.00033	0.00156	0.00211	-	< 0.002	-
GC10030	< 0.00006	0.0371	< 0.0001	0.00008	0.00005	< 0.0001	0.00164	0.00066	0.00975	-	< 0.002	-

Identification de	Sn	Sr	Te	Ti	TI	Th	U	٧	w	Υ	Zn	NH3+NH4
l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg N/L
GC10031	< 0.00006	0.0164	< 0.0001	0.00008	0.000051	< 0.0001	0.000712	0.00043	0.0028	-	< 0.002	-
GC10032	< 0.00006	0.0339	< 0.0001	0.00014	0.000037	< 0.0001	0.0017	0.00019	0.00165	-	< 0.002	-
CIL 11 CND	0.00011	0.118	< 0.0001	< 0.00005	0.000011	< 0.0001	0.000729	0.00006	0.256	-	0.002	-
CIL 12 CND	0.0001	0.239	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.000382	0.00008	0.0238	-	1.23	-
CIL 13 CND	0.0001	0.12	< 0.0001	0.00007	0.000011	< 0.0001	0.000755	0.00004	0.00865	-	1.06	-
RC-F03-21	0.00012	0.0512	< 0.0001	< 0.00005	0.000027	< 0.0001	0.000115	0.00038	0.00068	-	< 0.002	< 0.1
VR2-F01-21_CR-7	< 0.00006	0.107	< 0.0001	< 0.00005	0.000022	< 0.0001	0.000244	0.00028	0.00978	-	< 0.002	< 0.1
VR3-F01-21_CR-5	< 0.00006	0.0078	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00002	0.00434	0.00079	-	< 0.002	< 0.1
OSK-W-19-1746-W1-765	< 0.00006	0.0125	< 0.0001	0.00155	0.000049	0.0001	0.0027	0.00032	0.00261	0.00012	0.003	< 0.1
OSK-W-17-663-W2-680	< 0.00006	0.0958	< 0.0001	0.0004	0.000074	0.0002	0.000067	0.00162	0.0168	0.00004	< 0.002	< 0.1
OSK-W-19-1857-W2-1030	0.00016	0.0202	< 0.0001	0.00054	0.00004	< 0.0001	0.001864	0.00181	0.00158	0.00007	0.006	< 0.1
OSK-W-19-1857-W2-1210	< 0.00006	0.38	< 0.0001	0.00029	0.00002	< 0.0001	0.000013	0.00157	0.00133	0.00006	0.013	0.1
OSK-W-19-1897-496	< 0.00006	0.0833	< 0.0001	0.00019	0.000059	< 0.0001	0.000093	0.00095	0.0057	0.00009	0.003	0.1
OSK-W-19-909-W12-770	< 0.00006	0.0192	< 0.0001	0.00025	0.000039	< 0.0001	0.00126	0.00277	0.0028	0.00004	0.003	< 0.1
OSK-W-19-934-W3-940	< 0.00006	0.0227	< 0.0001	0.00012	0.000066	< 0.0001	0.00166	0.0005	0.00555	0.00004	< 0.002	< 0.1
OSK-W-19-934-W3-1045	< 0.00006	0.0126	< 0.0001	0.00033	0.000064	< 0.0001	0.0023	0.00045	0.00231	0.00006	< 0.002	< 0.1
OSK-W-21-2512-W3-610	< 0.00006	0.291	< 0.0001	0.00009	0.000046	< 0.0001	0.00111	0.00674	0.00337	< 0.00002	< 0.002	< 0.1
OKS-W-21-2613-W1-855	< 0.00006	0.649	< 0.0001	0.00067	0.000014	< 0.0001	0.000059	0.001	0.00027	0.00003	< 0.002	< 0.1
OSK-W-21-2629-845	< 0.00006	0.0382	< 0.0001	< 0.00005	0.000056	< 0.0001	0.000012	0.00536	0.00681	< 0.00002	< 0.002	< 0.1
OSK-W-21-2605-1332	0.00044	0.0444	< 0.0001	0.00011	0.000072	< 0.0001	0.000707	0.00052	0.00376	0.00006	< 0.002	< 0.1
OSK-W-21-2629-948	< 0.00006	0.0301	< 0.0001	0.00006	0.000159	< 0.0001	0.000005	0.00607	0.0139	< 0.00002	< 0.002	< 0.1
OSK-W-21-2613-1042	< 0.00006	0.0398	< 0.0001	0.00011	0.000008	< 0.0001	0.00141	0.00151	0.00276	0.00004	< 0.002	< 0.1
OSK-W-21-2587-1060	< 0.00006	0.0304	< 0.0001	< 0.00005	0.000062	< 0.0001	0.000947	0.00074	0.00493	0.00002	< 0.002	< 0.1
WST-21-0879-639	< 0.00006	0.0226	< 0.0001	< 0.00005	0.000053	< 0.0001	0.00006	0.00456	0.00129	< 0.00002	< 0.002	< 0.1
OSK-W-19-1897-610	< 0.00006	0.889	< 0.0001	< 0.00005	0.000055	< 0.0001	0.00119	0.00473	0.00148	< 0.00002	< 0.002	< 0.1
OSK-W-19-1897-825	< 0.00006	0.084	< 0.0001	< 0.00005	0.000044	< 0.0001	0.000433	0.00299	0.00538	< 0.00002	< 0.002	< 0.1
OSK-W-19-1897-983	< 0.00006	0.0475	0.0001	< 0.00005	0.000053	< 0.0001	0.000537	0.00181	0.00159	< 0.00002	< 0.002	< 0.1
OSK-W-20-2323-115	< 0.00006	0.0614	< 0.0001	< 0.00005	0.000048	< 0.0001	0.000075	0.00135	0.00725	< 0.00002	< 0.002	< 0.1
OSK-W-19-1949-W1-948	< 0.00006	0.0462	< 0.0001	< 0.00005	0.000046	< 0.0001	0.000019	0.00172	0.00247	< 0.00002	< 0.002	< 0.1
OSK-W-21-2252-W12-922	< 0.00006	0.0193	< 0.0001	< 0.00005	0.000042	< 0.0001	0.000508	0.00334	0.00408	0.00008	< 0.002	< 0.1
OSK-W-21-2252-1013	< 0.00006	0.051	< 0.0001	< 0.00005	0.000054	< 0.0001	0.000714	0.00241	0.00244	< 0.00002	< 0.002	< 0.1
OSK-W-20-2283-W7-888	< 0.00006	0.0349	< 0.0001	< 0.00005	0.000028	< 0.0001	0.00132	0.00103	0.00105	0.00006	0.005	< 0.1
OSK-W-20-2256-W1-1051.7	< 0.00006	0.0445	< 0.0001	< 0.00005	0.000038	< 0.0001	0.0011	0.00245	0.00157	< 0.00002	0.007	< 0.1
OSK-W-20-2375-W4-890	< 0.00006	0.0292	< 0.0001	0.00018	0.000047	< 0.0001	0.000954	0.01153	0.00445	0.00003	< 0.002	< 0.1
OSK-W-20-2350-125	< 0.00006	0.0389	< 0.0001	< 0.00005	0.000063	< 0.0001	0.000403	0.00373	0.00113	< 0.00002	< 0.002	< 0.1
OSK-W-21-2444-545	< 0.00006	0.588	< 0.0001	< 0.00005	0.000022	< 0.0001	0.000012	0.00161	0.00117	< 0.00002	< 0.002	< 0.1
WST-21-0647-161.5	0.00008	0.0395	< 0.0001	0.00046	0.00004	< 0.0001	0.00249	0.0053	0.00367	< 0.00002	< 0.002	< 0.1
WST-21-0647-313	< 0.00006	0.0231	< 0.0001	0.00021	0.000051	< 0.0001	0.00159	0.00028	0.00186	0.00004	< 0.002	< 0.1
WST-19-0160A-55	< 0.00006	0.114	< 0.0001	0.00008	0.000045	< 0.0001	0.000041	0.00055	0.00205	< 0.00002	< 0.002	< 0.1
OSK-W-21-2606-615	< 0.00006	0.0717	< 0.0001	0.00014	0.000074	< 0.0001	0.000101	0.00064	0.00235	< 0.00002	< 0.002	< 0.1
OSK-W-21-2606-670	< 0.00006	0.0535	< 0.0001	< 0.00005	0.000053	< 0.0001	< 0.000002	0.00219	0.00098	< 0.00002	< 0.002	< 0.1
WST-21-0666-54	< 0.00006	0.166	< 0.0001	< 0.00005	0.000028	< 0.0001	0.000013	0.00286	0.00071	< 0.00002	< 0.002	< 0.1
WST-22-1013-345	< 0.00006	0.0408	< 0.0001	0.00022	0.000033	< 0.0001	0.000981	0.00461	0.00237	0.00003	< 0.002	< 0.1
OSK-W-21-2551-W3-915	0.00014	0.015	< 0.0001	0.00021	0.00002	< 0.0001	0.002	0.0069	0.00258	< 0.00002	0.004	< 0.1
WST-21-0992-450	< 0.000014	0.0393	< 0.0001	0.00021	0.00002	< 0.0001	0.000304	0.00561	0.00403	< 0.00002	< 0.002	< 0.1
WST-21-0952-32	< 0.00006	0.0624	< 0.0001	0.00039	0.000021	< 0.0001	0.000009	0.00233	0.00403	< 0.00002	< 0.002	< 0.1
OSK-W-21-1949-W15-1080	< 0.00006	0.0024	< 0.0001	0.00033	0.000021	< 0.0001	0.000426	0.00233	0.00046	< 0.00002	< 0.002	< 0.1
WST-18-0024-50	< 0.00006	0.191	< 0.0001	0.00023	0.000034	< 0.0001	0.000420	0.00493	0.00476	0.00002	< 0.002	< 0.1
VV 0 1 - 10-0024-00	` 0.00000	0.181	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.00041	0.000000	~ U.UUU I	0.000102	0.00213	0.00230	0.00002	> 0.00∠	` 0.1

Identification de	Sn	Sr	Те	Ti	TI	Th	U	V	w	Y	Zn	NH3+NH4
l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg N/L
OSK-W-21-2555-590	< 0.00006	0.177	< 0.0001	< 0.00005	0.000029	< 0.0001	0.000008	0.00146	0.0006	< 0.00002	< 0.002	< 0.1
OSK-W-21-2544-838	< 0.00006	0.0525	< 0.0001	0.00011	0.000062	< 0.0001	0.00155	0.00133	0.00269	0.00003	< 0.002	< 0.1
WST-20-0573-367	< 0.00006	0.187	< 0.0001	0.00009	0.000106	< 0.0001	0.00104	0.00702	0.00899	< 0.00002	< 0.002	< 0.1
OBM-15-552-280	0.00009	0.267	< 0.0001	0.00016	0.000062	< 0.0001	0.00166	0.00404	0.00093	< 0.00002	< 0.002	0.1
OBM-16-655-600	< 0.00006	0.225	< 0.0001	0.00013	0.000053	< 0.0001	0.00242	0.00354	0.00183	< 0.00002	< 0.002	< 0.1
OBM-16-655-330	< 0.00006	0.114	< 0.0001	0.00013	0.000039	< 0.0001	0.000144	0.00014	0.00118	< 0.00002	< 0.002	< 0.1
OBM-16-677-79	< 0.00006	0.157	< 0.0001	0.00008	0.000081	< 0.0001	0.00231	0.00406	0.00121	< 0.00002	< 0.002	< 0.1
OSK-W-16-706-W2-905	< 0.00006	0.0349	< 0.0001	0.00047	0.000063	< 0.0001	0.000277	0.00457	0.00459	< 0.00002	< 0.002	< 0.1
OSK-W-17-1079-580	< 0.00006	0.0397	< 0.0001	0.00008	0.000078	< 0.0001	0.000609	0.00243	0.00681	< 0.00002	< 0.002	< 0.1
OSK-W-17-1104-665	< 0.00006	0.453	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.0118	0.0011	0.00032	< 0.00002	< 0.002	< 0.1
OSK-W-17-1121-545	< 0.00006	0.0129	< 0.0001	0.00008	0.000012	< 0.0001	0.00425	0.01109	0.00273	< 0.00002	< 0.002	< 0.1
OSK-W-17-1305-261	< 0.00006	0.401	< 0.0001	0.00005	0.000048	< 0.0001	0.00655	0.00396	0.00151	< 0.00002	< 0.002	< 0.1
OSK-W-17-1369-219.5	< 0.00006	0.0391	< 0.0001	0.00167	0.000052	0.0002	0.0055	0.00124	0.00192	0.00023	< 0.002	< 0.1
OSK-W-17-968-145	< 0.00006	0.0341	< 0.0001	0.0001	0.000055	< 0.0001	0.00552	0.00423	0.00114	< 0.00002	< 0.002	< 0.1
OSK-W-18-1386-W4-885	< 0.00006	0.0231	< 0.0001	< 0.00005	0.000058	< 0.0001	0.00322	0.00485	0.00893	< 0.00002	< 0.002	< 0.1
OSK-W-18-1608-805	< 0.00006	0.0212	< 0.0001	0.00005	0.000067	< 0.0001	0.00286	0.00291	0.00536	< 0.00002	< 0.002	< 0.1
OSK-W-18-1713-470	< 0.00006	0.0241	< 0.0001	0.00006	0.000064	< 0.0001	0.01	0.00226	0.00483	< 0.00002	< 0.002	< 0.1
OSK-W-18-1759-190	< 0.00006	0.0089	< 0.0001	0.00023	0.000049	< 0.0001	0.00505	0.00519	0.00285	0.00002	< 0.002	< 0.1
OSK-W-19-1181-W12-1140	< 0.00006	0.0152	< 0.0001	0.0002	0.000067	< 0.0001	0.014	0.0066	0.00708	< 0.00002	< 0.002	< 0.1
OSK-W-19-1181-W5-845	< 0.00006	0.0205	< 0.0001	0.0001	0.00004	< 0.0001	0.021	0.00326	0.01062	< 0.00002	< 0.002	< 0.1
OSK-W-19-1181-W5-970	< 0.00006	0.184	< 0.0001	< 0.00005	0.000062	< 0.0001	0.00257	0.00184	0.00244	< 0.00002	< 0.002	< 0.1
OSK-W-19-1412-W3-715	< 0.00006	0.0196	< 0.0001	0.00006	0.000039	< 0.0001	0.00191	0.00329	0.00215	< 0.00002	< 0.002	< 0.1
OSK-W-19-1412-W3-765	< 0.00006	0.0506	< 0.0001	0.00006	0.000032	< 0.0001	0.00446	0.00059	0.00047	< 0.00002	< 0.002	< 0.1
#08351	< 0.00006	0.0169	< 0.0001	< 0.00005	< 0.000005	< 0.0001	0.00529	0.00135	0.00164	< 0.00002	< 0.002	0.6
#08352	< 0.00006	0.0517	< 0.0001	0.00011	0.000063	< 0.0001	0.00085	0.00282	0.00698	< 0.00002	< 0.002	0.3
#08353	< 0.00006	0.0485	< 0.0001	< 0.00005	0.000024	< 0.0001	0.00158	0.0014	0.0006	< 0.00002	< 0.002	0.3
#08358	< 0.00006	1.03	< 0.0001	< 0.00005	0.000006	< 0.0001	0.00212	0.00092	0.00024	< 0.00002	< 0.002	0.1
OBM-15-564 79	0.00005	0.0692	< 0.0001	0.00073	0.000067	< 0.0001	0.000317	0.00104	0.00162	-	0.004	-
OBM-15-557 80	0.00005	0.0469	< 0.0001	0.0004	0.000065	< 0.0001	0.000661	0.00172	0.00718	-	< 0.002	-
OBM-15-552 81	0.00009	0.0796	< 0.0001	0.0001	0.000046	< 0.0001	0.000352	0.00163	0.028	-	< 0.002	-
OBM-15-554 82	0.00011	0.0976	< 0.0001	0.00053	0.000032	< 0.0001	0.000205	0.00114	0.00573	-	< 0.002	-
OSK-W-16-311-W2 84	0.00007	0.045	< 0.0001	0.00033	0.000067	< 0.0001	0.000556	0.00309	0.00963	-	< 0.002	-
OSK-W-16-706-W1 85	0.00005	0.0834	< 0.0001	0.00022	0.000058	< 0.0001	0.00055	0.00159	0.00818	_	< 0.002	_
OSK-W-16-706-W1 86	0.00004	0.0592	< 0.0001	0.00032	0.00006	< 0.0001	0.000088	0.00118	0.0076	_	< 0.002	-
OSK-W-16-706-W1 87	0.00002	0.0312	0.0002	< 0.00005	0.00003	< 0.0001	0.000553	0.00431	0.00866	-	< 0.002	-
OSK-W-16-706-W1_88	0.00008	0.0915	< 0.0001	< 0.00005	0.000058	< 0.0001	0.000365	0.00169	0.03383	_	< 0.002	_
OSK-W-16-706-W2 89	0.00005	0.0705	< 0.0001	0.00009	0.000041	< 0.0001	0.000618	0.00128	0.00903	-	< 0.002	_
OSK-W-16-708-W1 90	0.00006	0.286	< 0.0001	0.00019	0.000047	< 0.0001	0.00004	0.00057	0.00098	_	< 0.002	_
OSK-W-16-708-W2 91	0.00007	0.107	< 0.0001	< 0.00005	0.000047	< 0.0001	0.00023	0.00129	0.00435	_	< 0.002	_
OSK-W-16-735-W2 92	0.00008	0.0365	< 0.0001	< 0.00005	0.000045	< 0.0001	0.00217	0.00369	0.00671	_	< 0.002	_
OSK-W-16-743 93	0.00004	0.0334	< 0.0001	0.00013	0.000107	< 0.0001	0.000479	0.00286	0.0112	_	< 0.002	_
OSK-W-16-746_94	0.00007	2.15	< 0.0001	0.00013	0.0000107	< 0.0001	0.000204	0.00200	0.00064	_	< 0.002	_
OSK-W-16-754 95	0.00022	0.111	< 0.0001	0.00009	0.000048	0.0012	0.000837	0.00208	0.0109	_	< 0.002	_
OSK-W-16-754_95	0.00022	0.0619		0.00009	0.000093	0.0012	0.000037	0.00200	0.00796	-	< 0.002	
OSK-W-10-734_30	0.000012	4.65	< 0.0001	< 0.00005	0.000033	0.0006	0.0000134	0.00042	0.00730		< 0.002	-
OSK-W-17-774_97	0.00008	0.0401	< 0.0001	0.00011	0.000100	< 0.0001	0.000399	0.00042	0.00027	-	< 0.002	_
OSK-W-17-74_96 OSK-W-17-789_99	0.00002	0.0401	< 0.0001	0.00011	0.000039	0.0005	0.000399	0.00413	0.00337	-	< 0.002	-
OSK-W-17-789_99	0.00004	0.0263	< 0.0001	0.00042	0.000072	< 0.0003	0.000769	0.00287	0.00623	-	< 0.002	-
OSK-W-11-108_100	0.00000	0.0428	\ U.UUU1	U.UUUU <i>1</i>	0.000079	∀ 0.000 l	0.000769	0.00197	0.00072	-	> 0.00∠	

Identification de	Sn	Sr	Те	Ti	TI	Th	U	٧	W	Υ	Zn	NH3+NH4
l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg N/L
OSK-W-17-812 101	0.00005	0.0282	< 0.0001	0.00005	0.000058	< 0.0001	0.000864	0.0032	0.00281	-	< 0.002	-
OSK-W-17-812 102	0.00006	0.055	< 0.0001	< 0.00005	0.000053	< 0.0001	0.00041	0.00234	0.00457	-	< 0.002	-
OBM-15-552 103	0.00006	0.114	< 0.0001	0.0003	0.000111	< 0.0001	0.00033	0.00085	0.00864	-	< 0.002	-
OSK-W-16-311-W1 83	0.00005	0.0757	< 0.0001	0.00016	0.000054	< 0.0001	0.00047	0.00217	0.00417	-	< 0.002	-
BD-TR02-21-150-170	<0.05	0.101	< 0.003	0.052	<1	<0.5	0.0057	0.006	<0.2	-	0.006	-
TU-TR01-21-52-190	<0.05	0.092	<0.003	0.044	<1	<0.5	0.0026	0.011	<0.2	-	0.007	-
MT-1	< 0.0006	0.0072	< 0.001	0.0358	0.00018	< 0.001	0.00024	0.0035	0.0005	-	0.02	-
MT-1-DupA	< 0.0006	0.0087	< 0.001	0.0619	0.00014	< 0.001	0.00032	0.0028	0.0005	-	0.02	-
MT-2	< 0.0006	0.016	< 0.001	0.0796	0.0001	0.001	0.00015	0.0041	0.0006	-	0.03	-
MT-3	< 0.0006	0.0139	< 0.001	0.0559	0.00014	< 0.001	0.00018	0.003	0.0007	-	0.03	-
MT-4	< 0.0006	0.0109	< 0.001	0.0725	0.0001	< 0.001	0.00021	0.0027	0.0007	-	0.02	-
MT-5	< 0.0006	0.0101	< 0.001	0.0313	0.00007	< 0.001	0.00011	0.0023	0.0006	-	0.03	-
MT-6	< 0.0006	0.0185	< 0.001	0.0966	0.00007	< 0.001	0.00142	0.0043	0.0011	-	0.03	-
MT-7	< 0.0006	0.015	< 0.001	0.0337	0.00006	< 0.001	0.00044	0.0029	0.001	-	0.02	-
MT-8	< 0.0006	0.0218	< 0.001	0.0459	< 0.00005	< 0.001	0.00071	0.0031	0.0006	-	0.03	-
MT-8-DUP-S	< 0.0006	0.0125	< 0.001	0.034	< 0.00005	< 0.001	0.00016	0.0036	0.0006	-	0.02	-
TP-1-S	< 0.0006	0.009	< 0.001	0.0944	< 0.00005	0.002	0.00036	0.0052	0.0007	-	0.03	-
TP-1-TS	< 0.0006	0.0175	< 0.001	0.034	< 0.00005	0.001	0.00113	0.0047	0.0005	-	0.03	-
TP-2-S	< 0.0006	0.0124	< 0.001	0.0988	0.00005	0.001	0.00178	0.0078	0.002	-	0.02	-
TP-2-TS	< 0.0006	0.0027	< 0.001	0.0147	0.00006	< 0.001	0.00008	0.0029	0.0004	-	0.02	-
TP-3-S	< 0.0006	0.0162	< 0.001	0.248	< 0.00005	0.001	0.00022	0.0138	0.0011	-	0.03	-
TP-3-TS	< 0.0006	0.0036	< 0.001	0.0372	0.00014	< 0.001	0.00024	0.0024	0.0004	-	0.02	-
TP-7-TS	< 0.0006	0.0331	< 0.001	0.0297	< 0.00005	< 0.001	0.00012	0.002	0.0007	-	0.03	-
TP-8-TS	< 0.0006	0.0221	< 0.001	0.0194	< 0.00005	< 0.001	0.00025	0.0012	0.0006	-	0.02	-
TP-10-S	< 0.0006	0.0256	< 0.001	0.266	< 0.00005	0.004	0.00066	0.0194	0.0007	-	0.03	-
TP-10-S-DUPA	< 0.0006	0.0415	< 0.001	0.474	< 0.00005	0.005	0.00079	0.0235	0.001	-	0.03	-
TP-10-TS	< 0.0006	0.0159	< 0.001	0.0054	< 0.00005	< 0.001	0.00007	0.0028	0.0006	-	0.03	-
TP-10-TS-DUPA	< 0.0006	0.0229	< 0.001	0.0063	< 0.00005	< 0.001	0.00012	0.0014	0.0006	-	0.03	-
TP-11-S	< 0.0006	0.0046	< 0.001	0.0554	< 0.00005	< 0.001	0.00012	0.0029	0.0004	-	0.03	-
TP-6-TS	< 0.0006	0.0698	< 0.001	0.0152	< 0.00005	< 0.001	0.00016	0.003	0.0008	-	0.04	-
TP-7-S	< 0.0006	0.0213	< 0.001	0.244	< 0.00005	0.002	0.00073	0.0116	0.0005	-	0.03	-
TP-9-TS	< 0.0006	0.127	< 0.001	0.0188	< 0.00005	< 0.001	0.00019	0.0045	0.0008	-	0.05	-
TP-5-TS	< 0.0006	0.0037	< 0.001	0.0842	0.00008	0.001	0.0002	0.0036	0.0003	-	0.02	-
TP-6-S	< 0.0006	0.0148	< 0.001	0.0607	< 0.00005	0.002	0.00045	0.009	0.0021	-	0.03	-
TP-9-S	< 0.0006	0.017	< 0.001	0.232	< 0.00005	0.004	0.00039	0.0071	0.0006	-	0.03	-
TP-11-TS	< 0.0006	0.0155	< 0.001	0.413	< 0.00005	0.001	0.00027	0.0114	0.0006	_	0.03	_
TP-5-TS-DUPA	< 0.0006	0.0056	< 0.001	0.111	< 0.00005	< 0.001	0.00009	0.0055	0.0002	-	0.02	-
TP-5-S	< 0.0006	0.0152	< 0.001	0.2	< 0.00005	0.002	0.00024	0.0079	0.0007	-	0.03	-
TP-5-S-DUPA	< 0.0006	0.0165	< 0.001	0.187	< 0.00005	0.002	0.00028	0.008	0.0009	-	0.03	-

Identification de l'échantillon	Type de l'échantillon	рН	Conductivité	Alcalinité	Acidité	Dureté	HCO ₃	CO ₃ ²⁻
rechantinon		pas d'unité	μS/cm	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃	mg/L CaCO₃
R	ES							
<u> </u>	<u>=C</u>							
CND 1	Résidus	9.2	2,230	58	<2	921	37	21
CND 4	Résidus	9.6	2,130	70	<2	829	33	38
CND 5	Résidus	9.9	2,020	104	<2	705	50	54
CND 6	Résidus	9.6	2,070	70	<2	705	37	33
CIL 11 CND	Résidus	8.2	2,760	73	<2	1	73	<2
CIL 12 CND	Résidus	8.1	1,720	158	<2	1	158	<2
CIL 13 CND	Résidus	8.1	1,440	246	<2	-	246	<2

Identification de l'échantillon	Type de l'échantillon	Matières solides dissoutes totales mg/L	F mg/L	CI mg/L	SO ₄ ² -	Br mg/L	NO₂ mg N/L	NO ₃	NO ₂ +NO ₃
R	RES		4.0	860			0.060	300	
	<u>=C</u>		<u>1.5</u>	250			1.0		<u>10</u>
CND 1	Résidus	1,820	0.21	23	1,100	<3	0.32	10	<u>10</u>
CND 4	Résidus	1,660	0.25	24	920	<3	0.46	9	10
CND 5	Résidus	1,760	0.34	23	840	<3	0.48	10	<u>10</u>
CND 6	Résidus	1,850	0.44	28	840	<3	<0.3	11	<u>11</u>
CIL 11 CND	Résidus	-	0.22	38	1,200	<3	<0.3	<0.6	<0.6
CIL 12 CND	Résidus	-	0.14	52	550	<3	<0.3	1	1
CIL 13 CND	Résidus	-	0.08	40	68	<3	<0.3	7	7

Identification de l'échantillon	Type de l'échantillon	NH ₃ + NH ₄ ⁺	Thiosels- Total	S ₂ O ₃	CN-Total	CN- Libre	CN Disponible	CNO	CNS
rechantmen		mg N/L	mg/L S ₂ O ₃	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
R	ES				0.022		0.02		
<u> </u>	<u>:C</u>						<u>0.2</u>		
CND 1	Résidus	-	26		6.7	0.02	0.05	49	110
CND 4	Résidus	-	<10		9.4	<0.005	0.05	86	100
CND 5	Résidus	-	<10	ı	15.3	<0.005	0.11	82	90
CND 6	Résidus	-	<10		12.3	<0.005	0.07	89	130
CIL 11 CND	Résidus	1	-	1	2.1	-	0.17	130	15
CIL 12 CND	Résidus	0	-	<2	78.4	-	<u>84.8</u>	36	19
CIL 13 CND	Résidus	0	<10	-	56.6	-	<u>45.6</u>	7	10

Identification de l'échantillon	Type de l'échantillon	Hg	Ag	Al	As	Ва	Be	В	Bi
roonantinon		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
R	ES	0.0000013	0.00062		0.34	0.60		28	
<u> </u>	<u>=C</u>	<u>0.001</u>	0.1	0.10	0.00030	<u>1.0</u>		<u>5.0</u>	
CND 1	Résidus	<u>0.001</u>	0.004	0.026	<u>0.003</u>	0.045	<0.000007	0.023	0.0001
CND 4	Résidus	0.0001	0.001	0.032	0.003	0.029	<0.000007	0.027	0.00002
CND 5	Résidus	0.0001	0.001	0.032	<u>0.003</u>	0.021	<0.000007	0.030	0.00003
CND 6	Résidus	0.0001	0.000	0.038	<u>0.002</u>	0.015	<0.000007	0.037	0.0001
CIL 11 CND	Résidus	0.0004	0.012	0.084	0.468	0.141	<0.000007	0.058	<0.000007
CIL 12 CND	Résidus	0.003	0.025	0.061	<u>0.050</u>	0.012	<0.000007	0.043	0.0001
CIL 13 CND	Résidus	<u>0.005</u>	0.007	0.310	0.029	0.016	<0.000007	0.061	0.0012

Identification de	Type de		Cd	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Мо
roonantinon		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
R	ES		0.0011	0.37	0.016	0.0073					2.3	29
<u> </u>	<u>-C</u>		0.0050		0.050	<u>1.0</u>					0.050	0.040
CND 1	Résidus	336	0.00040	0.060	0.00013	0.038	1.95	35	0.005	20	<u>0.075</u>	<u>0.108</u>
CND 4	Résidus	308	0.00011	0.013	0.00004	<u>9.4</u>	0.17	40	0.002	15	0.034	<u>0.123</u>
CND 5	Résidus	265	0.00006	0.036	0.00003	<u>2.0</u>	0.02	38	0.002	11	0.038	<u>0.124</u>
CND 6	Résidus	275	0.00012	0.008	<0.00003	<u>3.9</u>	0.17	42	0.002	4.3	0.040	<u>0.137</u>
CIL 11 CND	Résidus	148	0.00004	0.030	0.006	0.3	1.12	16	0.002	1.8	0.005	0.041
CIL 12 CND	Résidus	101	0.008	0.000	0.001	<u>8.7</u>	0.96	15	0.003	3.6	<u>1.280</u>	<u>0.043</u>
CIL 13 CND	Résidus	592	0.005	0.001	0.003	<u>3.5</u>	3.98	12	0.003	8.6	1.750	0.025

Identification de	Type de		Ni	P	Pb	Sb	Se	Si	Sn	Sr	Ti
rechantinon		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
R	ES		0.26	1.0	0.034	1.1	0.062				
<u> </u>	<u>:C</u>	200	0.070		0.010	0.0060	0.010				
CND 1	Résidus	<u>271</u>	0.006	<0.003	0.000	<u>0.017</u>	<u>0.016</u>	1.06	0.008	0.50	0.0001
CND 4	Résidus	<u>257</u>	<u>0.188</u>	0.01	0.000	0.043	0.031	0.94	0.019	0.64	0.0001
CND 5	Résidus	<u>282</u>	<u>0.095</u>	<0.003	0.000	<u>0.096</u>	0.037	1.18	0.021	0.69	<0.00005
CND 6	Résidus	<u>273</u>	<u>0.127</u>	0.01	0.001	<u>0.094</u>	<u>0.045</u>	1.11	0.025	0.49	0.0001
CIL 11 CND	Résidus	<u>463</u>	0.007	0.02	0.002	<u>0.164</u>	0.016	4.48	0.000	0.37	0.0002
CIL 12 CND	Résidus	<u>296</u>	<u>0.145</u>	0.03	<u>0.47</u>	<u>0.178</u>	0.009	4.99	0.000	0.59	0.0001
CIL 13 CND	Résidus	133	0.140	0.02	<u>1.09</u>	<u>0.085</u>	0.003	7.49	0.000	0.46	0.0003

Identification de l'échantillon	Type de l'échantillon	Te	Th	TI	U	V	w	Y	Zn
rechantinon		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
R	ES				0.32				0.067
<u> </u>	<u>=C</u>				0.020				<u>5.0</u>
CND 1	Résidus	0.0001	<0.0001	0.00001	0.00054	0.00003	0.00023	0.00001	0.01
CND 4	Résidus	0.0001	<0.0001	<0.00005	0.00029	0.00004	0.00042	0.00000	0.00
CND 5	Résidus	0.0002	<0.0001	0.00001	0.00042	0.00004	0.00039	<0.000002	<0.002
CND 6	Résidus	0.0001	<0.0001	<0.000005	0.00049	0.00002	0.00025	<0.000002	<0.002
CIL 11 CND	Résidus	0.0002	0.0002	0.00001	0.00137	0.00203	12.90000	0.00007	0.01
CIL 12 CND	Résidus	0.0014	0.0003	<0.00005	0.00096	0.00066	3.02000	0.00881	1.40
CIL 13 CND	Résidus	0.0017	0.0006	<0.00005	0.00177	0.00182	3.20000	0.01770	0.81

			Ma.200	TCLP	S	PLP	CTE	U-9
Identification de l'échantillon	Type de l'échantillon	Lixiviable pour :	> Critères pour le sol A	> Annexe A	> RES	> EC	> RES	> EC
P3-I	Minerai	Ag, As	Ag, As			Al, As	Hg, Ag	Al, As, Sb
E-CA-U-H	Minerai	Hg, Ag, As, Cd, Se, Zn	Hg, Ag, As, Cd, Cu, Pb, Se, Zn		Ag	Al, As, Mn, Sb	Hg, Ag, Cd, Se, Zn	Hg, As, Mn, Sb, Se
E-CA-U-L	Minerai	Ag, As, Cd, Se	Hg, Ag, As, Cd, Cu, Se, Zn			As, Mn, Sb	Ag, Cd	Al, As, Mn, Sb, Se
Under Dog A	Minerai	Ag, As	Ag, As, Cd, Cu, Mo,			Al, As, Sb	Ag	Al, As, Mn, Sb
E-27-D-H	Minerai	Ag, As, Cu, Se	Ag, As, Cu, Se		Ag	Al, As, Mn, Sb	Hg, Ag, Cu	As, Mn, Sb, Se
E-27-D-L	Minerai	Ag, As	Ag, As, Cu			Al, As, Mn, Sb	Ag	As, Mn, Sb, Se
E-27-U-L	Minerai	Hg, Ag, As, Cd	Hg, Ag, As, Cd, Cu, Ni, Zn		Ag	Al, As, Mn	Hg, Ag, Cd	As, Mn, Sb, Se
E-CA-D-H	Minerai	Hg, Ag, As, Cd, Cu	Hg, Ag, As, Cd, Cu, Zn			Al, As	Hg, Ag, Cd, Cu	Al, As, Mn, Sb
E-CA-D-L	Minerai	Ag, As	Ag, As, Cd, Cu			Al, As, Sb	Hg, Ag	Al, As, Mn, Sb
Triple Lynx LG	Minerai	Ag, As	Ag, As, Mo			Al, As	Ag	Al, As, Sb
Lynx 4 LP-LG	Minerai	Hg, As	Hg, Ag, As, Cd, Cu, Pb. Zn			Al, As, Sb	Hg	Al, As, Sb
Lynx 4 HP-LG	Minerai	As	Ag, As			Al, As		Al, As, Sb
Triple Lynx MG/HG	Minerai	As	Ag, As			Al, As		Al, As, Sb
Lynx 4 LP-MG/HG	Minerai	Hg, Ag, As	Hg, Ag, As, Cd, Cu, Zn			Al, As, Sb	Hg, Ag	Al, As, Mn, Sb
Lynx 4 HP-MG/HG	Minerai	Ag, As	Ag, As, Ni			Al, As, Sb	Hg, Ag	Al, As, Sb
P3-J	Minerai	Ag, As	Ag, As, Cd, Cu, Zn		Hg	Al, As	Hg, Ag	Al, As, Sb
Under Dog B	Minerai	Ag, As	Ag, As, Cu			Al, As	Ag	Al, As, Sb, Se
E-27-U-H	Minerai	Ag, As, Cd	Ag, As, Cd, Cu, Zn			Al, As, Mn	Hg, Ag, Cd	As, Mn, Sb, Se
Under Dog C	Minerai	As	Ag, As, Cd, Co, Cu, Se			As, Mn, Sb		As, Mn, Sb
P3-K	Minerai	Ag, As	Ag, As			Al, As	Hg, Ag	Al, As, Sb
P3-L	Minerai	Ag, As	Ag, As, Cd, Zn			Al, As	Hg, Ag	Al, As, Sb
Tails CND 1	Résidus	As, Cd, Zn	Hg, Ag, As, Cd, Cr, Cu, Pb, Zn			As	Cd, Zn	As, Mn
Tails CND 4	Résidus	As, Cd	Hg, Ag, As, Cd, Cr, Cu, Pb, Zn			As, Sb	Cd	As, Mn, Sb
Tails CND 5	Résidus	As	Ag, As, Cd, Cr, Cu, Pb, Zn			As, Sb		As, Mn, Sb
Tails CND 6	Résidus	As	Ag, As, Cd, Cr, Cu, Mo, Pb, Zn			As, Sb		As, Mn, Sb
CIL 11 CND	Résidus	As, Cu	As, Cu			Al, As	Hg, Ag, Cu	As, Sb
CIL 12 CND	Résidus	Hg, As, Cd, Cu, P, Pb, Zn	Hg, Ag, As, Cd, Cu, Pb, Zn		Hg, Cu, Pb, Zn	Al, As, Pb, Sb	Hg, Cd, Cu, Pb, Zn	As, Cd, Cu, Mn, Ni, Pb, Sb

			Ma.200	TCLP	;	SPLP	CTE	J-9
Identification de l'échantillon	Type de l'échantillon	Lixiviable pour :	> Critères pour le sol A	> Annexe A	> RES	> EC	> RES	> EC
CIL 13 CND	Résidus	As	Hg, Ag, As		Cu, Pb, Zn	Al, As, Mn, Pb, Sb	Cd, Cu, Ni, Pb, Zn	As, Cd, Mn, Ni, Pb, Sb
OSK-W-16-309-W2-1000	Stériles	As	As, Cu, Mo			Al, As	Hg, Ag	Al, As, Sb
OSK-W-17-918_73	Stériles		Ag, As					
OSK-W-17-879_74	Stériles		Ag, As					
OSK-W-17-1006_75	Stériles	As	Ag, As			Al, As		Al, As, Sb
OSK-W-17-1039_76	Stériles		As					
OSK-W-17-934_77	Stériles	As	Ag, As			Al, As		Al, As, Sb
OSK-W-17-812_101	Stériles	As	As			Al, As		Al, As, Sb
OSK-W-17-812 102	Stériles	As	Ag, As			Al, As		Al, As, Sb
GC10001	Stériles	As	Ag, As			Al, As		Al, As, Sb
GC10002	Stériles	As	As			Al, As		Al, As, Sb
GC10003	Stériles	As	Ag, As			Al, As		Al, As, Sb
GC10004	Stériles	As	Ag, As			Al, As		Al, As, Sb
GC10005	Stériles	Ag, As	Ag, As			Al, As	Hg, Ag	Al, As, Sb
GC10006	Stériles	As	Ag, As			Al, As	J, J	Al, As, Sb
GC10007	Stériles	As	As			Al, As		Al, As, Sb
OSK-W-18-1759-190	Stériles	As	Ag, As			Al, As		Al, As, Sb
OSK-W-19-1857-W2-895	Stériles		3′			i i		, ,
OSK-W-17-870-270	Stériles		Ag, As					
OSK-W-19-909-W12-770	Stériles	As	As		Ag	Al		Al, As, Sb
OKS-W-21-2629-720	Stériles	7.10	As					7 11, 7 10, 02
OSK-W-20-2375-W4-890	Stériles	Ag, As	Ag, As		Ag	Al		Al, As, Sb
OSK-W-19-1949-W1-635	Stériles	7.9,7.0	As					7, 7, 0.2
OBM-15-559 12	Stériles		7.10			Al, As		Al, As
OSK-W-17-774 44	Stériles					Al, As		Al, As, Sb
EAG-13-490 55	Stériles		As			7.1,7.0		711, 710, 00
OBM-16-671 63	Stériles		7.0			Al, As		Al, As, Sb
OBM-15-552-230	Stériles					7 11, 7 10		711, 710, 00
OBM-15-552-280	Stériles					Al, As		Al, As
OBM-16-655-535	Stériles		As			711,710		711, 710
OBM-16-655-600	Stériles		7.5			Al, As		Al, As
OBM-16-677-79	Stériles					Al, As		Al, As
OSK-W-16-309-W2-645	Stériles					7 11, 7 10		711, 710
OSK-W-16-309-W2-720	Stériles							
OSK-W-10-303-W2-720	Stériles	<u> </u>		 		Al, As		Al, As
OSK-W-17-1305-261	Stériles			 		Al. As		Al, As
OSK-W-17-1303-201	Stériles					/ II, /\o		, , , , , , , , , , , , , , , , , , ,
OSK-W-19-1181-W5-845	Stériles	As	As	 		Al, As		F, Al, As, Sb, U
OSK-W-17-864-W2-635	Stériles	7.0				Лі, Ло		1, 71, 73, 00, 0
OSK-W-17-004-W2-033	Stériles	+		 				
OSK-W-21-2512-W3-610	Stériles				Ag	Al		Al, As
WST-21-0930-195	Stériles				, _' 'y	/N		, , , , , , , , , , , , , , , , , , ,
OSK-W-19-1897-610	Stériles			 	Ag	Al		Al, As
WST-18-0024-120	Stériles				, _' 'y	/N		, , , , , , , , , , , , , , , , , , ,
WST-21-0647-161.5	Stériles	+		 	Hg	Al. As		Al, As
WST-21-0047-101.3 WST-22-1020-160	Stériles		As		119	лі, ло		Λi, Λο
OSK-W-21-2555-728	Stériles	+	Ba	 		+		
0011-11-2000-120	Oternes	1	L Da					

			Ma.200	TCLP		SPLP	СТЕ	U-9
Identification de l'échantillon	Type de l'échantillon	Lixiviable pour :	> Critères pour le sol A	> Annexe A	> RES	> EC	> RES	> EC
OSK-W-21-2531-655	Stériles							
WST-20-0573-367	Stériles					Al, As		Al, As, Sb
WST-21-0621-155	Stériles							
OSK-W-20-2313-W6-983	Stériles							
OSK-W-20-2375-916	Stériles		As					
#08354	Stériles		As					
#08355	Stériles		Ag, As					
#08356	Stériles		As					
08359 Down Ramp 3	Stériles		As					
OBM-15-557_10	Stériles	As	As			Al, As		Al, As, Sb
OSK-W-16-715_27	Stériles	As	As			Al, As		Al, As, Sb
OBM-15-559 59	Stériles	As	As, Cu			Al, As	Ag	Al, As, Sb
OSK-W-16-735-W1 66	Stériles		Ag, As, Cu				_	
OBM-15-552 81	Stériles	As, Cu, Mo	As, Cu, Mo		Hg	Al, As	Hg, Ag, Cu	Al, As, Mo, Sb
OBM-15-564 79	Stériles	Ag, As	Ag, As, Cd, Cu, Zn		Hg	Al, As, Sb	Ag	Al, As, Sb
OSK-W-16-311-W1 83	Stériles	O '			Hg	Al, As	Ag	Al, As, Sb
OSK-W-16-311-W2 84	Stériles	As	As		Cd, Zn	As, Cd, Mn, Pb, Sb	Ag	Al, As, Sb
OSK-W-16-706-W1 85	Stériles	As	As, Cu, Mo		,	As, Sb	Hg	Al, As, Sb
OSK-W-16-708-W2 91	Stériles	As	As, Cu			Al, As	Hg	Al, As, Sb
OSK-W-16-754 96	Stériles	Ag, As	Ag, As, Cu		Hg	Al, As	Hg, Ag	Al, As, Sb
OBM-16-619 20	Stériles	J,	Ag, As			<u> </u>	<u> </u>	, ,
OBM-15-566 60	Stériles	As	As			Al, As	Cu	Al, As, Sb
OBM-16-645 69	Stériles	Ag, As	Ag, As, Co, Cu			Al, As	Ag	Al, Ás, Mn, Sb
EAG-13-490 5	Stériles	Ŭ,	Ag, As			<u> </u>	J	, , ,
EAG-13-490 6	Stériles		As					
EAG-13-485 54	Stériles		As					
EAG-13-497_56	Stériles	Hg, As	Hg, Ag, As, Cd, Cu, Zn			As, Mn, Sb	Hg	Al, As, Mn, Sb
OSK-W-16-713 65	Stériles		Ag, As, Cu					
OBM-16-671 23	Stériles	As	As, Mn, Ni			Al, As, Sb		Al, As, Sb
OBM-16-693 25	Stériles		As					
OSK-W-16-735-W1 28	Stériles		Ag, As					
OSK-W-17-774 43	Stériles		Ag, As, Cu, Mo					
EAG-14-538 58	Stériles	Ag, As	Ag, As, Cu			As	Hg, Ag	Al, As, Sb, Se
OBM-16-673 64	Stériles	As	Ag, As, Cu			As		As, Mn, Sb
OBM-16-642 70	Stériles	As	As, Cu			Al, As		Al, As, Sb
OSK-W-17-774 72	Stériles	As, Mo	As, Ba, Cu, Mo			Al, As		Al, As, Mo, Sb
OSK-W-17-773 38	Stériles	As	As			Al, As		Al, As, Sb
OSK-W-17-773 39	Stériles	As	Ag, As			Al, As		Al, As, Sb
OSK-W-17-788 50	Stériles		As					, , , , , , , , , , , , , , , , , , ,
OSK-W-17-788 51	Stériles	As	As			Al, As		Al, As, Sb
OBM-15-552 103	Stériles	Ag, As, Cu, Mo	Ag, As, Cu, Mo		Hg	Al, As, Mo	Hg, Ag, Cu	Al, As, Mo, Sb
OSK-W-16-706-W2 89	Stériles	As	As		<u>_</u>	Al, As	Hg	Al, As, Sb
OSK-W-16-743_93	Stériles				Hg	Al, Ás, Sb	Hg, Ag, Cu, Sb	Al, As, Sb
OSK-W-17-789 100	Stériles	Ag, As, Cu	Ag, As, Cu		Hg	Al, As	Hg, Ag, Cu	Al, As, Sb
OBM-16-580 18	Stériles	As	As		<u> </u>	Al, As	J. J.	Al, As, Sb
OBM-15-557 80	Stériles	Ag, As	Ag, As, Cu		Hg	Al, As	Ag	Al, As, Sb
OSK-W-16-706-W1 88	Stériles	Mo	Cu, Mo		<u> </u>	Al, As	Hg, Ag	Al, As, Mo, Sb
OSK-W-16-706-W1_86	Stériles	As, Cu	As, Cu		Cd, Cu, Zn	Al, As, Cd, Mn, Pb, Zı	Hg, Ag	Al, As, Sb

			Ma.200	TCLP		SPLP	СТІ	EU-9
Identification de l'échantillon	Type de l'échantillon	Lixiviable pour :	> Critères pour le sol A	> Annexe A	> RES	> EC	> RES	> EC
OSK-W-17-774_98	Stériles		Cu		Hg	Al, As		Al, As, Sb
OSK-W-16-706-W1_87	Stériles	Ag, As	Ag, As, Cu			Al, As	Hg, Ag	Al, As, Sb
OSK-W-16-735-W2_92	Stériles	Ag, As	Ag, As, Cu			Al, As	Hg, Ag	Al, As, Sb
OSK-W-16-754_95	Stériles		Cu		Hg	Al, As	Hg	Al, As, Sb
OSK-W-17-789_99	Stériles	As, Cu	As, Cu			Al, As	Hg, Ag, Cu	Al, As, Mo, Sb
GC10008	Stériles	As	As			Al, As	Hg	Al, As, Sb
GC10009	Stériles	As	As			Al, As		Al, As, Sb
GC10010	Stériles	As	As			Al, As		Al, As, Sb
GC10011	Stériles	As	As			Al, As		Al, As
GC10012	Stériles	As	As			Al, As		Al, As, Sb
GC10013	Stériles	As	As			Al, As, Sb		Al, As, Sb
OSK-W-16-706-W2-905	Stériles	As	As, Cu			Al, As		Al, As, Sb
OSK-W-16-743-W1-915	Stériles		As					
OSK-W-17-913-820	Stériles		As					
OSK-W-19-1181-W12-1140	Stériles	As	As			Al, As		Al, As, Sb
OSK-W-19-1181-W5-795	Stériles		As					
OSK-W-19-1746-W1-687	Stériles		Ag, As					
OSK-W-17-1369-365	Stériles		Ag, As, Cu					
OSK-W-21-2605-1332	Stériles	As	As		Ag	Al, Sb		Al, As, Mn, Sb
OSK-W-21-2587-990	Stériles		As		-			
OSK-W-19-1897-760	Stériles		As					
OSK-W-19-1897-825	Stériles	As	As, Cu		Ag	Al		Al, As, Sb
OSK-W-19-1897-880	Stériles		As, Cu					
OSK-W-19-1897-983	Stériles	Ag, As	Ag, As, Cu		Ag	Al	Hg, Ag	Al, As, Sb
OSK-W-21-2252-1013	Stériles	As	As		Ag	Al, Sb		Al, As, Sb
OSK-W-21-2444-610	Stériles		As					
OSK-W-20-2350-125	Stériles	As	As		Ag	Al		Al, As, Sb
WST-21-0647-260	Stériles		Ag, As					
WST-22-1020-210	Stériles		As					
OSK-W-21-2551-W3-915	Stériles	As	As			Al, As		Al, As, Sb
WST-21-0992-450	Stériles	As	As			Al, As	Hg	Al, As, Sb
OSK-W-21-1949-W15-1080	Stériles	As	As			Al, As		Al, As, Sb
WST-21-0730-500	Stériles		As					
OSK-W-21-2555-590	Stériles	As	As, Mn, Ni			Al, As		Al, As
#08357	Stériles		Cr, Ni					
#08358	Stériles	As	As, Co, Cr, Ni		Ag	Al		Al, As
#08351	Stériles		Co, Cr, Cu, Mn, Ni		Ag	Al		Al, As, Mo
08360 Down Ramp 4	Stériles		As, Co, Cr, Cu, Ni					
#08353	Stériles		Co, Cr, Mn, Ni		Ag	Al		Al, As
OSK-W-16-761_33	Stériles		As, Cr, Cu, Ni					
OSK-W-17-773_41	Stériles	As	As, Co, Mn, Ni			Al, As		Al, As
OSK-W-17-779 47	Stériles	As	As, Cu, Mn			Al, As		Al, As
OSK-W-17-783_48	Stériles		As, Co, Mn, Ni					
OSK-W-16-751_30	Stériles	As	As, Cr, Mn, Ni			Al, As		Al, As
OBM-15-559_13	Stériles	As	As, Co, Ni			Al, As		Al, As
GC10014	Stériles	As	As, Co, Cr, Mn, Ni			Al, As		Al, As, Sb
GC10015	Stériles	As	As, Cr, Cu, Mn			Al, As		Al, As
GC10016	Stériles	As	Ag, As, Cr, Ni			Al, As		Al, As

			Ma.200	TCLP		SPLP	СТ	EU-9
Identification de l'échantillon	Type de l'échantillon	Lixiviable pour :	> Critères pour le sol A	> Annexe A	> RES	> EC	> RES	> EC
GC10018	Stériles	As	As, Co, Mn, Ni			Al, As		Al, As
GC10019	Stériles	As	As, Co, Cu, Mn, Ni			Al, As		Al, As
GC10020	Stériles	As	As, Cr, Cu, Mn, Ni			Al, As		Al, As, Sb
GC10021	Stériles	As	Ag, As, Co, Cu, Mn, Ni			Al, As		Al, As, Sb
GC10022	Stériles	Ag, As	Ag, As, Co, Cu, Mn, Ni			Al, As	Ag	Al, As, Sb
GC10023	Stériles	As	Ag, As, Co, Cu, Mn, Ni			Al, As		Al, As, Sb
GC10024	Stériles		Cr, Ni			Al, As		Al, As
OSK-W-17-1079-580	Stériles	As	As, Co, Cr, Cu, Mn, Ni			Al, As		Al, As, Sb
OSK-W-17-1104-665	Stériles		Mn, Ni			Al, As		Al, As
OSK-W-17-1369-262.5	Stériles		As, Co, Cr, Cu, Mn, Ni					
OSK-W-17-968-145	Stériles	As	Ag, As, Mn, Ni			Al, As		Al, As, Sb
OSK-W-19-1181-W5-920	Stériles		Co, Cr, Mn, Ni					
OSK-W-19-1181-W5-970	Stériles	As	As, Cr, Cu, Mn, Ni			Al, As		Al, As
OSK-W-19-1412-W3-715	Stériles	As	As, Co, Cr, Mn, Ni			Al, As		Al, As
OSK-W-17-836-257	Stériles		As, Mn, Ni			,		,
OSK-W-19-1857-W2-980	Stériles		As, Co, Cu, Mn, Ni					
OSK-W-19-1857-W2-1110	Stériles		Cr. Ni					
OSK-W-19-1857-W2-1210	Stériles		Co, Cr, Ni		Ag	Al		Al. As
OKS-W-21-2613-W1-855	Stériles		Cr. Ni		Aq	Al		Al, As
OSK-W-21-2629-845	Stériles	As	As, Co, Ni		Ag	Al		Al, Ás, Sb
OSK-W-21-2629-948	Stériles	As	As, Co, Cu, Mn, Ni		Ag	Al		Al, As, Sb
WST-21-0878-517	Stériles		As, Co, Mn, Ni					, ,
WST-21-0879-639	Stériles	As	As, Cr, Mn, Ni		Ag	Al		Al, As, Sb
OSK-W-19-1949-W1-948	Stériles	As	As, Co, Cu, Mn, Ni		Ag	Al		Al, As, Sb
OSK-W-20-2397-W1-680	Stériles		As, Cr, Ni		J			, ,
OSK-W-21-2606-670	Stériles	As	As, Cr, Cu, Ni			Al, As	Hq	Al, As
WST-21-0666-54	Stériles	As	As, Co, Cu, Mn, Ni			Al, As	<u> </u>	Al, As, Sb
WST-21-0952-32	Stériles	As	As, Co, Cr, Ni			Al, As		Al, As, Sb
OSK-W-21-2613-1042	Stériles	Ag, As	Ag, As		Ag	Al, Sb	Ag	Al, As, Sb
OSK-W-20-2283-W7-888	Stériles	As	As		Ag	Al, Sb	<u> </u>	Al, As, Sb
OSK-W-20-2256-W1-1051.7	Stériles	As	As, Cd, Zn		Ag	Al, Sb		As, Sb
WST-22-1013-345	Stériles	As	As		J	Al, Ás, Sb		Al, As, Sb
OSK-W-21-2544-838	Stériles	As	Ag, As			Al, As, Sb		Al, As, Sb
OSK-W-17-1369-219.5	Stériles	As	As			Al, As	Hq	Al, As, Sb
#08352	Stériles	As	As		Ag	Al	J	Al, As, Sb
EAG-13-485 1	Stériles		As		<u> </u>			, ,
EAG-13-491 7	Stériles		As					
OBM-15-559 11	Stériles	As	As			Al, As		Al, As, Sb
OBM-15-565 15	Stériles		As					· '
OBM-16-609 19	Stériles		Ag, As					
EAG-13-485 53	Stériles	Ag, As	Ag, As			As, Mn	Hg, Ag	Al, As, Sb
OSK-W-16-760 31	Stériles	Ag, As	Ag, As, Cd, Zn			Al, As	Ag	Al, As, Sb
OSK-W-17-773 40	Stériles	, , , , , , , , , , , , , , , , , , ,	Ag, As			<u> </u>		
OSK-W-17-779 45	Stériles		Ag, As					
OSK-W-17-779 46	Stériles	As	Ag, As			Al, As		Al, As, Sb
OSK-W-17-788 52	Stériles		As					, ,
OSK-W-16-751 29	Stériles	As	As, Mo			Al, As		Al, As, Sb
EAG-14-544 8	Stériles		Ás					

			Ma.200	TCLP	9	SPLP	CTI	EU-9
Identification de l'échantillon	Type de l'échantillon	Lixiviable pour :	> Critères pour le sol A	> Annexe A	> RES	> EC	> RES	> EC
OBM-15-565 16	Stériles		Ag, As					
OBM-16-645 22	Stériles	As	Ag, As			Al, As		Al, As, Sb
OSK-W-16-760 32	Stériles		Ag, As			,		<u> </u>
OBM-16-630 61	Stériles	Ag, As	Ag, As, Cu			Al, As	Hg, Ag	Al, As, Mn, Sb
GC10017	Stériles	As	As			Al, As	<u> </u>	Al, As
GC10025	Stériles	As	Ag, As			Al, As		Al, As, Sb
GC10026	Stériles	As	Ag, As			Al, As		Al, As, Sb
GC10027	Stériles	As	As			Al, As		Al, As, Sb
GC10028	Stériles	As	As, Cd, Zn			Al, As		Al, As, Sb
GC10029	Stériles	As	As			Al, As		Al, As, Sb
GC10030	Stériles	As	As		Hg	Al, As	Hg	Al, As, Sb
GC10031	Stériles	As	As		J	Al, As		Al, As, Sb
GC10032	Stériles	As	As			Al, As, Sb		Al, As, Sb
OSK-W-19-1746-W1-765	Stériles				Aq	Al		Al, As, Sb
OSK-W-17-836-400	Stériles		As		<u> </u>			, ,
OSK-W-17-859-240	Stériles		As, Ni					
OSK-W-19-1857-W2-1030	Stériles	As	Ás		Aq	Al		Al, As, Sb
OSK-W-19-1857-W2-1310	Stériles		As, Cr, Ni		<u> </u>			, ,
OSK-W-19-909-W12-955	Stériles		As					
OSK-W-19-934-W3-885	Stériles		As					
OSK-W-19-934-W3-940	Stériles	As	As		Hg, Ag	Al, Sb	Hg	Al, As, Sb
OSK-W-21-2613-W1-1105	Stériles	7.0	As		,,,,,,	7 11, 0 2		7.11, 7.10, 0.2
OSK-W-19-934-W3-1045	Stériles	As	As		Ag	Al, Sb		Al, As, Sb
OSK-W-21-2587-1060	Stériles	As	As		Ag	Al		F, Al, As, Sb
OSK-W-19-1949-W1-1015	Stériles	7.0	As			7.1		1,7,7.10,00
OSK-W-21-2252-W12-922	Stériles	As	As		Ag	Al		Al, As, Sb
WST-21-0647-313	Stériles	As	As			Al, As, Sb	Hg	Al, As, Sb
WST-22-1020-320	Stériles	7.0	As			7 11, 7 10, 02		7.1,7.15, 52
WST-21-0873-268.1	Stériles		As					
WST-21-0873-445	Stériles		As					
EAG-13-485 2	Stériles	As	As, Co, Cr, Mn, Ni, Zn			Al, As		Al, As, Sb
EAG-13-485 3	Stériles	Ag, As	Ag, As, Cd, Cu, Zn			Al	Ag	Al, As, Sb
OBM-16-642 21	Stériles	1.3, 1.1	As, Cu, Mn				9	1,
EAG-13-513 57	Stériles	As	Ag, As, Co, Cu			Al, As, Mn		As, Mn, Sb
OBM-15-557 78	Stériles		Ag, As, Cu, Mn			,,		1 112, 1111, 1111
OSK-W-16-761 34	Stériles		As, Co, Cu, Mn, Ni, Zn					
OSK-W-17-773 36	Stériles		As, Co, Mn					
OSK-W-17-773 37	Stériles	As	As, Mn			Al, As		Al, As
OSK-W-17-773 42	Stériles	As	As, Co, Ni			Al. As		Al, As
OSK-W-17-783 49	Stériles	1	As, Co, Cu, Mn, Ni			,		,,
OSK-W-16-760_67	Stériles	Ag, As	Ag, As, Cd, Co, Cu, Ni, Pb, Zn			Al, As	Ag	Al, As, Sb
EAG-13-485_4	Stériles	As	As, Cr, Cu, Ni			Al, As		Al, As, Sb
OBM-16-580_17	Stériles	Ag, As, Cu	Ag, As, Co, Cu, Ni		Hg, Ag	Al, As	Hg, Ag, Cu	Hg, As, Mn, Sb, Se
OBM-16-693_24	Stériles		Ag, As, Co, Ni				_	

			Ma.200	TCLP		SPLP	СТ	EU-9
Identification de l'échantillon	Type de l'échantillon	Lixiviable pour :	> Critères pour le sol A	> Annexe A	> RES	> EC	> RES	> EC
OBM-16-693_26	Stériles		As, Co, Cr, Cu, Ni					
OBM-16-654_62	Stériles	As	Ag, As, Cu			As, Mn		As, Mn, Sb
OBM-16-580_68	Stériles	Ag, As	Ag, As, Cu, Ni			Al, As	Ag	Al, As, Sb
OBM-16-640_71	Stériles		As, Cu					
OBM-15-554_82	Stériles	As	Ag, As, Co, Cu		Hg	Al, As		Al, As
OSK-W-16-708-W1_90	Stériles	As	Ag, As, Co, Cr, Cu, Mo, Ni			Al, As		As, Mn
OSK-W-16-746_94	Stériles		Co, Cu			Al		Al, As, Mn
OSK-W-17-774_97	Stériles	Ag, As	Ag, As, Co, Cu, Ni		Hg	Al	Hg, Ag	Al, As, Mn
OBM-16-655-330	Stériles		Mn			Al		AI, Sb
OSK-W-18-1608-805	Stériles	As	Ag, As, Co, Cu, Mn, Ni, Zn			Al, As, Sb		Al, As, Sb
OSK-W-18-1713-470	Stériles	As	As, Cu, Mn, Ni, Zn			Al, As		Al, As, Sb
OSK-W-18-1744-W1-575	Stériles		As, Mn, Ni					
OSK-W-19-1412-W3-765	Stériles					Al, As		Al, As, Sb
OSK-W-17-1369-315	Stériles		As, Cu, Mn					
OSK-W-17-663-W2-680	Stériles	Ag, As	Ag, As, Cu		Hg, Ag	Al	Ag	Al, As
OSK-W-19-1897-496	Stériles	Ag, As	Ag, As, Cu, Zn		Hg, Ag	Al, Sb	Ag	Al, As, Sb
OSK-W-20-2323-115	Stériles	As	As, Cu		Ag	Al		Al, As
WST-19-0160A-55	Stériles	As, Mn	Ag, As, Cu, Mn, Zn			Al, As		Al, As, Mn, Sb
OSK-W-21-2606-615	Stériles	As	As, Cu			Al, As	Ag	Al, As, Sb
WST-21-0873-330	Stériles		As, Co, Cu, Mn, Ni					
WST-18-0024-50	Stériles	As	As, Co, Cu, Mn, Ni			Al, As		Al, As, Sb
OSK-W-21-2444-545 OSK-W-18-1386-W4-885	Stériles Stériles	As	As, Cu, Mn, Ni			Al		Al, As, Sb
BD-F01-21 21 CR-2	Mort-terrain		As, Co, Cu, Mn, Ni As			Al, As		Al, As, Sb
BH-22-28-CF-1B	Mort-terrain		Ni					
CONC-F02-21 CR-3	Mort-terrain		Cu, Mn					
F18-22-CF-1	Mort-terrain		Cd, Pb, Sn					
F19-22-CF-1	Mort-terrain		Cd, Sn					
F28-22-CF-1	Mort-terrain		Sn Sn					
F35-22-CF-3	Mort-terrain		As					
F42-22-CF-4	Mort-terrain		As					
F67-22-CF-1B	Mort-terrain		Ag, As					
F80-22-CF-2	Mort-terrain		Mn					
F92-22-CF-4	Mort-terrain		Co, Mn, Ni					
HMBT-F02-21_CF-4	Mort-terrain		Ag					
HMBT-F02-21_CF-6	Mort-terrain		Ag					
HMBT-F03-21_CF-7	Mort-terrain		Ag					
HMT-F03-21_CF-2	Mort-terrain		As					
HMT-F03-21_CR-4	Mort-terrain		As					
TS-F02-21_CF-1	Mort-terrain		Ag					

			Ma.200	TCLP	:	SPLP	СТЕ	U-9
Identification de l'échantillon	Type de l'échantillon	Lixiviable pour :	> Critères pour le sol A	> Annexe A	> RES	> EC	> RES	> EC
TS-F02-21_CF-3	Mort-terrain		As		Ag	Al		
TU-F01-21 CR-3	Mort-terrain		As, Mn, Ni					
BD-TR02-21-150-170	Mort-terrain				Ag	Al	Ag, Cu	Al, As, Mn
TU-TR01-21-52-190	Mort-terrain				Ag	Al	Cu	Al, As, Mn
MT-1	Mort-terrain				Ag	Al		As
MT-1-DupA	Mort-terrain				Ag	Al	Cu	As
MT-2	Mort-terrain		Cr		Ag	Al, As, Mn		As
MT-3	Mort-terrain		Cr		Ag	Al, As		As
MT-4	Mort-terrain				Ag	Al		As
MT-5	Mort-terrain		Cr		Ag	Al, As	Cu	As
MT-6	Mort-terrain		Cr		Ag	Al, As	Cu	As
MT-7	Mort-terrain		Cr		Ag	Al, As		As
MT-8	Mort-terrain		Cr		Ag	Al, As	Cu	As
MT-8-DUP-S	Mort-terrain		Cr		Ag	Al, As	Cu	As
TP-1-S	Mort-terrain		Cr		Ag	Al	Cu	As
TP-1-TS	Mort-terrain		Cr		Ag	Al	Cu	As
TP-2-S	Mort-terrain				Ag			As
TP-2-TS	Mort-terrain		Cr		Ag			As
TP-3-S	Mort-terrain				Ag	Mn		As
TP-3-TS	Mort-terrain		Cr		Ag			As
TP-5-S	Mort-terrain				Ag		Hg	As
TP-5-S-DUPA	Mort-terrain				Ag	Al	Hg	As
TP-5-TS	Mort-terrain				Ag	Al	Hg	As
TP-6-S	Mort-terrain		Cr		Ag	Al	Hg, Cu	As
TP-6-TS	Mort-terrain				Ag	Al, As	Hg, P	As, Sb
TP-7-S	Mort-terrain		Cr		Ag	Al, As, Mn	Hg, Cu	As
TP-7-TS	Mort-terrain		Cr		Ag	Al	Cu	As
TP-8-TS	Mort-terrain	As	As, Cr		Ag	Al, As	Cu	As
TP-9-S	Mort-terrain				Ag	Al, Mn	Hg, Cu	As
TP-9-TS	Mort-terrain		Cr		Ag	Al, As	Hg	As
TP-10-S	Mort-terrain				Ag	Al	Cu	As
TP-10-S-DUPA	Mort-terrain		Cr		Ag	Al	Cu	As
TP-10-TS	Mort-terrain				Ag	As		As
TP-10-TS-DUPA	Mort-terrain				Ag	As	Cu	As
TP-11-S	Mort-terrain				Ag			As
TP-11-TS	Mort-terrain		Cr		Ag	Al	Hg, Cu	As
TP-5-TS-DUPA	Mort-terrain				Ag	As	Hg	As

Tableau L: Calculs de l'épuisement des cellules humides.

Identification de la colonne	Type de l'échantillon	Zone	Période de calcul		soufre des sulfures	Temps de l'épuisement du PN Vrac	Temps de l'épuisement du PN- CO ₃	Taux de l'épuisement du soufre total	Taux de l'épuisement du soufre des sulfures	Taux de l'épuisement du PN	Taux de l'épuisement du PN-CO ₃
			Semaines	Années	Années	Années	Années	kg/semaine	kg/semaine	kg/semaine	kg/semaine
E-27-U-H	Minerai	Zone 27	39 - 44	309	305	32	10	0.00000887	0.00000887	0.00002811	0.00002811
E-CA-U-H	Minerai	Caribou	25 - 30	281	276	79	35	0.00000358	0.00000358	0.00001316	0.00001316
P3-K	Minerai	Lynx	39 - 44	603	598	306	195	0.00000079	0.00000079	0.00000633	0.00000633
Under Dog A	Minerai	Underdog	25 - 30	564	424	46	23	0.00000149	0.00000149	0.00000816	0.00000816
OBM-16-671_23	Stériles	Zone 27	25 - 30	286	270	284	304	0.00000023	0.00000023	0.00001073	0.00001073
EAG-14-538_58	Stériles	Zone 27	195 - 200	78	75	11	-2.0	0.00000402	0.00000402	0.00001070	0.00001070
OBM-16-630_61	Stériles	Zone 27	39 - 44	570	566	96	35	0.0000188	0.00000188	0.00000833	0.00000833
OBM-16-580_17	Stériles	Zone 27	39 - 44	414	360	70	46	0.00000903	0.00000903	0.00003442	0.00003442
OSK-W-16-743_93	Stériles	Underdog	25 - 30	735	523	62	16	0.00000075	0.00000075	0.00000456	0.00000456
OBM-15-564_79	Stériles	Underdog	39 - 44	307	203	77	40	0.00000196	0.00000196	0.00001367	0.00001367
OSK-W-17-774_44	Stériles	RedDog	25 - 30	357	295	105	98	0.0000013	0.00000013	0.00000819	0.00000819
OSK-W-17-812_102	Stériles	Lynx	39 - 44	414	287	278	268	0.00000062	0.00000062	0.00000772	0.00000772
OSK-W-17-773_41	Stériles	Lynx	25 - 30	547	515	293	264	0.0000013	0.00000013	0.00001357	0.00001357
OSK-W-16-760_31	Stériles	Lynx	25 - 30	383	387	138	92	0.0000004	0.0000004	0.000054	0.0000054
OSK-W-16-760_67	Stériles	Lynx	39 - 44	213	203	86	50	0.0000040	0.0000040	0.0000260	0.0000260
EAG-13-485_3	Stériles	Caribou	25 - 30	178	173	90	81	0.0000014	0.0000014	0.0000134	0.0000134
Tails CND 1	Résidus	Main and Lynx Main	26 - 31	17	17	7	4	0.0000501	0.0000501	0.0001724	0.0001724
Tails CND 4	Résidus	Main, Lynx, and Underdog	26 - 31	26	25	12	5	0.0000283	0.0000283	0.0000937	0.0000937
Tails CND 5	Résidus	Lynx and Underdog	39 - 44	28	28	13	5	0.0000235	0.0000235	0.0000793	0.0000793
Tails CND 6	Résidus	Underdog	195 - 200	10	10	3	-3	0.0000592	0.0000592	0.0000609	0.0000609
CIL 11 CND	Résidus	Triple Lynx	20 - 25	22	22	15	8	0.0000217	0.0000217	0.0000722	0.0000722
CIL 13 CND	Résidus	Lynx 4	69 - 74	51	52	12	14	0.0000470	0.0000470	0.0001848	0.0001848

Identification de l'échantillon	Type de l'échantillon	Poids de l'échantillon	pH initial	Vol H ₂ SO ₄	H ₂ SO ₄	PN	PA	PNN	Soufre total
		g	-	mL	Normalité	kg CaCO ₃ / tonne	kg CaCO ₃ / tonne	kg CaCO ₃ / tonne	%
CND 1	Résidus	2.0	9.4	2.5	1.0	61	143	-82	4.6
CND 4	Résidus	2.0	9.2	2.0	1.0	49	150	-101	4.8
CND 5	Résidus	2.0	9.2	1.7	1.0	43	109	-66	3.5
E-27-U-H	Minerai	2.0	8.8	0.9	1.0	22	279	-257	8.9
E-CA-U-H	Minerai	2.0	9.3	2.0	1.0	49	170	-121	5.4
P3-K	Minerai	2.0	9.4	2.6	1.0	64	67	-2.8	2.1
Under Dog A	Minerai	2.0	9.5	0.65	1.0	16	144	-128	4.6
OSK-W-16-760_31	Stériles	2.0	9.6	1.4	1.0	35	30	5.3	0.96
OBM-16-630_61	Stériles	2.0	9.2	0.8	1.0	20	96	-76	3.1
EAG-13-485_3	Stériles	2.0	9.5	2.8	1.0	69	51	19	1.6
OSK-W-16-760_67	Stériles	2.0	9.1	3.3	1.0	83	88	-5.5	2.8
OBM-16-580_17	Stériles	2.0	8.9	3.2	1.0	79	397	-318	13
OSK-W-17-773_41	Stériles	2.0	9.6	7.3	1.0	183	11	172	0.36
OBM-15-564_79	Stériles	2.0	9.6	1.6	1.0	38	38	-0.13	1.2
OSK-W-17-774_44	Stériles	2.0	9.7	2.1	1.0	53	8.8	44	0.28
OBM-16-671_23	Stériles	2.0	9.7	7.3	1.0	184	13	171	0.41
OSK-W-16-743_93	Stériles	2.0	9.4	1.4	1.0	36	91	-56	2.9
OSK-W-17-812_102	Stériles	2.0	9.4	4.0	1.0	99	39	59	1.3

CIT = Carbone Inorganique Total PN = Potentiel de Neutralisation

PA = Potentiel d'Acidification

PNN = Potentiel Net de Neutralisation

RPN = Ratio de Potentiel de Neutralisation

Identification de l'échantillon	Type de l'échantillon	S-SO ₄ lixiviable par acides	Sulfure	RPN	Carbone total	CO ₃	CIT	PN-CO ₃	PNN-CO ₃	RPN CO ₃	Classification PGA
		%	%	ı	%	%	% C	kg CaCO ₃ / tonne	kg CaCO ₃ / tonne	ı	-
CND 1	Résidus	0.31	4.3	0.43	0.8	1.8	0.35	29	-82	0.21	PGA
CND 4	Résidus	0.39	4.4	0.33	0.66	1.3	0.26	22	-101	0.15	PGA
CND 5	Résidus	< 0.02	3.6	0.39	0.56	1.4	0.28	23	-66	0.21	PGA
E-27-U-H	Minerai	0.69	8.3	0.079	0.43	0.46	0.092	7.6	-257	0.027	PGA
E-CA-U-H	Minerai	1.2	4.2	0.29	0.87	1.7	0.35	29	-121	0.17	PGA
P3-K	Minerai	0.35	1.8	0.96	0.92	2.5	0.51	42	-2.8	0.63	PGA
Under Dog A	Minerai	1.2	3.4	0.11	0.35	0.4	0.08	6.6	-128	0.046	PGA
OSK-W-16-760_31	Stériles	0.32	0.64	1.2	0.58	1.4	0.28	23	5.3	0.77	PGA
OBM-16-630_61	Stériles	0.46	2.6	0.21	0.36	0.45	0.09	7.5	-76	0.078	PGA
EAG-13-485_3	Stériles	0.56	1.1	1.4	0.87	3.1	0.62	51	19	1.0	PGA
OSK-W-16-760_67	Stériles	0.45	2.4	0.94	0.97	3.0	0.6	50	-5.5	0.56	PGA
OBM-16-580_17	Stériles	2.0	11	0.2	1.2	2.7	0.55	45	-318	0.11	PGA
OSK-W-17-773_41	Stériles	0.16	0.19	16	2.4	11	2.2	183	172	16	NPGA
OBM-15-564_79	Stériles	0.2	1.0	1.0	0.49	1.2	0.24	20	-0.13	0.51	PGA
OSK-W-17-774_44	Stériles	0.13	0.15	6.0	0.72	2.6	0.51	42	44	4.9	NPGA
OBM-16-671_23	Stériles	0.15	0.26	14	2.2	10	2.0	169	171	13	NPGA
OSK-W-16-743_93	Stériles	0.98	2.0	0.39	0.27	0.28	0.056	4.6	-56	0.051	PGA
OSK-W-17-812_102	Stériles	0.34	0.93	2.5	1.5	5.5	1.1	92	59	2.3	NPGA

CIT = Carbone Inorganique Total PN = Potentiel de Neutralisation

PA = Potentiel d'Acidification

PNN = Potentiel Net de Neutralisation

RPN = Ratio de Potentiel de Neutralisation

Identification de	Type de	Poids de l'échantillon	Volume d'eau D.I.	pH final	рН	Acidité	Alcalinité	Conductivité
l'échantillon	l'échantillon	g	mL	pas d'unité	pas d'unité	mg/L CaCO₃	mg/L CaCO₃	uS/cm
RES								
<u>EC</u>								
CND 1	Résidus	1,000	3,000	7.9	7.8	< 2	38	592
CND 4	Résidus	1,000	3,000	7.9	7.4	< 2	32	1,510
CND 5	Résidus	1,000	3,000	8	-	< 2	26	1,390
E-27-U-H E-CA-U-H	Minerai	1,000	3,000	8.1 8.3	8.0	< 2 < 2	50	198 177
P3-K	Minerai Minerai	1,000 1,000	3,000 3.000	9.0	8.0 8.4	< 2	49 45	126
Under Dog A		1,000	3.000	8.6	8.1	< 2	35	125
	Minerai	· · ·	-,			_		
OSK-W-16-760_31	Stériles	1,000	3,000	8.8	7.9	< 2	44	100
OBM-16-630_61	Stériles	1,000	3,000	8.8	7.9	< 2	37	109
EAG-13-485_3	Stériles	1,000	3,000	9.0	8.3	< 2	38	107
OSK-W-16-760_67	Stériles	1,000	3,000	9.0	8.1	< 2	31	114
OBM-16-580_17	Stériles	1,000	3,000	8.4	8.2	< 2	59	229
OSK-W-17-773_41	Stériles	1,000	3,000	8.7	8.3	< 2	44	100
OBM-15-564_79	Stériles	1,000	3,000	9.2	8.5	< 2	35	91
OSK-W-17-774_44	Stériles	1,000	3,000	9.2	9.1	< 2	31	65
OBM-16-671_23	Stériles	1,000	3,000	8.7	8.7	< 2	46	111
OSK-W-16-743_93	Stériles	1,000	3,000	8.8	8.7	< 2	36	115
OSK-W-17-812_102	Stériles	1,000	3,000	9.0	8.5	< 2	54	137

Identification de	Type de	HCO₃	CO ₃	F	CI	SO₄	Br	NO ₂	NO ₃
l'échantillon	l'échantillon	mg/L CaCO₃	mg/L CaCO₃	mg/L	mg/L	mg/L	mg/L	mg N/L	mg N/L
RES				4.0	860			0.06	300
<u>EC</u>				<u>1.5</u>	<u>250</u>			<u>1.0</u>	
CND 1	Résidus	38	< 2	0.22	< 2	270	< 0.3	<0.003	<0.006
CND 4	Résidus	32	< 2	0.29	< 2	1,000	< 0.3	<0.003	<0.006
CND 5	Résidus	26	< 2	0.38	2	770	< 3	<0.003	<0.006
E-27-U-H	Minerai	50	< 2	0.12	< 2	25	< 3	<0.03	<0.06
E-CA-U-H	Minerai	49	< 2	0.14	0.2	19	< 0.3	<0.003	<0.006
P3-K	Minerai	43	2	0.09	< 2	5	< 3	<0.03	<0.06
Under Dog A	Minerai	35	< 2	0.13	0.3	8	< 0.3	<0.003	<0.006
OSK-W-16-760_31	Stériles	44	< 2	0.10	0.2	2	< 0.3	<0.003	<0.006
OBM-16-630_61	Stériles	37	< 2	0.13	< 2	6	< 3	< 0.03	<0.06
EAG-13-485_3	Stériles	38	< 2	0.12	0.5	5	< 0.3	<0.003	<0.006
OSK-W-16-760_67	Stériles	31	< 2	0.12	< 2	7	< 3	<0.03	<0.06
OBM-16-580_17	Stériles	59	< 2	0.16	< 2	26	< 3	<0.03	<0.06
OSK-W-17-773_41	Stériles	44	< 2	0.08	0.2	1	< 0.3	<0.003	<0.006
OBM-15-564_79	Stériles	32	2	0.13	< 2	3	< 3	<0.03	<0.06
OSK-W-17-774_44	Stériles	24	8	0.15	0.3	1	< 0.3	<0.003	<0.006
OBM-16-671_23	Stériles	38	8	0.17	0.3	7	< 0.3	<0.003	<0.006
OSK-W-16-743_93	Stériles	34	< 2	0.19	0.4	5	< 0.3	<0.003	<0.006
OSK-W-17-812_102	Stériles	53	2	0.16	< 2	4	< 3	<0.03	<0.06

Identification de	Type de	NO2+NO3	P total réactif	NH₃+NH₄	Thiosels (tot)	Hg	Dureté	Ag	Al
l'échantillon	l'échantillon	mg N/L	mg/L	mg N/L	mg/L S ₂ O ₃	mg/L	mg/L CaCO₃	mg/L	mg/L
RES						0.0000013		0.00062	
<u>EC</u>						<u>0.001</u>		<u>0.1</u>	<u>0.1</u>
CND 1	Résidus	-	<0.03	0.1	< 10	< 0.00001	360	< 0.00005	0.002
CND 4	Résidus	-	<0.03	< 0.1	< 10	< 0.00001	1,180	< 0.00005	0.002
CND 5	Résidus		<0.03	< 0.1	< 10	< 0.00001	890	< 0.00005	0.003
E-27-U-H	Minerai	<0.06	<0.03	-	-	< 0.00001	83	0.000930	0.05
E-CA-U-H	Minerai	<0.006	<0.03	-	-	0.000038	65	0.005010	<u>0.12</u>
P3-K	Minerai	<0.06	<0.03	-	-	< 0.00001	51	0.000290	<u>0.53</u>
Under Dog A	Minerai	<0.006	<0.03	-	-	0.000016	28	0.000760	<u>0.37</u>
OSK-W-16-760_31	Stériles	<0.006	<0.03	-	-	0.000001	36	< 0.00005	<u>0.49</u>
OBM-16-630_61	Stériles	<0.06	<0.03	-	-	< 0.00001	36	0.00048	<u>0.50</u>
EAG-13-485_3	Stériles	<0.006	<0.03	-	-	< 0.00001	24	< 0.00005	<u>0.70</u>
OSK-W-16-760_67	Stériles	<0.06	<0.03	-	-	< 0.00001	45	0.000060	<u>0.50</u>
OBM-16-580_17	Stériles	<0.06	<0.03	-	-	0.000090	98	0.018300	<u>0.20</u>
OSK-W-17-773_41	Stériles	<0.006	<0.03	-	-	< 0.00001	37	< 0.00005	<u>0.44</u>
OBM-15-564_79	Stériles	<0.06	<0.03	-	-	< 0.00001	29	< 0.00005	<u>0.74</u>
OSK-W-17-774_44	Stériles	<0.006	<0.03	-	-	< 0.00001	16	< 0.00005	<u>1.03</u>
OBM-16-671_23	Stériles	<0.006	<0.03	-	-	< 0.00001	42	< 0.00005	<u>0.39</u>
OSK-W-16-743_93	Stériles	<0.006	<0.03	-	-	0.000006	21	0.000770	<u>0.47</u>
OSK-W-17-812_102	Stériles	<0.06	<0.03	-	-	< 0.00001	50	< 0.00005	<u>0.59</u>

Identification de	Type de	As	Ва	Be	Bi	В	Ca	Cd	Co
l'échantillon	l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
RES		0.34	0.6			28		0.0011	0.37
<u>EC</u>		0.0003	<u>1.0</u>			<u>5.0</u>		0.005	
CND 1	Résidus	<u>0.001</u>	0.0092	< 0.000007	< 0.000007	0.04	126.0	0.00018	0.00066
CND 4	Résidus	<u>0.002</u>	0.0129	< 0.000007	< 0.000007	0.04	404.0	0.00039	0.00294
CND 5	Résidus	0.001	0.0153	< 0.000007	< 0.000007	0.02	324.0	0.00005	0.00185
E-27-U-H	Minerai	<u>0.002</u>	0.0037	< 0.000007	0.00002	0.04	26.0	0.00005	0.00004
E-CA-U-H	Minerai	<u>0.008</u>	0.0057	< 0.000007	< 0.000007	0.10	17.6	0.00010	0.00005
P3-K	Minerai	0.007	0.0031	< 0.000007	< 0.000007	0.03	14.1	< 0.000003	0.00001
Under Dog A	Minerai	<u>0.004</u>	0.0031	< 0.000007	0.00005	0.07	10.2	< 0.000003	0.00008
OSK-W-16-760_31	Stériles	<u>0.003</u>	0.0019	< 0.000007	< 0.000007	0.04	10.6	0.00001	0.00003
OBM-16-630_61	Stériles	0.006	0.0020	< 0.000007	0.00006	0.03	12.0	0.00000	0.00000
EAG-13-485_3	Stériles	0.000	0.0010	< 0.000007	0.00004	0.04	8.3	< 0.000003	0.00049
OSK-W-16-760_67	Stériles	<u>0.003</u>	0.0022	< 0.000007	0.00001	0.02	14.9	0.00001	0.00001
OBM-16-580_17	Stériles	0.002	0.0021	< 0.000007	0.00001	0.05	30.0	0.00001	0.00003
OSK-W-17-773_41	Stériles	0.002	0.0020	< 0.000007	< 0.000007	0.03	9.6	< 0.000003	0.00002
OBM-15-564_79	Stériles	<u>0.015</u>	0.0015	< 0.000007	0.00001	0.02	10.2	0.00000	0.00000
OSK-W-17-774_44	Stériles	0.003	0.0012	< 0.000007	< 0.000007	0.03	5.8	< 0.000003	0.00002
OBM-16-671_23	Stériles	0.002	0.1690	< 0.000007	< 0.000007	0.03	10.1	< 0.000003	0.00002
OSK-W-16-743_93	Stériles	0.029	0.0020	< 0.000007	0.00007	0.05	7.7	< 0.000003	0.00004
OSK-W-17-812_102	Stériles	<u>0.014</u>	0.0021	< 0.000007	< 0.000007	0.04	12.1	< 0.000003	0.00001

Identification de	Type de	Cr	Cu	Fe	К	Li	Mg	Mn	Мо	Na
l'échantillon	l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
RES		0.016	0.0073					2.3	29	
<u>EC</u>		<u>0.05</u>	<u>1.0</u>					<u>0.05</u>	0.04	<u>200</u>
CND 1	Résidus	0.00009	0.0008	< 0.007	0.6	0.0033	11	<u>0.146</u>	0.032	1.6
CND 4	Résidus	< 0.00008	0.0011	< 0.007	2.3	0.0061	40	0.394	0.039	2.2
CND 5	Résidus	0.00009	0.0007	0.009	1.6	0.0025	20	<u>0.151</u>	0.006	1.4
E-27-U-H	Minerai	0.00012	0.0002	< 0.007	9.6	0.0013	4.4	<u>0.097</u>	0.001	2.9
E-CA-U-H	Minerai	< 0.00008	0.0012	< 0.007	9.3	0.0049	5.2	0.022	0.021	4.2
P3-K	Minerai	0.00014	0.0003	< 0.007	6.0	0.0027	3.9	0.003	0.001	3.6
Under Dog A	Minerai	0.00021	0.0144	0.030	5.3	0.0004	0.5	0.002	0.002	2.5
OSK-W-16-760_31	Stériles	< 0.00008	0.0005	< 0.007	6.2	0.0032	2.3	0.002	0.032	3.0
OBM-16-630_61	Stériles	< 0.00008	0.0004	< 0.007	9.0	0.0018	1.3	0.006	0.001	2.9
EAG-13-485_3	Stériles	0.00017	0.0032	0.010	5.3	0.0005	0.7	0.001	0.000	2.5
OSK-W-16-760_67	Stériles	< 0.00008	0.0006	< 0.007	3.5	0.0032	1.8	0.001	0.000	3.1
OBM-16-580_17	Stériles	0.00009	0.0050	< 0.007	13.9	0.0016	5.6	0.015	0.000	2.6
OSK-W-17-773_41	Stériles	< 0.00008	0.0003	< 0.007	5.3	0.0025	3.1	0.001	0.010	2.7
OBM-15-564_79	Stériles	0.00019	0.0006	0.018	5.1	0.0026	0.8	0.001	0.000	3.8
OSK-W-17-774_44	Stériles	< 0.00008	0.0003	< 0.007	5.2	0.0007	0.5	0.000	0.011	4.6
OBM-16-671_23	Stériles	< 0.00008	0.0002	< 0.007	7.8	0.0015	4.2	0.001	0.010	3.7
OSK-W-16-743_93	Stériles	0.00027	0.0037	0.030	6.6	0.0010	0.4	0.001	0.000	3.5
OSK-W-17-812_102	Stériles	0.00009	< 0.0002	< 0.007	4.6	0.0030	4.8	0.005	0.000	6.7

Identification de	Type de	Ni	Р	Pb	Sb	Se	Sn	Sr	Te	Ti
l'échantillon	l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
RES		0.26	1.0	0.034	1.1	0.062				
<u>EC</u>		0.07		<u>0.01</u>	0.006	<u>0.01</u>				
CND 1	Résidus	0.00050	< 0.003	0.00001	0.0034	0.0013	0.002	0.082	< 0.0001	0.00016
CND 4	Résidus	0.00150	< 0.003	0.00004	0.0096	0.0023	0.002	0.274	< 0.0001	0.00023
CND 5	Résidus	0.00070	< 0.003	0.00003	0.0086	0.0020	0.000	0.260	< 0.0001	< 0.00005
E-27-U-H	Minerai	0.00020	< 0.003	0.00002	<u>0.0188</u>	0.0006	0.001	0.030	< 0.0001	< 0.00005
E-CA-U-H	Minerai	0.00040	< 0.003	0.00002	<u>0.0967</u>	0.0054	0.002	0.033	< 0.0001	0.00015
P3-K	Minerai	< 0.0001	< 0.003	0.00003	0.0291	0.0007	0.002	0.012	0.00010	0.00008
Under Dog A	Minerai	0.00020	< 0.003	0.00013	0.0426	0.0004	0.001	0.013	0.00020	< 0.00005
OSK-W-16-760_31	Stériles	< 0.0001	< 0.003	0.00002	0.0260	0.0002	0.002	0.011	< 0.0001	0.00038
OBM-16-630_61	Stériles	< 0.0001	< 0.003	0.00004	0.0256	0.0004	0.002	0.013	< 0.0001	0.00019
EAG-13-485_3	Stériles	< 0.0001	< 0.003	< 0.00001	0.0139	< 0.00004	0.001	0.008	0.00030	< 0.00005
OSK-W-16-760_67	Stériles	< 0.0001	< 0.003	0.00037	0.0133	0.0001	0.002	0.015	< 0.0001	0.00008
OBM-16-580_17	Stériles	0.00010	< 0.003	0.00009	0.0159	0.0016	0.002	0.040	< 0.0001	< 0.00005
OSK-W-17-773_41	Stériles	< 0.0001	< 0.003	< 0.00001	0.0059	0.0000	0.002	0.033	< 0.0001	< 0.00005
OBM-15-564_79	Stériles	< 0.0001	< 0.003	0.00009	0.0276	0.0002	0.002	0.014	< 0.0001	0.00010
OSK-W-17-774_44	Stériles	< 0.0001	< 0.003	0.00001	0.0234	0.0001	0.002	0.026	< 0.0001	0.00013
OBM-16-671_23	Stériles	< 0.0001	< 0.003	< 0.00001	0.0177	0.0001	0.002	0.192	< 0.0001	0.00014
OSK-W-16-743_93	Stériles	0.00010	0.010	< 0.00001	0.0887	0.0002	0.001	0.009	0.00030	0.00460
OSK-W-17-812_102	Stériles	< 0.0001	< 0.003	0.00005	0.0238	0.0001	0.002	0.019	< 0.0001	< 0.00005

Identification de	Type de	TI	Th	U	V	w	Zn
l'échantillon	l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
RES				0.32			0.067
<u>EC</u>				0.02			<u>5.0</u>
CND 1	Résidus	< 0.000005	< 0.0001	0.0004	0.0008	0.0001	< 0.002
CND 4	Résidus	< 0.000005	0.00010	0.0106	0.0008	0.0001	< 0.002
CND 5	Résidus	< 0.000005	< 0.0001	0.0027	0.0000	0.0002	< 0.002
E-27-U-H	Minerai	0.00001	< 0.0001	0.0000	0.0001	0.0013	< 0.002
E-CA-U-H	Minerai	< 0.000005	< 0.0001	0.0038	0.0007	0.0007	< 0.002
P3-K	Minerai	< 0.000005	< 0.0001	0.0001	0.0011	0.0009	< 0.002
Under Dog A	Minerai	< 0.000005	0.00040	0.0002	0.0005	0.0008	0.00400
OSK-W-16-760_31	Stériles	< 0.000005	< 0.0001	0.0034	0.0011	0.0003	< 0.002
OBM-16-630_61	Stériles	0.00001	< 0.0001	0.0003	0.0002	0.0010	< 0.002
EAG-13-485_3	Stériles	< 0.000005	0.00020	0.0000	0.0006	0.0019	< 0.002
OSK-W-16-760_67	Stériles	< 0.000005	< 0.0001	0.0007	0.0006	0.0022	< 0.002
OBM-16-580_17	Stériles	0.00001	< 0.0001	0.0008	0.0003	0.0028	< 0.002
OSK-W-17-773_41	Stériles	< 0.000005	< 0.0001	0.0019	0.0008	0.0006	< 0.002
OBM-15-564_79	Stériles	0.00001	< 0.0001	0.0003	0.0018	0.0006	< 0.002
OSK-W-17-774_44	Stériles	< 0.000005	< 0.0001	0.0003	0.0039	0.0011	< 0.002
OBM-16-671_23	Stériles	0.00001	< 0.0001	0.0001	0.0009	0.0024	< 0.002
OSK-W-16-743_93	Stériles	< 0.000005	< 0.0001	0.0000	0.0020	0.0010	< 0.002
OSK-W-17-812_102	Stériles	< 0.000005	< 0.0001	0.0001	0.0008	0.0005	< 0.002

Identification de	Lixiviation	Type de	Poids de l'échantillon	Vol H ₂ O ₂	pH final	NaOH	Vol NaOH à pH 4.5	Vol NaOH à pH 7.0	NAG (pH 4.5)	NAG (pH 7.0)	SO ₄
l'échantillon	séquentielle	l'échantillon	g	mL	pas d'unité	Normalité	mL	mL	kg H ₂ SO ₄ /tonne	kg H ₂ SO ₄ /tonne	mg/L
	RES										
	<u>EC</u>										
	1		1.5	150	2.4	0.1	9.5	12	31	39	1,000
	2		1.5	150	2.4	0.1	6.2	6.5	20	21	300
CND 1	3	Résidus	1.5	150	3.7	0.1	0.41	0.97	1.3	3.1	23
OND	4	residus	1.5	150	3.9	0.1	0.2	0.3	0.6	1.0	5.8
	5		1.5	150	4.7	0.1	0	0.19	0	0.6	2.8
	1-5		-	-	-	•	16	20	53	65	1,332
	1		1.5	150	2.4	0.1	11	13	34	42	980
	2		1.5	150	2.3	0.1	8.9	10.0	29	32	480
CND 4	3	Résidus	1.5	150	3.7	0.1	0.3	0.37	1.0	1.2	25
	4	residus	1.5	150	3.7	0.1	0.13	0.27	0.4	0.9	6.6
	5		1.5	150	4.7	0.1	0	0.15	0	0.5	3.2
	1-5		-	-	-	-	20	23	64	77	1,495
	1		1.5	150	2.6	0.1	5.3	9.1	17	29	900
	2		1.5	150	2.1	0.1	15	17	50	54	650
E-CA-U-H	3	Minerai	1.5	150	2.6	0.1	4.3	4.7	14	15	130
	4	Willicial	1.5	150	3.7	0.1	0.31	0.4	1.0	1.3	15
	5		1.5	150	4.4	0.1	0.07	0.21	0.2	0.7	3.4
	1-5		-	-	-	-	25	31	82	100	1,698
	1		1.5	150	2.3	0.1	12	15	39	47	720
	2		1.5	150	2.1	0.1	12	15	40	47	620
Under Dog A	3	Minerai	1.5	150	2.6	0.1	2.4	4.3	7.7	14	130
	4		1.5	150	4.0	0.1	0.15	0.27	0.5	0.9	12
	1-4		-	-	-	•	27	34	87	109	1,482
OSK-W-16- 760 31	1	Stériles	1.5	150	7.7	0.1	0	0	0	0	160
	1		1.5	150	11	0.1	0	0	0	0	82
EAG-13-485 3	2	Stériles	1.5	150	10	0.1	0	0	0	0	59
_	1-2		-	-	-	-	0	0	0	0	141
OSK-W-17- 773 41	1	Stériles	1.5	150	11	0.1	0	0	0	0	11
OSK-W-17- 774 44	1	Stériles	1.5	150	11	0.1	0	0	0	0	27
OBM-16- 671 23	1	Stériles	1.5	150	11	0.1	0	0	0	0	18
	1		1.5	150	2.3	0.1	10	12	34	38	610
OSK-W-16-	2	Stériles	1.5	150	2.5	0.1	5.0	6.2	16	20	280
743_93	1-2		-	-	-	-	15	18	50	58	890
		oo oouy ooutorro	! .,	'		·					

Identification de	Lixiviation	Type de	Poids de l'échantillon	Vol H ₂ O ₂	pH final	рН	Alcalinité	Conductivité	HCO₃
l'échantillon	séquentielle	l'échantillon	g	mL	pas d'unité	pas d'unité	mg/L CaCO₃	μS/cm	mg/L CaCO₃
	RES								
	<u>EC</u>								
	1		2.5	250	2.4	2.3	<2	3,070	<2
	2		2.5	250	2.4	-	-	1	-
CND 1	3	Résidus	2.5	250	3.7	-	-	-	-
OND 1	4	residus	2.5	250	4.0	-	-	-	-
	5		2.5	250	4.3	-	-	-	-
	2-5		-	-	-	3.0	<2	457	<2
	1		2.5	250	2.3	2.3	<2	3,160	<2
	2		2.5	250	2.3	-	-	-	-
CND 4	CND 4 3	Résidus	2.5	250	3.7	-	-	-	-
02	4		2.5	250	4.1	-	-	-	-
	5		2.5	250	4.3	-	-	-	-
	2-5		-	-	-	2.8	<2	723	<2
	1		2.5	250	2.9	2.9	<2	1,530	<2
	2		2.5	250	2.1	-	-	-	-
E-CA-U-H	3	Minerai	2.5	250	2.4	-	-	-	-
	4		2.5	250	3.6	-	-	-	-
	5		2.5	250	4.0	-	-	-	-
	2-5		-	-	-	2.5	<2	1,550	<2
	1		2.5	250	2.2	2.2	<2	2,930	<2
Under Dog A	2	Minerai	2.5	250	2.0	-	-	-	-
Olidel Dog A	3 4	IVIIIIEIAI	2.5 2.5	250 250	2.6 3.7	-	-	-	-
	2-4	-	<u> </u>	250	3.1	2.4	- <2	1,890	- <2
OSK-W-16-760_31	1	Stériles	2.5	250	6.4	6.9	3.0	561	3.0
	1	0.7.11	2.5	250	11	10	45	315	5.0
EAG-13-485_3	2	Stériles	2.5	250	11	9.7	53	221	12
OSK-W-17-773_41	1	Stériles	2.5	250	12	11	106	285	<2
OSK-W-17-774 44	1	Stériles	2.5	250	12	11	79	250	<2
OBM-16-671 23	1	Stériles	2.5	250	12	11	67	206	<2
OCK W 40 742 00	1	Stériles	2.5	250	2.3	2.3	<2	2,220	<2
USK-VV-10-743_93	OSK-W-16-743_93	Steriles	2.5	250	2.4	2.4	<2	1,950	<2

Identification de	Lixiviation	Type de	CO ₃	F	CI	SO ₄	P total réactif	Hg	Dureté	Ag
l'échantillon	séquentielle	l'échantillon	mg/L CaCO₃	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L CaCO₃	mg/L
	RES			4.0	860			0.0000013		0.00062
	<u>EC</u>			<u>1.5</u>	<u>250</u>			0.001		<u>0.1</u>
	1		<2	0.13	<2	980	0.03	0.0000026	547	0.0015
	2]	-	-	-	-	-	-	-	-
CND 1	3	Résidus	-	-	-	-	-	-	-	-
	4		-	-	-	-	-	-	-	-
	5	ļ	-	-	-	-	-	-	-	-
	2-5		<2	0.12	<2	69	<0.03	<0.00001	8.8	0.0011
	1 2	-	<2	0.19	<2	910	0.03	0.00000025	475	0.00077
	3	ł	- -	-		-	-	-	-	-
CND 4	4	Résidus	- -			-	-	-	-	
	5			-		-		_	_	
	2-5		<2	0.15	<2	98	<0.03	<0.00001	9.6	0.0011
	1 1		<2	0.09	<2	670	0.03	0.0000012	451	0.0026
	2	İ	-	-	-	-	-	-	-	-
E-CA-U-H	3	Minerai	-	-	-	-	-	-	-	-
E-CA-U-H	4	iviirierai	-	-	-	-	-	-	-	-
	5		-	-	-	-	-	-	-	-
	2-5		<2	0.12	<2	230	<0.03	<0.00001	6.1	0.036
	1]	<2	0.27	<2	660	0.06	0.000005	147	0.0058
	2		-	-	-	-	-	-	-	-
Under Dog A	3	Minerai	-	-	-	-	-	-	-	-
	4	ļ	-	-	-	-	-	-	-	-
	2-4		<2	0.17	<2	260	0.04	<0.00001	8.9	0.0015
OSK-W-16-760_31	1	Stériles	<2	0.15	<2	270	<0.03	0.00000021	304	<0.00005
EAG-13-485 3	1	Stériles	40	0.06	<2	93	<0.03	0.00000033	146	<0.00005
_	2	Otornoo	41	0.08	0.4	49	<0.03	0.000010	139	<0.00005
OSK-W-17-773_41	1	Stériles	62	<0.06	<2	12	<0.03	0.00000048	133	<0.00005
OSK-W-17-774 44	1	Stériles	65	0.09	<2	27	<0.03	0.00000046	99	<0.00005
OBM-16-671_23	1	Stériles	50	0.06	<2	19	<0.03	0.00000047	89	<0.00005
OSK-W-16-743 93	1	Stériles	<2	0.32	<2	540	0.07	0.0000013	117	0.0086
301(-10-740_99	2	Otoriios	<2	0.37	3.0	310	0.03	<0.00001	19	0.0025

Identification de	Lixiviation séquentielle	Type de	Al	As	Ва	Be	Bi	В	Ca	Cd
l'échantillon	séquentielle	l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	RES			0.34	0.6			28		0.0011
	<u>EC</u>		<u>0.1</u>	0.0003	<u>1.0</u>			<u>5.0</u>		0.005
	1		5.4	0.0053	0.09	0.00056	0.000007	0.049	130	0.073
	2		-	-	-	-	-	-	-	-
CND 1	3	Résidus	-	-	-	-	-	-	-	-
	4	rtoolado	-	-	-	-	-	-	-	-
	5		-	-	-	-	-	-	-	-
	2-5		0.86	0.0003	0.021	0.000033	0.000035	0.028	2.0	0.0015
	1		6.2	0.008	0.097	0.0008	0.00001	0.097	125	0.046
	2		-	-	-	-	-	-	-	-
CND 4	3	Résidus	-	-	-	-	-	-	-	-
	4		-	-	-	-	-	-	-	-
	5 2-5		1.2	0.0002	0.0082	0.000059	- <0.000007	0.045	2.2	0.00097
	2-5 1		2.8	0.0002	0.0082	0.000059	<0.000007	0.045	112	0.00097
	2		-	0.0037	0.12	0.00072	-0.000007	-	- 112	0.10
	3	1	<u>-</u>	<u>-</u>	-	-	<u>-</u>		-	
E-CA-U-H	4	Minerai			_				_	
	5	i l		_		_	_		_	
	2-5		2.5	0.0011	0.029	0.000067	<0.000007	0.063	1.5	0.013
	1		8.0	0.0051	0.086	0.0008	0.000008	0.053	50	0.019
	2	1	-	-	-	-	-	-	-	-
Under Dog A	3	Minerai	-	-	-	-	-	-	-	-
_	4		-	-	-	-	-	-	-	-
	2-4		2.2	0.0006	0.0098	0.00012	<0.000007	0.036	1.8	0.0018
OSK-W-16-760_31	1	Stériles	0.005	<0.0002	0.0086	<0.000007	<0.000007	0.064	85	0.0004
EAG-13-485 3	1	Stériles	2.6	<0.0002	0.0011	<0.000007	<0.000007	0.38	59	0.000006
LAG-13-400_3	2	Oteriles	1.3	0.0006	0.0004	<0.000007	<0.000007	1.2	56	<0.000003
OSK-W-17-773_41	1	Stériles	1.3	<0.0002	0.0038	<0.000007	<0.000007	1.5	53	<0.000003
OSK-W-17-774 44	1	Stériles	5.4	<0.0002	0.0044	<0.000007	0.000013	0.63	40	<0.000003
OBM-16-671_23	1	Stériles	1.4	<0.0002	0.076	<0.000007	<0.000007	1.9	36	<0.000003
OSK-W-16-743 93	1	Stériles	9.6	0.004	0.099	0.00096	0.000008	0.12	43	0.0035
USN-W-10-743_93	2	Sternes	4.2	0.001	0.016	0.00024	<0.000007	0.094	5.8	0.0004

Identification de	Lixiviation séquentielle	Type de	Co	Cr	Cu	Fe	К	Li	Mg	Mn
l'échantillon	séquentielle	l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	RES		0.37	0.016	0.0073					2.3
	<u>EC</u>			0.05	<u>1.0</u>					<u>0.05</u>
	1		0.11	0.072	1.4	35	4.1	0.014	54	4.9
	2		-	-	-	-	-	-	-	-
CND 1	3	Résidus	-	-	-	-	-	-	-	-
J 3112 1	4	rtoolado	-	-	-	-	-	-	-	-
	5		-	-	-	-	-	-	-	-
	2-5		0.0071	0.15	0.021	0.46	0.63	0.0044	0.93	0.086
	1		0.14	0.08	1.9	29	3.6	0.013	40	3.4
	2		-	-	-	-	-	-	-	-
CND 4	3	Résidus	-	-	-	-	-	-	-	-
	4		-	-	-	-	-	-	-	-
	5 2-5	-	0.013	0.15	0.031	0.96	0.52	0.0042	1.0	0.072
	2-5 1		0.013	0.0097	2.6	16	5.7	0.0042	42	4.2
	2		0.045	0.0097	2.0	-	- -	-	- 42	4.2
	3		-	-	_	-				-
E-CA-U-H	4	Minerai	-							-
	5	i	-		_	_		_	_	_
	2-5	1	0.014	0.03	0.36	4.8	0.97	0.0042	0.56	0.022
	1		0.043	0.036	3.6	42	5.3	0.0083	5.7	0.75
	2	1	-	-	-	-	-	-	-	-
Under Dog A	3	Minerai	-	-	-	-	-	-	-	-
	4		-	-	-	-	-	-	-	-
	2-4		0.015	0.025	0.077	2.5	0.94	0.0045	1.1	0.015
OSK-W-16-760_31	1	Stériles	0.0022	0.0003	0.0008	<0.007	6.0	0.0033	22	0.12
EAG-13-485_3	1	Stériles	0.000036	0.015	0.0008	0.013	3.5	0.0014	0.006	0.00021
LAG-13-400_3	2	Oteriles	0.000019	0.0072	0.001	<0.007	1.2	0.0013	0.012	0.00061
OSK-W-17-773_41	1	Stériles	0.00013	0.018	0.0007	<0.007	2.6	0.0012	0.004	0.00008
OSK-W-17-774 44	1	Stériles	0.000052	0.0095	0.0002	<0.007	5.4	0.0007	0.005	0.00022
OBM-16-671_23	1	Stériles	0.000023	0.017	<0.0002	<0.007	3.0	0.0006	0.007	0.00012
OSK-W-16-743 93	1	Stériles	0.11	0.024	2.2	16	6.3	0.0089	2.4	0.5
U3N-W-10-743_93	2	Sterilles	0.053	0.016	0.17	1.7	3.4	0.0048	1.1	0.029

Identification de	Lixiviation	Type de	Мо	Na	Ni	Р	Pb	Sb	Se	Sn
l'échantillon	séquentielle	l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	RES		29		0.26	1.0	0.034	1.1	0.062	
	<u>EC</u>		0.04	200	<u>0.07</u>		<u>0.01</u>	0.006	0.01	
	1		0.00021	2.4	0.21	0.004	0.81	0.0009	0.012	<0.00006
	2		-	-	-	-	-	-	-	-
CND 1	3	Résidus	-	-	-	-	-	-	-	-
	4		-	-	-	-	-	-	-	-
	5		-	-	-	-	-	-	-	-
	2-5		0.0061	0.15	0.041	0.005	0.079	<0.0009	0.0011	0.0037
	1	ļ	0.00013	1.4	0.25	0.012	0.88	0.0012	0.015	<0.00006
	2	ļ	-	-	-	-	-	-	-	-
CND 4	3	Résidus	-	-	-	-	-	-	-	-
	4		-	-	-	-	-	-	-	-
	5 2-5		- 0.0000	- 0.24	- 0.040		- 0.070	-	- 0.0040	- 0.0000
	2-5		0.0086 0.00009	0.24 1.3	0.048 0.092	<0.003 <0.003	0.073 0.07	<0.0009 0.0018	0.0019 0.018	0.0022 <0.00006
	2	1	0.00009	1.3	0.092	<0.003	0.07	0.0016	0.016	-0.00000
	3				<u>-</u>					
E-CA-U-H	4	Minerai	_						-	
	5	ł	_		_				_	
	2-5		0.0021	0.18	0.023	0.007	0.048	0.0017	0.0051	<0.00006
	1		0.00031	1.7	0.082	0.043	0.032	0.0015	0.011	<0.00006
	2	1	-	-	-	-	-	-	-	-
Under Dog A	3	Minerai	-	-	_	-	-	-	-	-
	4	1	-	-	-	-	-	-	-	-
	2-4	1	0.021	0.42	0.028	0.01	0.008	0.0012	0.0044	<0.00006
OSK-W-16-760_31	1	Stériles	0.017	0.95	0.0003	<0.003	0.00001	<0.0009	0.0025	<0.00006
EAG-13-485 3	1	Stériles	0.006	1.8	<0.0001	<0.003	0.00004	0.0042	0.00066	0.00012
LAG-13-403_3	2	Steriles	0.0013	1.5	0.0005	<0.003	0.00001	0.0024	0.00029	0.00031
OSK-W-17-773_41	1	Stériles	0.0024	1.7	0.0001	<0.003	0.00003	0.0022	0.00032	0.00021
OSK-W-17-774 44	1	Stériles	0.0025	7.5	<0.0001	<0.003	0.00001	0.002	0.00017	0.00018
OBM-16-671 23	1	Stériles	0.0084	4.4	<0.0001	< 0.003	<0.00001	0.0038	0.00093	0.00019
OSK-W-16-743 93	1	Stériles	0.00014	1.9	0.12	0.05	0.012	0.004	0.0093	<0.00006
USK-VV-10-743_93	2	Sterilles	0.00012	0.9	0.057	0.022	0.004	0.0015	0.0048	<0.00006

Identification de	Lixiviation	Type de	Sr	Te	Ti	TI	Th	U	V	w	Zn
l'échantillon	séquentielle	l'échantillon	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	RES							0.32			0.067
	<u>EC</u>							0.02			<u>5.0</u>
	1		0.19	0.0012	0.00046	0.00012	0.0029	0.0013	0.00023	<0.00002	7.8
	2		-	-	-	-	-	-	-	-	-
CND 1	3	Résidus	-	-	-	-	-	-	-	-	-
	4		-	-	-	-	-	-	-	-	-
	5		- 0.0077	-	- 0.00050	- 0.000004	- 0.0004	-	-	-	-
	2-5 1		0.0077	0.0003	0.00059	0.000021	0.0001	0.00012	0.0019	0.00056	0.22
	2	-	0.17	0.0021	0.0026	0.00012	0.0042	0.0019	0.00045	<0.00002	3.6
	3	1		-				_			-
CND 4	4	Résidus				-		 			
	5	†		_		_	_	_	_	_	_
	2-5	1	0.0077	0.0007	0.00025	0.000025	0.0003	0.0001	0.0023	0.0016	0.11
	1		0.19	0.0009	0.0001	0.00032	0.0006	0.001	0.00004	<0.00002	23
	2	1	-	-	-	-	-	-	-	-	-
E-CA-U-H	3	Minerai	-	-	-	-	-	-	-	-	-
E-CA-U-H	4	iviirierai	-	-	-	-	-	-	-	-	-
	5		-	-	-	-	-	-	-	-	-
	2-5		0.0059	0.0014	0.0003	0.000055	0.0015	0.00027	0.00078	0.00026	1.7
	1		0.1	0.0026	0.0016	0.00011	0.0064	0.0018	0.00035	<0.00002	1.9
	2		-	-	-	-	-	-	-	-	-
Under Dog A	3	Minerai	-	-	-	-	-	-	-	-	-
	4		-	-	-	-	-	-	-	-	-
	2-4		0.0068	0.0007	0.00076	0.000027	0.0015	0.00022	0.0025	0.0079	0.2
OSK-W-16-760_31	1	Stériles	0.048	<0.0001	0.00007	0.000029	<0.0001	0.000002	0.00005	<0.00002	0.025
EAG-13-485 3	1	Stériles	0.038	<0.0001	<0.00005	0.00003	<0.0001	<0.000002	0.0086	0.00078	<0.002
	2		0.02	<0.0001	<0.00005	0.000011	<0.0001	<0.000002	0.011	0.00041	<0.002
OSK-W-17-773_41	1	Stériles	0.16	<0.0001	<0.00005	0.000018	<0.0001	<0.000002	0.0038	0.00032	<0.002
OSK-W-17-774 44	1	Stériles	0.26	<0.0001	0.00006	0.000047	<0.0001	<0.000002	0.0023	0.00059	<0.002
OBM-16-671_23	1	Stériles	0.23	<0.0001	<0.00005	0.000015	<0.0001	<0.000002	0.0019	0.001	<0.002
OSK-W-16-743 93	1	Stériles	0.064	0.0008	0.0015	0.00015	0.0069	0.002	0.00047	<0.00002	0.41
351(17 10 140_00	2	Otorilos	0.016	0.0003	0.00048	0.000046	0.0013	0.00037	0.00008	<0.00002	0.048

ANNEXE

C

CERTIFICATS DE LABORATOIRE

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC.

1135 BOULEVARD LEBOURGNEUF

QUEBEC, QC G2K 0M5

(418) 623-7066

À L'ATTENTION DE: Steve St-Cyr

N° DE PROJET: 201-11330-19

ANALYSE DES SOLS VÉRIFIÉ PAR: Hasti Kamalimoghadam, Chimiste, AGAT Montréal

ORGANIQUE DE TRACE VÉRIFIÉ PAR: Robert Roch, Chimiste, AGAT Montréal

DATE DU RAPPORT: 11 nov. 2021

N° BON DE TRAVAIL: 21Q819433

NOMBRE DE PAGES: 58 VERSION*: 1

Pour tout complément d'information concernant cette analyse, veuillez contacter votre chargé(e) de projet client au (418) 266-5511.

1.10	Avis de non-responsabilité:	

- L'ensemble des travaux réalisés dans le présent document ont été effectués en utilisant des protocoles normalisés reconnus, ainsi que des pratiques et des méthodes généralement acceptées. En vue d'améliorer la performance, les méthodes analytiques d'AGAT pourraient comprendre des modifications issues des méthodes de référence spécifiées.
- Tous les échantillons seront éliminés trente (30) jours après réception au laboratoire à moins qu'une Entente d'entreposage à long terme ne soit signée et retournée. Certaines analyses spécialisées peuvent être exemptées. Veuillez communiquer avec votre chargé de projets à la clientèle pour plus
- La responsabilité d'AGAT en ce qui concerne tout retard, exécution ou non-exécution de ces services s'applique uniquement envers le client et ne s'étend à aucune autre tierce partie. À moins qu'il n'en soit par ailleurs convenu expressément par écrit, la responsabilité d'AGAT se limite au coût réel de l'analyse ou des analyses spécifiques incluses dans les services.
- Sauf accord écrit préalable d'AGAT Laboratoires, ce certificat ne doit être reproduit que dans sa totalité.
- Les résultats d'analyse communiqués ci-joint ne concernent que les échantillons reçus par le laboratoire.
- L'application des lignes directrices est fournie « en l'état » sans garantie de quelque nature que ce soit, ni expresse ni tacite, y compris, mais sans s'y limiter, les garanties de qualité marchande, d'aptitude à un usage particulier ou de non-contrefaçon. AGAT n'assume aucune responsabilité à l'égard de toute erreur ou omission dans les directives que contient ce document.
- Toutes les informations rapportables sont disponibles sur demande auprès d'AGAT Laboratoires, conformément aux normes ISO/IEC 17025:2017, DR-12-PALA et/ou NELAP.

AGAT Laboratoires (V1) Page 1 de 58

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

PRELEVE PAR:ITSE KAN	DOOK						LIEU DE	PRELEVEINE	NI:WINDFALL	LANE	
				Analys	es Inorgani	ques (sol)				
DATE DE RÉCEPTION: 2021	I-08-10								DATE DU RAPF	PORT: 2021-11-	11
							R-TR01-21-40-	TU-TR01-21-52-	BD-TR03-21-120	BD-TR01-21-46-	BI-TR03-21-31-
				IDENTIF	ICATION DE L'É	CHANTILLON:	70	190	-175	155	35
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2021-07-23	2021-07-23	2021-07-23	2021-07-23	2021-07-24
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115451	3115454	3115458	3115460	3115462
Carbone organique total	%					0.3	0.8	<0.3	<0.3	<0.3	2.6
Soufre total	mg/kg	400	2000	2000		200	<200	<200	<200	<200	<200
							BD-TR02-21-150	BB-TR01-21-57-	BI-TR01-21-107-	CAMP-TR02-21-	CAMP-TR01-21-
				IDENTIF	ICATION DE L'É	CHANTILLON:	-170	170	189	73-170	32-63
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2021-07-24	2021-07-24	2021-07-24	2021-07-25	2021-07-25
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115465	3115467	3115469	3115480	3115483
Carbone organique total	%					0.3	<0.3	<0.3	<0.3	<0.3	0.8
Soufre total	mg/kg	400	2000	2000		200	<200	<200	1310[A-C]	<200	<200
							CC-TR02-21-61-	CC-TR01-21-68-	BF-TR02-21-40-	BF-TR03-21-79-	BF-TR01-21-22-
				IDENTIF	ICATION DE L'É	CHANTILLON:	174	134	51	139	54
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2021-07-25	2021-07-25	2021-07-25	2021-07-25	2021-07-25
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115497	3115499	3115502	3115507	3115516
Carbone organique total	%					0.3	<0.3	< 0.3	0.4	< 0.3	< 0.3
Soufre total	mg/kg	400	2000	2000		200	<200	<200	217[<a]< td=""><td><200</td><td><200</td></a]<>	<200	<200
									HMBT-F02-	BAD-F01-21_CF	
				IDENTIF	ICATION DE L'É	CHANTILLON:	DUP-12-21	DUP-09-21	21_CF-1	-2	HS-F01-21_CF-1
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2021-07-25	2021-07-25	2021-07-23	2021-07-23	2021-07-24
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115519	3115522	3115551	3115556	3115560
Carbone organique total	%					0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Soufre total	mg/kg	400	2000	2000		200	<200	<200	<200	<200	<200

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

PRELEVE PAR:ITSE RAN	DOUR						LIEU DE	PRELEVENIEN	II:WINDFALL	LANE	
				Analys	ses Inorgan	iques (sol))				
DATE DE RÉCEPTION: 2021	-08-10							D	ATE DU RAPI	PORT: 2021-11-	-11
								DUP-2_2021-07-	HMBT-F03-		
				IDENTI	FICATION DE L'É	CHANTILLON:	HS-F01-21_CF-2	24	21_CF-1C	BE-F01-21_CF-2	2 BE-F01-21_CF-
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2021-07-24	2021-07-24	2021-07-25	2021-07-25	2021-07-25
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115561	3115567	3115569	3115572	3115573
Carbone organique total	%					0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Soufre total	mg/kg	400	2000	2000		200	<200	<200	<200	<200	<200
							HMBT-F01-	BC-F01-21_CF-	UTM-F05-21_CF	DUP-2_2021-08	-
				IDENTI	FICATION DE L'É	CHANTILLON:	21_CF-1B	1B	-1A	02	BD-F03-21_CF-
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2021-07-26	2021-07-26	2021-08-02	2021-08-02	2021-08-04
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115574	3115576	3115589	3115594	3115601
Carbone organique total	%					0.3	2.6	<0.3	3.6	1.6	<0.3
Soufre total	mg/kg	400	2000	2000		200	<200	<200	<200	<200	343[<a]< td=""></a]<>
								AHS-TR01-21-40	AHS-TR02-21-	AHS-TR03-21-19	9 AHS-TR03-21-8
				IDENTI	FICATION DE L'É	CHANTILLON:	BH-F01-21_CF-2	-67	219-300	-31	-130
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2021-08-04	2021-07-19	2021-07-19	2021-07-19	2021-07-19
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115602	3115605	3115615	3115617	3115621
Carbone organique total	%					0.3	<0.3	0.8	<0.3	2.0	<0.3
Soufre total	mg/kg	400	2000	2000		200	<200	<200	<200	610[A-C]	<200
							AHS-TR04-21-40	AHS-TR05-21-	AHS-TR05-21-	AHS-TR06-21-	HS-TR01-21-20-
				IDENTI	FICATION DE L'É		-55	104-145	145-210	150-210	41
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN		2021-07-19	2021-07-19	2021-07-19	2021-07-19	2021-07-20
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C/N:D	LDR	3115632	3115637	3115638	3115714	3115716
Carbone organique total	%					0.3	0.7	0.5	<0.3	<0.3	1.0
Carbone organique total											

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

FRELEVE FAR.ITSE KAN	IDOUK						LIEU DE I	FRELEVEIVIEN	NI.WINDFALL	LANE	
				Analys	ses Inorgan	iques (sol)				
DATE DE RÉCEPTION: 202	1-08-10								DATE DU RAPI	PORT: 2021-11-	11
							BE-TR01-21-40-	R-TR03-21-61-	R-TR04-21-38-	AHS-F03-21_CF	AHS-F04-21_CF
				IDENTII	FICATION DE L'É	CHANTILLON:	103	114	62	-1	-1
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2021-07-20	2021-07-20	2021-07-20	2021-07-20	2021-07-20
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115718	3115724	3115734	3115933	3115936
Carbone organique total	%					0.3	<0.3	<0.3	<0.3	1.4	1.6
Soufre total	mg/kg	400	2000	2000		200	<200	<200	<200	<200	<200
							AHS-F04-21_CF	2021-07-20_DUP	2021-07-20_DUF	AHS-F02-21_CF	
				IDENTII	FICATION DE L'É	CHANTILLON:	-3	-1	-2	-2	BA-F01-21_CF-2
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2021-07-20	2021-07-20	2021-07-20	2021-07-21	2021-07-22
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115968	3115969	3116044	3116048	3116086
Carbone organique total	%					0.3	0.4	1.3	3.0	<0.3	<0.3
Soufre total	mg/kg	400	2000	2000		200	<200	<200	300[<a]< td=""><td><200</td><td><200</td></a]<>	<200	<200
							BAD-F01-21 CF	COND-TR03-21-	COND-TR02-21-	COND-TR02-21-	COND-TR01-21-
				IDENTII	FICATION DE L'É	CHANTILLON:	-1	34-57	66-110	42-66	112-181
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2021-07-22	2021-07-26	2021-07-26	2021-07-26	2021-07-26
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3116087	3116091	3116114	3116115	3116126
Carbone organique total	%					0.3	<0.3	0.7	<0.3	<0.3	<0.3
Soufre total	mg/kg	400	2000	2000		200	<200	<200	<200	<200	<200
i							COND-TR04-21-	CAMP-TR03-21-	BI-F03-21 CF-	RC-F03-21 CF-	HMT-F03-21 CF
				IDENTII	FICATION DE L'É		49-140	50-84	1A	1B	-2
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN			2021-07-26	2021-08-05	2021-08-05	2021-08-06
		0 (1)	C / NI- D	C / N: C	C / N: D		3116128	3116131	3116155	3116158	3116189
Paramètre	Unités	C / N: A	C / N: B	C/N.C	C/N.D	LDR	3110120	3110131	3110133	3110130	3110103
Paramètre Carbone organique total	Unités %	C/N: A	C/N:B	C/N.C	C/N.D	0.3	<0.3	0.6	2.4	<0.3	0.8

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

FRELEVE FAR.ITSE KAI	1DOOK						LILU DL	FRELEVENIEN	I.WINDI ALI	LANL	
				Analys	es Inorgani	iques (sol))				
DATE DE RÉCEPTION: 202	1-08-10							D	ATE DU RAPI	PORT: 2021-11	-11
				DUP-2_2021-08- VR1-F01-21_C					CAMP-F02-	DUP-1_2021-08	}-
				IDENTIF	ICATION DE L'É	CHANTILLON:	06	1A	21_CF-1	07	TS-F02-21_CF-3
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2021-08-06	2021-08-07	2021-08-07	2021-08-07	2021-07-28
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3116191	3116192	3116217	3116219	3116235
Carbone organique total	%					0.3	<0.3	2.9	12.5	2.8	<0.3
Soufre total	mg/kg	400	2000	2000		200	<200	<200	<200	<200	<200
							TU-F01-21_CF-	VR6-F01-21_CF-	UTM-F01-21_CF	F UTM-F01-21_C	F
				IDENTIF	ICATION DE L'É	CHANTILLON:	1B	1	-1	-3	TU-F03-21_CF-1
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2021-07-29	2021-07-29	2021-07-30	2021-07-30	2021-07-30
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3116240	3116261	3116273	3116276	3116279
Carbone organique total	%					0.3	0.4	1.4	2.1	<0.3	1.1
Soufre total	mg/kg	400	2000	2000		200	721[A-C]	<200	<200	<200	<200
							TU-F04-21 CF-	UTM-F02-21_CF	UTM-F03-21 CF	SSE-F01-21 CF	F- SSE-F02-21 CF-
				IDENTIF	ICATION DE L'É	CHANTILLON:	1B	-1D	-1B	1B	1B
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2021-07-31	2021-07-31	2021-07-31	2021-08-01	2021-08-01
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3116311	3116322	3116325	3116349	3116360
Carbone organique total	%					0.3	0.5	0.9	0.3	<0.3	0.9
Soufre total	mg/kg	400	2000	2000		200	211[<a]< td=""><td><200</td><td><200</td><td><200</td><td><200</td></a]<>	<200	<200	<200	<200
							UTM-F06-21_CF	UTM-F07-21_CF			
				IDENTIF	ICATION DE L'É	CHANTILLON:	-1C	-2			
						MATRICE:	Sol	Sol			
					DATE D'ÉCHAN	TILLONNAGE:	2021-08-01	2021-08-01			
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3116361	3116435			
Paramètre Carbone organique total	Unités %	C / N: A	C / N: B		C / N: D		3116361 2.3	3116435 0.7			

Certifié par:

N° BON DE TRAVAIL: 21Q819433

N° DE PROJET: 201-11330-19

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyses Inorganiques (sol)

DATE DE RÉCEPTION: 2021-08-10 DATE DU RAPPORT: 2021-11-11

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3115451-3116435 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Montréal (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

PRELEVE	PAR:ITSE RAI	NDOUR						LIEU DE	PRELEVEINE	NI:WINDFALL	LANE	
					Analys	es inorgani	ques (Sol)				
DATE DE I	RÉCEPTION: 202	1-08-10								DATE DU RAPP	ORT: 2021-11-	11
								R-TR01-21-40-	TU-TR01-21-52-	BD-TR03-21-120	BD-TR01-21-46-	BI-TR03-21-31-
					IDENTI	FICATION DE L'É	CHANTILLON:	70	190	-175	155	35
							MATRICE:	Sol	Sol	Sol	Sol	Sol
						DATE D'ÉCHAN	TILLONNAGE:	2021-07-23	2021-07-23	2021-07-23	2021-07-23	2021-07-24
	Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115451	3115454	3115458	3115460	3115462
Н		рН					NA	6.54	5.73	5.95	6.60	5.15
6 Humidité		%					0.2	16.5	10.5	17.3	12.7	23.2
								BD-TR02-21-150	BB-TR01-21-57-	BI-TR01-21-107-	CAMP-TR02-21-	CAMP-TR01-21
					IDENTI	FICATION DE L'É	CHANTILLON:	-170	170	189	73-170	32-63
							MATRICE:	Sol	Sol	Sol	Sol	Sol
						DATE D'ÉCHAN	TILLONNAGE:	2021-07-24	2021-07-24	2021-07-24	2021-07-25	2021-07-25
	Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115465	3115467	3115469	3115480	3115483
Н		рН					NA	6.05	6.05	3.25	5.28	4.79
% Humidité		%					0.2	14.9	8.9	13.5	4.6	10.8
								CC-TR02-21-61-	CC-TR01-21-68-	BF-TR02-21-40-	BF-TR03-21-79-	BF-TR01-21-22
					IDENTI	FICATION DE L'É	CHANTILLON:	174	134	51	139	54
							MATRICE:	Sol	Sol	Sol	Sol	Sol
						DATE D'ÉCHAN	TILLONNAGE:	2021-07-25	2021-07-25	2021-07-25	2021-07-25	2021-07-25
	Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115497	3115499	3115502	3115507	3115516
Н		рН					NA	5.94	5.21	4.82	5.06	6.46
6 Humidité		%					0.2	3.3	2.8	10.3	13.0	3.2
										HMBT-F02-	BAD-F01-21 CF	
					IDENTI	FICATION DE L'É	CHANTILLON:	DUP-12-21	DUP-09-21	21_CF-1	-2	HS-F01-21_CF-
							MATRICE:	Sol	Sol	Sol	Sol	Sol
						DATE D'ÉCHAN	TILLONNAGE:	2021-07-25	2021-07-25	2021-07-23	2021-07-23	2021-07-24
	Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115519	3115522	3115551	3115556	3115560
Н		рН					NA	5.63	6.62			
% Humidité		%					0.2	4.8	3.6	4.1	2.7	3.6

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

FRELEVE FAR.ITSE	KANDOOK		LIEU DE FREEEVEMENT.WINDI ALE LAKE											
				Analys	ses inorgani	iques (Sol)							
DATE DE RÉCEPTION	: 2021-08-10							D	ATE DU RAPI	PORT: 2021-11	-11			
								DUP-2_2021-07-	HMBT-F03-					
				IDENTI	FICATION DE L'É	CHANTILLON:	HS-F01-21_CF-2	24	21_CF-1C	BE-F01-21_CF-	2 BE-F01-21_CF-			
						MATRICE:	Sol	Sol	Sol	Sol	Sol			
					DATE D'ÉCHAN	TILLONNAGE:	2021-07-24	2021-07-24	2021-07-25	2021-07-25	2021-07-25			
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115561	3115567	3115569	3115572	3115573			
% Humidité	%					0.2	2.8	3.4	6.4	10.1	17.5			
							HMBT-F01-	BC-F01-21_CF-	UTM-F05-21_CF	DUP-2_2021-08	-			
				IDENTI	FICATION DE L'É	CHANTILLON:	21_CF-1B	1B	-1A	02	BD-F03-21_CF-			
						MATRICE:	Sol	Sol	Sol	Sol	Sol			
					DATE D'ÉCHAN	TILLONNAGE:	2021-07-26	2021-07-26	2021-08-02	2021-08-02	2021-08-04			
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115574	3115576	3115589	3115594	3115601			
рН	рН					NA	5.15	5.90	5.22	5.45	4.02			
% Humidité	%					0.2	16.3	3.8	17.6	17.7	19.2			
								AHS-TR01-21-40	AHS-TR02-21-	AHS-TR03-21-1	9 AHS-TR03-21-80			
				IDENTI	FICATION DE L'É	CHANTILLON:	BH-F01-21_CF-2	-67	219-300	-31	-130			
						MATRICE:	Sol	Sol	Sol	Sol	Sol			
					DATE D'ÉCHAN	TILLONNAGE:	2021-08-04	2021-07-19	2021-07-19	2021-07-19	2021-07-19			
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115602	3115605	3115615	3115617	3115621			
рН	рН					NA	6.35	5.27	5.89	4.95	5.17			
% Humidité	%					0.2	8.3	9.1	4.2	28.4	4.6			
					_		AHS-TR04-21-40		AHS-TR05-21-		HS-TR01-21-20-			
				IDENTI	FICATION DE L'É	CHANTILLON:	-55	104-145	145-210	150-210	41			
						MATRICE:	Sol	Sol	Sol	Sol	Sol			
					DATE D'ÉCHAN	TILLONNAGE:	2021-07-19	2021-07-19	2021-07-19	2021-07-19	2021-07-20			
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115632	3115637	3115638	3115714	3115716			
рН	рН					NA	5.02	5.59	7.40	6.12	5.45			
% Humidité	%					0.2	16.3	16.4	9.8	14.3	12.5			

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

		12001								*********		
					Analys	es inorgani	ques (Sol)				
DATE DE F	RÉCEPTION: 202	1-08-10							Γ	DATE DU RAPP	ORT: 2021-11-	11
								BE-TR01-21-40-	R-TR03-21-61-	R-TR04-21-38-	AHS-F03-21_CF	AHS-F03-21_CI
					IDENTII	FICATION DE L'É	CHANTILLON:	103	114	62	-1	-2
							MATRICE:	Sol	Sol	Sol	Sol	Sol
						DATE D'ÉCHAN	TILLONNAGE:	2021-07-20	2021-07-20	2021-07-20	2021-07-20	2021-07-20
	Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115718	3115724	3115734	3115933	3115934
рН		рН					NA	5.34	5.48	5.07	5.61	5.15
% Humidité		%					0.2	2.0	4.3	6.1	12.4	23.4
								AHS-F04-21_CF	AHS-F04-21_CF	2021-07-20_DUP	2021-07-20_DUP	AHS-F02-21_C
					IDENTII	FICATION DE L'É	CHANTILLON:	-1	-3	-1	-2	-2
							MATRICE:	Sol	Sol	Sol	Sol	Sol
						DATE D'ÉCHAN	TILLONNAGE:	2021-07-20	2021-07-20	2021-07-20	2021-07-20	2021-07-21
	Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115936	3115968	3115969	3116044	3116048
рН		рН					NA	5.28	5.85	5.75	5.18	5.98
% Humidité		%					0.2	17.7	13.3	11.7	22.0	2.3
									BAD-F01-21_CF	COND-TR03-21-	COND-TR02-21-	COND-TR02-21
					IDENTII	FICATION DE L'É	CHANTILLON:	BA-F01-21_CF-2	-1	34-57	66-110	42-66
							MATRICE:	Sol	Sol	Sol	Sol	Sol
						DATE D'ÉCHAN	TILLONNAGE:	2021-07-22	2021-07-22	2021-07-26	2021-07-26	2021-07-26
	Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3116086	3116087	3116091	3116114	3116115
рН		рН					NA	6.01	5.74	4.78	5.54	5.58
% Humidité		%					0.2	2.9	3.5	16.3	10.3	5.5
								COND-TR01-21-	COND-TR04-21-	CAMP-TR03-21-	BI-F03-21_CF-	RC-F03-21_CF
					IDENTII	FICATION DE L'É	CHANTILLON:	112-181	49-140	50-84	1A	1B
							MATRICE:	Sol	Sol	Sol	Sol	Sol
						DATE D'ÉCHAN	TILLONNAGE:	2021-07-26	2021-07-26	2021-07-26	2021-08-05	2021-08-05
	Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3116126	3116128	3116131	3116155	3116158
рН		рН					NA	6.08	5.77	5.38	5.35	5.31
								5.7		10.2	16.3	15.8

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

					Analys	es inorgani	ques (Sol))				
DATE DE	RÉCEPTION: 202	1-08-10							I	DATE DU RAPPO	ORT: 2021-11	-11
								HMT-F03-21_CF	DUP-2_2021-08-	VR1-F01-21_CF-	CAMP-F02-	DUP-1_2021-08
					IDENTI	FICATION DE L'É	CHANTILLON:	-2	06	1A	21_CF-1	07
							MATRICE:	Sol	Sol	Sol	Sol	Sol
						DATE D'ÉCHAN	TILLONNAGE:	2021-08-06	2021-08-06	2021-08-07	2021-08-07	2021-08-07
	Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3116189	3116191	3116192	3116217	3116219
рН		рН					NA	6.06	6.04	5.45	4.59	5.31
% Humidité		%					0.2	14.4	19.0	17.1	37.3	29.2
									TU-F01-21_CF-	VR6-F01-21_CF-	UTM-F01-21_C	F UTM-F01-21_C
					IDENTI	FICATION DE L'É	CHANTILLON:	TS-F02-21_CF-3	1B	1	-1	-3
							MATRICE:	Sol	Sol	Sol	Sol	Sol
						DATE D'ÉCHAN	TILLONNAGE:	2021-07-28	2021-07-29	2021-07-29	2021-07-30	2021-07-30
	Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3116235	3116240	3116261	3116273	3116276
рН		pН					NA	7.01	6.29	6.34	6.75	7.07
% Humidité		%					0.2	9.5	16.1	14.9	25.0	9.2
									TU-F04-21_CF-	UTM-F02-21_CF	UTM-F03-21_C	F SSE-F01-21_CF
					IDENTI	FICATION DE L'É	CHANTILLON:	TU-F03-21_CF-1	1B	-1D	-1B	1B
							MATRICE:	Sol	Sol	Sol	Sol	Sol
						DATE D'ÉCHAN	TILLONNAGE:	2021-07-30	2021-07-31	2021-07-31	2021-07-31	2021-08-01
	Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3116279	3116311	3116322	3116325	3116349
рΗ		рН					NA	5.95	5.39	5.79	6.32	5.47
% Humidité		%					0.2	10.6	16.3	21.5	20.0	12.3
							;	SSE-F02-21_CF-	UTM-F06-21_CF	UTM-F07-21_CF		
					IDENTI	FICATION DE L'É	CHANTILLON:	1B	-1C	-2		
							MATRICE:	Sol	Sol	Sol		
						DATE D'ÉCHAN	TILLONNAGE:	2021-08-01	2021-08-01	2021-08-01		
								2446260	3116361	3116435		
	Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3116360	3110301	3110433		
рН	Paramètre	Unités pH	C/N: A	C / N: B	C / N: C	C/N: D	NA NA	5.29	4.81	5.61		

Certifié par:

N° BON DE TRAVAIL: 21Q819433

N° DE PROJET: 201-11330-19

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyses inorganiques (Sol)

DATE DE RÉCEPTION: 2021-08-10 DATE DU RAPPORT: 2021-11-11

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3115451-3116435 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyses inorganiques - WSP (Balayage métaux + mercure)

ATE DE RÉCEPTION: 2021-08-10 DATE DU RAPPORT: 2021-11-11													
							R-TR01-21-40-	-40- TU-TR01-21-52- BD-TR03-21-120 BD-TR01-21-46-					
				IDENTIFICATION DE L'ÉCHANTILLON: MATRICE:			70 Sol	190 Sol	-175 Sol	155 Sol			
					DATE D'ÉCHAN		2021-07-23	2021-07-23	2021-07-23	2021-07-23			
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115451	3115454	3115458	3115460			
Aluminium	mg/kg					150	6600	3040	2270	2310			
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20			
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5			
Arsenic	mg/kg	6	30	50	250	1	<1	<1	<1	<1			
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	<20			
Béryllium	mg/kg					1	<1	<1	<1	<1			
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5			
Calcium	mg/kg					100	2400	1360	1410	1100			
Chrome	mg/kg	100	250	800	4000	2	23[<a]< td=""><td>8[<a]< td=""><td>8[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>8[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<>	9[<a]< td=""></a]<>			
Cobalt	mg/kg	25	50	300	1500	2	5[<a]< td=""><td>3[<a]< td=""><td>2[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>2[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<></td></a]<>	2[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<>	3[<a]< td=""></a]<>			
Cuivre	mg/kg	50	100	500	2500	1	10[<a]< td=""><td>7[<a]< td=""><td>3[<a]< td=""><td>2[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>3[<a]< td=""><td>2[<a]< td=""></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>2[<a]< td=""></a]<></td></a]<>	2[<a]< td=""></a]<>			
tain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5			
er	mg/kg					500	10200	5550	4410	5540			
_ithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20			
Magnésium	mg/kg					100	3440	1460	1550	1960			
Manganèse	mg/kg	1000	1000	2200	11000	10	246[<a]< td=""><td>74[<a]< td=""><td>49[<a]< td=""><td>68[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	74[<a]< td=""><td>49[<a]< td=""><td>68[<a]< td=""></a]<></td></a]<></td></a]<>	49[<a]< td=""><td>68[<a]< td=""></a]<></td></a]<>	68[<a]< td=""></a]<>			
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2			
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1			
Nickel	mg/kg	50	100	500	2500	2	12[<a]< td=""><td>6[<a]< td=""><td>5[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>5[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<></td></a]<>	5[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<>	5[<a]< td=""></a]<>			
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5			
Potassium	mg/kg					100	123	125	109	101			
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5			
Sodium	mg/kg					100	<100	<100	<100	<100			
Γhallium	mg/kg					15	<15	<15	<15	<15			
/anadium	mg/kg					15	23	<15	<15	<15			
Zinc	mg/kg	140	500	1500	7500	5	17[<a]< td=""><td>8[<a]< td=""><td>8[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>8[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<>	10[<a]< td=""></a]<>			

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2021-08-10 DATE DU RAPPORT: 2021-11-11													
				BI-TR03-21-31-					BD-TR02-21-150 BB-TR01-21-57-				
				IDENTIFIC	CATION DE L'ÉC	CHANTILLON:	35		-170	170			
						MATRICE:	Sol		Sol	Sol			
				D	ATE D'ÉCHAN	TILLONNAGE:	2021-07-24		2021-07-24	2021-07-24			
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115462	LDR	3115465	3115467			
Aluminium	mg/kg					300	17100	150	2670	2380			
Antimoine	mg/kg	-	-	-		20	<20	20	<20	<20			
Argent	mg/kg	2	20	40	200	0.5	<0.5	0.5	<0.5	<0.5			
Arsenic	mg/kg	6	30	50	250	1	<1	1	<1	<1			
Baryum	mg/kg	340	500	2000	10000	20	<20	20	<20	<20			
Béryllium	mg/kg					1	<1	1	<1	<1			
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	0.5	<0.5	<0.5			
Calcium	mg/kg					100	386	100	1300	841			
Chrome	mg/kg	100	250	800	4000	2	14[<a]< td=""><td>2</td><td>8[<a]< td=""><td>8[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	2	8[<a]< td=""><td>8[<a]< td=""><td></td></a]<></td></a]<>	8[<a]< td=""><td></td></a]<>			
Cobalt	mg/kg	25	50	300	1500	2	<2	2	3[<a]< td=""><td>2[<a]< td=""><td></td></a]<></td></a]<>	2[<a]< td=""><td></td></a]<>			
Cuivre	mg/kg	50	100	500	2500	1	3[<a]< td=""><td>1</td><td>6[<a]< td=""><td>5[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	1	6[<a]< td=""><td>5[<a]< td=""><td></td></a]<></td></a]<>	5[<a]< td=""><td></td></a]<>			
tain	mg/kg	5	50	300	1500	5	<5	5	<5	<5			
- er	mg/kg					500	9740	500	4030	5210			
ithium	mg/kg	-	-	-	-	20	<20	20	<20	<20			
//agnésium	mg/kg					100	965	100	1820	2050			
//anganèse	mg/kg	1000	1000	2200	11000	10	36[<a]< td=""><td>10</td><td>52[<a]< td=""><td>73[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	10	52[<a]< td=""><td>73[<a]< td=""><td></td></a]<></td></a]<>	73[<a]< td=""><td></td></a]<>			
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	0.2	<0.2	<0.2			
Molybdène	mg/kg	2	10	40	200	1	<1	1	<1	<1			
Nickel	mg/kg	50	100	500	2500	2	4[<a]< td=""><td>2</td><td>6[<a]< td=""><td>5[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	2	6[<a]< td=""><td>5[<a]< td=""><td></td></a]<></td></a]<>	5[<a]< td=""><td></td></a]<>			
Plomb	mg/kg	50	500	1000	5000	5	<5	5	<5	<5			
Potassium	mg/kg					100	<100	100	130	<100			
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	0.5	<0.5	<0.5			
Sodium	mg/kg					100	<100	100	<100	<100			
Thallium	mg/kg					15	<15	15	<15	<15			
/anadium	mg/kg					15	<15	15	<15	<15			
Zinc	mg/kg	140	500	1500	7500	5	6[<a]< td=""><td>5</td><td>10[<a]< td=""><td>11[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	5	10[<a]< td=""><td>11[<a]< td=""><td></td></a]<></td></a]<>	11[<a]< td=""><td></td></a]<>			

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2021	I - 08-10								DATE DU RAPP	ORT: 2021-11-	11
						ı	BI-TR01-21-107-		CAMP-TR02-21-	CAMP-TR01-21-	CC-TR02-21-61-
				IDENTIFIC	CATION DE L'É	CHANTILLON: MATRICE:	189 Sol		73-170 Sol	32-63 Sol	174 Sol
					DATE D'ÉCHAN	TILLONNAGE:	2021-07-24		2021-07-25	2021-07-25	2021-07-25
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115469	LDR	3115480	3115483	3115497
Aluminium	mg/kg					30	2090	150	2730	9650	2780
Antimoine	mg/kg	-	-	-		20	<20	20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	3[<a]< td=""><td>1</td><td><1</td><td><1</td><td><1</td></a]<>	1	<1	<1	<1
Baryum	mg/kg	340	500	2000	10000	20	<20	20	<20	<20	<20
Béryllium	mg/kg					1	<1	1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	992	100	863	616	936
Chrome	mg/kg	100	250	800	4000	2	7[<a]< td=""><td>2</td><td>9[<a]< td=""><td>13[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	2	9[<a]< td=""><td>13[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<>	10[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	2[<a]< td=""><td>2</td><td>3[<a]< td=""><td>3[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	2	3[<a]< td=""><td>3[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<>	3[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	5[<a]< td=""><td>1</td><td>7[<a]< td=""><td>8[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	1	7[<a]< td=""><td>8[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<>	7[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	5	<5	<5	<5
Fer	mg/kg					500	4120	500	4860	8800	5300
Lithium	mg/kg	-	-	-	-	20	<20	20	<20	<20	<20
Magnésium	mg/kg					100	1580	100	2090	2020	2260
Manganèse	mg/kg	1000	1000	2200	11000	10	49[<a]< td=""><td>10</td><td>75[<a]< td=""><td>72[<a]< td=""><td>73[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	10	75[<a]< td=""><td>72[<a]< td=""><td>73[<a]< td=""></a]<></td></a]<></td></a]<>	72[<a]< td=""><td>73[<a]< td=""></a]<></td></a]<>	73[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	5[<a]< td=""><td>2</td><td>6[<a]< td=""><td>7[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	2	6[<a]< td=""><td>7[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<>	7[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	5	<5	<5	<5
Potassium	mg/kg					100	<100	100	110	<100	202
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	100	<100	<100	<100
Thallium	mg/kg					15	<15	15	<15	<15	<15
Vanadium	mg/kg					15	<15	15	<15	<15	<15
Zinc	mg/kg	140	500	1500	7500	5	10[<a]< td=""><td>5</td><td>10[<a]< td=""><td>13[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	5	10[<a]< td=""><td>13[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<>	12[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyses inorganiques - WSP (Balayage métaux + mercure)

ATE DE RÉCEPTION: 2021-08-10 DATE DU RAPPORT: 2021-11-11 CC-TR01-21-68- BF-TR02-21-40- BF-TR03-21-79- BF-TR01-21-22-													
							CC-TR01-21-68-	BF-TR02-21-40-	BF-TR03-21-79-	BF-TR01-21-22-			
				IDENTIFIC	CATION DE L'É	CHANTILLON:	134	51	139	54			
						MATRICE:	Sol	Sol	Sol	Sol			
					DATE D'ÉCHAN	ΓILLONNAGE:	2021-07-25	2021-07-25	2021-07-25	2021-07-25			
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115499	3115502	3115507	3115516			
Aluminium	mg/kg					150	3550	9310	4400	3890			
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20			
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5			
Arsenic	mg/kg	6	30	50	250	1	<1	2[<a]< td=""><td><1</td><td>2[<a]< td=""><td></td></a]<></td></a]<>	<1	2[<a]< td=""><td></td></a]<>			
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	<20			
Béryllium	mg/kg					1	<1	<1	<1	<1			
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5			
Calcium	mg/kg					100	816	605	750	822			
Chrome	mg/kg	100	250	800	4000	2	11[<a]< td=""><td>15[<a]< td=""><td>9[<a]< td=""><td>13[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	15[<a]< td=""><td>9[<a]< td=""><td>13[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	9[<a]< td=""><td>13[<a]< td=""><td></td></a]<></td></a]<>	13[<a]< td=""><td></td></a]<>			
Cobalt	mg/kg	25	50	300	1500	2	3[<a]< td=""><td>6[<a]< td=""><td>3[<a]< td=""><td>4[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>3[<a]< td=""><td>4[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>4[<a]< td=""><td></td></a]<></td></a]<>	4[<a]< td=""><td></td></a]<>			
Cuivre	mg/kg	50	100	500	2500	1	5[<a]< td=""><td>11[<a]< td=""><td>21[<a]< td=""><td>15[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>21[<a]< td=""><td>15[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	21[<a]< td=""><td>15[<a]< td=""><td></td></a]<></td></a]<>	15[<a]< td=""><td></td></a]<>			
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5			
Fer	mg/kg					500	5830	11600	5660	7700			
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20			
Magnésium	mg/kg					100	2770	2120	1260	2450			
Manganèse	mg/kg	1000	1000	2200	11000	10	86[<a]< td=""><td>84[<a]< td=""><td>73[<a]< td=""><td>155[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	84[<a]< td=""><td>73[<a]< td=""><td>155[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	73[<a]< td=""><td>155[<a]< td=""><td></td></a]<></td></a]<>	155[<a]< td=""><td></td></a]<>			
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2			
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1			
Nickel	mg/kg	50	100	500	2500	2	9[<a]< td=""><td>10[<a]< td=""><td>6[<a]< td=""><td>9[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	10[<a]< td=""><td>6[<a]< td=""><td>9[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>9[<a]< td=""><td></td></a]<></td></a]<>	9[<a]< td=""><td></td></a]<>			
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5			
Potassium	mg/kg					100	149	<100	<100	<100			
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5			
Sodium	mg/kg					100	<100	<100	<100	<100			
Thallium	mg/kg					15	<15	<15	<15	<15			
Vanadium	mg/kg					15	<15	<15	<15	<15			
Zinc	mg/kg	140	500	1500	7500	5	13[<a]< td=""><td>13[<a]< td=""><td>7[<a]< td=""><td>13[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>7[<a]< td=""><td>13[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>13[<a]< td=""><td></td></a]<></td></a]<>	13[<a]< td=""><td></td></a]<>			

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 202	1-08-10								DATE DU RAPP	ORT: 2021-11	-11
				С	CATION DE L'É	MATRICE: TILLONNAGE:	DUP-12-21 Sol 2021-07-25		DUP-09-21 Sol 2021-07-25	HMBT-F02- 21_CF-1 Sol 2021-07-23	BAD-F01-21_0 -2 Sol 2021-07-23
Paramètre	Unités	C/N: A	C / N: B	C / N: C	C/N:D	LDR	3115519	LDR	3115522	3115551	3115556
Aluminium	mg/kg					30	2190	150	3440	5030	2770
Antimoine	mg/kg	-	-	-		20	<20	20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	1	1[<a]< td=""><td><1</td><td><1</td></a]<>	<1	<1
Baryum	mg/kg	340	500	2000	10000	20	<20	20	<20	<20	<20
Béryllium	mg/kg					1	<1	1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	625	100	810	729	909
Chrome	mg/kg	100	250	800	4000	2	7[<a]< td=""><td>2</td><td>10[<a]< td=""><td>14[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	2	10[<a]< td=""><td>14[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<>	14[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<>	9[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	2[<a]< td=""><td>2</td><td>3[<a]< td=""><td>4[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	2	3[<a]< td=""><td>4[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<>	3[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	6[<a]< td=""><td>1</td><td>19[<a]< td=""><td>8[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	1	19[<a]< td=""><td>8[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<>	7[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	5	<5	<5	<5
Fer	mg/kg					500	4020	500	6880	8080	5570
Lithium	mg/kg	-	-	-	-	20	<20	20	<20	<20	<20
Magnésium	mg/kg					100	1590	100	2000	3000	2090
Manganèse	mg/kg	1000	1000	2200	11000	10	67[<a]< td=""><td>10</td><td>125[<a]< td=""><td>96[<a]< td=""><td>82[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	10	125[<a]< td=""><td>96[<a]< td=""><td>82[<a]< td=""></a]<></td></a]<></td></a]<>	96[<a]< td=""><td>82[<a]< td=""></a]<></td></a]<>	82[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	5[<a]< td=""><td>2</td><td>7[<a]< td=""><td>11[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	2	7[<a]< td=""><td>11[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<>	7[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	5	<5	<5	<5
Potassium	mg/kg					100	109	100	<100	<100	172
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	100	<100	<100	<100
Thallium	mg/kg					15	<15	15	<15	<15	<15
Vanadium	mg/kg					15	<15	15	<15	<15	<15
Zinc	mg/kg	140	500	1500	7500	5	7[<a]< td=""><td>5</td><td>11[<a]< td=""><td>16[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	5	11[<a]< td=""><td>16[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<>	16[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<>	12[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 202	DATE DE RÉCEPTION: 2021-08-10 DATE DU RAPPORT: 2021-11-11													
				IDENTIFIC	CATION DE L'ÉG	CHANTILLON: I	HS-F01-21 CF-1	HS-F01-21 CF-2	DUP-2_2021-07- 24	HMBT-F03- 21 CF-1C	BE-F01-21_CF-2			
				[DATE D'ÉCHAN	MATRICE:	Sol 2021-07-24	Sol 2021-07-24	Sol 2021-07-24	Sol 2021-07-25	Sol 2021-07-25			
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115560	3115561	3115567	3115569	3115572			
Aluminium	mg/kg					150	5370	3530	4240	5630	4190			
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20			
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
Arsenic	mg/kg	6	30	50	250	1	<1	<1	<1	<1	<1			
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	<20	<20			
Béryllium	mg/kg					1	<1	<1	<1	<1	<1			
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
Calcium	mg/kg					100	773	1170	1320	904	1020			
Chrome	mg/kg	100	250	800	4000	2	11[<a]< td=""><td>17[<a]< td=""><td>15[<a]< td=""><td>12[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	17[<a]< td=""><td>15[<a]< td=""><td>12[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	15[<a]< td=""><td>12[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<>	10[<a]< td=""></a]<>			
Cobalt	mg/kg	25	50	300	1500	2	3[<a]< td=""><td>4[<a]< td=""><td>5[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>5[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	5[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<>	4[<a]< td=""></a]<>			
Cuivre	mg/kg	50	100	500	2500	1	7[<a]< td=""><td>13[<a]< td=""><td>15[<a]< td=""><td>5[<a]< td=""><td>8[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>15[<a]< td=""><td>5[<a]< td=""><td>8[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	15[<a]< td=""><td>5[<a]< td=""><td>8[<a]< td=""></a]<></td></a]<></td></a]<>	5[<a]< td=""><td>8[<a]< td=""></a]<></td></a]<>	8[<a]< td=""></a]<>			
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5			
Fer	mg/kg					500	7520	8080	9480	7890	6470			
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	<20			
Magnésium	mg/kg					100	2880	2900	3520	2600	2150			
Manganèse	mg/kg	1000	1000	2200	11000	10	82[<a]< td=""><td>105[<a]< td=""><td>133[<a]< td=""><td>100[<a]< td=""><td>115[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	105[<a]< td=""><td>133[<a]< td=""><td>100[<a]< td=""><td>115[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	133[<a]< td=""><td>100[<a]< td=""><td>115[<a]< td=""></a]<></td></a]<></td></a]<>	100[<a]< td=""><td>115[<a]< td=""></a]<></td></a]<>	115[<a]< td=""></a]<>			
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2			
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1			
Nickel	mg/kg	50	100	500	2500	2	8[<a]< td=""><td>9[<a]< td=""><td>11[<a]< td=""><td>9[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	9[<a]< td=""><td>11[<a]< td=""><td>9[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>9[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<>	9[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<>	7[<a]< td=""></a]<>			
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5			
Potassium	mg/kg					100	151	205	325	142	148			
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
Sodium	mg/kg					100	<100	<100	<100	<100	<100			
Thallium	mg/kg					15	<15	<15	<15	<15	<15			
Vanadium	mg/kg					15	<15	<15	<15	<15	<15			
Zinc	mg/kg	140	500	1500	7500	5	17[<a]< td=""><td>17[<a]< td=""><td>21[<a]< td=""><td>21[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	17[<a]< td=""><td>21[<a]< td=""><td>21[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	21[<a]< td=""><td>21[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<></td></a]<>	21[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<>	13[<a]< td=""></a]<>			

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 202°	1-08-10								DATE DU RAPPO	RT: 2021-1	1-11
					,				HMBT-F01-		BC-F01-21_CF
				IDENTIFIC	CATION DE L'E		BE-F01-21_CF-3		21_CF-1B		1B
					,	MATRICE:	Sol		Sol		Sol
_					DATE D'ÉCHAN		2021-07-25		2021-07-26		2021-07-26
Paramètre	Unités	C/N: A	C / N: B	C / N: C	C/N:D	LDR	3115573	LDR	3115574	LDR	3115576
Aluminium	mg/kg					150	4380	300	8250	150	4990
Antimoine	mg/kg	-	-	-		20	<20	20	<20	20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	0.5	<0.5	0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	1	<1	1	<1
Baryum	mg/kg	340	500	2000	10000	20	<20	20	<20	20	<20
Béryllium	mg/kg					1	<1	1	<1	1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	0.5	<0.5	0.5	<0.5
Calcium	mg/kg					100	1810	100	626	100	976
Chrome	mg/kg	100	250	800	4000	2	14[<a]< td=""><td>2</td><td>16[<a]< td=""><td>2</td><td>9[<a]< td=""></a]<></td></a]<></td></a]<>	2	16[<a]< td=""><td>2</td><td>9[<a]< td=""></a]<></td></a]<>	2	9[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	3[<a]< td=""><td>2</td><td>2[<a]< td=""><td>2</td><td>4[<a]< td=""></a]<></td></a]<></td></a]<>	2	2[<a]< td=""><td>2</td><td>4[<a]< td=""></a]<></td></a]<>	2	4[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	10[<a]< td=""><td>1</td><td>3[<a]< td=""><td>1</td><td>4[<a]< td=""></a]<></td></a]<></td></a]<>	1	3[<a]< td=""><td>1</td><td>4[<a]< td=""></a]<></td></a]<>	1	4[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	5	<5	5	<5
Fer	mg/kg					500	7950	500	13400	500	6810
Lithium	mg/kg	-	-	-	-	20	<20	20	<20	20	<20
Magnésium	mg/kg					100	2040	100	1760	100	2450
Manganèse	mg/kg	1000	1000	2200	11000	10	139[<a]< td=""><td>10</td><td>71[<a]< td=""><td>10</td><td>76[<a]< td=""></a]<></td></a]<></td></a]<>	10	71[<a]< td=""><td>10</td><td>76[<a]< td=""></a]<></td></a]<>	10	76[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	0.2	<0.2	0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	1	<1	1	<1
Nickel	mg/kg	50	100	500	2500	2	8[<a]< td=""><td>2</td><td>6[<a]< td=""><td>2</td><td>8[<a]< td=""></a]<></td></a]<></td></a]<>	2	6[<a]< td=""><td>2</td><td>8[<a]< td=""></a]<></td></a]<>	2	8[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	5	<5	5	<5
Potassium	mg/kg					100	229	100	<100	100	164
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	0.5	<0.5	0.5	<0.5
Sodium	mg/kg					100	<100	100	<100	100	<100
Thallium	mg/kg					15	<15	15	<15	15	<15
Vanadium	mg/kg					15	<15	15	23	15	<15
Zinc	mg/kg	140	500	1500	7500	5	13[<a]< td=""><td>5</td><td>14[<a]< td=""><td>5</td><td>19[<a]< td=""></a]<></td></a]<></td></a]<>	5	14[<a]< td=""><td>5</td><td>19[<a]< td=""></a]<></td></a]<>	5	19[<a]< td=""></a]<>
	99		-	.000		Ü	.0[]	Č		•	.0[]

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 202	1-08-10							D	ATE DU RAP	PORT: 2021-11-1	11
						ı	JTM-F05-21_CF	DUP-2_2021-08-			
				IDENTIFIC	CATION DE L'ÉC	CHANTILLON:	-1A	02		BD-F03-21_CF-5	BH-F01-21_CF-2
						MATRICE:	Sol	Sol		Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2021-08-02	2021-08-02		2021-08-04	2021-08-04
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115589	3115594	LDR	3115601	3115602
Aluminium	mg/kg					300	10400	10200	150	2490	3220
Antimoine	mg/kg	-	-	-		20	<20	<20	20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	<1	1	<1	<1
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	20	<20	<20
Béryllium	mg/kg					1	<1	<1	1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	0.5	<0.5	<0.5
Calcium	mg/kg					100	731	752	100	1260	1550
Chrome	mg/kg	100	250	800	4000	2	14[<a]< td=""><td>15[<a]< td=""><td>2</td><td>9[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	15[<a]< td=""><td>2</td><td>9[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<></td></a]<>	2	9[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<>	11[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	2[<a]< td=""><td>3[<a]< td=""><td>2</td><td>2[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>2</td><td>2[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<></td></a]<>	2	2[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<>	3[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	3[<a]< td=""><td>4[<a]< td=""><td>1</td><td>10[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>1</td><td>10[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<>	1	10[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<>	7[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	5	<5	<5
Fer	mg/kg					500	11400	10400	500	4580	6880
Lithium	mg/kg	-	-	-	-	20	<20	<20	20	<20	<20
Magnésium	mg/kg					100	1190	1360	100	1870	1780
Manganèse	mg/kg	1000	1000	2200	11000	10	62[<a]< td=""><td>62[<a]< td=""><td>10</td><td>57[<a]< td=""><td>131[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	62[<a]< td=""><td>10</td><td>57[<a]< td=""><td>131[<a]< td=""></a]<></td></a]<></td></a]<>	10	57[<a]< td=""><td>131[<a]< td=""></a]<></td></a]<>	131[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	5[<a]< td=""><td>6[<a]< td=""><td>2</td><td>6[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>2</td><td>6[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<>	2	6[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<>	7[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	5	<5	<5
Potassium	mg/kg					100	116	125	100	134	160
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	<100	100	<100	<100
Thallium	mg/kg					15	<15	<15	15	<15	<15
Vanadium	mg/kg					15	21	18	15	<15	<15
Zinc	mg/kg	140	500	1500	7500	5	13[<a]< td=""><td>14[<a]< td=""><td>5</td><td>11[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	14[<a]< td=""><td>5</td><td>11[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<>	5	11[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<>	12[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 202	21-08-10								DATE DU RAPPO	RT: 2021-1	1-11
							AHS-TR01-21-40		AHS-TR02-21-		AHS-TR03-21-1
				IDENTIFIC	CATION DE L'É	CHANTILLON:	-67		219-300		-31
						MATRICE:	Sol		Sol		Sol
					ATE D'ÉCHAN	ΓILLONNAGE:	2021-07-19		2021-07-19		2021-07-19
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115605	LDR	3115615	LDR	3115617
Aluminium	mg/kg					300	11200	150	3010	300	21300
Antimoine	mg/kg	-	-	-		20	<20	20	<20	20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	0.5	<0.5	0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	1	<1	1	<1
Baryum	mg/kg	340	500	2000	10000	20	<20	20	<20	20	<20
Béryllium	mg/kg					1	<1	1	<1	1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	0.5	<0.5	0.5	<0.5
Calcium	mg/kg					100	646	100	934	100	562
Chrome	mg/kg	100	250	800	4000	2	17[<a]< td=""><td>2</td><td>12[<a]< td=""><td>2</td><td>27[<a]< td=""></a]<></td></a]<></td></a]<>	2	12[<a]< td=""><td>2</td><td>27[<a]< td=""></a]<></td></a]<>	2	27[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	3[<a]< td=""><td>2</td><td>3[<a]< td=""><td>2</td><td>3[<a]< td=""></a]<></td></a]<></td></a]<>	2	3[<a]< td=""><td>2</td><td>3[<a]< td=""></a]<></td></a]<>	2	3[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	5[<a]< td=""><td>1</td><td>10[<a]< td=""><td>1</td><td>3[<a]< td=""></a]<></td></a]<></td></a]<>	1	10[<a]< td=""><td>1</td><td>3[<a]< td=""></a]<></td></a]<>	1	3[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	5	<5	5	<5
Fer	mg/kg					500	10700	500	6550	500	13900
Lithium	mg/kg	-	-	-	-	20	<20	20	<20	20	<20
Magnésium	mg/kg					100	2350	100	2490	100	1390
Manganèse	mg/kg	1000	1000	2200	11000	10	72[<a]< td=""><td>10</td><td>96[<a]< td=""><td>10</td><td>50[<a]< td=""></a]<></td></a]<></td></a]<>	10	96[<a]< td=""><td>10</td><td>50[<a]< td=""></a]<></td></a]<>	10	50[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	0.2	<0.2	0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	1	<1	1	<1
Nickel	mg/kg	50	100	500	2500	2	9[<a]< td=""><td>2</td><td>7[<a]< td=""><td>2</td><td>7[<a]< td=""></a]<></td></a]<></td></a]<>	2	7[<a]< td=""><td>2</td><td>7[<a]< td=""></a]<></td></a]<>	2	7[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	5	<5	5	<5
Potassium	mg/kg					100	<100	100	266	100	<100
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	0.5	<0.5	0.5	<0.5
Sodium	mg/kg					100	<100	100	<100	100	<100
Thallium	mg/kg					15	<15	15	<15	15	<15
Vanadium	mg/kg					15	16	15	<15	15	23
Zinc	mg/kg	140	500	1500	7500	5	16[<a]< td=""><td>5</td><td>16[<a]< td=""><td>5</td><td>17[<a]< td=""></a]<></td></a]<></td></a]<>	5	16[<a]< td=""><td>5</td><td>17[<a]< td=""></a]<></td></a]<>	5	17[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 202	21-08-10								DATE DU RAPPOI	RT: 2021-1	1-11
							AHS-TR03-21-80		AHS-TR04-21-40		AHS-TR05-21-
				IDENTIFIC	CATION DE L'É	CHANTILLON:	-130		-55		104-145
						MATRICE:	Sol		Sol		Sol
					DATE D'ÉCHAN	TILLONNAGE:	2021-07-19		2021-07-19		2021-07-19
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115621	LDR	3115632	LDR	3115637
Aluminium	mg/kg					150	5130	300	13300	150	4260
Antimoine	mg/kg	-	-	-		20	<20	20	<20	20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	0.5	<0.5	0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	1	<1	1	<1
Baryum	mg/kg	340	500	2000	10000	20	<20	20	<20	20	<20
Béryllium	mg/kg					1	<1	1	<1	1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	0.5	<0.5	0.5	<0.5
Calcium	mg/kg					100	1160	100	1190	100	1760
Chrome	mg/kg	100	250	800	4000	2	15[<a]< td=""><td>2</td><td>23[<a]< td=""><td>2</td><td>10[<a]< td=""></a]<></td></a]<></td></a]<>	2	23[<a]< td=""><td>2</td><td>10[<a]< td=""></a]<></td></a]<>	2	10[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	5[<a]< td=""><td>2</td><td>3[<a]< td=""><td>2</td><td>2[<a]< td=""></a]<></td></a]<></td></a]<>	2	3[<a]< td=""><td>2</td><td>2[<a]< td=""></a]<></td></a]<>	2	2[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	18[<a]< td=""><td>1</td><td>3[<a]< td=""><td>1</td><td>2[<a]< td=""></a]<></td></a]<></td></a]<>	1	3[<a]< td=""><td>1</td><td>2[<a]< td=""></a]<></td></a]<>	1	2[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	5	<5	5	<5
Fer	mg/kg					500	9820	500	13400	500	5180
Lithium	mg/kg	-	-	-	-	20	<20	20	<20	20	<20
Magnésium	mg/kg					100	3240	100	2300	100	2110
Manganèse	mg/kg	1000	1000	2200	11000	10	104[<a]< td=""><td>10</td><td>79[<a]< td=""><td>10</td><td>61[<a]< td=""></a]<></td></a]<></td></a]<>	10	79[<a]< td=""><td>10</td><td>61[<a]< td=""></a]<></td></a]<>	10	61[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	0.2	<0.2	0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	1	<1	1	<1
Nickel	mg/kg	50	100	500	2500	2	12[<a]< td=""><td>2</td><td>9[<a]< td=""><td>2</td><td>6[<a]< td=""></a]<></td></a]<></td></a]<>	2	9[<a]< td=""><td>2</td><td>6[<a]< td=""></a]<></td></a]<>	2	6[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	5	<5	5	<5
Potassium	mg/kg					100	212	100	104	100	127
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	0.5	<0.5	0.5	<0.5
Sodium	mg/kg					100	<100	100	<100	100	<100
Thallium	mg/kg					15	<15	15	<15	15	<15
Vanadium	mg/kg					15	16	15	24	15	<15
Zinc	mg/kg	140	500	1500	7500	5	18[<a]< td=""><td>5</td><td>16[<a]< td=""><td>5</td><td>12[<a]< td=""></a]<></td></a]<></td></a]<>	5	16[<a]< td=""><td>5</td><td>12[<a]< td=""></a]<></td></a]<>	5	12[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 202	1-08-10							DA	ATE DU RAP	PORT: 2021-11-11	
							AHS-TR05-21-	AHS-TR06-21-		HS-TR01-21-20-	
				IDENTIFIC	CATION DE L'ÉC	CHANTILLON:	145-210	150-210		41	
						MATRICE:	Sol	Sol		Sol	
				D	ATE D'ÉCHAN	TILLONNAGE:	2021-07-19	2021-07-19		2021-07-20	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115638	3115714	LDR	3115716	
Aluminium	mg/kg					150	3480	4230	300	16800	
Antimoine	mg/kg	-	-	-		20	<20	<20	20	<20	
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	0.5	<0.5	
Arsenic	mg/kg	6	30	50	250	1	<1	<1	1	<1	
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	20	<20	
Béryllium	mg/kg					1	<1	<1	1	<1	
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	0.5	<0.5	
Calcium	mg/kg					100	2310	1470	100	990	
Chrome	mg/kg	100	250	800	4000	2	10[<a]< td=""><td>14[<a]< td=""><td>2</td><td>20[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	14[<a]< td=""><td>2</td><td>20[<a]< td=""><td></td></a]<></td></a]<>	2	20[<a]< td=""><td></td></a]<>	
Cobalt	mg/kg	25	50	300	1500	2	4[<a]< td=""><td>4[<a]< td=""><td>2</td><td>4[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>2</td><td>4[<a]< td=""><td></td></a]<></td></a]<>	2	4[<a]< td=""><td></td></a]<>	
Cuivre	mg/kg	50	100	500	2500	1	10[<a]< td=""><td>9[<a]< td=""><td>1</td><td>6[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	9[<a]< td=""><td>1</td><td>6[<a]< td=""><td></td></a]<></td></a]<>	1	6[<a]< td=""><td></td></a]<>	
Étain	mg/kg	5	50	300	1500	5	<5	<5	5	<5	
Fer	mg/kg					500	8420	8090	500	13600	
Lithium	mg/kg	-	-	-	-	20	<20	<20	20	<20	
Magnésium	mg/kg					100	2290	3320	100	2580	
Manganèse	mg/kg	1000	1000	2200	11000	10	79[<a]< td=""><td>120[<a]< td=""><td>10</td><td>78[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	120[<a]< td=""><td>10</td><td>78[<a]< td=""><td></td></a]<></td></a]<>	10	78[<a]< td=""><td></td></a]<>	
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	0.2	<0.2	
Molybdène	mg/kg	2	10	40	200	1	<1	<1	1	<1	
Nickel	mg/kg	50	100	500	2500	2	7[<a]< td=""><td>9[<a]< td=""><td>2</td><td>10[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	9[<a]< td=""><td>2</td><td>10[<a]< td=""><td></td></a]<></td></a]<>	2	10[<a]< td=""><td></td></a]<>	
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	5	<5	
Potassium	mg/kg					100	139	280	100	<100	
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	0.5	<0.5	
Sodium	mg/kg					100	<100	<100	100	<100	
Thallium	mg/kg					15	<15	<15	15	<15	
Vanadium	mg/kg					15	<15	<15	15	21	
Zinc	mg/kg	140	500	1500	7500	5	16[<a]< td=""><td>18[<a]< td=""><td>5</td><td>16[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	18[<a]< td=""><td>5</td><td>16[<a]< td=""><td></td></a]<></td></a]<>	5	16[<a]< td=""><td></td></a]<>	

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

350, rue Franquet Québec, Québec

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 202	1-08-10							ı	DATE DU RAPE	PORT: 2021-11-	11
							BE-TR01-21-40-	R-TR03-21-61-	R-TR04-21-38-	AHS-F03-21_CF	AHS-F03-21_CF
				IDENTIFI	ICATION DE L'É	CHANTILLON:	103	114	62	-1	-2
						MATRICE:	Sol	Sol	Sol	Sol	Sol
				1	DATE D'ÉCHAN	ΓILLONNAGE:	2021-07-20	2021-07-20	2021-07-20	2021-07-20	2021-07-20
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115718	3115724	3115734	3115933	3115934
Aluminium	mg/kg					150	4080	4300	5360	8070	4370
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	<1	<1	1[<a]< td=""><td><1</td></a]<>	<1
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	<20	<20
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	1320	1480	1140	1080	1730
Chrome	mg/kg	100	250	800	4000	2	10[<a]< td=""><td>13[<a]< td=""><td>12[<a]< td=""><td>12[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>12[<a]< td=""><td>12[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>12[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<>	12[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	4[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""><td>3[<a]< td=""><td><2</td></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>4[<a]< td=""><td>3[<a]< td=""><td><2</td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>3[<a]< td=""><td><2</td></a]<></td></a]<>	3[<a]< td=""><td><2</td></a]<>	<2
Cuivre	mg/kg	50	100	500	2500	1	7[<a]< td=""><td>10[<a]< td=""><td>6[<a]< td=""><td>5[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	10[<a]< td=""><td>6[<a]< td=""><td>5[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>5[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<></td></a]<>	5[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<>	5[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	6680	8890	7900	8890	4200
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	<20
Magnésium	mg/kg					100	3020	2960	3080	2120	1960
Manganèse	mg/kg	1000	1000	2200	11000	10	101[<a]< td=""><td>111[<a]< td=""><td>106[<a]< td=""><td>89[<a]< td=""><td>56[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	111[<a]< td=""><td>106[<a]< td=""><td>89[<a]< td=""><td>56[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	106[<a]< td=""><td>89[<a]< td=""><td>56[<a]< td=""></a]<></td></a]<></td></a]<>	89[<a]< td=""><td>56[<a]< td=""></a]<></td></a]<>	56[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	8[<a]< td=""><td>8[<a]< td=""><td>10[<a]< td=""><td>7[<a]< td=""><td>6[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>10[<a]< td=""><td>7[<a]< td=""><td>6[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	10[<a]< td=""><td>7[<a]< td=""><td>6[<a]< td=""></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>6[<a]< td=""></a]<></td></a]<>	6[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	264	213	161	109	106
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	<100	<100	<100	<100
Thallium	mg/kg					15	<15	<15	<15	<15	<15
Vanadium	mg/kg					15	<15	<15	<15	16	<15
Zinc	mg/kg	140	500	1500	7500	5	18[<a]< td=""><td>18[<a]< td=""><td>21[<a]< td=""><td>15[<a]< td=""><td>15[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	18[<a]< td=""><td>21[<a]< td=""><td>15[<a]< td=""><td>15[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	21[<a]< td=""><td>15[<a]< td=""><td>15[<a]< td=""></a]<></td></a]<></td></a]<>	15[<a]< td=""><td>15[<a]< td=""></a]<></td></a]<>	15[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 202	1-08-10							Ι	DATE DU RAPP	ORT: 2021-11-	11
							AHS-F04-21_CF	AHS-F04-21_CF	2021-07-20_DUP	2021-07-20_DUP	AHS-F02-21_CF
				IDENTIFIC	CATION DE L'É	CHANTILLON:	-1	-3	-1	-2	-2
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2021-07-20	2021-07-20	2021-07-20	2021-07-20	2021-07-21
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115936	3115968	3115969	3116044	3116048
Aluminium	mg/kg					150	7460	4360	8150	6170	3730
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	<1	2[<a]< td=""><td><1</td><td><1</td></a]<>	<1	<1
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	<20	<20
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	1410	1770	932	1520	1040
Chrome	mg/kg	100	250	800	4000	2	15[<a]< td=""><td>11[<a]< td=""><td>14[<a]< td=""><td>16[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>14[<a]< td=""><td>16[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	14[<a]< td=""><td>16[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<></td></a]<>	16[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<>	13[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	3[<a]< td=""><td>3[<a]< td=""><td>4[<a]< td=""><td><2</td><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>4[<a]< td=""><td><2</td><td>4[<a]< td=""></a]<></td></a]<></td></a]<>	4[<a]< td=""><td><2</td><td>4[<a]< td=""></a]<></td></a]<>	<2	4[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	4[<a]< td=""><td>4[<a]< td=""><td>8[<a]< td=""><td>3[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>8[<a]< td=""><td>3[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>3[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<>	11[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	9930	6610	9070	3770	8100
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	<20
Magnésium	mg/kg					100	3020	2950	2220	1900	2970
Manganèse	mg/kg	1000	1000	2200	11000	10	84[<a]< td=""><td>98[<a]< td=""><td>107[<a]< td=""><td>50[<a]< td=""><td>112[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	98[<a]< td=""><td>107[<a]< td=""><td>50[<a]< td=""><td>112[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	107[<a]< td=""><td>50[<a]< td=""><td>112[<a]< td=""></a]<></td></a]<></td></a]<>	50[<a]< td=""><td>112[<a]< td=""></a]<></td></a]<>	112[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	8[<a]< td=""><td>8[<a]< td=""><td>8[<a]< td=""><td>6[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>8[<a]< td=""><td>6[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>6[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<>	11[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	132	227	120	<100	203
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	<100	<100	<100	<100
Thallium	mg/kg					15	<15	<15	<15	<15	<15
Vanadium	mg/kg					15	17	<15	16	<15	<15
Zinc	mg/kg	140	500	1500	7500	5	16[<a]< td=""><td>18[<a]< td=""><td>18[<a]< td=""><td>14[<a]< td=""><td>18[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	18[<a]< td=""><td>18[<a]< td=""><td>14[<a]< td=""><td>18[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	18[<a]< td=""><td>14[<a]< td=""><td>18[<a]< td=""></a]<></td></a]<></td></a]<>	14[<a]< td=""><td>18[<a]< td=""></a]<></td></a]<>	18[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2021	1-08-10							DA	TE DU RAI	PPORT: 2021-11-11	
								BAD-F01-21_CF		COND-TR03-21-	
				IDENTIFIC	CATION DE L'ÉC		BA-F01-21_CF-2			34-57	
						MATRICE:	Sol	Sol		Sol	
					ATE D'ÉCHAN		2021-07-22	2021-07-22		2021-07-26	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3116086	3116087	LDR	3116091	
Aluminium	mg/kg					150	3970	5390	30	1170	
Antimoine	mg/kg	-	-	-		20	<20	<20	20	<20	
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	0.5	<0.5	
Arsenic	mg/kg	6	30	50	250	1	<1	<1	1	<1	
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	20	<20	
Béryllium	mg/kg					1	<1	<1	1	<1	
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	0.5	<0.5	
Calcium	mg/kg					100	1270	669	100	181	
Chrome	mg/kg	100	250	800	4000	2	12[<a]< td=""><td>11[<a]< td=""><td>2</td><td><2</td><td></td></a]<></td></a]<>	11[<a]< td=""><td>2</td><td><2</td><td></td></a]<>	2	<2	
Cobalt	mg/kg	25	50	300	1500	2	4[<a]< td=""><td>4[<a]< td=""><td>2</td><td><2</td><td></td></a]<></td></a]<>	4[<a]< td=""><td>2</td><td><2</td><td></td></a]<>	2	<2	
Cuivre	mg/kg	50	100	500	2500	1	11[<a]< td=""><td>6[<a]< td=""><td>1</td><td><1</td><td></td></a]<></td></a]<>	6[<a]< td=""><td>1</td><td><1</td><td></td></a]<>	1	<1	
Étain	mg/kg	5	50	300	1500	5	<5	<5	5	<5	
Fer	mg/kg					500	7190	7560	500	746	
Lithium	mg/kg	-	-	-	-	20	<20	<20	20	<20	
Magnésium	mg/kg					100	3310	2850	100	<100	
Manganèse	mg/kg	1000	1000	2200	11000	10	113[<a]< td=""><td>92[<a]< td=""><td>10</td><td><10</td><td></td></a]<></td></a]<>	92[<a]< td=""><td>10</td><td><10</td><td></td></a]<>	10	<10	
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	0.2	<0.2	
Molybdène	mg/kg	2	10	40	200	1	<1	<1	1	<1	
Nickel	mg/kg	50	100	500	2500	2	9[<a]< td=""><td>9[<a]< td=""><td>2</td><td><2</td><td></td></a]<></td></a]<>	9[<a]< td=""><td>2</td><td><2</td><td></td></a]<>	2	<2	
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	5	<5	
Potassium	mg/kg					100	254	170	100	<100	
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	0.5	<0.5	
Sodium	mg/kg					100	<100	<100	100	<100	
Thallium	mg/kg					15	<15	<15	15	<15	
Vanadium	mg/kg					15	<15	<15	15	<15	
Zinc	mg/kg	140	500	1500	7500	5	18[<a]< td=""><td>19[<a]< td=""><td>5</td><td><5</td><td></td></a]<></td></a]<>	19[<a]< td=""><td>5</td><td><5</td><td></td></a]<>	5	<5	

Certifié par:

2

50

50

1

140

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

10

100

500

3

500

40

500

1000

10

1500

Certificat d'analyse

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR

DATE DE RÉCEPTION: 2021-08-10

À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

DATE DU RAPPORT: 2021-11-11

Analyses inorganiques - WSP (Balayage métaux + mercure)

COND-TR02-21- COND-TR02-21- COND-TR01-21- COND-TR04-21- CAMP-TR03-21-**IDENTIFICATION DE L'ÉCHANTILLON:** 50-84 66-110 42-66 112-181 49-140 MATRICE: Sol Sol Sol Sol Sol 2021-07-26 DATE D'ÉCHANTILLONNAGE: 2021-07-26 2021-07-26 2021-07-26 2021-07-26 **Paramètre** Unités C / N: A C / N: B C / N: C C / N: D LDR 3116114 3116115 3116126 3116128 3116131 Aluminium 150 2660 9950 3190 3520 6360 mg/kg 20 <20 <20 <20 <20 Antimoine mg/kg <20 2 20 40 200 0.5 < 0.5 <0.5 < 0.5 < 0.5 Argent mg/kg < 0.5 Arsenic mg/kg 6 30 50 250 1 <1 <1 <1 <1 <1 Baryum 340 500 2000 10000 20 <20 <20 mg/kg <20 <20 <20 Béryllium mg/kg 1 <1 <1 <1 <1 <1 20 0.5 <0.5 <0.5 <0.5 <0.5 Cadmium mg/kg 1.5 5 100 < 0.5 Calcium mg/kg 100 1160 490 1160 1640 488 100 250 800 4000 2 Chrome mg/kg [A>]8 14[<A] 9[<A] 11[<A] 12[<A] 25 50 1500 2 Cobalt mg/kg 300 2[<A] 3[<A] 3[<A] 3[<A] 2[<A] Cuivre 50 100 500 2500 7[<A] 4[<A] 10[<A] 9[<A] 3[<A] mg/kg Étain 5 50 300 1500 5 <5 <5 <5 <5 <5 mg/kg Fer mg/kg 500 4640 8040 5810 6510 7050 Lithium mg/kg 20 <20 <20 <20 <20 <20 Magnésium mg/kg 100 1500 1920 1960 1990 1830 1000 1000 2200 11000 10 66[<A] 58[<A] 94[<A] 90[<A] 69[<A] Manganèse mg/kg Mercure mg/kg 0.2 2 10 50 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2

200

2500

5000

50

7500

1

2

5

100

0.5

100

15

15

5

<1

6[<A]

<5

156

< 0.5

<100

<15

<15

10[<A]

<1

9[<A]

<5

<100

< 0.5

<100

<15

<15

13[<A]

<1

7[<A]

<5

187

< 0.5

<100

<15

<15

12[<A]

<1

7[<A]

<5

173

< 0.5

<100

<15

<15

12[<A]

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures et les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signatures rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

Molybdène

Potassium

Sélénium

Sodium

Thallium

Vanadium

Zinc

Nickel

Plomb

<1

6[<A]

<5

<100

< 0.5

<100

<15

<15

12[<A]

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 202	1-08-10							I	DATE DU RAPP	ORT: 2021-11-11	
							BI-F03-21_CF-	RC-F03-21_CF-	HMT-F03-21_CF	DUP-2_2021-08-	
				IDENTIFIC	CATION DE L'É	CHANTILLON:	1A	1B	-2	06	
						MATRICE:	Sol	Sol	Sol	Sol	
					DATE D'ÉCHAN	TILLONNAGE:	2021-08-05	2021-08-05	2021-08-06	2021-08-06	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3116155	3116158	3116189	3116191	
Aluminium	mg/kg					150	7580	4160	6590	6260	
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	
Arsenic	mg/kg	6	30	50	250	1	<1	<1	7[A-B]	6[A]	
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	<20	
Béryllium	mg/kg					1	<1	<1	<1	<1	
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	
Calcium	mg/kg					100	669	840	1170	1090	
Chrome	mg/kg	100	250	800	4000	2	14[<a]< td=""><td>11[<a]< td=""><td>14[<a]< td=""><td>15[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>14[<a]< td=""><td>15[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	14[<a]< td=""><td>15[<a]< td=""><td></td></a]<></td></a]<>	15[<a]< td=""><td></td></a]<>	
Cobalt	mg/kg	25	50	300	1500	2	2[<a]< td=""><td>3[<a]< td=""><td>6[<a]< td=""><td>5[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>6[<a]< td=""><td>5[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>5[<a]< td=""><td></td></a]<></td></a]<>	5[<a]< td=""><td></td></a]<>	
Cuivre	mg/kg	50	100	500	2500	1	3[<a]< td=""><td>3[<a]< td=""><td>11[<a]< td=""><td>9[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>11[<a]< td=""><td>9[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>9[<a]< td=""><td></td></a]<></td></a]<>	9[<a]< td=""><td></td></a]<>	
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	
Fer	mg/kg					500	8510	6270	10700	9940	
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	
Magnésium	mg/kg					100	1600	2010	2330	2180	
Manganèse	mg/kg	1000	1000	2200	11000	10	58[<a]< td=""><td>62[<a]< td=""><td>261[<a]< td=""><td>220[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	62[<a]< td=""><td>261[<a]< td=""><td>220[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	261[<a]< td=""><td>220[<a]< td=""><td></td></a]<></td></a]<>	220[<a]< td=""><td></td></a]<>	
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	
Nickel	mg/kg	50	100	500	2500	2	6[<a]< td=""><td>7[<a]< td=""><td>11[<a]< td=""><td>10[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>11[<a]< td=""><td>10[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>10[<a]< td=""><td></td></a]<></td></a]<>	10[<a]< td=""><td></td></a]<>	
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	
Potassium	mg/kg					100	<100	<100	108	<100	
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	
Sodium	mg/kg					100	<100	<100	<100	<100	
Thallium	mg/kg					15	<15	<15	<15	<15	
Vanadium	mg/kg					15	19	<15	15	15	
Zinc	mg/kg	140	500	1500	7500	5	12[<a]< td=""><td>12[<a]< td=""><td>19[<a]< td=""><td>15[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>19[<a]< td=""><td>15[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	19[<a]< td=""><td>15[<a]< td=""><td></td></a]<></td></a]<>	15[<a]< td=""><td></td></a]<>	

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 202	1-08-10								DATE DU RAPPO	RT: 2021-1	1-11
						١	VR1-F01-21_CF-		CAMP-F02-		DUP-1_2021-08
				IDENTIFIC	CATION DE L'É	CHANTILLON:	1A		21_CF-1		07
						MATRICE:	Sol		Sol		Sol
					ATE D'ÉCHAN	ΓILLONNAGE:	2021-08-07		2021-08-07		2021-08-07
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3116192	LDR	3116217	LDR	3116219
Aluminium	mg/kg					300	8530	150	4630	300	9170
Antimoine	mg/kg	-	-	-		20	<20	20	<20	20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	0.5	<0.5	0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	1	<1	1	<1
Baryum	mg/kg	340	500	2000	10000	20	<20	20	23[<a]< td=""><td>20</td><td><20</td></a]<>	20	<20
Béryllium	mg/kg					1	<1	1	<1	1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	0.5	<0.5	0.5	<0.5
Calcium	mg/kg					100	1240	100	1370	100	1260
Chrome	mg/kg	100	250	800	4000	2	18[<a]< td=""><td>2</td><td>9[<a]< td=""><td>2</td><td>14[<a]< td=""></a]<></td></a]<></td></a]<>	2	9[<a]< td=""><td>2</td><td>14[<a]< td=""></a]<></td></a]<>	2	14[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	3[<a]< td=""><td>2</td><td><2</td><td>2</td><td>3[<a]< td=""></a]<></td></a]<>	2	<2	2	3[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	5[<a]< td=""><td>1</td><td>6[<a]< td=""><td>1</td><td>4[<a]< td=""></a]<></td></a]<></td></a]<>	1	6[<a]< td=""><td>1</td><td>4[<a]< td=""></a]<></td></a]<>	1	4[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	5	<5	5	<5
Fer	mg/kg					500	10600	500	6190	500	9930
Lithium	mg/kg	-	-	-	-	20	<20	20	<20	20	<20
Magnésium	mg/kg					100	1990	100	1280	100	1960
Manganèse	mg/kg	1000	1000	2200	11000	10	88[<a]< td=""><td>10</td><td>88[<a]< td=""><td>10</td><td>82[<a]< td=""></a]<></td></a]<></td></a]<>	10	88[<a]< td=""><td>10</td><td>82[<a]< td=""></a]<></td></a]<>	10	82[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	0.2	<0.2	0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	1	<1	1	<1
Nickel	mg/kg	50	100	500	2500	2	11[<a]< td=""><td>2</td><td>5[<a]< td=""><td>2</td><td>7[<a]< td=""></a]<></td></a]<></td></a]<>	2	5[<a]< td=""><td>2</td><td>7[<a]< td=""></a]<></td></a]<>	2	7[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	5	12[<a]< td=""><td>5</td><td><5</td></a]<>	5	<5
Potassium	mg/kg					100	150	100	258	100	144
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	0.5	<0.5	0.5	<0.5
Sodium	mg/kg					100	<100	100	<100	100	<100
Thallium	mg/kg					15	<15	15	<15	15	<15
Vanadium	mg/kg					15	22	15	<15	15	20
Zinc	mg/kg	140	500	1500	7500	5	17[<a]< td=""><td>5</td><td>23[<a]< td=""><td>5</td><td>15[<a]< td=""></a]<></td></a]<></td></a]<>	5	23[<a]< td=""><td>5</td><td>15[<a]< td=""></a]<></td></a]<>	5	15[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 202	1-08-10							I	DATE DU RAPP	ORT: 2021-11-	11
								TU-F01-21_CF-	VR6-F01-21_CF-	UTM-F01-21_CF	UTM-F01-21_CF
				IDENTIFIC	CATION DE L'É(CHANTILLON: 1	ΓS-F02-21_CF-3	1B	1	-1	-3
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2021-07-28	2021-07-29	2021-07-29	2021-07-30	2021-07-30
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3116235	3116240	3116261	3116273	3116276
Aluminium	mg/kg					150	4660	3490	4060	4240	3470
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	11[A-B]	2[<a]< td=""><td><1</td><td><1</td><td>1[<a]< td=""></a]<></td></a]<>	<1	<1	1[<a]< td=""></a]<>
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	<20	<20
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	2170	2490	2070	2680	2270
Chrome	mg/kg	100	250	800	4000	2	12[<a]< td=""><td>11[<a]< td=""><td>11[<a]< td=""><td>14[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>11[<a]< td=""><td>14[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>14[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<>	14[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<>	10[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	7[<a]< td=""><td>3[<a]< td=""><td>3[<a]< td=""><td>4[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>3[<a]< td=""><td>4[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>4[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<>	3[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	26[<a]< td=""><td>3[<a]< td=""><td>4[<a]< td=""><td>14[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>4[<a]< td=""><td>14[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>14[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<>	14[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<>	7[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	12100	7680	7450	8650	7120
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	<20
Magnésium	mg/kg					100	2500	1810	2440	3370	2200
Manganèse	mg/kg	1000	1000	2200	11000	10	168[<a]< td=""><td>78[<a]< td=""><td>160[<a]< td=""><td>112[<a]< td=""><td>110[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	78[<a]< td=""><td>160[<a]< td=""><td>112[<a]< td=""><td>110[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	160[<a]< td=""><td>112[<a]< td=""><td>110[<a]< td=""></a]<></td></a]<></td></a]<>	112[<a]< td=""><td>110[<a]< td=""></a]<></td></a]<>	110[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	16[<a]< td=""><td>9[<a]< td=""><td>8[<a]< td=""><td>10[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	9[<a]< td=""><td>8[<a]< td=""><td>10[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>10[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<>	10[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<>	7[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	180	105	117	298	200
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	<100	<100	<100	<100
Thallium	mg/kg					15	<15	<15	<15	<15	<15
Vanadium	mg/kg					15	<15	<15	<15	17	<15
Zinc	mg/kg	140	500	1500	7500	5	25[<a]< td=""><td>10[<a]< td=""><td>12[<a]< td=""><td>18[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	10[<a]< td=""><td>12[<a]< td=""><td>18[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>18[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<>	18[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<>	14[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 202	1-08-10								DATE DU RAPP	ORT: 2021-11-	11
									TU-F04-21_CF-	UTM-F02-21_CF	UTM-F03-21_CF
				IDENTIFIC	CATION DE L'É	CHANTILLON: 1	ΓU-F03-21_CF-1		1B	-1D	-1B
						MATRICE:	Sol		Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2021-07-30		2021-07-31	2021-07-31	2021-07-31
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3116279	LDR	3116311	3116322	3116325
Aluminium	mg/kg					150	4210	300	12200	4790	3040
Antimoine	mg/kg	-	-	-		20	<20	20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	1	<1	<1	<1
Baryum	mg/kg	340	500	2000	10000	20	<20	20	<20	<20	<20
Béryllium	mg/kg					1	<1	1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	1890	100	942	2170	2260
Chrome	mg/kg	100	250	800	4000	2	11[<a]< td=""><td>2</td><td>19[<a]< td=""><td>11[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	2	19[<a]< td=""><td>11[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<>	11[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	3[<a]< td=""><td>2</td><td>2[<a]< td=""><td>3[<a]< td=""><td>2[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	2	2[<a]< td=""><td>3[<a]< td=""><td>2[<a]< td=""></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>2[<a]< td=""></a]<></td></a]<>	2[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	3[<a]< td=""><td>1</td><td>2[<a]< td=""><td>5[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	1	2[<a]< td=""><td>5[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<>	5[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<>	4[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	5	<5	<5	<5
Fer	mg/kg					500	7830	500	10200	6230	5740
Lithium	mg/kg	-	-	-	-	20	<20	20	<20	<20	<20
Magnésium	mg/kg					100	2200	100	1460	1650	1620
Manganèse	mg/kg	1000	1000	2200	11000	10	111[<a]< td=""><td>10</td><td>56[<a]< td=""><td>84[<a]< td=""><td>83[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	10	56[<a]< td=""><td>84[<a]< td=""><td>83[<a]< td=""></a]<></td></a]<></td></a]<>	84[<a]< td=""><td>83[<a]< td=""></a]<></td></a]<>	83[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	6[<a]< td=""><td>2</td><td>6[<a]< td=""><td>6[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	2	6[<a]< td=""><td>6[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<>	5[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	5	<5	<5	<5
Potassium	mg/kg					100	127	100	<100	<100	121
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	100	<100	<100	<100
Thallium	mg/kg					15	<15	15	<15	<15	<15
Titane	mg/kg					1	693	1			
Vanadium	mg/kg					15	17	15	20	<15	<15
Zinc	mg/kg	140	500	1500	7500	5	13[<a]< td=""><td>5</td><td>11[<a]< td=""><td>8[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	5	11[<a]< td=""><td>8[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<>	10[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 202 ²	I-08-10								DATE DU RAPP	ORT: 2021-11-11	
					_		_	_	UTM-F06-21_CF	_	
				IDENTIFIC	CATION DE L'É		1B	1B	-1C	-2	
					ATE D'ÉCHAN	MATRICE: FILLONNAGE:	Sol 2021-08-01	Sol 2021-08-01	Sol 2021-08-01	Sol 2021-08-01	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3116349	3116360	3116361	3116435	
Muminium	mg/kg					300	5150	10800	3070	4420	
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	
rgent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	
Arsenic	mg/kg	6	30	50	250	1	1[<a]< td=""><td><1</td><td><1</td><td><1</td><td></td></a]<>	<1	<1	<1	
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	<20	
Béryllium	mg/kg					1	<1	<1	<1	<1	
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	
Calcium	mg/kg					100	1750	1310	616	2180	
Chrome	mg/kg	100	250	800	4000	2	15[<a]< td=""><td>20[<a]< td=""><td>5[<a]< td=""><td>14[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	20[<a]< td=""><td>5[<a]< td=""><td>14[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	5[<a]< td=""><td>14[<a]< td=""><td></td></a]<></td></a]<>	14[<a]< td=""><td></td></a]<>	
Cobalt	mg/kg	25	50	300	1500	2	4[<a]< td=""><td>3[<a]< td=""><td><2</td><td>4[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	3[<a]< td=""><td><2</td><td>4[<a]< td=""><td></td></a]<></td></a]<>	<2	4[<a]< td=""><td></td></a]<>	
Cuivre	mg/kg	50	100	500	2500	1	7[<a]< td=""><td>3[<a]< td=""><td>1[<a]< td=""><td>9[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>1[<a]< td=""><td>9[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	1[<a]< td=""><td>9[<a]< td=""><td></td></a]<></td></a]<>	9[<a]< td=""><td></td></a]<>	
tain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	
er	mg/kg					500	8300	10700	7360	7610	
ithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	
//agnésium	mg/kg					100	2260	2120	399	2310	
//anganèse	mg/kg	1000	1000	2200	11000	10	84[<a]< td=""><td>76[<a]< td=""><td>26[<a]< td=""><td>126[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	76[<a]< td=""><td>26[<a]< td=""><td>126[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	26[<a]< td=""><td>126[<a]< td=""><td></td></a]<></td></a]<>	126[<a]< td=""><td></td></a]<>	
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	
Nolybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	
lickel	mg/kg	50	100	500	2500	2	9[<a]< td=""><td>8[<a]< td=""><td><2</td><td>9[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	8[<a]< td=""><td><2</td><td>9[<a]< td=""><td></td></a]<></td></a]<>	<2	9[<a]< td=""><td></td></a]<>	
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	
Potassium	mg/kg					100	131	109	<100	195	
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	
Sodium	mg/kg					100	<100	<100	<100	<100	
hallium	mg/kg					15	<15	<15	<15	<15	
/anadium	mg/kg					15	16	21	<15	<15	
Zinc	mg/kg	140	500	1500	7500	5	12[<a]< td=""><td>14[<a]< td=""><td><5</td><td>13[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	14[<a]< td=""><td><5</td><td>13[<a]< td=""><td></td></a]<></td></a]<>	<5	13[<a]< td=""><td></td></a]<>	

Certifié par:

N° BON DE TRAVAIL: 21Q819433

N° DE PROJET: 201-11330-19

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. À L'ATTENTION DE: Steve St-Cyr PRÉLEVÉ PAR: IYSE RANDOUR

LIEU DE PRÉLÈVEMENT: WINDFALL LAKE

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2021-08-10 DATE DU RAPPORT: 2021-11-11

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3115451-3116435 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 21Q819433

N° DE PROJET: 201-11330-19

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:IYSE RANDOUR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Sous-traitance- Radionucléides												
DATE DE RÉCEPTION: 202	DATE DE RÉCEPTION: 2021-08-10 DATE DU RAPPORT: 2021-11-11											
				AHS-F03-21_CF	2021-07-20_DUP	UTM-F01-21_CF						
	IDENTIFICATION	N DE L'ÉCHA	ANTILLON:	-2	-2	-1						
			MATRICE:	Sol	Sol	Sol						
	DATE D	ÉCHANTILI	LONNAGE:	2021-07-20	2021-07-20	2021-07-30						
Paramètre	Unités	C/N	LDR	3115934	3116044	3116273						
Sous-Traitance				Annexe	Annexe	Annexe						

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes

3115934-3116273 Analyses réalisées en sous-traitance.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: IYSE RANDOLIR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

		Hvd			LIEU DE PRELEVEMENT:WINDFALL LAKE										
		iiyu	rocarbui	res pétrolier	s C10-C50	(Sol)									
)								ATE DU RAPP	ORT: 2021-11-1	1					
						HMBT-F02-	BAD-F01-21_CF		DUP-2_2021-07-	HMBT-F03-					
			IDENTI	FICATION DE L'ÉC	CHANTILLON:	21_CF-1	-2	HS-F01-21_CF-2	24	21_CF-1C					
					MATRICE:	Sol	Sol	Sol	Sol	Sol					
				_						2021-07-25					
Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115551	3115556	3115561	3115567	3115569					
mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100					
%					0.2	4.1	2.7	2.8	3.4	6.4					
Unités			Limites												
%			60-140			117	114	126	125	101					
								HMBT-F01-	BC-F01-21 CF-						
			IDENTI	FICATION DE L'ÉC	HANTILLON: E	BE-F01-21 CF-2	2 BE-F01-21 CF-3	21 CF-1B	1B	BD-F03-21_CF-5					
					MATRICE:	Sol	Sol	Sol	Sol	Sol					
				DATE D'ÉCHANT	ILLONNAGE:	2021-07-25	2021-07-25	2021-07-26	2021-07-26	2021-08-04					
Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115572	3115573	3115574	3115576	3115601					
mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100					
%					0.2	10.1	17.5	16.3	3.8	19.2					
Unités			Limites												
%			60-140			119	105	119	125	105					
								AHS-TR05-21-	AHS-TR05-21-	R-TR03-21-61-					
			IDENTI	FICATION DE L'ÉC	CHANTILLON: E	3H-F01-21_CF-2	2 -67	104-145	145-210	114					
					MATRICE:	Sol	Sol	Sol	Sol	Sol					
				DATE D'ÉCHANT	ILLONNAGE:	2021-08-04	2021-07-19	2021-07-19	2021-07-19	2021-07-20					
Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115602	3115605	3115637	3115638	3115724					
mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100					
%					0.2	8.3	9.1	16.4	9.8	4.3					
Unités			Limites												
%			60-140			122	119	116	126	115					
	% Unités % Unités mg/kg % Unités % Unités mg/kg % Unités	mg/kg 100 % Unités % Unités C / N: A mg/kg 100 % Unités % Unités C / N: A mg/kg 100 % Unités C / N: A	mg/kg 100 700 % Unités C/N: A C/N: B mg/kg 100 700 % Unités Value Value W Unités C/N: A C/N: B mg/kg 100 700 % Unités Value Value	Unités C/N: A C/N: B C/N: C mg/kg 100 700 3500 % Unités Limites % 60-140 Unités C/N: A C/N: B C/N: C mg/kg 100 700 3500 % Unités Limites % 60-140 Unités C/N: A C/N: B C/N: C mg/kg 100 700 3500 % Unités C/N: A C/N: B C/N: C mg/kg 100 700 3500 % Unités Limites Limites Limites Limites Limites Limites Limites	DATE D'ÉCHANT Unités C / N: A C / N: B C / N: C C / N: D	DATE D'ÉCHANTILLONNAGE: Unités	DENTIFICATION DE L'ÉCHANTILLON: Sol 201-07-23	DENTIFICATION DE L'ÉCHANTILLON: 21_CF-1 -2 Sol So	DIENTIFE TION DE L'ÉCHANTILON: 21_CF-1 -2 D-7-21 CF-2 DATE D'ÉCHANTILONNAGE: 2021-07-23 2021-07-24 DATE D'ÉCHANTILONNAGE: 2021-07-25 2021-07-24 DITÉS C/N: A C/N: B C/N: C C/N: D LDR 3115551 3115551 DATE D'ÉCHANTILONNAGE: 2021-07-25 3115561 DATE D'ÉCHANTILONNAGE: 2021-07-25 3115561 DATE D'ÉCHANTILON: C/N: D LDR LT DATE D'ÉCHANTILONNAGE: SOI SOI DATE D'ÉCHANTILLONNAGE: SOI SOI SOI DATE D'ÉCHANTILLONNAGE: SOI SOI SOI SOI DATE D'ÉCHANTILLONNAGE: SOI SOI SOI SOI SOI SOI DATE D'ÉCHANTILLONNAGE: SOI SOI	Part					

La procédure des Laboratoires AGAT concernant les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: IYSE RANDOLIR À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

PRÉLEVÉ PAR:IYSE RANDOL	VÉ PAR:IYSE RANDOUR LIEU DE PRÉLÉVEMENT:WINDFALL LAKE										
			Hyd	rocarbur	es pétrolier	s C10-C5	0 (Sol)				
DATE DE RÉCEPTION: 2021-08-7	10							1	DATE DU RAPP	ORT: 2021-11-	11
							R-TR04-21-38-	AHS-F03-21_CF	AHS-F04-21_CF	2021-07-20_DUP	AHS-F02-21_CF
				IDENTIF	ICATION DE L'É	CHANTILLON:	62	-1	-3	-1	-2
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:		2021-07-20	2021-07-20	2021-07-20	2021-07-21
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3115734	3115933	3115968	3115969	3116048
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100
% Humidité	%					0.2	6.1	12.4	13.3	11.7	2.3
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			116	108	118	104	86
								BI-F03-21_CF-	RC-F03-21_CF-	TU-F01-21_CF-	VR6-F01-21_CF
				IDENTIF	ICATION DE L'É	CHANTILLON:	BA-F01-21_CF-2	1A	1B	1B	1
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2021-07-22	2021-08-05	2021-08-05	2021-07-29	2021-07-29
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3116086	3116155	3116158	3116240	3116261
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100
% Humidité	%					0.2	2.9	16.3	15.8	16.1	14.9
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			114	101	94	104	94
							UTM-F01-21_CF	UTM-F01-21_CF	;	TU-F04-21_CF-	UTM-F02-21_CF
				IDENTIF	ICATION DE L'É	CHANTILLON:	-1	-3	TU-F03-21_CF-1	1B	-1D
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2021-07-30	2021-07-30	2021-07-30	2021-07-31	2021-07-31
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3116273	3116276	3116279	3116311	3116322
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100
% Humidité	%					0.2	25.0	9.2	10.6	16.3	21.5
Étalon de recouvrement	Unités			Limites							

La procédure des Laboratoires AGAT concernant les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 21Q819433

N° DE PROJET: 201-11330-19

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: IYSE RANDOUR

À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT: WINDFALL LAKE

,	
	DATE DU DADDORT 0004 44 4

DATE DE RÉCEPTION: 2021-08-				DATE DU RAPPORT: 2021-11-11							
						Ţ,	JTM-F03-21_CF	SSE-F01-21_CF-	SSE-F02-21_CF-	- UTM-F07-21_CF	
				IDENTIF	FICATION DE L'É	CHANTILLON:	-1B	1B	1B	-2	
						MATRICE:	Sol	Sol	Sol	Sol	
					DATE D'ÉCHAN	TILLONNAGE:	2021-07-31	2021-08-01	2021-08-01	2021-08-01	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3116325	3116349	3116360	3116435	
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	
% Humidité	%					0.2	20.0	12.3	21.8	8.4	
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			96	105	95	99	

Hydrocarbures pétroliers C10-C50 (Sol)

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3115551-3116435 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-19

N° BON DE TRAVAIL: 21Q819433 À L'ATTENTION DE: Steve St-Cyr

PRÉLEVÉ PAR:IYSE RAN			L	IEU [E PRI	ÉLÈVEM	ENT:\	WINDF	ALL LA	KE					
			1	Analy	/se d	es So	ols								
Date du rapport: 2021-11-11				DUPLICAT	4	MATÉ	RIAU DE R	ÉFÉREN	ICE	BLANG	FORT	IFIÉ	ÉCH.	FORTI	FIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.	Lin	nites	% Récup.	Lir	nites
1700 mente					70 0 000	méthode	/0 1100ap.	Inf.	Sup.	, , , , , , , , , , , , , , , , , , ,	Inf.	Sup.	, in recoup.	Inf.	Sup
Analyses inorganiques - WSP	(Balayage mé	taux + me	ercure)	•		•			•			•	•		•
Aluminium	3117422 ;	3115551	2220	2080	6.5	< 30	60%	70%	130%	86%	80%	120%	77%	70%	130%
Antimoine	3117422 ;	3115551	<20	<20	NA	< 20	104%	70%	130%	81%	80%	120%	72%	70%	130%
Argent	3117422 ;	3115551	< 0.5	< 0.5	NA	< 0.5	81%	70%	130%	87%	80%	120%	82%	70%	130%
Arsenic	3117422 ;		<1	<1	NA	< 1	71%	70%	130%	79%	80%	120%	74%	70%	130%
Baryum	3117422 ;	3115551	<20	<20	NA	< 20	73%	70%	130%	84%	80%	120%	77%	70%	130%
Béryllium	3117422 ;	3115551	<1	<1	NA	< 1	74%	70%	130%	96%	80%	120%	90%	70%	130%
Cadmium	3117422 ;		<0.5	< 0.5	NA	< 0.5	73%	70%	130%	83%	80%	120%	79%	70%	130%
Calcium	3117422 ;		1300	1060	20.3	< 100	74%	70%	130%	85%	80%	120%	85%	70%	130%
Chrome	3117422 ;		6	5	NA	< 2	79%	70%	130%	86%	80%	120%	82%	70%	130%
Cobalt	3117422 ;		3	3	NA	< 2	83%	70%	130%	86%	80%	120%	82%	70%	130%
Cuivre	3117422 ;	3115551	4	4	NA	< 1	80%	70%	130%	86%	80%	120%	82%	70%	130%
Étain	3117422 ;	3115551	<5	<5	NA	< 5	71%	70%	130%	83%	80%	120%	76%	70%	130%
Fer	3117422 ;	3115551	7860	7210	8.6	< 500	80%	70%	130%	91%	80%	120%	NA	70%	130%
Lithium	3117422 ;	3115551	<20	<20	NA	< 20	75%	70%	130%	98%	80%	120%	85%	70%	130%
Magnésium	3117422 ;	3115551	1040	941	10.0	< 100	71%	70%	130%	88%	80%	120%	83%	70%	130%
Manganèse	3117422 ;	3115551	94	79	17.3	< 10	74%	70%	130%	86%	80%	120%	81%	70%	130%
Mercure	3117422 ;	3115551	<0.2	<0.2	NA	< 0.2	72%	70%	130%	85%	80%	120%	78%	70%	130%
Molybdène	3117422 ;	3115551	<1	<1	NA	< 1	76%	70%	130%	84%	80%	120%	78%	70%	130%
Nickel	3117422 ;	3115551	4	4	NA	< 2	80%	70%	130%	86%	80%	120%	81%	70%	130%
Plomb	3117422 ;	3115551	<5	<5	NA	< 5	79%	70%	130%	87%	80%	120%	80%	70%	130%
Potassium	3117422 ;	3115551	349	297	NA	< 100	72%	70%	130%	84%	80%	120%	80%	70%	130%
Sélénium	3117422 ;		<0.5	<0.5	NA	< 0.5	75%	70%	130%	84%	80%	120%	84%	70%	130%
Sodium	3117422 ;		<100	<100	NA	< 100	66%	70%	130%	86%	80%	120%	80%	70%	130%
Thallium	3117422 ;	3115551	<15	<15	NA	< 15	71%	70%	130%	82%	80%	120%	74%	70%	130%
Vanadium	3117422 ;	3115551	17	16	NA	< 15	76%	70%	130%	85%	80%	120%	80%	70%	130%
Zinc	3117422 ;	3115551	12	12	NA	< 5	77%	70%	130%	85%	80%	120%	81%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Al et Na est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Analyses inorganiques (Sol)

pН	3115451 3115451	6.54	6.51	0.5		101%	95%	105%	NA	NA
% Humidité	3115499 3115499	2.8	26	44	< 0.2	103%	80%	120%	NA	NΑ

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Analyses inorganiques - WSP (Balayage métaux + mercure)

3115454 3115454 3040 Aluminium 2840 < 30 70% 130% 83% 80% 120% 70% 130% 6.8

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-19 DDÉLEVÉ DADJIVCE DANDOUD

N° BON DE TRAVAIL: 21Q819433 À L'ATTENTION DE: Steve St-Cyr

PRÉLEVÉ PAR:IYSE RAN			L	IEU [DE PR	ÉLÈVEM	ENT:	WIND	ALL LA	KE					
			Ana	lyse	des S	Sols	(Suite	e)							
Date du rapport: 2021-11-11				DUPLICAT	A	MATÉ	RIAU DE R	ÉFÉREN	NCE	BLAN	C FORT	IFIÉ	ÉCH.	FORTII	FIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	up #2 % d'écart Blanc de % R		% Récup.	Limites	% Récup.	Lin	nites	% Récup.	Lin	nites	
						méthode		Inf.	Sup.]	Inf.	Sup.		Inf.	Sup.
Antimoine	3115454	3115454	<20	<20	NA	< 20	117%	70%	130%	72%	80%	120%	79%	70%	130%
Argent	3115454	3115454	<0.5	<0.5	NA	< 0.5	98%	70%	130%	83%	80%	120%	124%	70%	130%
Arsenic	3115454	3115454	<1	<1	NA	< 1	82%	70%	130%	76%	80%	120%	114%	70%	130%
Baryum	3115454	3115454	<20	<20	NA	< 20	89%	70%	130%	80%	80%	120%	118%	70%	130%
Béryllium	3115454	3115454	<1	<1	NA	< 1	90%	70%	130%	89%	80%	120%	122%	70%	130%
Cadmium	3115454	3115454	<0.5	<0.5	NA	< 0.5	89%	70%	130%	81%	80%	120%	119%	70%	130%
Calcium	3115454	3115454	1360	1260	8.0	< 100	87%	70%	130%	80%	80%	120%	86%	70%	130%
Chrome	3115454	3115454	8	9	NA	< 2	94%	70%	130%	83%	80%	120%	124%	70%	130%
Cobalt	3115454	3115454	3	3	NA	< 2	96%	70%	130%	84%	80%	120%	126%	70%	130%
Cuivre	3115454		7	7	0.3	< 1	85%	70%	130%	82%	80%	120%	126%	70%	130%
Étain	3115454		<5	<5	NA	< 5	89%	70%	130%	74%	80%	120%	82%	70%	130%
Fer	3115454		5550	5650	1.8	< 500	95%	70%	130%	91%	80%	120%	100%	70%	130%
Lithium	3115454		<20	<20	NA	< 20	90%	70%	130%	90%	80%	120%	122%	70%	130%
Magnésium	3115454	3115454	1460	1430	2.2	< 100	93%	70%	130%	86%	80%	120%	92%	70%	130%
Manganèse	3115454		74	72	3.5	< 10	95%	70%	130%	84%	80%	120%	89%	70%	130%
Mercure	3115454		<0.2	<0.2	NA	< 0.2	84%	70%	130%	83%	80%	120%	83%	70%	130%
Molybdène	3115454		<1	<1	NA	< 1	91%	70%	130%	75%	80%	120%	84%	70%	130%
Nickel	3115454		6	6	NA	< 2	93%	70%	130%	83%	80%	120%	125%	70%	
Plomb	3115454	3115454	<5	<5	NA	< 5	91%	70%	130%	83%	80%	120%	122%	70%	130%
Potassium	3115454		125	126	NA	< 100	82%	70%	130%	81%	80%	120%	86%	70%	130%
Sélénium	3115454		<0.5	<0.5	NA	< 0.5	80%	70%	130%	82%	80%	120%	114%	70%	130%
Sodium	3115454		<100	<100	NA	< 100	79%	70%	130%	82%	80%	120%	87%	70%	130%
Thallium	3115454		<15	<15	NA	< 15	87%	70%	130%	80%	80%	120%	116%	70%	130%
Vanadium	3115454	3115454	<15	<15	NA	< 15	89%	70%	130%	83%	80%	120%	128%	70%	130%
Zinc	3115454	3115454	8	8	NA	< 5	89%	70%	130%	81%	80%	120%	122%	70%	130%

Commentaires: Le pourcentage de récupération du blanc fortifié en As, Sb, Sn, Ti et Mo ne respecte pas les critères établis. La validité de l'analyse est démontrée par la conformité des autres éléments de contrôle de qualité.

44%

70% 130% 84%

Le pourcentage de récupération du MRC concernant le Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

1.5

< 30

Analyses inorganiques - WSP (Balayage métaux + mercure)												
Aluminium	3115551 3115551	5030	5110									
Antimoine	3115551 3115551	<20	<20									

7 11 01 11 11 11 11 11 11 11 11 11 11 11		0110001	0000	0110	1.0	~ 00	1170	1070	10070	0170	0070	12070	0170	1070	.00,0
Antimoine	3115551	3115551	<20	<20	NA	< 20	129%	70%	130%	91%	80%	120%	74%	70%	130%
Argent	3115551	3115551	<0.5	<0.5	NA	< 0.5	94%	70%	130%	98%	80%	120%	79%	70%	130%
Arsenic	3115551	3115551	<1	<1	NA	< 1	86%	70%	130%	91%	80%	120%	77%	70%	130%
Baryum	3115551	3115551	<20	<20	NA	< 20	85%	70%	130%	94%	80%	120%	79%	70%	130%
Béryllium	3115551	3115551	<1	<1	NA	< 1	89%	70%	130%	109%	80%	120%	86%	70%	130%
Cadmium	3115551	3115551	<0.5	<0.5	NA	< 0.5	91%	70%	130%	100%	80%	120%	82%	70%	130%
Calcium	3115551	3115551	729	825	12.4	< 100	89%	70%	130%	92%	80%	120%	85%	70%	130%
Chrome	3115551	3115551	14	14	0.1	< 2	95%	70%	130%	99%	80%	120%	85%	70%	130%

70% 130%

80% 120% 84%

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-19 PRÉLEVÉ PAR:IYSE RANDOUR N° BON DE TRAVAIL: 21Q819433 À L'ATTENTION DE: Steve St-Cyr

LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyse des Sols (Suite)															
Date du rapport: 2021-11-11				DUPLICAT	A	MATÉ	RIAU DE RI	ÉFÉREN	ICE	BLANG	FORT	FIÉ	ÉCH.	FORTII	FIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.		nites	% Récup.	Lin	nites
TAKAMETKE	Lot	IN COII.	Бар#1	Dup #2		méthode	70 Necup.	Inf.	Sup.	70 Necup.	Inf.	Sup.	70 Necup.	Inf.	Sup.
Cobalt	3115551	3115551	4	4	NA	< 2	96%	70%	130%	99%	80%	120%	86%	70%	130%
Cuivre	3115551	3115551	8	8	2.9	< 1	89%	70%	130%	98%	80%	120%	85%	70%	130%
Étain	3115551	3115551	<5	<5	NA	< 5	89%	70%	130%	96%	80%	120%	79%	70%	130%
Fer	3115551	3115551	8080	7770	3.9	< 500	100%	70%	130%	107%	80%	120%	NA	70%	130%
Lithium	3115551	3115551	<20	<20	NA	< 20	89%	70%	130%	100%	80%	120%	84%	70%	130%
Magnésium	3115551	3115551	3000	2900	3.1	< 100	100%	70%	130%	96%	80%	120%	82%	70%	130%
Manganèse	3115551	3115551	96	94	2.5	< 10	88%	70%	130%	87%	80%	120%	86%	70%	130%
Mercure	3115551	3115551	<0.2	<0.2	NA	< 0.2	85%	70%	130%	99%	80%	120%	74%	70%	130%
Molybdène	3115551	3115551	<1	<1	NA	< 1	94%	70%	130%	100%	80%	120%	79%	70%	130%
Nickel	3115551	3115551	11	10	8.7	< 2	94%	70%	130%	98%	80%	120%	82%	70%	130%
Plomb	3115551	3115551	<5	<5	NA	< 5	92%	70%	130%	99%	80%	120%	84%	70%	130%
Potassium	3115551	3115551	<100	103	NA	< 100	85%	70%	130%	95%	80%	120%	86%	70%	130%
Sélénium	3115551	3115551	<0.5	<0.5	NA	< 0.5	88%	70%	130%	104%	80%	120%	80%	70%	130%
Sodium	3115551	3115551	<100	<100	NA	< 100	79%	70%	130%	95%	80%	120%	82%	70%	130%
Thallium	3115551	3115551	<15	<15	NA	< 15	86%	70%	130%	97%	80%	120%	78%	70%	130%
Vanadium	3115551	3115551	<15	<15	NA	< 15	88%	70%	130%	98%	80%	120%	82%	70%	130%
Zinc	3115551	3115551	16	16	NA	< 5	92%	70%	130%	86%	80%	120%	83%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Al est conforme à l'écart du certificat du matériau de référence du fournisseur. NA : Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Analyses inorganiques - WSP (Balayage métaux + mercure)														
Aluminium	3115632 3115632	13300	13200	8.0	< 30	66%	70%	130%	80%	80%	120%	NA	70%	130%
Antimoine	3115632 3115632	<20	<20	NA	< 20	98%	70%	130%	86%	80%	120%	79%	70%	130%
Argent	3115632 3115632	<0.5	<0.5	NA	< 0.5	85%	70%	130%	84%	80%	120%	83%	70%	130%
Arsenic	3115632 3115632	<1	<1	NA	< 1	73%	70%	130%	81%	80%	120%	84%	70%	130%
Baryum	3115632 3115632	<20	<20	NA	< 20	87%	70%	130%	87%	80%	120%	88%	70%	130%
Béryllium	3115632 3115632	<1	<1	NA	< 1	82%	70%	130%	93%	80%	120%	90%	70%	130%
Cadmium	3115632 3115632	<0.5	<0.5	NA	< 0.5	82%	70%	130%	86%	80%	120%	87%	70%	130%
Calcium	3115632 3115632	1190	1110	6.8	< 100	85%	70%	130%	86%	80%	120%	85%	70%	130%
Chrome	3115632 3115632	23	24	3.1	< 2	87%	70%	130%	87%	80%	120%	90%	70%	130%
Cobalt	3115632 3115632	3	3	NA	< 2	89%	70%	130%	88%	80%	120%	91%	70%	130%
Cuivre	3115632 3115632	3	3	NA	< 1	86%	70%	130%	88%	80%	120%	93%	70%	130%
Étain	3115632 3115632	<5	<5	NA	< 5	73%	70%	130%	89%	80%	120%	87%	70%	130%
Fer	3115632 3115632	13400	12800	4.1	< 500	87%	70%	130%	86%	80%	120%	NA	70%	130%
Lithium	3115632 3115632	<20	<20	NA	< 20	88%	70%	130%	96%	80%	120%	89%	70%	130%
Magnésium	3115632 3115632	2300	2270	1.3	< 100	81%	70%	130%	83%	80%	120%	93%	70%	130%
Manganèse	3115632 3115632	79	76	3.6	< 10	75%	70%	130%	82%	80%	120%	90%	70%	130%
Mercure	3115632 3115632	<0.2	<0.2	NA	< 0.2	71%	70%	130%	87%	80%	120%	84%	70%	130%
Molybdène	3115632 3115632	<1	<1	NA	< 1	76%	70%	130%	94%	80%	120%	86%	70%	130%
Nickel	3115632 3115632	9	9	NA	< 2	86%	70%	130%	86%	80%	120%	89%	70%	130%

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-19

PRÉLEVÉ PAR: IYSE RANDOUR

N° BON DE TRAVAIL: 21Q819433 À L'ATTENTION DE: Steve St-Cyr

LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

							_								
			Ana	lyse	des S	Sols ((Suite	e)							
Date du rapport: 2021-11-11				DUPLICAT	A	MATÉ	RIAU DE RI	ÉFÉREN	NCE	BLAN	FORT	IFIÉ	ÉCH.	FORTIF	FIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.		nites	% Récup.		nites
TAKAMETKE		IT COII.	Бар " т	Dup #2	70 u court	méthode	70 Neoup.	Inf.	Sup.	70 Neoup.	Inf.	Sup.	76 Redup.	Inf.	Sup.
Plomb	3115632	3115632	<5	<5	NA	< 5	86%	70%	130%	88%	80%	120%	88%	70%	130%
Potassium	3115632	3115632	104	109	NA	< 100	78%	70%	130%	89%	80%	120%	89%	70%	130%
Sélénium	3115632	3115632	<0.5	< 0.5	NA	< 0.5	76%	70%	130%	84%	80%	120%	83%	70%	130%
Sodium	3115632	3115632	<100	<100	NA	< 100	59%	70%	130%	89%	80%	120%	88%	70%	130%
Thallium	3115632	3115632	<15	<15	NA	< 15	80%	70%	130%	85%	80%	120%	85%	70%	130%
Vanadium	3115632	3115632	24	23	NA	< 15	81%	70%	130%	87%	80%	120%	88%	70%	130%
Zinc	3115632	3115632	16	15	NA	< 5	83%	70%	130%	87%	80%	120%	90%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Al et Na est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA : Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Analyses inorganiques - WSP (E	Balayage métaux + me	ercure)												
Aluminium	3115969 3115969	8150	7410	9.5	< 30	45%	70%	130%	86%	80%	120%	NA	70%	130%
Antimoine	3115969 3115969	<20	<20	NA	< 20	128%	70%	130%	83%	80%	120%	76%	70%	130%
Argent	3115969 3115969	<0.5	<0.5	NA	< 0.5	99%	70%	130%	84%	80%	120%	84%	70%	130%
Arsenic	3115969 3115969	2	1	NA	< 1	87%	70%	130%	83%	80%	120%	79%	70%	130%
Baryum	3115969 3115969	<20	<20	NA	< 20	82%	70%	130%	87%	80%	120%	83%	70%	130%
Béryllium	3115969 3115969	<1	<1	NA	< 1	96%	70%	130%	94%	80%	120%	93%	70%	130%
Cadmium	3115969 3115969	<0.5	<0.5	NA	< 0.5	94%	70%	130%	86%	80%	120%	85%	70%	130%
Calcium	3115969 3115969	932	983	5.3	< 100	91%	70%	130%	82%	80%	120%	79%	70%	130%
Chrome	3115969 3115969	14	15	5.5	< 2	98%	70%	130%	88%	80%	120%	83%	70%	
Cobalt	3115969 3115969	4	3	NA	< 2	102%	70%		89%	80%	120%	86%		130%
Cuivre	3115969 3115969	8	6	24.3	< 1	96%	70%	130%	90%	80%	120%	85%	70%	
Étain	3115969 3115969	<5	<5	NA	< 5	94%	70%	130%	85%	80%	120%	81%	70%	130%
Fer	3115969 3115969	9070	8860	2.3	< 500	101%	70%	130%	91%	80%	120%	NA	70%	
Lithium	3115969 3115969	<20	<20	NA	< 20	96%	70%	130%	95%	80%	120%	92%	70%	130%
Magnésium	3115969 3115969	2220	2410	8.0	< 100	97%	70%	130%	89%	80%	120%	86%	70%	130%
Manganèse	3115969 3115969	107	105	1.8	< 10	99%	70%	130%	86%	80%	120%	86%	70%	130%
Mercure	3115969 3115969	<0.2	<0.2	NA	< 0.2	89%	70%	130%	96%	80%	120%	74%	70%	130%
Molybdène	3115969 3115969	<1	<1	NA	< 1	95%	70%	130%	85%	80%	120%	82%	70%	130%
Nickel	3115969 3115969	8	8	NA	< 2	98%	70%	130%	88%	80%	120%	85%	70%	130%
Plomb	3115969 3115969	<5	<5	NA	< 5	99%	70%	130%	88%	80%	120%	87%	70%	130%
Potassium	3115969 3115969	120	117	NA	< 100	86%	70%	130%	84%	80%	120%	86%	70%	130%
Sélénium	3115969 3115969	<0.5	<0.5	NA	< 0.5	84%	70%	130%	85%	80%	120%	85%	70%	130%
Sodium	3115969 3115969	<100	<100	NA	< 100	74%	70%	130%	85%	80%	120%	88%	70%	
Thallium	3115969 3115969	<15	<15	NA	< 15	91%	70%	130%	85%	80%	120%	84%	70%	130%
Vanadium	3115969 3115969	16	<15	NA	< 15	94%	70%		87%	80%	120%	82%		130%
	2 11111 0110000		110	1471	` .0	01/3	. 5 / 0	.0070	3.75	0070	.2070	02/0	1070	.00,0
Zinc	3115969 3115969	18	19	NA	< 5	96%	70%	130%	89%	80%	120%	86%	70%	130%

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-19

PRÉLEVÉ PAR: IYSE RANDOUR

N° BON DE TRAVAIL: 21Q819433 À L'ATTENTION DE: Steve St-Cyr

LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

			Ana	lyse	des S	Sols (Suite	∌)							
Date du rapport: 2021-11-11 DUPLICATA MATÉRIAU DE RÉFÉRENCE BLANC FORTIFIÉ ÉCH. FO									FORTIF	iÉ.					
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de			ites	% Récup.		nites	% Récup.		nites
						méthode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.

Commentaires: Le pourcentage de récupération du MRC concernant le Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA : Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Analyses inorganiques - WSP (B	alayage métaux + me	ercure)												
Aluminium	3116192 3116192	8530	8400	1.5	< 30	74%	70%	130%	84%	80%	120%	NA	70%	130%
Antimoine	3116192 3116192	<20	<20	NA	< 20	102%	70%	130%	83%	80%	120%	74%	70%	130%
Argent	3116192 3116192	<0.5	< 0.5	NA	< 0.5	88%	70%	130%	93%	80%	120%	79%	70%	130%
Arsenic	3116192 3116192	<1	<1	NA	< 1	73%	70%	130%	86%	80%	120%	72%	70%	130%
Baryum	3116192 3116192	<20	<20	NA	< 20	82%	70%	130%	90%	80%	120%	77%	70%	130%
Béryllium	3116192 3116192	<1	<1	NA	< 1	81%	70%	130%	99%	80%	120%	82%	70%	130%
Cadmium	3116192 3116192	< 0.5	< 0.5	NA	< 0.5	82%	70%	130%	90%	80%	120%	77%	70%	130%
Calcium	3116192 3116192	1240	1200	4,0%	< 100	76%	70%	130%	84%	80%	120%	76%	70%	130%
Chrome	3116192 3116192	18	14	24.9	< 2	86%	70%	130%	92%	80%	120%	78%	70%	130%
Cobalt	3116192 3116192	3	3	NA	< 2	89%	70%	130%	93%	80%	120%	77%	70%	130%
Cuivre	3116192 3116192	5	5	NA	< 1	85%	70%	130%	95%	80%	120%	79%	70%	130%
Étain	3116192 3116192	<5	<5	NA	< 5	75%	70%	130%	84%	80%	120%	80%	70%	130%
Fer	3116192 3116192	10600	9920	7,0%	< 500	87%	70%	130%	89%	80%	120%	NA	70%	130%
Lithium	3116192 3116192	<20	<20	NA	< 20	85%	70%	130%	98%	80%	120%	81%	70%	130%
Magnésium	3116192 3116192	1990	1930	3.1	< 100	83%	70%	130%	85%	80%	120%	71%	70%	130%
Manganèse	3116192 3116192	88	83	5.7	< 10	92%	70%	130%	84%	80%	120%	72%	70%	130%
Mercure	3116192 3116192	<0.2	<0.2	NA	< 0.2	83%	70%	130%	99%	80%	120%	86%	70%	130%
Molybdène	3116192 3116192	<1	<1	NA	< 1	77%	70%	130%	86%	80%	120%	81%	70%	130%
Nickel	3116192 3116192	11	6	NA	< 2	89%	70%	130%	92%	80%	120%	75%	70%	130%
Plomb	3116192 3116192	<5	<5	NA	< 5	85%	70%	130%	92%	80%	120%	77%	70%	130%
Potassium	3116192 3116192	150	161	NA	< 100	78%	70%	130%	82%	80%	120%	72%	70%	130%
Sélénium	3116192 3116192	< 0.5	<0.5	NA	< 0.5	79%	70%	130%	91%	80%	120%	76%	70%	130%
Sodium	3116192 3116192	<100	<100	NA	< 100	77%	70%	130%	81%	80%	120%	71%	70%	130%
Thallium	3116192 3116192	<15	<15	NA	< 15	78%	70%	130%	87%	80%	120%	73%	70%	130%
Vanadium	3116192 3116192	22	22	NA	< 15	83%	70%	130%	91%	80%	120%	76%	70%	130%
Zinc	3116192 3116192	17	16	NA	< 5	83%	70%	130%	93%	80%	120%	78%	70%	130%

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Analyses inorganiques (Sol)

pH 3115594 3115594 5.45 5.41 0.7 100% 95% 105% NA NA

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-19 PRÉLEVÉ PAR:IYSE RANDOUR N° BON DE TRAVAIL: 21Q819433 À L'ATTENTION DE: Steve St-Cyr

LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

	Analyse des Sols (Suite)														
Date du rapport: 2021-11-11 DUPLICATA MATÉRIAU DE RÉFÉRENCE BLANC FORTIFIÉ ÉCH. FORTIFIÉ									ΊÉ						
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lim	ites	% Récup.		nites	% Récup.		nites
						methode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Analyses inorganiques (Sol)

pH 3116044 3116044 5.18 5.21 0.6 99% 95% 105% NA NA

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Analyses inorganiques (Sol)

pH 3116276 3116276 7.07 7.07 0,0% 98% 95% 105% NA NA

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop

élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Analyses Inorganiques (sol)

Carbone organique total 3116128 3116128 <0.3 <0.3 NA < 0.3 113% 80% 120% 97% 80% 120% 458% 70% 130%

Commentaires: NA : Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Le pourcentage de récupération du MRC peut être en dehors du critère d'acceptabilité s'il est conforme à l'écart du certificat du matériau de référence.

Recouvrements du fortifié pour carbon organique total en dehors des critères d'acceptabilité en raison d'une interférence de matrice. L'analyse a été refaite avec des résultats similaires.

Analyses Inorganiques (sol)

Soufre total 3115516 3115516 <200 <200 NA < 200 103% 70% 130% 100% 80% 120% 92% 70% 130%

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Le pourcentage de récupération du MRC peut être en dehors du critère d'acceptabilité s'il est conforme à l'écart du certificat du matériau de référence.

Analyses Inorganiques (sol)

Carbone organique total 3115573 3115573 <0.3 <0.3 NA < 0.3 117% 80% 120% 81% 80% 120% 86% 70% 130%

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-19 PRÉLEVÉ PAR:IYSE RANDOUR N° BON DE TRAVAIL: 21Q819433 À L'ATTENTION DE: Steve St-Cyr

LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

	Analyse des Sols (Suite)														
Date du rapport: 2021-11-11 DUPLICATA MATÉRIAU DE RÉFÉRENCE BLANC FORTIFIÉ ÉCH. FORTIFIÉ										ΊÉ					
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de			ites	% Récup.		nites	% Récup.		nites
						méthode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Le pourcentage de récupération du MRC peut être en dehors du critère d'acceptabilité s'il est conforme à l'écart du certificat du matériau de référence.

Analyses Inorganiques (sol)

Soufre total 3115615 3115615 <200 <200 NA < 200 96% 70% 130% 102% 80% 120% 83% 70% 130%

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Le pourcentage de récupération du MRC peut être en dehors du critère d'acceptabilité s'il est conforme à l'écart du certificat du matériau de référence.

Analyses Inorganiques (sol)

Soufre total 3116114 3116114 <200 <200 NA < 200 95% 70% 130% 92% 80% 120% 81% 70% 130%

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Le pourcentage de récupération du MRC peut être en dehors du critère d'acceptabilité s'il est conforme à l'écart du certificat du matériau de référence.

Analyses Inorganiques (sol)

Soufre total 3116325 3116325 <200 <200 NA <200 88% 70% 130% 104% 80% 120% 91% 70% 130%

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Le pourcentage de récupération du MRC peut être en dehors du critère d'acceptabilité s'il est conforme à l'écart du certificat du matériau de référence.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-19

PRÉLEVÉ PAR: IYSE RANDOUR

N° BON DE TRAVAIL: 21Q819433 À L'ATTENTION DE: Steve St-Cyr

LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

Analyse des Sols (Suite)															
Date du rapport: 2021-11-11 DUPLICATA						MATÉ	RIAU DE R	ÉFÉREN	CE	BLAN	C FORTI	FIÉ	ÉCH.	FORTIF	ΉÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.		ites	% Récup.		nites	% Récup.		nites
						methode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentages de différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reliête pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-19

PRÉLEVÉ PAR:IYSE RANDOUR

N° BON DE TRAVAIL: 21Q819433 À L'ATTENTION DE: Steve St-Cyr

LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

		P	analy	se o	rgani	que (de tra	ace							
Date du rapport: 2021-11-11			ı	DUPLICAT	A	MATÉ	RIAU DE RI	ÉFÉREN	ICE	BLANG	FORT	IFIÉ	ÉCH.	FORTIF	FIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.		nites	% Récup.	Limit	
						méthode		Inf.	Sup.		Inf.	Sup.			Sup.
Hydrocarbures pétroliers C10-C	50 (Sol)														
Hydrocarbures pétroliers C10 à C50	3116086	3116086	<100	<100	NA	< 100	110%	60%	140%	100%	60%	140%	109%	60%	140%
Rec. Nonane	3116086	3116086	114	123	7.6	120	121%	60%	140%	98%	60%	140%	115%	60%	140%
% Humidité	3115499	3115499	2.8	2.6	4.4	< 0.2	103%	80%	120%	NA			NA		

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Hydrocarbures pétroliers C10-C50 (Sol)

Hydrocarbures pétroliers C10 à	3116279 3116279	<100	<100	NA	< 100	95%	60%	140%	98%	60%	140%	95%	60%	140%
C50														
Rec. Nonane	3116279 3116279	91	97	6.4	98	94%	60%	140%	89%	60%	140%	96%	60%	140%

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC. N° BON DE TRAVAIL: 21Q819433 N° DE PROJET: 201-11330-19 À L'ATTENTION DE: Steve St-Cyr

Date du rapport: 11 nov. 2021		MATÉRIAU D	E RÉFÉ	RENCE	BLAN	C FORT	TFIÉ	ÉCH	. FORTI	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lim	ites	% Récup.		nites	% Récup.		nites
			Inf.	Sup.		Inf.	Sup.		Inf.	Sup.
Analyses inorganiques - WSP (Balayage métaux + mercure)										
Aluminium	3115551	60%	70%	130%	86%	80%	120%	77%	70%	130%
Arsenic	3115551	71%	70%	130%	79%	80%	120%	74%	70%	130%
Sodium	3115551	66%	70%	130%	86%	80%	120%	80%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le AI et Na est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Analyses inorganiques - WSP (Balayage métaux + mercure)

Aluminium	3115454	37%	70%	130%	83%	80%	120%	88%	70%	130%
Antimoine	3115454	117%	70%	130%	72%	80%	120%	79%	70%	130%
Arsenic	3115454	82%	70%	130%	76%	80%	120%	114%	70%	130%
Étain	3115454	89%	70%	130%	74%	80%	120%	82%	70%	130%
Molybdène	3115454	91%	70%	130%	75%	80%	120%	84%	70%	130%

Commentaires: Le pourcentage de récupération du blanc fortifié en As, Sb, Sn, Ti et Mo ne respecte pas les critères établis. La validité de l'analyse est démontrée par la conformité des autres éléments de contrôle de qualité.

Le pourcentage de récupération du MRC concernant le Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Analyses inorganiques - WSP (Balayage métaux + mercure)

Aluminium 3115551 70% 130% 84% 70% 130% 80% 120% 84%

Commentaires: Le pourcentage de récupération du MRC concernant le Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Analyses inorganiques - WSP (Balayage métaux + mercure)

Aluminium	3115632	66%	70% 130%	80%	80% 120%	NA	70% 130)%
Sodium	3115632	59%	70% 130%	89%	80% 120%	88%	70% 130)%

Commentaires: Le pourcentage de récupération du MRC concernant le Al et Na est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Analyses inorganiques - WSP (Balayage métaux + mercure)

AGAT RAPPORT DE CONTRÔLE DE QUALITÉ (V1)

Page 46 de 58

AGAT Laboratoires est accrédité selon la norme ISO/IFC 17025 par CALA l'Association canadienne pour la reconnaissance officielle des laboratoires et/ou par le Conseil canadien des normes (CCN) pour des analyses spécifiques inscrites dans la portée d'accréditation. AGAT Laboratoires (Mississauga) est également accrédité par CALA, l'Association canadienne pour la reconnaissance officielle des laboratoires, pour des services spécifiques à l'analyse de l'eau potable. Les accréditations sont attribuées à un emplacement et à un paramètre précis. Une liste complète des paramètres pour chaque emplacement est disponible sur www.cala.ca et/ou sur www.scc.ca. Il se peut que les analyses qui figurent dans ce rapport ne soient pas

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 21Q819433

N° DE PROJET: 201-11330-19

À L'ATTENTION DE: Steve St-Cyr

Date du rapport: 11 nov. 2021		MATÉRIAU D	E RÉFÉ	RENCE	BLAN	C FORT	ïFIÉ	ÉCH	. FORTII	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lin	nites	% Récup.		nites	% Récup.		nites
1740 tin21102		, , , , , , , , , , , , , , , , , , ,	Inf.	Sup.	, o . tooup.	Inf.	Sup.	70 . 100up.	Inf.	Sup.
Aluminium	3115969	45%	70%	130%	86%	80%	120%	NA	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Analyses Inorganiques (sol)

Carbone organique total 3116128 113% 80% 120% 97% 80% 120% 458% 70% 130%

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Le pourcentage de récupération du MRC peut être en dehors du critère d'acceptabilité s'il est conforme à l'écart du certificat du matériau de référence.

Recouvrements du fortifié pour carbon organique total en dehors des critères d'acceptabilité en raison d'une interférence de matrice. L'analyse a été refaite avec des résultats similaires.

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-19

PRÉLEVÉ PAR:IYSE RANDOUR

N° BON DE TRAVAIL: 21Q819433 À L'ATTENTION DE: Steve St-Cyr

LIEU DE PRÉLÈVEMENT:WINDFALL LAKE

PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse des Sols		,		,	
Carbone organique total	2021-10-28	2021-11-04	INOR-101-6057F	MA. 405-C 1.1	TITRAGE
Soufre total	2021-10-28	2021-11-02	INOR-101-6056F	MA.310-CS 1.0	COMBUSTION
рН	2021-10-27	2021-11-04	INOR-161-6009F	MA. 100 - pH 1.1	ÉLECTROMÉTRIE
% Humidité	2021-10-26	2021-10-26	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE
Aluminium	2021-10-27	2021-11-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Antimoine	2021-10-28	2021-11-09	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Argent	2021-10-28	2021-11-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Arsenic	2021-10-28	2021-11-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Baryum	2021-10-28	2021-11-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Béryllium	2021-10-28	2021-11-09	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Cadmium	2021-10-28	2021-11-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Calcium	2021-10-28	2021-11-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Chrome	2021-10-28	2021-11-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cobalt	2021-10-28	2021-11-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cuivre	2021-10-28	2021-11-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Étain	2021-10-28	2021-11-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Fer	2021-10-28	2021-11-09	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Lithium	2021-10-28	2021-11-09	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Magnésium	2021-10-28	2021-11-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Manganèse	2021-10-28	2021-11-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Mercure	2021-10-28	2021-11-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Molybdène	2021-10-28	2021-11-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Nickel	2021-10-28	2021-11-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Plomb	2021-10-28	2021-11-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Potassium	2021-10-28	2021-11-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sélénium	2021-10-28	2021-11-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sodium	2021-10-28	2021-11-09	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Thallium	2021-10-28	2021-11-09	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Titane	2021-11-03	2021-11-05	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Vanadium	2021-10-28	2021-11-09	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Zinc	2021-10-28	2021-11-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sous-Traitance					
Analyse organique de trace					
Hydrocarbures pétroliers C10 à C50	2021-10-27	2021-10-27	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2021-10-27	2021-10-27	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2021-10-26	2021-10-26	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE

1113 1244 244 244		Bor.	Bordereau de demande d'analyses es : 159 ne Franquet Quebec City, Quebec	mande o	l'anatys Ky, quet	es ec Canada	1, C1P 4P3		210 810	-		
NSS Canada Inc. \$355, boar des Grados Oueber (Diabus) CTT 1000	* 12	Delai d'analyse requis	48 Hex	=	6.12 hr	,			7 2 2	7 4 55		5
Telephone 418-623-7066	Telecopea, 418-623-2434		24 hea		Date requise	2			Bon No. e	de soumission:		
4 \$	201-11330-19, phase 240 Windfall Late Iye Randour					es à respect RMD (met i RDS (met i REIMR	Ger Eéviable) Épinable)		Enurence	B F.: C	l.,	
Churgé de projet: Sas- Cournel ster	See S.Cy. New H.cy/Detp.com/ cathering do	domingua @wrp com	***************************************				in, Mo, Na,	8) 8)				
Matrice: S Sol S Solide S Solide EU Solide EU EP Esuparable	Bour Eau urae Eau souterrane	ES Eau de turface EF Embert AF Ambert	·		schrujdne (otw. (CO.		Al, Ag, As, Ba, Be e, Hg, K, Ll, Mg, N o, Se, Sn, Ta Tl, V	bures pétrollers :léides ((U-238, R 32, Ra-228, Th-22				
1 1	Identification de l'échantillon	Date de prèlèvement	Matrice	Nombre		nmidité H	d'no '	ounolbi S-AT ,0	letol	*******		
2 :R-TR01-21-40-70		2021-07-23	S	-			xc	s.A	× 2 ×			
		2021-07-23	 из из			****						
5 Dup 03-21		2021-07-23	s)	-	×	×	×		×			
6 Dup 05-21		2021-07-23	n n	-		Company of the Compan						
7 :80-TR03-21-0-120		2021-07-23	s		-							
9 BD-TR01-21-0-46		2021-07-23	s v		×	×	×		×			
10 BD-TR01-21-46-156		2021-07-23	S		`\ ×	×	×		×		ļļ.	
12 :8+TR03-21-31-35		2021-07-23	s c	-	-							
13 ;BI-TR03-21-36-59		2021-07-24	is v	-	×	×	×		 ×			
14 :BO-TR02-21-0-150		2021-07-24	n 0									
16 BB-TR01-21-50-57		2021-07-24	 И	+	^. ×	×	×		×			
17 :88-TRO121-57-170		2021-07-24	<i>s v</i>								ļ	2
18 : BLTR01-21-0-107		2021-07-24	, v		`	×	×		×	(444)		
19 : BLTR01-21-107-189		2021-07-24	v	-	×	×	×		×			
21 SH TR02-21-20-42	*	2021-07-24	ю (-								
22 : 81-TR02-21-42-137	2.	2021-07-24	, , , ,	- -								
23 :Dup-07-21		2021-07-24	v	-	+				7			
25 HMT-TRIG-21-64-73		2021-07-24	s c	-							-	ŕ
26 :HMT-TR10-21-73-82	2.1	2021-07-24	n 0						7			
27 :HMT-TR10-21-82-171	1	2021-07-24	и	-	-							
9 :CMR-TR02-21-57-73		2021-07-25	S	-	1						1	
10 :CAMP.TR02-21-73-170		2021-07-25	s s		>	>	>					
11 :CAMP.TR02-21-150-230		2021-07-25	s	-	<u> </u>	<	<		×			
3 :CAMP-TR01-21-32-63		2021-07-25	ly)	-							1	į.
3 :CAMP TR01-21-63-168		2021-0745	5	-	×	×	×		×		<u> </u>	
4 CC-TR02-21-10-41		3021-07-25	2 0									
5 :CC-TR02-21-41-61		2021-07-25	S	-								
7 :CC-TR01-21-32-68		2021-07-25	v	-	×	×	×	×				
8 :CC-TR01-21-68-134		2021-07-25	······································									
9 CC-TR01-21-134-230		2021-07-25	0 0			×	×					
) :8F-TR02-21-40-51		2021-07-25	S	-	×	×	×					-
8F-TR03-21-0-20		2021-07-25	s	-	+							
3 '8F-TR03-21-28-79		3021-07-25	· · ·	-								
1 ;8F-TR03-21-79-139		2021-07-25	s s		×	*	>	!?				
; :8F.TR01-21-17-22		2021-07-25	0	-			κ	×				
3 :8F-TR01-21-22-54		2021-07-25	5	-	×	×	×					
:Dec 11-21		2021-07-25	v	-							1	
Oup 12:21		2021-07-25	ıs	-							<u> </u>	
Dup-08-21		2021-07-25	n i		×	×	×	×				_
Oup 16 21		2021-07-25	, v	-			×	×				
							19894					
	lyse Randour		Echantillons res	S par:								
2021-07-26			Date:		1					Page: 1	~ *	

Bon de communde: No de soumission Radionucièides ((U-238, Ra-226, Pb-210, Th-222, Ra-228, Th-228) ly drocarbures pétrollers C10-C50 Bordereau de demande d'analyses
AGAT Laboracires : 350 ne franquel quebec Chy, quebec Canada, G1P 403
hayse requis
5 jours 48 fres 5-12 free
72 free Матаиж (A1, Ag, As, Ba, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Ll, Mg, Mn, Mo, Wa, Иі, Pb, Sb, Se, Sn, Та Ті, V et Zn) **Albimu** erbone organique total (COT) Enu de surface Effluent Affluent B Boue EU Eautraee ST Eautodern

Page 50 de 58

WSP Canada inc. 1135, boul. Lebou Quibet (Québec)	ĽΩ	Detai d'analyse requis	48 hres 24 hres		6-12 hres Date requise:	i ii					Bond No de	Bon de commande: No de soumission:	
Numero du projet	Ideephone 418-523-7069 Telecopieur: 418-523-2434. Numéro du projet 201-11330-29	2434		5	Critères à respecter	respecter (mat lixiv	iable)				L	L	L
Bon de commande; Leu de prélèvement;	4				RDS (m	RDS (mat lixiviable) REIMR	iable)			LL	Eau consommation	-	
Prélevé par					-		ct p,	1	-	L	-		-
Charge de projet:					_		(იე ს Ы	112-					
Courriel:	steve.st.cyr@wsp.com / ca	steve, st.cyr@wsp.com / catherine.domingue@wsp.com					1, Cd, ¹						
							8, Be, Ca Mn, Mo, Zn)		(8:			-,,,,,,,,	
Matrice: S Sol	B Boue	ES Eau de surface					88,88 Mg,1 Vet		22-41				
Sf Solide SE Sédime EP Eau po	EU ST hable	EF Effluent AF Affluent				101-	, (АІ, Ад, І. Нд, К, LI Sn, Та Ті	arbures p	Ra-228, uplnegio				
	Identification de l'échantillon	Date de prélèvement	Matrice	Nombre de pots	4Al	MA	iétaux .u. Fe, b, Se,		ZEZ-4	lp wn	Istot		
1 H	HMBT-F02-21_CF-1	2021-07-23	s	-	1	1	s N	+	1	-	s ×		
2 HI	HMBT-F02-21_CF-2	2021-07-23	s	-	-		V		-	+			H
3 ⊞	HMBT-F02-21_CF-3	2021-07-23	S	-					-				H
4 B/	BAD-F01-21_CF-1	2021-07-23	S	-									
5 B/	BAD-F01-21_CF-2	2021-07-23	S	-			×	×	×	×	×		
6 8,	BAD-F01-21_CF-3	2021-07-23	S						H				H
7	VR2-F01-21_CF-1A	2021-07-23	s	-	4				-	L			
8	VR2-F01-21_CF-3	2021-07-23	s	-									
Ť o	HS-F01-21_CF-1	2021-07-24	S	-	-		×		×	×	×		l
10 H	HS-F01-21_CF-2	2021-07-24	S	-	-		×	×	×	×	×		
-4	HS-F01-21_CF-3	2021-07-24	S	-	-				h				F
-	HS-F02-21_CF-1B	2021-07-24	S	-				Y					
	HS-F02-21_CF-2	2021-07-24	s	-									
	HS-F02-21_CF-3	2021-07-24	S	1					_				
	DUP-1_2021-07-24	2021-07-24	S	1					-				
-	DUP-2_2021-07-24	2021-07-24	S	-			×	×	×	×	×		
-	DUP-3_2021-07-24	2021-07-24	S	1									
-	HMBT-F03-21_CF-1C	2021-07-25	S	1			×	×	×	×	×		
-	HMBT-F03-21_CF-2	2021-07-25	S	-					-				
1	HMBT-F03-21_CF-3	2021-07-25	S	-					-				ŀ
	BE-F01-21_CF-2	2021-07-25	s	-			×	×	×	×	×		
_	BE-F01-21_CF-3	2021-07-25	s	-			×	×	×	-	×		
23													
24													-
22													
Échantillon	Échantillons remis par: Étienne Piché		Échantillons reçus par:	reçus par:									
Date:	2021-07-26		Date:									Page: 1	e L

Quebec (Québec) GZK 0M5		se requis								-				Γ
Téléphone: 418-823-7066	f OMS 56 Telécopieur 416-623-2434	Z 5 jours	48 hres 24 hres		6-12 hres Date requise:	18				_	F F	Bon de commande: No, de soumission:		
Numéro du projet	201-11330-29				Critères à respecter	rithres à respecter	A STATE OF THE STA			┤ '				T
Bon de commande:						RDS (mat, lixiviable)	viable)				Fair consommation	B C	l	٥
Lieu de prélèvement	Windfall Lake				T. REIMR	MR				-	Eau résurgence	ence		
Preteve par.	Steve StOvr					Y	op' Cl		'01				_	
Courriel;	almesticy/@wsp.com / catherine.domingue@wsp.com	me.domingue@wits.com		V			NI' I		.z-a-	_				
							Ca, C Ao, Na,		1977-1	_		91101		
							98, 64 A ,nM (nZ 1		28) 183					
	B Boue						В ,еА I, Мg, Ie V ,Г		Z-U))	_				
SE Sédiment EP Esu potable	EU Eau souterraine ST Eau souterraine	EF Effluent AF Affluent				1111	: (Al, Ag, Hg, K, L Sn, Ta T	send18	uciéides , Ra-228,			wije in		
3	Identification de l'échantillon	Date de prélèvement	Matrice	Nombre de pols	α∀	MA	kuatèl u, Fe, a, Se, d		'zez-4	TO IBIOT	ipjun			
1 HMBT-F01-21_CF-1B	21_CF-1B	2021-07-26	S	-	+	-	s N	-	1	× a	-		1	
2 HMBT-F01-21_CF-2B	21_CF-2B	2021-07-26	S	-				:	1	+	-		-	I
3 BC-F01-21_CF-1B	CF-1B	2021-07-26	S	-	×		×	×	1	×	×		-	I
-	CF-2	2021-07-26	S	-						-	1			T
	CF-1A	2021-07-27	S	-					-	-			100	
-	CF-3	2021-07-27	S	1						-				
-	CF-1B	2021-07-27	S	-						-				
-	CF-2	2021-07-27	s	-						-			-	I
	CF-3	2021-07-27	S	+						-				I
10 CONC-F02-21_CF-1B	21_CF-1B	2021-07-27	S	-						-			-	
-	21_CF-2	2021-07-27	s	-					F	-			-	
_	CF-1	2021-07-27	S	-					-	-			-	
13 TS-F01-21_CF-2	CF-2	2021-07-27	s	1					T					
14													-	T
15										-				
16					-				1	-				T
17					-				-	-				1
18					-				1	-	t			T
19									1	-				T
20					-				-	1				
21									-	-				T
22					-				-	-	L			I
23					-	es innin			1	+	-		-	1
24									-	+			-	
25					-				F	-	L		-	1
ÉchantiBons remis par.	Étienne Piché		Échantillon	Échantillons reçus par.						1			1	T
Darte: 2021-07-28			Date:									Page:	8	**

WSP Canada inc. 1135 boul, Lebourgneuf Quebec (Québec) G2K GM5	MS	Defini d'analyse requis [2] 5 jours [7] 72 hres	48 hres 24 hres	E.	6-12 hres Date requise;						LL	Bon de commande: No. de soumission;	mmande: mission:	
Numéro du projet	201	£.			Grittères à respecter	r respec	res à respecter RMD (mat. liciviable)					l L	L	
Bon de commande: Ueu de prélèvement	Windfall Lake					RDS (mat. I) REIMR	RDS (mat. briviable) REIMR					Eau consommation)
Prélevé par.	Étienne Piché				-	-	, CI		1.	-	-	_	-	-
Charge de projet	Steve St-Cyr				-		'00'		-210					
Courriel;	steve.st cyr@wsp.com / catherine.dominguegwsp.com	erine.dom)ngue@wsp.com					, Cd, (090	49, Pb					
					-		ւ, Be, Ca Mn, Mo, I Zn)	ers C10	8, Ra-22					
Matrice: S Sol	B Bone	ES Eau de aufaza			-		88 ,e∆ 1 ,gM , 3 e V ,	llonièc	62-U)) 52-AT					
SI Solide SE Sédiment EP Eau polable	EU Eau unée ST Eau souterraine	EF Effluent AF Affluent					(AI, Ag, ، Hg, K, Li Sn, Ta Ti	stpures t	Ra-226,	9				
	Identification de l'échantifion	Date de prélèvement	Matrice	Nombre de pots	9A⊦ Hd	MAH	Aétaux Jei Fe, JeS ,dí	lydroc	.P-535'	ibimul	TO:			
1 UTIM-F05-21_CF-1A	_CF-1A	2021-08-02	S	-	-	-	×	+	1	1	-			L
2 UTM-F05-21 CF-2	CF-2	2021-08-02	S	-	-					-	+	l		
3 SSE-F03-21_CF-1C	_CF-1C	2021-08-02	S	-						1	-			-
4 SSE-F03-21_CF-2B	_CF-2B	2021-08-02	S	-	-						-			
5 DUP-1_2021-08-02	-08-02	2021-08-02	s	-	-						-			
6 DUP-2_2021-08-02	-08-02	2021-08-02	S	1	×		×			×	×			
7 DUP-3_2021-08-02	-08-02	2021-08-02	S	-							-			
-	CF-1C	2021-08-03	S	-							-			
	CF-1C	2021-08-04	S	-										
-	CF-2	2021-08-04	S	1										
_	CF-2	2021-08-04	S	-										
-	CF-5	2021-08-04	S	,	×		×	×		×	×			
13 BHF01-21 CF-2	CF-2	2021-08-04	S	-	×		×	×		×	×			
14											-			
15											-			
16											-			
17					-				T	-	-			
18					-					-	-			
19						-				1	-			-
20					-	-				1	+			
21					-	-			T	1	-	1	ŀ	
22					-				ľ	1	-	-		
23					-					-	-	t		
24					-					1	-			
25														
Échantillons remis par	Étienne Piché		Échantillor	Échantillons reçus par:										
Date: 2021-08-05			Date:									_	Page: 1	de

Comparison Com	-7066 Takecovar all-623-2424	Ches 24 has		Data tequita:				No, de se	Commands: Soumssion:		
	101. Wake	***************************************		Craires & Tesper TRUD (met. RDS (mat.) REJUR	cler Frinable) Bisnable)		LEU	A :	υ		
1 1 1 1 1 1 1 1 1 1	Show Bi-Cy, Here A. Cy/(Boss 2.cm / calveire, denough	NO.	1		, Mn, Mo, Ma,	rs C10-C50	558)	22		insurana.	
Control control control Control control control Control control control Control control control Control control control Control control control Control control Control control control Control control control Control control control Control control control Control control control control control Control control control control control control control control control Control cont	B Bove EG Enude EU Edunas EF Efflant ST Etu todarnin AF Afflant	3			פ' אלו' צ' בו' שלו	olfonieg zawd:	-⁄/T ,8SS-4,9,SC	······································		and the state of t	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	n de l'écharation		Nombre de pots	, Hq	4 'nation	Hydrocan	Z-4T, 01S	**********			
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		ioniu la		×	×	×	×				S.
14.00-10-10-10-10-10-10-10-10-10-10-10-10-1		111777111371	e e e								
1971-1970 1971											
Section Continue			- - -								
1971-1979 1971				×	×		×				25
10,000,00 10,000,000,000,000,000,00 10,000,000,000,000,000,000,000,000,000,				×	×		×		••••		N.
15,000-2019 19,000-2021 25 1 1 1 1 1 1 1 1 1	,			×	×		×				4
Fig. 1962-00 Fig. 1964-17021 St. 1 Fig. 1964-1969 Fig. 1964-1969 Fig. 1964-1969 Fig. 1964-1969 Fig. 1964-1969 Fig. 1964-17021 St. 1 Fig. 1964-1969 Fig. 1964				×	×		×			П	i
1-15-15-15 1-15-15-15-15 1-15-15-15 1-15-15-15 1-15-15-15 1-15-15-15 1-15-15-15 1-15-15-15 1-15-15-15 1-15-15-15 1-15-15-15 1-15-15-15 1-15-15-15 1-15-15-15 1-15-15-15 1-15-15-15 1-15-15-15 1-15-15-15 1-15-15-15 1-15-15-15 1-15-15-15					****					П	\$
19 19 19 19 19 19 19 19			- - -							П	
Fig. 2019		9 juillet 2021 S	1 (14)		* *	×	× ×			П	4 5
20 1 2 2 2 2 2 2 2 2 2		9 juillet 2021 S S Juillet 2021 S								П	
A	4	9 juillet 2021 S		×	×		×			П	AS de
15 15 15 15 15 15 15 15		0 juillet 2621 S	×	×	×		×			TY	SP SE
1-14 20 1-15 5 1 1 1 1 1 1 1 1		****		×	×		×			11	15 45
10.0234										T	
20 youlist 2021 S 1 X X X X X X X X X			×	×	×	×	×			П	32
21-17-04-5 21-17-04-5) juillet 2021 S		×						TI	
1-13-6-100 20 pollet 2021 S 1 N N N N N N N N N	t-			^	>					П	∆s ds
14.15.6.46 20 juliet 2021 S 1 X X X X X X X X X		and the			×		×			П	SP SV
1-1			-								
1-32-4			× -	×	×		×			П	AS dS
1-136-190 21 julikt 2021 5							17.			TT	
1-350-395 2.1 Juliet 2021 S 1										TT	
-40-167 21 Juliet 2021 S				×	×	4444)	×			П	Ę
1-5-164 22 Juliet 2021 23 Juliet 2021 24 Juliet 2021 25 Juliet 2021 25 Juliet 2021 26 Juliet 2021 26 Juliet 2021 27 Juliet 2021 28 Juliet 2021 28 Juliet 2021 29 Juliet 2021 20 Ju			* ×		× ×		* >			11	M d
22 juillet 2021 S 1 X X X X X X X X X X X X X X X X X				×	×					TÍ	Ę,
-19-164				,			×				£
22 juliet 2021 S 1 X X X X X X X X X X X X X X X X X	we.		×	× ×	××		××				sw sm
190 22 jullet 2021 S 1 X X X X x x x x x x x x x x x x x x x			×	×	×		×				£ 3
1-50-60 22 juillet 2021 S 1 X X X X X X X X X X X X X X X X X			×	×	×		×				
22 juliet 2021 S 1 × × × × × × × × × × × × × × × × ×						****					
		uillet 2021 S	× ×	* *	× ×		ж >			11	¥ 0
11							¥			11	Ę
					-						

.

.

		1														
WSP Canada inc. 1135, boul. Lebourgneuf Quebre (Duebre) G2K 0M5 Triliphone. 418-623-7066	1 DMS Telepopieur 418-523-2434	Délai d'analyse requis [☑] 5 jours [☑] 72 fires	48 hres 24 hres	C	6-12 hres Date requise:					Bon de	Bon de commande: No, de soumission:					
Numero du projet Bon de commande:	201-11330-29				Criteres a respecter	RMD (mat biologic)			ļ ĉi	в L	П	L	٥			
Leu de prélèvement	Windfall Lake			1	T BEIMB	ar, lixividue)			1	Eau consomma	undu e					
Prélevé par:	Étienne Piché					30				an insuring	F		1			
Chargé de projet	Steve St-Cyr			PC-		'05 '05		012.								
Courriel:	steve.st.cyr@wsp.com / catheri	wsp.com / catherine.domingue@wsp.com				cq' (8, Pb-								
						r, Be, Ca,	ers C10-	8, Ra-22 8)								
Matrice:						A QM	étroli									
	B Boue EU Eau usée ST Eau souterraine	ES Estuant EF Estuant AF Astruent				17 'K' [T') sabidi F ,855-8								
EP Eau potable						βH '	t180		911							
*	identification de l'échantifion	Date de prétèvement	t Matrice	Nombre de pots	Hq	el "La	Нудго	262-41	pimuł	(B101 S						
1 AHS-F03-21_CF-1	1_CF-1	2021-07-20	S	-	×	×	×		-	×		-		ds	-	쑴
2 AHS-F03-21_CF-2	1_CF-2	2021-07-20	s	-	×	×		×	+	×		-		- E	Ī	*
3 AHS-F03-21_CF-3	1_CF-3	2021-07-20	S	-	E			-	-		H					
4 AHS-F04-21_CF-1	1_CF-1	2021-07-20	s	-	×	×		×	×	×				E		
5 AHS-F04-21 CF-3	1_CF-3	2021-07-20	S	-	×	×	×	×	Н	×	F	-		Q.	+	
6 2021-07-20_DUP-1	_DUP-1	2021-07-20	S	1	×	×	×	×	-	×						
7 2021-07-20_DUP-2	_bup-2	2021-07-20	S	-	×	×		×	-	×		H				
8 2021-07-20 DUP-3	_bup-3	2021-07-20	S	1		_			-							
9 AHS-F02-21 CF-2	1 CF-2	2021-07-21	S	-	×	×	×	×	×	×	-			D.	÷	
10 AHS-F02-21_CF-5	1_CF-5	2021-07-21	S	-												
11 AHS-F01-21 CF-1	1_CF-1	2021-07-21	S	-							-	-	I			
12 AHS-F01-21_CF-20	1_CF-20	2021-07-21	S	-												
13 BA-F01-21_CF-1	CF-1	2021-07-22	S	-				H								
	CF-2	2021-07-22	S	-	×	×	×	×	×	×				ds ds	÷	
15 BAD-F02-21_CF-1	1_CF-1	2021-07-22	S	-	×	×		×		×				ds		
16 BAD-F02-21_CF-2	1_CF-2	2021-07-22	S	-				-								
17								-								
18										H						
19							-	-		L	-					
20						-	F		I	F			I			
21							H				-	H				
22								-		F	-		I			
23										F			F			
24											-					
25																
Échantillons remis par:	r: Étienne Piché		Échantilk	Échantillons reçus par.									Г			
Date: 2021-07-23			Date:								Page:	- de	-		ď	

MSP Canada inc.		Delta d'analyse requis		l	ı	l	١		١				
5355, boul des Gradins				48 hres		6-12 hrac							
Quebec (Québec) G2J 1C8 Téléphone: 418-823-7068	CB Tělécopieur: 418-523-2434	72 hres	. 75	24 hres		Date requise:	ij				L_	son de commande: No. de soumission:	: :: :
Juméro du projet:	201-11330-19 phase 240				0	Critères à respecter RMD (mat. lixiviable)	respecter	riable)				 	0
Son de commande:						_ RDS	RDS (mat. lixiviable)	iable)			☐ Eau cor	Eau consommation	
Jeu de prélèvement:	Windfall Lake				-	REIMR	AR.					Eau résurgence	
Prélevé par;	lyse Randour							ń	'(
Chargé de projet:	Steve SI-Cyr							'' N	.210				
Courriel:	steve.st.cyr@wsp.com./catherine.domingue@wsp.com	ine.domingue@wsp.com						1, Cd, 0					
						(гоэ)		. Be, C. 9, Mn, I et Zn)	ars C10 9, Ra-23	(
Aatrice:					1) lato:		W T		822-			
S Sol	B Boue					anb		K'1	_	41 ' 8			
	EU Eau usee ST Eau souterraine	EF Effluent AF Affluent				lnsg10 (91	(Al, Ag Fe, Hg, Se, Sn		Ra-228			
	Identification de l'échantillon	Date de prélèvement	-	Matrice o	Nombre de pots	Эпропе	ibimul	Jr, Cu,		,262-A F Ttota			
1 COND-TR03-21-73-179	21-73-179	2021-07-26	9	S	-	+	1			-			
2 COND-TR03-21-57-73	21-57-73	2021-07-26	9	s	-	-				-			
3 COND-TR03-21-34-57	21-34-57	2021-07-26	9:	S	-	×	×	×		×			
4 COND-TR03-21-179-300	21-179-300	2021-07-26	9.	s	-								
5 COND-TR02-21-66-110	21-66-110	2021-07-26	9	S	-	×	×	×		×			
6 COND-TR02-21-42-66	21-42-66	2021-07-26	9	S	-	×	×	×		×			
7 COND-TR02-21-30-42	21-30-42	2021-07-26	9	S	-								
8 COND-TR02-21-190-265	21-190-265	2021-07-26	9:	S	-								
9 COND-TR01-21-90-112	21-90-112	2021-07-26	9	S	-								
10 COND-TR01-21-350-420	21-350-420	2021-07-26	9.	s	-					-		F	
11 COND-TR01-21-57-90	21-57-90	2021-07-26	9	S	-								
12 COND-TR01-21-112-181	21-112-181	2021-07-26	9:	S	-	×	×	×		×			
13 COND-TR04-21-0-49	21-0-49	2021-07-26	9	s									
14 COND-TR04-21-49-140	21-49-140	2021-07-26	9	s		×	×	×		×			
15 COND-TR03-21-290-330	21-290-330	2021-07-26	9	s	-								
16 CAMP-TR03-21-300-370	21-300-370	2021-07-26	9:	S	1								
17 CAMP-TR03-21-50-84	21-50-84	2021-07-26	9:	S	-	×	×	×		×			
18 CAMP-TR03-84-176	34-176	2021-07-26	9	S	-								
19													
20													
21										-			
22													
Échantillons remis par	: lyse Randour		Éci	Échantillons reçus par:	eçus par:								1
												-	,

ASP C 1735 t Duéber Téléph	WSP Canada Inc. 1135 boul. Labourgnouf Duabno (Quebno) G2K OMS Telephone. 413-6223-7068	Telecopian 416-623-2434	Diffat d'analyse requis	LE	48 hres 24 hres	С	6-12 hres. Date requise:	ii					Bon de commande: No, de soumission:	
Numbr Son de	Numèro du projet. Bon de commande: leu de prélévement.	201-11330-29 Windfall Lates			Ш	70	Critions a respected RMD (mat. lixion RDS (mat. lixion REIMR	RMD (mat. fixiviable) RDS (mat. fixiviable) RDS (mat. fixiviable)	able)			CL.t.	A B Eau consommation	L
Prélevé par. Chargé de p	Prélevé par. Chargé de projet	Etenne Pichė Stave St-Cyr							.o, Cr.	210,	=			
Courriel:		stove st.cyr@wsp.com / catherine.domingue@wsp.com	ine.domingue@wsp.com						o, Ga, Cd, C Mo, Na, Nl,					
S S S S S S S S S S S S S S S S S S S	e: Soil Soidinent	B Boue EU Eau usée ST Eau souterraire	ES Eau de surface EF Effluent AF Affluent						Al, Ag, As, Ba, B lg, K, Ll, Mg, Mn, n, Ta Tl, V et Zn)	rbures pétrollers 1,862-U)) sebiéla	(822-AT, 822-B)			
		dentification de l'échantilion	Date de	Date de prélèvement	Matrice	Nombre	d VI	MAI	lėtaux (u, Fe, t b, Se, 5	nuolbe	1,265-11	10	InfoT	
	BLF01-21_CF-1B	80	202	2021-08-05	s	-	+	+	S	H -	1	0	S	
7	BI-F01-21_CF-2		202	2021-08-05	S	-								
60	BI-F03-21_CF-1A	A	202	2021-08-05	s	1	×		×	×	×	×	×	
4	BI-F03-21_CF-2		202	2021-08-05	v	-								
20	PORT-F01-21 CF-1	CF-1	202	2021-08-05	v	-						ij		
ا ي	RC-F03-21 CF-18	138	202	2021-08-05	S	-	×		×	×	×	×	×	
~	HC-F03-21_CF-2	-5	202	2021-08-05	S	-				+	-			
0 0	DUP-1 2021-08-05	505	202	2021-08-05	S	-				-	-			
9	DUP-3 2021-08-05	200	202	2021-00-03	0			İ		+	-			
=	HMT-F01-21 CF-18	F48	202	2021-08-06	S	-	-			-				
12	HMT-F01-21_CF-2	F-2	202	2021-08-06	s	-				-				
13	HMT-F03-21_CF-1	5-1	202	2021-08-06	S	1								
4	HMT-F03-21_CF-2	F.2	202	2021-08-06	ß	1	×		×		×	×	×	
5	DUP-1_2021-08-06	90-1	202	2021-08-06	S	1								
16	DUP-2_2021-08-06	206	202	2021-08-06	S	1	×		×		×	×	×	
17	VR1-F01-21_CF-1A	-1A	202	2021-08-07	Ø	-	×		×		×	×	×	
9	OAND 504 24 OF 45	5-2	202	2021-08-07	S	-		1						
20 2	CAMP-F01-21 CF-2	CF-7	202	2021-08-07	us u	- -					-			
17	CAMP-F02-21_CF-1	CF-1	202	2021-08-07	0	-	,		>	H	>	,	,	
N	CAMP-F02-21_CF-2	CF-2	202	2021-08-07	S	-	(<		<	<	<	
23	DUP-1_2021-08-07	2-07	202	2021-08-07	S	-	×		×		×	×	×	
24	DUP-2_2021-08-07	70-5	202	2021-08-07	v	-					1			
25	DUP-3_2021-08-07	20-5	202	2021-08-07	S	-				H	-			
26	BJ-F01-21_CF-2	2	202	2021-08-08	S	1								
27	BJ-F01-21_CF-3	3	202	2021-08-08	S	-								
28	HMTN-F01-21_CF-1C	CF-1C	202	2021-08-08	S	-								
29	DUP-1_2021-08-08	3-08	202	2021-08-08	S	1						Ī		
chan	Échantillons remis par:	Étienne Piché			Pehantillo	Échanfillons rectis par								
						and conference on							-	+

ğ ğ

	115/1		AGAT	Bordereau de domande d'analyses AGAT Laborables : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	Bordenau de domande d'analyses es : 350 rue Franquet Quebec City, Quebec	omande d'	analyses ty, Quebec Ca	nada, G1P 4P3						
WEPC	NEP Canada Inc.		Detai d'analyse requis	1	1		l				-		ŀ	
Dueber Teleph	1135, boul Lebeurgnaul Gueber (Québec) GZK 0M5 Talingbonn; 418-623-7066	Tekcopeur 418-023-2434	5 jours 72 hres	LE	48 hres 24 hres	T.	6-12 hres Date requise:					D SN I	Bon de commande. No de soumission	
Numen Bon de		201-11330-29					Criteres a respector RMD (mat look	es a respector RMD (mat lixivable) RDS (mat lixivable)			ī l	A T B	ک ا ا	L
Lieu de	vement:	WindfallLake						100000000000000000000000000000000000000			l	Eau résurgence	I Ge	
Prélevé par.		Etenne Piche						, Ct.		'0	L			
Chargé de Courriel:	a projet	Stave St-Cyr stave st-cyr@wsp com / catherine domngue@wsp.com	ine domngua@wap.com	1				d, Co,		Pb-21	_			
								3e, Ca, (, Mo, Na	_	Ra-226,				
Matrice								8,68 ,0M,t		238)				
SESE	Sol Solide Sediment Eau potable	B Boue EU Eau usée ST Eau souterraine	ES Eau de surface EF Effluent AF Affluent					(Al, Ag, As, Hg, K, Ll, Mg Sn, Ta Tl, V d	ntèq setudie	-U)) eəbləlcı -hT ,822-5.Я		9		
		dentification de l'échantillon	Dabe	Date de prélèvement	Matrice	Nombre de pots	q Αι Hα	MAH Métaux Su, Fe, Sb, Se,		'ZEZ-4.	TO:	յլբլաոլ		
~	TS-F02-21_CF-2		2	2021-07-28	w	-	-	1	-		1	-		
2	TS-F02-21_CF-3		2	2021-07-28	S	-	×	×	F	1	×	×		
3	BD-F02-21_CF-1C	U	2	2021-07-28	S	-			1		-			
4	BD-F02-21_CF-3		2	2021-07-28	s	- 1				H	L			
co.	TU-F01-21 CF-1B	89	2	2021-07-29	S	1	×	×	×	-	×	×		
9	VR6-F01-21 CF-1	-	2	2021-07-29	Ø	1	×	×	×	^	×	×		
-	VR6-F01-21 CF-3B	3B	2	2021-07-29	S	1								
@	UTE-F01-21_CF-1B	18	2	2021-07-29	S	-								
o ;	UTE-F01-21 CF-2	5	2	2021-07-29	S	-								
2 :	UIE-F0Z-Z1 CF-1		2	2021-07-29	S	-	1		-	1	-			
= 5	UIM-F01-21 CF-1	- 0	2	2021-07-30	w	-	×	×	×	×	-	×		
7 9	Til F20 24 OF 4	7	2	2021-07-30	S	-	×	×	×		-	×		
5	TU-F03-21 CF-1		2 5	2021-07-30	S	- -	×	×	×		×	×		
4 4	R-F02-21 CF-18		7 6	2021-07-30	ω w	- -					+	1		1
16	R-F02-21 CF-3		2 2	2021-07-30	0 0	- -	ľ		-	1	+			Ī
17	TU-F04-21_CF-18	8	2	2021-07-31	v	-	×	×	×		×	×		ľ
18	TU-F04-21_CF-2		2	2021-07-31	S	-								
19	CU-F02-21_EM-1		2	2021-07-31	S	-					H			
20	UTM-F02-21 CF-1D	-1D	2	2021-07-31	S	1	×	×	×		×	×		
21	UTM-F02-21 CF-2	-2	2	2021-07-31	S	+					-			
22	UTM-F03-21_CF-1B	-18	2	2021-07-31	ß	1	×	×	×		×	×		
23	UTM-F03-21_CF-3	-3	2	2021-07-31	S	1					-			
24	SSE-F01-21_CF-1B	-18	2	2021-08-01	S	+	×	×	×		×	×		
25	SSE-F02-21_CF-1B	-18	2	2021-08-01	S	1	×	×	×		×	×		
26	UTM-F06-21_CF-1C	-10	2	2021-08-01	S	1	×	×			×	×		
27	UTM-F07-21_CF-1B	-18	2	2021-08-01	S	1								
28	UTM-F07-21_CF-2	-2	2	2021-08-01	S	1	×	×	×		×	×		
Échan	Échandilons remis par.	Ébenne Piche			Echantillon	Echantillons reçus par.							Page: 1	ē
Date.	Т				Date:						١			

NOM DU CLIENT: WSP CANADA INC.

1135 BOULEVARD LEBOURGNEUF

QUEBEC, QC G2K 0M5

(418) 623-7066

À L'ATTENTION DE: Steve St-Cyr

N° DE PROJET: 201-11330-29

ANALYSE DES SOLS VÉRIFIÉ PAR: Amar Bellahsene, Chimiste, AGAT Montréal ORGANIQUE DE TRACE VÉRIFIÉ PAR: Roza Makhtari. Chimiste. AGAT Montréal

DATE DU RAPPORT: 18 avr. 2022

N° BON DE TRAVAIL: 22M882756

NOMBRE DE PAGES: 19 VERSION*: 1

Pour tout complément d'information concernant cette analyse, veuillez contacter votre chargé(e) de projet client au (514) 337-1000.

Avia de non responsabilité:	

*Notes

- L'ensemble des travaux réalisés dans le présent document ont été effectués en utilisant des protocoles normalisés reconnus, ainsi que des pratiques et des méthodes généralement acceptées. En vue d'améliorer la performance, les méthodes analytiques d'AGAT pourraient comprendre des modifications issues des méthodes de référence spécifiées.
- Tous les échantillons seront éliminés trente (30) jours après réception au laboratoire à moins qu'une Entente d'entreposage à long terme ne soit signée et retournée. Certaines analyses spécialisées peuvent être exemptées. Veuillez communiquer avec votre chargé de projets à la clientèle pour plus d'informations.
- La responsabilité d'AGAT en ce qui concerne tout retard, exécution ou non-exécution de ces services s'applique uniquement envers le client et ne s'étend à aucune autre tierce partie. À moins qu'il n'en soit par ailleurs convenu expressément par écrit, la responsabilité d'AGAT se limite au coût réel de l'analyse ou des analyses spécifiques incluses dans les services.
- Sauf accord écrit préalable d'AGAT Laboratoires, ce certificat ne doit être reproduit que dans sa totalité.
- Les résultats d'analyse communiqués ci-joint ne concernent que les échantillons reçus par le laboratoire.
- L'application des lignes directrices est fournie « en l'état » sans garantie de quelque nature que ce soit, ni expresse ni tacite, y compris, mais sans s'y limiter, les garanties de qualité marchande, d'aptitude à un usage particulier ou de non-contrefaçon. AGAT n'assume aucune responsabilité à l'égard de toute erreur ou omission dans les directives que contient ce document.
- Toutes les informations rapportables sont disponibles sur demande auprès d'AGAT Laboratoires, conformément aux normes ISO/IEC 17025:2017, DR-12-PALA et/ou NELAP.

AGAT Laboratoires (V1) Page 1 de 19

N° BON DE TRAVAIL: 22M882756

N° DE PROJET: 201-11330-29

9770 ROUTE TRANSCANADIENNE ST. LAURENT. QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: Jonathan Mole

À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT: Windfall Lakke

Métaux Extractibles Totaux (boue)

DATE DE RÉCEPTION: 2022	-03-22						DATE DU RAPPORT: 2022-04-18
	IDENTIFICATION DE L	'ÉCHANTILLON:	F19-22-CF-1	DUP01220318	F18-22-CF-1	F28-22-CF-1	
		MATRICE:	Sol	Sol	Sol	Sol	
	DATE D'ÉCHA	NTILLONNAGE:	2022-03-17	2022-03-17	2022-03-17	2022-03-17	
Paramètre	Unités C	/N LDR	3739128	3739129	3739131	3739133	
Digestion sol métaux			4.140	4.140	4.140	4.140	
m. Métaux	g		1.00	1.00	1.00	1.00	
Aluminium	mg/kg	30	1240	878	781	1420	
Antimoine	mg/kg	20	<20	<20	<20	<20	
Arsenic	mg/kg	5.0	<5.0	<5.0	<5.0	<5.0	
Baryum	mg/kg	20	21	31	31	35	
Calcium	mg/kg	100	23200	20800	3050	26000	
Chrome	mg/kg	45	<45	<45	<45	<45	
Cobalt	mg/kg	15	<15	<15	<15	<15	
Cuivre	mg/kg	40	<40	<40	<40	<40	
Étain	mg/kg	5	8	9	14	8	
Fer	mg/kg	500	1270	969	1650	1050	
Magnésium	mg/kg	100	1720	1850	669	2530	
Manganèse	mg/kg	10	18	52	39	43	
Mercure	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	
m. Mercure	g		1.00	1.00	1.00	1.00	
Molybdène	mg/kg	2	<2	<2	<2	<2	
Nickel	mg/kg	30	<30	<30	<30	<30	
Plomb	mg/kg	30	31	38	46	<30	
Potassium	mg/kg	100	285	348	237	<100	
Sélénium	mg/kg	1.0	1.4	1.4	1.3	<1.0	
Sodium	mg/kg	100	847	834	450	345	
Vanadium	mg/kg	15	<15	<15	<15	<15	
Zinc	mg/kg	10	64	50	80	18	
Argent	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	
Cadmium	mg/kg	0.9	1.0	<0.9	1.2	<0.9	
Titane	mg/kg	1	15	17	13	19	
Béryllium	mg/kg	1	<1	<1	<1	<1	

Certifié par:

Amar Bellahsen 2011-214

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 22M882756

N° DE PROJET: 201-11330-29

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Jonathan Mole

LIEU DE PRÉLÈVEMENT:Windfall Lakke

À L'ATTENTION DE: Steve St-Cyr

				Métaux	Extractibles	Totaux (be	oue)	
DATE DE RÉCEPTION: 2022-	-03-22							DATE DU RAPPORT: 2022-04-18
	IDENTIFICATION	N DE L'ÉCH	ANTILLON:	F19-22-CF-1	DUP01220318	F18-22-CF-1	F28-22-CF-1	
			MATRICE:	Sol	Sol	Sol	Sol	
	DATE D	ÉCHANTIL	LONNAGE:	2022-03-17	2022-03-17	2022-03-17	2022-03-17	
Paramètre	Unités	C/N	LDR	3739128	3739129	3739131	3739133	
Lithium	mg/kg		2	<2	<2	<2	<2	

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes

3739128-3739133 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Montréal (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 22M882756 N° DE PROJET: 201-11330-29 9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: Jonathan Mole À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:Windfall Lakke

Métaux Extractibles Totaux (sol)

DATE DE RÉCEPTION: 202	2-03-22							I	DATE DU RAPP	ORT: 2022-04-18	
				IDENTIFIC	CATION DE L'É	CHANTILLON:	F37-22-CF-3A	F19-22-CF-3	F18-22-CF-3B	F28-22-CF-3	
						MATRICE:	Sol	Sol	Sol	Sol	
					OATE D'ÉCHAN	TILLONNAGE:	2022-03-17	2022-03-17	2022-03-17	2022-03-17	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3739127	3739130	3739132	3739134	
Aluminium	mg/kg					30	3460	4330	4300	2710	
Antimoine	mg/kg					20	<20	<20	<20	<20	
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	
Arsenic	mg/kg	6	30	50	250	5.0	<5.0	<5.0	<5.0	<5.0	
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	<20	
Béryllium	mg/kg					1	<1	<1	<1	<1	
Cadmium	mg/kg	1.5	5	20	100	0.9	<0.9	<0.9	<0.9	<0.9	
Calcium	mg/kg					100	1270	1620	1650	1860	
Chrome	mg/kg	100	250	800	4000	45	<45	<45	<45	<45	
Cobalt	mg/kg	25	50	300	1500	15	<15	<15	<15	<15	
Cuivre	mg/kg	50	100	500	2500	40	<40	<40	<40	<40	
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	
Fer	mg/kg					500	7130	4420	6510	4520	
Magnésium	mg/kg					100	3480	2100	2860	2310	
Manganèse	mg/kg	1000	1000	2200	11000	10	111[<a]< td=""><td>61[<a]< td=""><td>75[<a]< td=""><td>62[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	61[<a]< td=""><td>75[<a]< td=""><td>62[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	75[<a]< td=""><td>62[<a]< td=""><td></td></a]<></td></a]<>	62[<a]< td=""><td></td></a]<>	
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	
Molybdène	mg/kg	2	10	40	200	2	<2	<2	<2	<2	
Nickel	mg/kg	50	100	500	2500	30	<30	<30	<30	<30	
Plomb	mg/kg	50	500	1000	5000	30	<30	<30	<30	<30	
Potassium	mg/kg					100	201	101	211	135	
Sélénium	mg/kg	1	3	10	50	1.0	<1.0	<1.0	<1.0	<1.0	
Sodium	mg/kg					100	<100	<100	<100	<100	
Titane	mg/kg					1	307	434	473	385	
Vanadium	mg/kg					15	<15	<15	16	<15	
Zinc	mg/kg	140	500	1500	7500	10	15[<a]< td=""><td>11[<a]< td=""><td>13[<a]< td=""><td>11[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>13[<a]< td=""><td>11[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>11[<a]< td=""><td></td></a]<></td></a]<>	11[<a]< td=""><td></td></a]<>	
Lithium	mg/kg					2	7	4	5	4	

Certifié par:

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: Jonathan Mole Certificat d'analyse

N° BON DE TRAVAIL: 22M882756

N° DE PROJET: 201-11330-29

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

À L'ATTENTION DE: Steve St-Cyr

LIEU DE PRÉLÈVEMENT: Windfall Lakke

Métaux Extractibles Totaux (sol)

DATE DE RÉCEPTION: 2022-03-22 DATE DU RAPPORT: 2022-04-18

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se réfèrer directement à la norme applicable pour l'interprétation réglementaire.

3739127-3739134 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Montréal (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 22M882756 N° DE PROJET: 201-11330-29 9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Jonathan Mole À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT: Windfall Lakke

Hydrocarbures aromatiques polycycliques (HAP) (sol)

			yarooarbo	aroo aronn	anquoo po	1,0,0,11940	23 (11/11) (301)	
DATE DE RÉCEPTION: 2022-03-	22							DATE DU RAPPORT: 2022-04-18
				IDENTIFIC	CATION DE L'É	CHANTILLON:	F19-22-CF-3	
						MATRICE:	Sol	
					ATE D'ÉCHAN	ΓILLONNAGE:	2022-03-17	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3739130	
Acénaphtène	mg/kg	0.1	10	100	100	0.1	<0.1	
Acénaphtylène	mg/kg	0.1	10	100	100	0.1	<0.1	
Anthracène	mg/kg	0.1	10	100	100	0.1	<0.1	
Benzo(a)anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	
Benzo(a)pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	
Benzo (b) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	
Benzo (j) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	
Benzo (k) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	
Benzo (b,j,k) fluoranthène	mg/kg	-	-	-	136	0.1	<0.1	
Benzo(c)phénanthrène	mg/kg	0.1	1	10	56	0.1	<0.1	
Benzo(g,h,i)pérylène	mg/kg	0.1	1	10	18	0.1	<0.1	
Chrysène	mg/kg	0.1	1	10	34	0.1	<0.1	
Dibenzo(a,h)anthracène	mg/kg	0.1	1	10	82	0.1	<0.1	
Dibenzo(a,i)pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	
Dibenzo(a,h)pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	
Dibenzo(a,l)pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	
Diméthyl-7,12benzo(a)anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	
Fluoranthène	mg/kg	0.1	10	100	100	0.1	<0.1	
Fluorène	mg/kg	0.1	10	100	100	0.1	<0.1	
Indéno(1,2,3-cd)pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	
Méthyl-3cholanthrène	mg/kg	0.1	1	10	150	0.1	<0.1	
Naphtalène	mg/kg	0.1	5	50	56	0.1	<0.1	
Phénanthrène	mg/kg	0.1	5	50	56	0.1	<0.1	
Pyrène	mg/kg	0.1	10	100	100	0.1	<0.1	
Méthyl-1naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	
Méthyl-2naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	
Diméthyl-1,3naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	
Triméthyl-2,3,5naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	

Certifié par:

N° BON DE TRAVAIL: 22M882756

N° DE PROJET: 201-11330-29

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC.
PRÉLEVÉ PAR: Jonathan Mole

À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT: Windfall Lakke

	<u> </u>	•	•	•	-	•	•	, ,	
DATE DE RÉCEPTION: 2022-03-22		•				•	•		DATE DILRAPPORT: 2022-04-18

| IDENTIFICATION DE L'ÉCHANTILLON: F19-22-CF-3
| MATRICE: Sol |
| DATE D'ÉCHANTILLONNAGE: 2022-03-17
| Paramètre Unités C / N: A C / N: B C / N: C C / N: D LDR 3739130 |
| Solité % 0.1 21.5

Hydrocarbures aromatiques polycycliques (HAP) (sol)

%		0.1	21.5
Unités	Limites		
%	50-140		94
%	50-140		89
%	50-140		75
	% Unités % %	Unités Limites % 50-140 % 50-140	% 0.1 Unités Limites % 50-140 % 50-140

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3739130 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Montréal (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 22M882756 N° DE PROJET: 201-11330-29 9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC.
PRÉLEVÉ PAR: Jonathan Mole

À L'ATTENTION DE: Steve St-Cyr

PRELEVE PAR: Jonathan Mol	e						LIEU DE P	RELEVEM	ENT:Windfall Laki	ке	
			Hyd	Irocarbure	es pétrolie	rs C10-C5	0 (sol)				
DATE DE RÉCEPTION: 2022-03-	22								DATE DU RAPPO	RT: 2022-04	l-18
				IDENTIFI	CATION DE L'É	CHANTILLON:	F37-22-CF-3A		F19-22-CF-1		F19-22-CF-3
						MATRICE:	Sol		Sol		Sol
				[DATE D'ÉCHAN	TILLONNAGE:	2022-03-17		2022-03-17		2022-03-17
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3739127	LDR	3739128	LDR	3739130
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	200	541[A-B]	100	<100
Humidité	%					0.1	3.5	0.1	81.1	0.1	21.5
Étalon de recouvrement	Unités			Limites							
Nonane	%			60-140			116		90		113
				IDENTIFI	CATION DE L'É	CHANTILLON:	F18-22-CF-1		F18-22-CF-3B		F28-22-CF-1
						MATRICE:	Sol		Sol		Sol
				1	DATE D'ÉCHAN	TILLONNAGE:	2022-03-17		2022-03-17		2022-03-17
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3739131	LDR	3739132	LDR	3739133
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	200	831[B-C]	100	<100	200	243[A-B]
Humidité	%					0.1	90.1	0.1	21.1	0.1	80.0
Étalon de recouvrement	Unités			Limites							
Nonane	%			60-140			109		105		115
				IDENTIFI	CATION DE L'É	CHANTILLON:	F28-22-CF-3				
						MATRICE:	Sol				
]	DATE D'ÉCHAN	TILLONNAGE:	2022-03-17				
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3739134				
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100				
Humidité	%					0.1	10.9				
Étalon de recouvrement	Unités			Limites							
Nonane	%			60-140			106				

Certifié par:

N° BON DE TRAVAIL: 22M882756

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

N° DE PROJET: 201-11330-29

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC.

LIEU DE PRÉLÈVEMENT: Windfall Lakke

À L'ATTENTION DE: Steve St-Cyr

Hydrocarbures pétroliers C10-C50 (sol)

DATE DE RÉCEPTION: 2022-03-22 DATE DU RAPPORT: 2022-04-18

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

pour l'interprétation réglementaire.

PRÉLEVÉ PAR: Jonathan Mole

3739127 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

3739128 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

La limite de détection a été augmentée en raison d'un taux d'humidité élevé dans l'échantillon.

3739130 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

3739131 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

La limite de détection a été augmentée en raison d'un taux d'humidité élevé dans l'échantillon.

3739132 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

3739133 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

La limite de détection a été augmentée en raison d'un taux d'humidité élevé dans l'échantillon.

3739134 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Montréal (sauf celles marquées d'un *)

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Jonathan Mole N° BON DE TRAVAIL: 22M882756 À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:Windfall Lakke

			/	Analy	/se d	es So	ols								
Date du rapport: 2022-04-18				DUPLICAT	A	MATÉ	RIAU DE RI	ÉFÉREN	NCE	BLANG	CFORT	IFIÉ	ÉCH.	FORTIF	ΊÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.	Lin	nites	% Récup.	Lin	nites
TATO WILLIAM			Sup ".	Jup "2	70 0 000.1	méthode	, o . tooup.	Inf.	Sup.	70 1 toodp.	Inf.	Sup.	, 70 . 1. COUP.	Inf.	Sup.
Métaux Extractibles Totaux (sol)	,			-											
Aluminium	3728302		4680	4410	5.8	< 30	67%	70%	130%	98%	80%	120%	67%	70%	130%
Antimoine	3728302		<20	<20	NA	< 20	146%	70%	130%	100%	80%	120%	105%	70%	130%
Argent	3728302		< 0.5	< 0.5	NA	< 0.5	100%	70%	130%	88%	80%	120%	92%	70%	130%
Arsenic	3728302		<5.0	<5.0	NA	< 5.0	107%	70%	130%	110%	80%	120%	111%	70%	130%
Baryum	3728302		23	22	NA	< 20	99%	70%	130%	108%	80%	120%	88%	70%	130%
Béryllium	3728302		<1	<1	NA	< 1	107%	70%	130%	108%	80%	120%	105%	70%	130%
Cadmium	3728302		< 0.9	< 0.9	NA	< 0.9	97%	70%	130%	106%	80%	120%	97%	70%	130%
Calcium	3728302		2410	2150	11.4	< 100	98%	70%	130%	104%	80%	120%	105%	70%	130%
Chrome	3728302		<45	<45	NA	< 45	104%	70%	130%	109%	80%	120%	103%	70%	130%
Cobalt	3728302		<15	<15	NA	< 15	92%	70%	130%	106%	80%	120%	92%	70%	130%
Cuivre	3728302		<40	<40	NA	< 40	96%	70%	130%	115%	80%	120%	80%	70%	130%
Étain	3728302		<5	<5	NA	< 5	114%	70%	130%	115%	80%	120%	105%	70%	130%
Fer	3728302		9860	9110	7.9	< 500	104%	70%	130%	108%	80%	120%	122%	70%	130%
Magnésium	3728302		2360	2250	4.5	< 100	112%	70%	130%	120%	80%	120%	122%	70%	130%
Manganèse	3728302		137	129	5.8	< 10	149%	70%	130%	117%	80%	120%	98%	70%	130%
Mercure	3728302		<0.2	<0.2	NA	< 0.2	88%	70%	130%	107%	80%	120%	99%	70%	130%
Molybdène	3728302		<2	<2	NA	< 2	106%	70%	130%	117%	80%	120%	119%	70%	130%
Nickel	3728302		<30	<30	NA	< 30	101%	70%	130%	110%	80%	120%	103%	70%	130%
Plomb	3728302		<30	<30	NA	< 30	96%	70%	130%	104%	80%	120%	89%	70%	130%
Potassium	3728302		358	325	NA	< 100	85%	70%	130%	91%	80%	120%	86%	70%	130%
Sélénium	3728302		<1.0	<1.0	NA	< 1.0	86%	70%	130%	96%	80%	120%	104%	70%	130%
Sodium	3728302		375	330	NA	< 100	91%	70%	130%	97%	80%	120%	105%	70%	130%
Titane	3728302		362	333	8.3	< 1	136%	70%	130%	104%	80%	120%	NA	70%	130%
Vanadium	3728302		<15	<15	NA	< 15	111%	70%	130%	103%	80%	120%	116%	70%	130%
Zinc	3728302		19	20	NA	< 10	97%	70%	130%	110%	80%	120%	95%	70%	130%
Lithium	3728302		6	5	NA	< 2	92%	70%	130%	99%	80%	120%	99%	70%	130%

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Le pourcentage de récupération du MRC peut être en dehors du critère d'acceptabilité s'il est conforme à l'écart du certificat du matériau de référence.

L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restants, un écart de 10% supplémentaire est acceptable.

Recouvrements du fortifié en dehors des critères d'acceptabilité en raison d'une interférence de matrice pour Al. L'analyse a été refaite avec des résultats similaires.

Métaux	Extractibles	Totaux	(boue)	١

Aluminium	3704773	2280	2260	0.6	< 30	101%	70%	130%	112%	80%	120%	125%	70%	130%
Antimoine	3704773	<20	<20	NA	< 20	44%	70%	130%	96%	80%	120%	0%	70%	130%
Arsenic	3704773	<5.0	<5.0	NA	< 5.0	80%	70%	130%	96%	80%	120%	104%	70%	130%
Baryum	3704773	<20	<20	NA	< 20	95%	70%	130%	100%	80%	120%	123%	70%	130%
Calcium	3704773	725	726	0.1	< 100	94%	70%	130%	106%	80%	120%	122%	70%	130%

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Jonathan Mole N° BON DE TRAVAIL: 22M882756 À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:Windfall Lakke

			Ana	lyse	des S	Sols (Suite	∋)							
Date du rapport: 2022-04-18				DUPLICATA	A	MATÉ	RIAU DE RI	ÉFÉREN	NCE	BLANG	FORT	IFIÉ	ÉCH.	FORTIF	ΞΙÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.	Lim	nites	% Récup.	Lim	nites
.,			- 24		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	méthode	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.		Inf.	Sup.
Chrome	3704773		<45	<45	NA	< 45	89%	70%	130%	103%	80%	120%	114%	70%	130%
Cobalt	3704773		<15	<15	NA	< 15	102%	70%	130%	101%	80%	120%	126%	70%	130%
Cuivre	3704773		<40	<40	NA	< 40	107%	70%	130%	97%	80%	120%	128%	70%	130%
Étain	3704773		12	13	NA	< 5	132%	70%	130%	100%	80%	120%	121%	70%	130%
Fer	3704773		1230	1310	NA	< 500	98%	70%	130%	108%	80%	120%	130%	70%	130%
Magnésium	3704773		584	648	10.4	< 100	NA	70%	130%	112%	80%	120%	126%	70%	130%
Manganèse	3704773		23	19	NA	< 10	102%	70%	130%	105%	80%	120%	125%	70%	130%
Mercure	3739128 3	3739128	<0.2	<0.2	NA	< 0.2	106%	70%	130%	110%	80%	120%	85%	70%	130%
Molybdène	3704773		<2	<2	NA	< 2	129%	70%	130%	102%	80%	120%	158%	70%	130%
Nickel	3704773		<30	<30	NA	< 30	86%	70%	130%	107%	80%	120%	113%	70%	130%
Plomb	3704773		<30	<30	NA	< 30	80%	70%	130%	103%	80%	120%	99%	70%	130%
Potassium	3704773		<100	<100	NA	< 100	82%	70%	130%	92%	80%	120%	106%	70%	130%
Sélénium	3704773		<1.0	<1.0	NA	< 1.0	121%	70%	130%	104%	80%	120%	120%	70%	130%
Sodium	3704773		<100	<100	NA	< 100	85%	70%	130%	98%	80%	120%	110%	70%	130%
Vanadium	3704773		<15	<15	NA	< 15	100%	70%	130%	101%	80%	120%	119%	70%	130%
Zinc	3704773		<10	<10	NA	< 10	109%	70%	130%	107%	80%	120%	133%	70%	130%
Argent	3704773		<0.5	<0.5	NA	< 0.5	71%	70%	130%	86%	80%	120%	76%	70%	130%
Cadmium	3704773		< 0.9	< 0.9	NA	< 0.9	92%	70%	130%	104%	80%	120%	120%	70%	130%
Titane	3704773		223	259	14.9	< 1	84%	70%	130%	100%	80%	120%	75%	70%	130%
Vanadium	3704773		<15	<15	NA	< 15	100%	70%	130%	101%	80%	120%	119%	70%	130%
Béryllium	3704773		<1	<1	NA	< 1	140%	70%	130%	100%	80%	120%	170%	70%	130%
Lithium	3704773		<2	<2	NA	< 2	104%	70%	130%	101%	80%	120%	131%	70%	130%

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Le pourcentage de récupération du MRC peut être en dehors du critère d'acceptabilité s'il est conforme à l'écart du certificat du matériau de référence.

L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restants, un écart de 10% supplémentaire est acceptable.

Recouvrements du fortifié en dehors des critères d'acceptabilité en raison d'une interférence de matrice pour antimoine, beryllium, molybdène, et zinc. L'analyse a été refaite avec des résultats similaires.

Matériau de référence en dehors des critères d'acceptabilité pour béryllium, pourcentages trop élevés. Résultats acceptés car tous < LDR.

Certifié par:

Amar Bellahsene 2011-214

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR:Jonathan Mole

N° BON DE TRAVAIL: 22M882756
À L'ATTENTION DE: Steve St-Cyr
LIEU DE PRÉLÈVEMENT:Windfall Lakke

	. •						-								
		F	naly	se o	rgani	que	de tra	ace							
Date du rapport: 2022-04-18				DUPLICAT	A	MATÉ	RIAU DE R	ÉFÉREN	ICE	BLAN	C FORT	IFIÉ	ÉCH.	FORTIF	-IÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.		nites	% Récup.		nites
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						méthode	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.		Inf.	Sup.
Hydrocarbures pétroliers C10-C5	50 (sol)														
Hydrocarbures pétroliers C10 à C50	3739212 (3739212	386	382	NA	< 100	NA	60%	140%	132%	60%	140%	134%	60%	140%
Nonane	3739212 (3739212	82%	92%	11.5	108	NA	60%	140%	108%	60%	140%	91%	60%	140%

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Hydrocarbures aromatiques poly	cycliques (HAP) (s	sol)											
Acénaphtène	3739212	, <0.1	<0.1	NA	< 0.1	NA	50% 140	0% 97%	50%	140%	94%	50%	140%
Acénaphtylène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140	0% 89%	50%	140%	87%	50%	140%
Anthracène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140		50%	140%	95%	50%	140%
Benzo(a)anthracène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140		50%	140%	87%	50%	140%
Benzo(a)pyrène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140		50%	140%	77%	50%	140%
(//)													
Benzo (b) fluoranthène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140	0% 89%	50%	140%	78%	50%	140%
Benzo (j) fluoranthène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140	0% 103%	50%	140%	78%	50%	140%
Benzo (k) fluoranthène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140	0% 81%	50%	140%	74%	50%	140%
Benzo(c)phénanthrène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140	95%	50%	140%	88%	50%	140%
Benzo(g,h,i)pérylène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140	0% 95%	50%	140%	77%	50%	140%
	0700040												
Chrysène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140		50%	140%	69%	50%	140%
Dibenzo(a,h)anthracène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140		50%	140%	77%	50%	140%
Dibenzo(a,i)pyrène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140		50%	140%	48%	50%	140%
Dibenzo(a,h)pyrène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140		50%	140%	47%	50%	140%
Dibenzo(a,I)pyrène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140	0% 90%	50%	140%	88%	50%	140%
Diméthyl-7,12benzo(a)anthracène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140	0% 62%	50%	140%	55%	50%	140%
Fluoranthène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140	0% 98%	50%	140%	88%	50%	140%
Fluorène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140	0% 93%	50%	140%	91%	50%	140%
Indéno(1,2,3-cd)pyrène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140	0% 94%	50%	140%	75%	50%	140%
Méthyl-3cholanthrène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140	0% 76%	50%	140%	78%	50%	140%
•													
Naphtalène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140		50%	140%	91%	50%	140%
Phénanthrène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140	0% 95%	50%	140%	89%	50%	140%
Pyrène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140	0% 96%	50%	140%	88%	50%	140%
Méthyl-1naphtalène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140	0% 103%	50%	140%	96%	50%	140%
Méthyl-2naphtalène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140	0% 101%	50%	140%	98%	50%	140%
Diméthyl-1,3naphtalène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140	0% 99%	50%	140%	97%	50%	140%
Triméthyl-2,3,5naphtalène	3739212	<0.1	<0.1	NA	< 0.1	NA	50% 140	0% 96%	50%	140%	95%	50%	140%
Acénaphtène-D10	3739212	91	88	3.2	88	NA	50% 140	92%	50%	140%	88%	50%	140%
Fluoranthène-D10	3739212	86	81	6.0	84	NA	50% 140	92%	50%	140%	84%	50%	140%
Pérylène-D12	3739212	72	68	4.8	68	NA	50% 140	0% 80%	50%	140%	70%	50%	140%

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 22M882756

N° DE PROJET: 201-11330-29

Ä L'ATTENTION DE: Steve St-Cyr

PRÉLEVÉ PAR:Jonathan Mole

LIEU DE PRÉLÈVEMENT:Windfall Lakke

		Anal	yse	orgar	nique	de t	race	(Su	ite)						
Date du rapport: 2022-04-18				DUPLICATA	Ą	MATÉ	RIAU DE RI	ÉFÉREN	CE	BLANG	FORTI	FIÉ	ÉCH.	FORTIF	ïÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de méthode	% Récup.	Lim	ites	% Récup.		iites	% Récup.		ites
			•			methode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Jonathan Mole N° BON DE TRAVAIL: 22M882756 À L'ATTENTION DE: Steve St-Cyr

LIEU DE PRÉLÈVEMENT: Windfall Lakke

PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse des Sols					
Digestion sol métaux	0000 04 40	0000 04 40			BALANCE
m. Métaux	2022-04-13	2022-04-13		MA. 200 - Mét 1.2 ; MA.	BALANCE
Aluminium	2022-04-14	2022-04-14	MET-101-6107F	203 - Mét 3.2	ICP/OES
Antimoine	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Arsenic	2022-04-14	2022-04-14	MET-101-6105F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/MS
Baryum	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Calcium	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Chrome	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Cobalt	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Cuivre	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Étain	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Fer	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Magnésium	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Manganèse	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Mercure	2022-04-14	2022-04-14	MET-101-6102F	MA. 200 Hg 1.1	VAPEUR FROIDE/AA
m. Mercure	2022-04-13	2022-04-13			BALANCE
Molybdène	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Nickel	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Plomb	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Potassium	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Sélénium	2022-04-14	2022-04-14	MET-101-6105F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/MS
Sodium	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Vanadium	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Zinc	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Argent	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Cadmium	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Titane	2022-04-14	2022-04-14	MET-101-6107F, non accrédité par le MDDELCC	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Vanadium	2022-04-14	2022-04-14	MET-101-6107F, non accrédité par le MDDELCC	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Béryllium	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Lithium	2022-04-14	2022-04-14	MET-101-6107F, non accrédité MDDEFP	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Jonathan Mole N° BON DE TRAVAIL: 22M882756 À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:Windfall Lakke

PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Aluminium	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Antimoine	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Argent	2022-04-14	2022-04-14	MET-101-6105F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/MS
Arsenic	2022-04-14	2022-04-14	MET-101-6105F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/MS
Baryum	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Béryllium	2022-04-14	2022-04-14	MET-101-6107F, , non accrédité par le MDDELCC	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Cadmium	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Calcium	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Chrome	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Cobalt	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Cuivre	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Étain	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Fer	2022-04-14	2022-04-14	MET-101-6107F, non accrédité par le MDDELCC	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Magnésium	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Manganèse	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Mercure	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Molybdène	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Nickel	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Plomb	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Potassium	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Sélénium	2022-04-14	2022-04-14	MET-101-6105F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/MS
Sodium	2022-04-14	2022-04-14	MET-101-6107F, non accrédité par le MDDELCC	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Titane	2022-04-14	2022-04-14	MET-101-6107F, non accrédité par le MDDELCC	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Vanadium	2022-04-14	2022-04-14	MET-101-6107F, non accrédité par le MDDELCC	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Zinc	2022-04-14	2022-04-14	MET-101-6107F	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES
Lithium	2022-04-14	2022-04-14	MET-101-6107F, non accrédité MDDEFP	MA. 200 - Mét 1.2 ; MA. 203 - Mét 3.2	ICP/OES

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR: Jonathan Mole

N° BON DE TRAVAIL: 22M882756 À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:Windfall Lakke

PRELEVE PAR.JUIIallialliviole				IEU DE PRELEVEIVIENT.V	VIII LAKKE
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse organique de trace	•	•		•	•
Acénaphtène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Acénaphtylène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Anthracène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Benzo(a)anthracène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Benzo(a)pyrène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Benzo (b) fluoranthène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Benzo (j) fluoranthène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Benzo (k) fluoranthène	2022-04-14	2022-04-14	ORG-100-5102	MA.400-HAP 1.1	GC/MS
Benzo (b,j,k) fluoranthène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Benzo(c)phénanthrène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Benzo(g,h,i)pérylène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Chrysène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Dibenzo(a,h)anthracène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Dibenzo(a,i)pyrène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Dibenzo(a,h)pyrène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Dibenzo(a,l)pyrène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Diméthyl-7,12benzo(a)anthracène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Fluoranthène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Fluorène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Indéno(1,2,3-cd)pyrène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Méthyl-3cholanthrène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Naphtalène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Phénanthrène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Pyrène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Méthyl-1naphtalène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Méthyl-2naphtalène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Diméthyl-1,3naphtalène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Triméthyl-2,3,5naphtalène	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Acénaphtène-D10	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Fluoranthène-D10	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Pérylène-D12	2022-04-14	2022-04-14	ORG-100-5102F	MA.400-HAP 1.1	GC/MS
Humidité	2022-04-13	2022-04-13	LAB-111-4040F	MA.100-ST 1.1	BALANCE
Hydrocarbures pétroliers C10 à C50	2022-04-13	2022-04-13	ORG-100-5104F	MA.400-HYD. 1.1	GC/FID
Nonane	2022-04-13	2022-04-13	ORG-100-5104F	MA.400-HYD. 1.1	GC/FID
Humidité	2022-04-13	2022-04-13	LAB-111-4040F	MA.100-ST 1.1	BALANCE

9	221	78	82	7	56	

1151)	AGAT Laboratoire			nde d'analy abec City, Que		, G1P 4P3				
WSP Canada Inc 1135, boul Lebou Duébec (Québec Téléphone, 418-6	c. urgneuf c) G2K 0M5	Délai d'analyse requis	46 hres 24 hres	П	6-12 hres Date requise:					te commande; e soumission:	
Numéro du projet	1: 201-11330-29				Critères à res	RMD (mat li RDS (mat li		[A F		Гь
Ben de command Lieu de prélèvem					 	REIMR	(iviable)		Eau résurge		
Prélevé par:	Jonathan Mole				. =			-1-			
Chargé de projet:					S B						1
Courriel:	steve st.cyr@wsp.com / sirii	ne boussorra@wap com			3e, Ca, Cd Mn, Mo, P	s C10-C50					
Matrice: S Sol SI Solide SE Sédiment EP Eau potab		ES Eau de surface EF Effluent AF Affluent			ux (Al, Ag, As, Ba, Be, Ca, Cd, Co, u, Fe, Hg, K, Li, Mg, Mn, Mo, Na, NI, ib, Se, Sn, Ta Ti, V et Zn)	Hydrocarbures pétroliers C10-C50					
	Identification de l'échantillon	Date de prélèvement	Matrice	Nombre de pots	Métaux (Cr, Cu, F Pb, Sb, S	Hydra	HAP				
	-22_CF-3A	2022-03-17	S	1							
2 F37-	-22_CF-3C	2022-03-17	S	1	Х	Х					
3 F17-	-22_CF-2	202-03-17	S	1							
4 F17-	-22_CF-3	2022-03-17	S	1	Х	Х					
5 F17-	-22_CF-4	2022-03-17	S	1							
6 F17-	-22_CF-5A	2022-03-17	S	1							
7 F17-	-22 CF-5B	2022-03-17	S	1							
8 F19-	-22 CF-1	2022-03-18	S	1	Х	Х					
9 DUF	P01220318	2022-03-18	8	1	Х	Х					
F19-	-22_CF-2B	2022-03-18									
	-22_CF-2B DUP02	2022-03-18	S	1							11 11
	-22_CF-3	2022-03-18	S	1	Х	Х	Х				
	-22_CF-3 DUP03	2022-03-18									
	-22_CF-1	2022-03-19	S	1	Х	Х					
	-22_CF-2	2022-03-19	S	1							
	-22_CF-3A	2022-03-19	S	1							
	-22_CF-3B	2022-03-19	S	1	X	X					
	-22_CF-4	2022-03-19	S	1							
	-22_CF-5	2022-03-19	S	1							
	I-22_CF-1	2022-03-20	S	1	X	Х					
	I-22_CF-3	2022-03-22	S	1	X	X					
	I-22_CF-4	2022-03-20	S	1		-					
	3-22_CF-5	2022-03-20	S	1							
	1-22_CF-6	2022-03-20	S	1							
	3-22_CF-0 3-22_CF-7	2022-03-20	S	1							
		2022-03-20	-								
24			1		0						
Échantillons re	emie par: Jonathan Mole 2022-03-23		Échantillo Date:	ns reçus pi	ar:					Page:	1 de 1

1151)			AGAT Laboratoires			nde d'analy ebec City, Que		a. G1P 4P3							
1		·													
ISP Canada inc. 135, boul Lebourgneul		Délai d'analys		48 hres		6-12 hres					Г	Page 1	de comn		
uébec (Québec) G2K (5 jours 72 hres	24 hres	. ,	Date requise:					-		ze comn le soumi		
éléphone: 418-623-706						Ta									
umėro du projet:	201-11330-29					Critères à res	ipecter RMD (mat∟l	bdvlable)			CI A	Г	В	Гс	Г.
on de commande:							RDS (mat. 1				Γ Eau	consor	nmation		, ,
eu de prélèvement:	Windfall Lake					-	REIMR		-		☐ Eau	résurge	nce		
rělevé par:	Jonathan Mole Steve St-Cyr					o Z									
hargé de projet: ourriel;	steve st cyr@wsp com / sirine	boussorra@wsp	com			, S	99					1			1 1
ourrier.						Ca, Ca	5								
						Be, a, Mi	5		1						
						, Ba, T, M, V	를								
s Sol	B Boue	ES Eau de	surface			As, L K, L	pét								
SI Solide	EU Eau usée	EF Effluent				taux (Al, Ag, As, Ba, Be, Ca, Cd, Co, Cu, Fe, Hg, K, Ll, Mg, Mn, Mo, Na, Nl, Sb, Se, Sn, Ta Ti, V et Zn)	ures								
SE Sédiment EP Eau potable	ST Eau souterraine	AF Affluent				Fe, Se,	da da						1		1.1
ld	entification de l'échantillon		Date de prélèvement	Matrice	Nombre de pots	Metaux (Cr, Cu, F Pb, Sb, S	Hydrocarbures pétrollers C10-C50	HAP							
1 HMTN-FO3	I-CF1		2022-03-22	S	1	X	X								
2 HMTN-FO3	I-CF-2A		2022-03-22	S	1										
3 HMTN-FO	-CF-2B		2022-03-22	S	1	Х	Х					1/1			
4 HMTN-FO	-CF-2C		2022-03-22	S	1				1						1
5 HMTN-FO3	I-CF-3		2022-03-22	S	1										
6 HMTN-FO3	I-CF-4		2022-03-22	S	1								10.0		
7 F-14-22-CF	-1A		2022-03-22	S	1										
8 F-14-22-CF	-1B		2022-03-22	S	1	Х	Х	Х							
9 F-14-22-CF	-1C	1	2022-03-22	S	1										
F-14-22-CF	-2		2022-03-22	S	1	Х	Х								
10 F-14-22-CF			2022-03-22	S	1										
11 F-13-22-CF			2022-03-23	S	2										
F-13-22-CF			2022-03-23	S	2										
12 F-13-22-CF			2022-03-23	S	2	X	Х								
13 F-13-22-CF			2022-03-23	S	2		1								
14 F-13-22-CF			2022-03-23	S	2										
15 F-13-22-CF			2022-03-23	S	2										
16 F-13-22-CF			2022-03-23	S	2							-			
17 F-11-22-CF			2022-03-23	S	2	V	· ·			-					
18 F-11-22-CF			2022-03-23	S	2	X	X					-			
19 F-11-22-CF			2022-03-23	S	2	Х	Х			-	-	1		-	
20 F-11-22-CF 21 F-11-22-CF			2022-03-23	S	2	-				-		-	-		
21 F-11-22-CF 22 F-11-22-CF			2022-03-23	S	2				-	-	-			-	
			2022-03-23	S	2					-		1		-	
23 F-11-22-CF 24 F-11-22-CF			2022-03-23	S	2					-	-	-			1
25 F-11-22-CF			2022-03-23	S	2					-	-			-	
			2022-03-23	_	ne roçus pa				2 360			1			
chantillons romis par	SOMETHER INCH			Date:	ne reyus pa								Page	e: 1	de

1151	1				AGAT I =			nde d'analyses abec City, Quebec Cana	da. G1P 4P3							
117	,				AOA! C	DO181011 000 1	do / tanquar da	one only, adopted only								
P Canada Inc.	_		Délai d'analyse requis													
35, boul Lebou			possion and \$100 and \$100	5 jours	48 hree		6-12 hres						Bon de commande:			
uébec (Québec)	G2K 0M5			72 hres	24 hree		Date requise:					1	lo_de soumission:			
léphone: 418-60	23-7066	Telecopieur: 418-623-2434														
							Critères à respe									
ımêro du projet:		201-11330-29						RMD (met. lidvlable)				A		C		D
on de commande								RDS (mat. lodvlable) REIMR				Enu conso				
eu de préléveme	nt:	Windfall Lake						KEIMK	-			Eau résurg	ence			_
élevé par:		Jonathan Mole					o Z									
hargé de projet:		Steve St-Cyr				-	Z a	9					1			
ourriei:		steve st. cyr@wsp.com / sirine bous	sotte@wsb.com		_		0 0	ប៉ី								
							0 = 5	8								
							Be, M	5								
							a ≅ >	<u>e</u>								
trice:							wat F	etr								
	Sol	B Boue	ES Eau de su	face			II, Ag, As, Ba, Be, Ca, Cd, Co, t, Hg, K, Lj, Mg, Mn, Mo, Na, Ni, t, Sn, Ta Ti, V et Zn)	Hydrocarbures pétrollers C10-C50								
	Solide	EU Eau usée	EF Effluent				Hg Hg	8								
SE :	Sédiment	ST Eau souterraine	AF Affluent				3.00	E E								
EP I	Eau potable						Métaux Cr, Cu, F Pb, Sb, S	2								
		Identification de l'échantillon		Date de	Matrice	Nombre de	P. 7. de	þý						- 1		
4	F-45-22-	CE 1		prélèvement 2022-03-24	S	pots 2	ZOE				_					_
1					S	2	_				_			_		_
2	F-45-22-			2022-03-24				· ·	_			-				
3	F-45-22-			2022-03-24	S	2	X	X						_		
4	F-45-22-			2022-03-24	S	2	X	X								1
5	F-45-22-	-CF-4		2022-03-24	S	2									No.	
6																
7							N.									
8																
9																
10							0									
11						lu.						1 3				
12																
13						V										
14																
15																
16	_															
17						1										
18							-									
19																
										-						
20							-									
21									_							
22																
23															11-	
24																
25																
hantiilons rem	is par:	Jonathan Mole			Échantillons re	çus par:							De	ge:	2 d	le

NOM DU CLIENT: WSP CANADA INC.

1135 BOULEVARD LEBOURGNEUF

QUEBEC, QC G2K 0M5

(418) 623-7066

À L'ATTENTION DE: Sirine Boussorra

N° DE PROJET: 201-11330-29

N° BON DE TRAVAIL: 220884837

ANALYSE DES SOLS VÉRIFIÉ PAR: Hasti Kamalimoghadam, Chimiste, AGAT Montréal ORGANIQUE DE TRACE VÉRIFIÉ PAR: EmmanuelBrousseau, Chimiste, AGAT Québec

DATE DU RAPPORT: 25 avr. 2022

NOMBRE DE PAGES: 9 VERSION*: 1

Pour tout complément d'information concernant cette analyse, veuillez contacter votre chargé(e) de projet client au (418) 266-5511.

Avia de non responsabilité:	

*Notes

- L'ensemble des travaux réalisés dans le présent document ont été effectués en utilisant des protocoles normalisés reconnus, ainsi que des pratiques et des méthodes généralement acceptées. En vue d'améliorer la performance, les méthodes analytiques d'AGAT pourraient comprendre des modifications issues des méthodes de référence spécifiées.
- Tous les échantillons seront éliminés trente (30) jours après réception au laboratoire à moins qu'une Entente d'entreposage à long terme ne soit signée et retournée. Certaines analyses spécialisées peuvent être exemptées. Veuillez communiquer avec votre chargé de projets à la clientèle pour plus d'informations.
- La responsabilité d'AGAT en ce qui concerne tout retard, exécution ou non-exécution de ces services s'applique uniquement envers le client et ne s'étend à aucune autre tierce partie. À moins qu'il n'en soit par ailleurs convenu expressément par écrit, la responsabilité d'AGAT se limite au coût réel de l'analyse ou des analyses spécifiques incluses dans les services.
- Sauf accord écrit préalable d'AGAT Laboratoires, ce certificat ne doit être reproduit que dans sa totalité.
- Les résultats d'analyse communiqués ci-joint ne concernent que les échantillons reçus par le laboratoire.
- L'application des lignes directrices est fournie « en l'état » sans garantie de quelque nature que ce soit, ni expresse ni tacite, y compris, mais sans s'y limiter, les garanties de qualité marchande, d'aptitude à un usage particulier ou de non-contrefaçon. AGAT n'assume aucune responsabilité à l'égard de toute erreur ou omission dans les directives que contient ce document.
- Toutes les informations rapportables sont disponibles sur demande auprès d'AGAT Laboratoires, conformément aux normes ISO/IEC 17025:2017, DR-12-PALA et/ou NELAP.

AGAT Laboratoires (V1) Page 1 de 9

N° BON DE TRAVAIL: 22O884837 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC.

PRÉLEVÉ PAR:

À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT:Infrastructures future mine Windfall

Analyses inorganiques - WSP (Balayage métaux + mer	rcure)
--	--------

			IDENTIFI							
			IDENTIFI	CATION DE L'E(CHANTILLON:	F54-22 CF2	F53-22 CF2A	F51-22 CF1B	F51-22 CF2B	F52-22 CF1B
					MATRICE:	Sol	Sol	Sol	Sol	Sol
			[DATE D'ÉCHAN	TLLONNAGE:	2022-04-12	2022-04-12	2022-04-12	2022-04-13	2022-04-12
Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3766625	3766627	3766631	3766633	3766637
mg/kg					30	4320	2560	2830	4850	3020
mg/kg	-	-	-		20	<20	<20	<20	<20	<20
mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
mg/kg	6	30	50	250	1	<1	<1	<1	<1	<1
mg/kg	340	500	2000	10000	20	<20	<20	<20	<20	<20
mg/kg					1	<1	<1	<1	<1	<1
mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
mg/kg					100	2560	1420	1290	2040	875
mg/kg	100	250	800	4000	2	13[<a]< td=""><td>9[<a]< td=""><td>9[<a]< td=""><td>12[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	9[<a]< td=""><td>9[<a]< td=""><td>12[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	9[<a]< td=""><td>12[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<>	9[<a]< td=""></a]<>
mg/kg	25	50	300	1500	2	3[<a]< td=""><td><2</td><td><2</td><td>4[<a]< td=""><td><2</td></a]<></td></a]<>	<2	<2	4[<a]< td=""><td><2</td></a]<>	<2
mg/kg	50	100	500	2500	1	9[<a]< td=""><td>1[<a]< td=""><td><1</td><td>6[<a]< td=""><td>2[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	1[<a]< td=""><td><1</td><td>6[<a]< td=""><td>2[<a]< td=""></a]<></td></a]<></td></a]<>	<1	6[<a]< td=""><td>2[<a]< td=""></a]<></td></a]<>	2[<a]< td=""></a]<>
mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
mg/kg					500	7720	5060	4480	8010	6370
mg/kg	-	-	-	-	20	<20	<20	<20	<20	<20
mg/kg					100	2410	1540	1520	3240	1530
mg/kg	1000	1000	2200	11000	10	108[<a]< td=""><td>56[<a]< td=""><td>48[<a]< td=""><td>106[<a]< td=""><td>48[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	56[<a]< td=""><td>48[<a]< td=""><td>106[<a]< td=""><td>48[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	48[<a]< td=""><td>106[<a]< td=""><td>48[<a]< td=""></a]<></td></a]<></td></a]<>	106[<a]< td=""><td>48[<a]< td=""></a]<></td></a]<>	48[<a]< td=""></a]<>
mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1
mg/kg	50	100	500	2500	2	8[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""><td>9[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>4[<a]< td=""><td>9[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>9[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<>	9[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<>	4[<a]< td=""></a]<>
mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
mg/kg					100	157	101	107	229	102
mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
mg/kg					100	<100	<100	<100	<100	<100
mg/kg					1	574	504	929	612	753
mg/kg					15	<15	<15	17	<15	20
mg/kg	140	500	1500	7500	5	17[<a]< td=""><td>11[<a]< td=""><td>9[<a]< td=""><td>21[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>9[<a]< td=""><td>21[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	9[<a]< td=""><td>21[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<>	21[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<>	10[<a]< td=""></a]<>
	mg/kg mg/kg	mg/kg mg/kg mg/kg 2 mg/kg 6 mg/kg 340 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 1.5 mg/kg mg/kg 50 mg/kg 5 mg/kg mg/kg mg/kg 50 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 1000 mg/kg 5 mg/kg 5 mg/kg mg/kg mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000	mg/kg mg/kg mg/kg 2 mg/kg 6 30 mg/kg 340 500 mg/kg mg/kg mg/kg 1.5 5 mg/kg mg/kg mg/kg 100 250 mg/kg 25 50 mg/kg 50 100 mg/kg 5 mg/kg mg/kg 1000 mg/kg mg/kg mg/kg 1000 1000 mg/kg mg/kg 1000 1000 mg/kg 5 1000 mg/kg 1000 1000 mg/kg 1000 1000 mg/kg 1000 1000 mg/kg 1000 1000 mg/kg 1000 1000 mg/kg 1000 1000 mg/kg 1000 1000 mg/kg 1000 1000 mg/kg 1000 1000 mg/kg 1000 1000 mg/kg 1000 1000 mg/kg 1000 1000 mg/kg 1000 1000 mg/kg 1000 1000 mg/kg 1000 1000 mg/kg 1000 1000 mg/kg 1000 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg	Unités C / N: A C / N: B C / N: C mg/kg - - - mg/kg 2 20 40 mg/kg 6 30 50 mg/kg 340 500 2000 mg/kg 340 500 2000 mg/kg 1.5 5 20 mg/kg 100 250 800 mg/kg 5 50 300 mg/kg - - - mg/kg 1 1000 2200 mg/kg 0.2 2 10 mg/kg 50 100 500 mg/kg 50 500 1000 mg/kg 1 3	Unités C / N: A C / N: B C / N: C C / N: D mg/kg -	Unités C / N: A C / N: B C / N: C C / N: D LDR mg/kg - - - 20 mg/kg 2 20 40 200 0.5 mg/kg 6 30 50 250 1 mg/kg 340 500 2000 10000 20 mg/kg 340 500 2000 10000 20 mg/kg 1.5 5 20 100 0.5 mg/kg 1.5 5 20 100 0.5 mg/kg 100 250 800 4000 2 mg/kg 25 50 300 1500 2 mg/kg 5 50 300 1500 5 mg/kg 5 50 300 1500 5 mg/kg - - - - 20 mg/kg 0.2 2 10 50 0.2 mg/kg <td>Unités C/N: A C/N: B C/N: C C/N: D LDR 3766625 mg/kg - - - - 20 <20</td> mg/kg - - - - 20 <20	Unités C/N: A C/N: B C/N: C C/N: D LDR 3766625 mg/kg - - - - 20 <20	Unités C/N: A C/N: B C/N: C C/N: D LDR 3766625 3766627 mg/kg - - - 20 4320 2560 mg/kg - - - 20 -20 -20 mg/kg 6 30 50 250 1 -1 -1 mg/kg 6 30 50 250 1 -1 -1 -1 mg/kg 6 30 50 250 1 -1 </td <td>Unités C / N: A C / N: B C / N: C C / N: D LDR 3766625 3766627 3766631 mg/kg - - - - 20 4320 2560 2830 mg/kg 2 20 40 200 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - <</td> <td>Unités C / N: A C / N: B C / N: C C / N: D LDR 3766625 3766627 3766631 3766633 mg/kg - - - 20 220 220 220 220 220 220 220 220 220 220 220 220 20.5 40.1 41</td>	Unités C / N: A C / N: B C / N: C C / N: D LDR 3766625 3766627 3766631 mg/kg - - - - 20 4320 2560 2830 mg/kg 2 20 40 200 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - <	Unités C / N: A C / N: B C / N: C C / N: D LDR 3766625 3766627 3766631 3766633 mg/kg - - - 20 220 220 220 220 220 220 220 220 220 220 220 220 20.5 40.1 41

Certifié par:

N° BON DE TRAVAIL: 220884837

N° DE PROJET: 201-11330-29

Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

350, rue Franquet

À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT:Infrastructures future mine Windfall

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-04-14 DATE DU RAPPORT: 2022-04-25

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

NOM DU CLIENT: WSP CANADA INC.

PRÉLEVÉ PAR:

3766625-3766637 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 220884837 N° DE PROJET: 201-11330-29 CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

350, rue Franquet

Québec, Québec

NOM DU CLIENT: WSP CANADA INC.

PRÉLEVÉ PAR:

N DE PROJET. 201-11330-29

À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT:Infrastructures future mine Windfall

Hydrocarbures pétroliers C10-C50 (Sol)

			-		-						
DATE DE RÉCEPTION: 2022-04-	14							[DATE DU RAPF	PORT: 2022-04-2	25
				IDENTIF	FICATION DE L'É	CHANTILLON:	F54-22 CF2	F53-22 CF2A	F51-22 CF1B	F51-22 CF2B	F52-22 CF1B
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2022-04-12	2022-04-12	2022-04-12	2022-04-13	2022-04-12
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3766625	3766627	3766631	3766633	3766637
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100
% Humidité	%					0.2	9.7	16.7	20.5	17.5	23.2
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140		·	102	86	74	89	78

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3766625-3766637 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR:

N° BON DE TRAVAIL: 220884837 À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT:Infrastructures future

FRELEVE FAR.								LILU L	JL FKI		LINI.	ııııası	ructures	iutul	
			,	Analy	/se d	es So	ols								
Date du rapport: 2022-04-25				DUPLICAT	A	MATÉ	RIAU DE R	ÉFÉREI	NCE	BLAN	C FORT	IFIÉ	ÉCH.	FORTI	ΞΙÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.	Lin	nites	% Récup.	Lin	nites
TANAMETRE	201	14 0011.	Bup "1	Bup #2	70 G COG11	méthode	76 Recup.	Inf.	Sup.	, 70 Rooup.	Inf.	Sup.	, 70 Rooup.	Inf.	Sup.
Analyses inorganiques - WSF	P (Balayage mé	taux + me	ercure)	•		•	•	•	•		•	•		•	•
Aluminium	3767020		3010	2900	3.5	< 30	78%	70%	130%	92%	80%	120%	102%	70%	130%
Antimoine	3767020		<20	<20	NA	< 20	145%	70%	130%	89%	80%	120%	87%	70%	130%
Argent	3767020		< 0.5	< 0.5	NA	< 0.5	108%	70%	130%	94%	80%	120%	94%	70%	130%
Arsenic	3767020		1	2	NA	< 1	97%	70%	130%	89%	80%	120%	88%	70%	130%
Baryum	3767020		<20	<20	NA	< 20	100%	70%	130%	89%	80%	120%	91%	70%	130%
Béryllium	3767020		<1	<1	NA	< 1	93%	70%	130%	93%	80%	120%	92%	70%	130%
Cadmium	3767020		<0.5	< 0.5	NA	< 0.5	102%	70%	130%	94%	80%	120%	93%	70%	130%
Calcium	3767020		11500	11300	1.9	< 100	95%	70%	130%	93%	80%	120%	NA	70%	130%
Chrome	3767020		7	6	NA	< 2	105%	70%	130%	92%	80%	120%	88%	70%	130%
Cobalt	3767020		2	3	NA	< 2	104%	70%	130%	90%	80%	120%	86%	70%	130%
Cuivre	3767020		4	4	NA	< 1	103%	70%	130%	93%	80%	120%	93%	70%	130%
Étain	3767020		<5	<5	NA	< 5	102%	70%	130%	93%	80%	120%	91%	70%	130%
Fer	3767020		7620	7960	4.3	< 500	104%	70%	130%	96%	80%	120%	NA	70%	130%
Lithium	3767020		<20	<20	NA	< 20	97%	70%	130%	92%	80%	120%	90%	70%	130%
Magnésium	3767020		2510	2610	4.1	< 100	108%	70%	130%	99%	80%	120%	100%	70%	130%
Manganèse	3767020		146	144	1.5	< 10	103%	70%	130%	95%	80%	120%	94%	70%	130%
Mercure	3767020		<0.2	< 0.2	NA	< 0.2	92%	70%	130%	94%	80%	120%	77%	70%	130%
Molybdène	3767020		<1	<1	NA	< 1	110%	70%	130%	96%	80%	120%	94%	70%	130%
Nickel	3767020		7	7	NA	< 2	102%	70%	130%	91%	80%	120%	89%	70%	130%
Plomb	3767020		<5	<5	NA	< 5	105%	70%	130%	93%	80%	120%	91%	70%	130%
Potassium	3767020		617	569	8.1	< 100	98%	70%	130%	97%	80%	120%	95%	70%	130%
Sélénium	3767020		<0.5	<0.5	NA	< 0.5	98%	70%	130%	92%	80%	120%	93%	70%	130%
Sodium	3767020		547	559	2.1	< 100	87%	70%	130%	98%	80%	120%	94%	70%	130%
Titane	3767020		239	253	5.8	< 1	121%	70%	130%	91%	80%	120%	NA	70%	130%
Vanadium	3767020		<15	<15	NA	< 15	100%	70%	130%	92%	80%	120%	92%	70%	130%
Zinc	3767020		16	16	NA	< 5	102%	70%	130%	94%	80%	120%	92%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA : Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR:

N° BON DE TRAVAIL: 220884837

À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT:Infrastructures future


							_								-
		F	naly	se o	rgani	que	de tra	асе							
Date du rapport: 2022-04-25				DUPLICAT	A	MATÉ	RIAU DE R	ÉFÉREN	NCE	BLAN	C FORT	IFIÉ	ÉCH.	FORTIF	īÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.		nites	% Récup.		nites	% Récup.		nites
.,,,,,,,,,						méthode	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.		Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.
Hydrocarbures pétroliers C10-C	50 (SoI)														
Hydrocarbures pétroliers C10 à C50	3765803		144	119	NA	< 100	82%	60%	140%	95%	60%	140%	86%	60%	140%
Rec. Nonane	3765803		79	111	33.7	104	95%	60%	140%	124%	60%	140%	95%	60%	140%
% Humidité	3762862		7.9	8.3	5.6	< 0.2	102%	80%	120%	NA			NA		

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentages de différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 220884837

N° DE PROJET: 201-11330-29

À L'ATTENTION DE: Sirine Boussorra

Date du rapport: 25 avr. 2022		MATÉRIAU D	E RÉFÉI	RENCE	BLAN	C FORT	IFIÉ	ÉCH.	FORTII	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lim	ites	% Récup.		nites	% Récup.		nites
			Inf.	Sup.		Inf.	Sup.		Inf.	Sup.

Analyses inorganiques - WSP (Balayage métaux + mercure)

Antimoine 145% 70% 130% 89% 80% 120% 87% 70% 130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR:

N° BON DE TRAVAIL: 220884837 À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT:Infrastructures future mine

FRELEVE PAR.				LIEO DE I RELEVEIVIEIVI.	initastructures ruture mine
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse des Sols		•			-
Aluminium	2022-04-21	2022-04-22	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Antimoine	2022-04-21	2022-04-21	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Argent	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Arsenic	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Baryum	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Béryllium	2022-04-21	2022-04-21	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Cadmium	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Calcium	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Chrome	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cobalt	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cuivre	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Étain	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Fer	2022-04-21	2022-04-21	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Lithium	2022-04-21	2022-04-21	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Magnésium	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Manganèse	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Mercure	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Molybdène	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Nickel	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Plomb	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Potassium	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sélénium	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sodium	2022-04-21	2022-04-21	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Titane	2022-04-21	2022-04-21	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Vanadium	2022-04-21	2022-04-21	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Zinc	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Analyse organique de trace					
Hydrocarbures pétroliers C10 à C50	2022-04-20	2022-04-20	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2022-04-20	2022-04-20	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2022-04-20	2022-04-20	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE

158 bout Lebourner4 158 bout Lebourner4		6-12 hres	
Application		Date requise:	Bon de commande: No de soumssion:
Sol		Criters à respecter The Man (max lioneible) RDS (max lioneible) REIMR	A B C C D
Sol B Bone ES En de suface Soldin EU Eau parte EF Effluent Pédiment ST Eau pourraine Affluent Date de l'échantillan Affluent Date de l'échantillan Date de l'échantillan F54-22-GF-18 2022-04-12 F55-22-GF-18 2022-04-12 F55-22-GF-14 2022-04-12 F55-22-GF-16 2022-04-13 F51-22-GF-18 2022-04-13 F51-22-GF-18 2022-04-13 F51-22-GF-18 2022-04-13 F51-22-GF-18 2022-04-13 F51-22-GF-18 2022-04-13 F51-22-GF-18 2022-04-13 F52-22-GF-18 2022-04-13 F52-22-GF-18 2022-04-13 F52-22-GF-18 2022-04-13 F52-22-GF-18 2022-04-13 F52-22-GF-18 2022-04-13 F52-22-GF-18 2022-04-13		V	and a state of the
Solidar ED Bourse ES Detu de surface Sediment EU Eau souterraire AF Affuent Bannelland E manuffrantion E manuffrantion FB4-22-CF-18 2022-04-12 FB3-22-CF-2A 2022-04-12 FB3-22-CF-1A 2022-04-12 FB3-22-CF-1B 2022-04-12 FB3-22-CF-1B 2022-04-12 FB3-22-CF-1B 2022-04-13 FB1-22-CF-2B 2022-04-13 FB1-22-CF-2B 2022-04-13 FB1-22-CF-3B 2022-04-13 FB2-22-CF-1A 2022-04-13 FB1-22-CF-3B 2022-04-13 FB2-22-CF-1A 2022-04-13		i, Mg, Ti, V e	
Sediment ST Eau souteraire Affinent Equ possible Identification de richamition Date de 12.02.04.12 F54-22-0F-18 2022-04.12 F53-22-0F-28 2022-04.12 F53-22-0F-1A 2022-04.12 F53-22-0F-1A 2022-04.12 F51-22-0F-1A 2022-04.12 F51-22-0F-1B 2022-04.13 F51-22-0F-1B 2022-04.13 F51-22-0F-3B 2022-04.13 F51-22-0F-3B 2022-04.13 F52-20-F-1A 2022-04.13 F51-22-0F-3B 2022-04.13 F52-20-F-1A 2022-04.13 F51-22-0F-3B 2022-04.13 F52-20-F-1A 2022-04.13 F52-20-F-1A 2022-04.13 F52-20-F-1A 2022-04.13 F52-20-F-1A 2022-04.13 F52-20-F-1A 2022-04.13		9' 20' 1 3' K' F!	
F84-22-CF-16 Rentification de Pichamition E94-22-CF-16 E94-22-CF-16 E94-22-CF-17 E94-23-CF-17 E94		8p' 48	
F64-22-CF-18 Reliablement F54-22-CF-28 2022-04-12 F53-22-CF-2A 2022-04-12 F53-22-CF-1A 2022-04-12 F53-22-CF-1A 2022-04-12 F51-22-CF-1A 2022-04-12 F51-22-CF-1A 2022-04-13 F51-22-CF-1A 2022-04-13 F51-22-CF-3A 2022-04-13 F51-22-CF-3A 2022-04-13 F52-22-CF-1A 2022-04-13 F52-22-CF-1A 2022-04-13 F52-22-CF-1A 2022-04-13 F52-22-CF-1A 2022-04-13 F52-22-CF-1A 2022-04-13	Mombes do	cu, Pb,	
F64-22-CF-28 2022-O4-12 F65-22-CF-14 F65-22-CF-14 2022-O4-12 F65-22-CF-14 F65-22-CF-14 F65-22-CF-14 F65-22-CF-14 F65-22-CF-14 F65-22-CF-24 F65-22-C	8	'IN'	
F93-22-CF-28 2022-04-12 F53-22-CF-1A 2022-04-12 F53-22-CF-1A 2022-04-12 F53-22-CF-1A 2022-04-12 F51-22-CF-1A 2022-04-13 F51-22-CF-2A 2022-04-13 F51-22-CF-3A 2022-04-13 F51-22-CF-3A 2022-04-13 F51-22-CF-3B 2022-04-13 F51-22-CF-3B 2022-04-13 F51-22-CF-3B 2022-04-13 F52-22-CF-1A 2022-04-13 F52-22-CF-1A 2022-04-13 F52-22-CF-1A 2022-04-13 F52-22-CF-2A 2022-04-13	1		
F53-22-CF-2A F53-22-CF-1A F53-22-CF-1A F53-22-CF-1A F51-22-CF-1A F51-22-CF-1B F51-22-CF-2B F51-22-CF-3A F51-22-CF-3A F51-22-CF-3A F51-22-CF-3A F51-22-CF-1A F51-22-CF-1A F51-22-CF-1A F51-22-CF-3B F51-22-CF-3B F52-22-CF-1A F52-22-CF-1A F52-22-CF-1A F52-22-CF-2A Z022-04-13 F52-22-CF-2A	2 2	×	
F53-22-CF-14 2022-04-12 F53-22-CF-18 F53-22-CF-18 2022-04-12 F53-22-CF-18 2022-04-12 F53-22-CF-18 F51-22-CF-24 2022-04-13 F51-22-CF-28 2022-04-13 F51-22-CF-38 2022-04-13 F51-22-CF-18 F51-22-CF-18 F51-22-CF-18 F51-22-CF-18 F52-22-CF-18 F52-22-CF-18 F52-22-CF-18 F52-22-CF-18 F52-22-CF-18 F52-22-CF-24 2022-04-13 F52-22-			
F55-22-CF-18 F51-22-CF-14 F51-22-CF-24 F51-22-CF-24 F51-22-CF-24 F51-22-CF-34 F51-22-CF-34 F51-22-CF-34 F52-22-CF-18 F52-22-CF-18 F52-22-CF-18 F52-22-CF-24 F52-22-CF-24 F52-22-CF-24 F52-22-CF-24 F52-22-CF-24 F52-22-CF-24	2 0	×	
F51-22-CF-1A F51-22-CF-1B F51-22-CF-2B F51-22-CF-3B F51-22-CF-3A F51-22-CF-3A F51-22-CF-3A F51-22-CF-3A F51-22-CF-1A F52-22-CF-1A F52-22-CF-1B F52-22-CF-1B F52-22-CF-1B F52-22-CF-2A Z022-04-13 F52-22-CF-2A Z022-04-13	1		
F51-22-CF-18 F51-22-CF-3A F51-22-CF-3A F51-22-CF-3A F51-22-CF-3A F51-22-CF-3A F52-22-CF-1A F52-22-CF-1A F52-22-CF-1A F52-22-CF-2A F52-22-CF-2A F52-22-CF-2A	-		
F61-22-CF-2A F51-22-CF-2B F51-22-CF-3B F51-22-CF-3B F52-22-CF-1A F52-22-CF-1A F52-22-CF-1A F52-22-CF-1A F52-22-CF-1A F52-22-CF-2A Z022-04-13 F52-22-CF-2A	-		
F51-22-CF-28 F51-22-CF-18 F52-22-CF-19 F52-22-CF-18 F52-22-CF-18 F52-22-CF-2A Z022-04-13 Z022-04-13 Z022-04-13	7 0	×	
F51-22-CF3A 2022-04-13 F51-22-CF-14 F52-22-CF-18 F52-22-CF-2A 2022-04-13 F52-22-CF-2A 2022-04-13	-		
F51-22-CF-1A 2022-04-13 F52-22-CF-1A 2022-04-13 F52-22-CF-2A 2022-04-13 Z022-04-13	+	×	
F52-22-CF-1A 2022-04-13 F52-22-CF-2A 2022-04-13	1		
F52-22-CF-2A 2022-04-13	7 0		
F62-22-CF-2A, 2022-04-13	-	1	
At the season		×	
17 18 19 20			
18 20 20			
.20			
07			
21			
22			
52			
Echantillons rentils par. Mytiam Roy	Followithern record		

NOM DU CLIENT: WSP CANADA INC.

1135 BOULEVARD LEBOURGNEUF

QUEBEC, QC G2K 0M5

(418) 623-7066

À L'ATTENTION DE: Sirine Boussorra

N° DE PROJET: 201-11330-29 N° BON DE TRAVAIL: 220884840

ANALYSE DES SOLS VÉRIFIÉ PAR: Hasti Kamalimoghadam, Chimiste, AGAT Montréal ORGANIQUE DE TRACE VÉRIFIÉ PAR: EmmanuelBrousseau, Chimiste, AGAT Québec

DATE DU RAPPORT: 25 avr. 2022

NOMBRE DE PAGES: 9 VERSION*: 1

Pour tout complément d'information concernant cette analyse, veuillez contacter votre chargé(e) de projet client au (418) 266-5511.

Avia de non responsabilité:	

*Notes

- L'ensemble des travaux réalisés dans le présent document ont été effectués en utilisant des protocoles normalisés reconnus, ainsi que des pratiques et des méthodes généralement acceptées. En vue d'améliorer la performance, les méthodes analytiques d'AGAT pourraient comprendre des modifications issues des méthodes de référence spécifiées.
- Tous les échantillons seront éliminés trente (30) jours après réception au laboratoire à moins qu'une Entente d'entreposage à long terme ne soit signée et retournée. Certaines analyses spécialisées peuvent être exemptées. Veuillez communiquer avec votre chargé de projets à la clientèle pour plus d'informations.
- La responsabilité d'AGAT en ce qui concerne tout retard, exécution ou non-exécution de ces services s'applique uniquement envers le client et ne s'étend à aucune autre tierce partie. À moins qu'il n'en soit par ailleurs convenu expressément par écrit, la responsabilité d'AGAT se limite au coût réel de l'analyse ou des analyses spécifiques incluses dans les services.
- Sauf accord écrit préalable d'AGAT Laboratoires, ce certificat ne doit être reproduit que dans sa totalité.
- Les résultats d'analyse communiqués ci-joint ne concernent que les échantillons reçus par le laboratoire.
- L'application des lignes directrices est fournie « en l'état » sans garantie de quelque nature que ce soit, ni expresse ni tacite, y compris, mais sans s'y limiter, les garanties de qualité marchande, d'aptitude à un usage particulier ou de non-contrefaçon. AGAT n'assume aucune responsabilité à l'égard de toute erreur ou omission dans les directives que contient ce document.
- Toutes les informations rapportables sont disponibles sur demande auprès d'AGAT Laboratoires, conformément aux normes ISO/IEC 17025:2017, DR-12-PALA et/ou NELAP.

AGAT Laboratoires (V1) Page 1 de 9

N° BON DE TRAVAIL: 220884840 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: Jonathan Mole À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT:Infrastructure future mine Windfall

Analyses inorganiques -	 WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-04-14 DATE DU RAPPORT: 2022-04-25

				IDENTIFIC	CATION DE L'ÉC	CHANTILLON:	F-63-22-CF-4A	
						MATRICE:	Sol	
				D	ATE D'ÉCHAN	ΓILLONNAGE:	2022-04-12	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3769084	
Aluminium	mg/kg					30	3750	
Antimoine	mg/kg	-	-	-		20	<20	
Argent	mg/kg	2	20	40	200	0.5	<0.5	
Arsenic	mg/kg	6	30	50	250	1	<1	
Baryum	mg/kg	340	500	2000	10000	20	24[<a]< td=""><td></td></a]<>	
Béryllium	mg/kg					1	<1	
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	
Calcium	mg/kg					100	3480	
Chrome	mg/kg	100	250	800	4000	2	15[<a]< td=""><td></td></a]<>	
Cobalt	mg/kg	25	50	300	1500	2	3[<a]< td=""><td></td></a]<>	
Cuivre	mg/kg	50	100	500	2500	1	8[<a]< td=""><td></td></a]<>	
Étain	mg/kg	5	50	300	1500	5	<5	
Fer	mg/kg					500	5260	
Lithium	mg/kg	-	-	-	-	20	<20	
Magnésium	mg/kg					100	3120	
Manganèse	mg/kg	1000	1000	2200	11000	10	78[<a]< td=""><td></td></a]<>	
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	
Molybdène	mg/kg	2	10	40	200	1	<1	
Nickel	mg/kg	50	100	500	2500	2	9[<a]< td=""><td></td></a]<>	
Plomb	mg/kg	50	500	1000	5000	5	<5	
Potassium	mg/kg					100	464	
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	
Sodium	mg/kg					100	141	
Titane	mg/kg					1	526	
Vanadium	mg/kg					15	<15	
Zinc	mg/kg	140	500	1500	7500	5	17[<a]< td=""><td></td></a]<>	

Certifié par:

N° BON DE TRAVAIL: 220884840

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT:Infrastructure future mine Windfall

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-04-14 DATE DU RAPPORT: 2022-04-25

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

NOM DU CLIENT: WSP CANADA INC.

PRÉLEVÉ PAR: Jonathan Mole

3769084 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

CHIMIST & Host Karnalimophadam 2017-056 CHIEC LNOLL.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 220884840

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC.

PRÉLEVÉ PAR: Jonathan Mole

À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT:Infrastructure future mine Windfall

	,	
DATE DE RÉCEPTION: 2022-04-14		DATE DU RAPPORT: 2022-04-25
	IDENTIFICATION DE L'ÉCHANTILLON: F-63-22-CF-4A	
	MATRICE: Sol	

Hydrocarbures pétroliers C10-C50 (Sol)

						MATRICE:	Sol
				0	ATE D'ÉCHAN	TILLONNAGE:	2022-04-12
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3769084
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100
% Humidité	%					0.2	14.8
Étalon de recouvrement	Unités			Limites			
Rec. Nonane	%			60-140			139

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3769084 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Emmanuel Browsen

Certifié par:

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Jonathan Mole N° BON DE TRAVAIL: 220884840 À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT:Infrastructure future mine

FRELEVE PAR.JUIIatiiaii	IVIOIE							ILU L	JL FINI		ILINI.I	ııııası	iuctuie	idiuie	, ,,,,,,,
				Analy	/se d	es So	ols								
Date du rapport: 2022-04-25				DUPLICAT	A	MATÉ	RIAU DE R	ÉFÉREN	NCE	BLAN	C FORT	IFIÉ	ÉCH.	FORTIF	FIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.	Lin	nites	% Récup.	Lin	nites
TANAMETICE	201	IN COII.	Dup #1	Dup #2	70 d ccart	méthode	70 Recup.	Inf.	Sup.	, 70 Recup.	Inf.	Sup.	, 70 Recup.	Inf.	Sup.
Analyses inorganiques - WSF	P (Balayage mé	taux + me	ercure)					•	•		•	•		•	
Aluminium	3768155		4220	4160	1.5	< 30	78%	70%	130%	92%	80%	120%	102%	70%	130%
Antimoine	3768155		<20	<20	NA	< 20	144%	70%	130%	90%	80%	120%	89%	70%	130%
Argent	3768155		<0.5	<0.5	NA	< 0.5	107%	70%	130%	96%	80%	120%	93%	70%	130%
Arsenic	3768155		6	6	5.2	< 1	98%	70%	130%	89%	80%	120%	88%	70%	130%
Baryum	3768155		28	31	NA	< 20	101%	70%	130%	91%	80%	120%	92%	70%	130%
Béryllium	3768155		<1	<1	NA	< 1	87%	70%	130%	87%	80%	120%	86%	70%	130%
Cadmium	3768155		<0.5	<0.5	NA	< 0.5	103%	70%	130%	96%	80%	120%	94%	70%	130%
Calcium	3768155		887	912	2.8	< 100	95%	70%	130%	91%	80%	120%	92%	70%	130%
Chrome	3768155		10	11	4.5	< 2	106%	70%	130%	93%	80%	120%	90%	70%	130%
Cobalt	3768155		4	4	NA	< 2	108%	70%	130%	92%	80%	120%	91%	70%	130%
Cuivre	3768155		6	7	2.6	< 1	108%	70%	130%	95%	80%	120%	93%	70%	130%
Étain	3768155		<5	<5	NA	< 5	103%	70%	130%	94%	80%	120%	93%	70%	130%
Fer	3768155		12000	12500	4.5	< 500	106%	70%	130%	96%	80%	120%	NA	70%	130%
Lithium	3768155		<20	<20	NA	< 20	90%	70%	130%	86%	80%	120%	83%	70%	130%
Magnésium	3768155		3090	2930	5.3	< 100	108%	70%	130%	100%	80%	120%	92%	70%	130%
Manganèse	3768155		253	275	8.3	< 10	97%	70%	130%	97%	80%	120%	99%	70%	130%
Mercure	3768155		<0.2	<0.2	NA	< 0.2	91%	70%	130%	94%	80%	120%	85%	70%	130%
Molybdène	3768155		<1	<1	NA	< 1	108%	70%	130%	96%	80%	120%	93%	70%	130%
Nickel	3768155		18	18	1.4	< 2	104%	70%	130%	93%	80%	120%	92%	70%	130%
Plomb	3768155		<5	<5	NA	< 5	102%	70%	130%	95%	80%	120%	92%	70%	130%
Potassium	3768155		318	323	NA	< 100	97%	70%	130%	98%	80%	120%	97%	70%	130%
Sélénium	3768155		<0.5	<0.5	NA	< 0.5	97%	70%	130%	91%	80%	120%	91%	70%	130%
Sodium	3768155		<100	<100	NA	< 100	91%	70%	130%	99%	80%	120%	96%	70%	130%
Titane	3768155		184	227	21.1	< 1	122%	70%	130%	93%	80%	120%	NA	70%	130%
Vanadium	3768155		<15	<15	NA	< 15	100%	70%	130%	94%	80%	120%	93%	70%	130%
Zinc	3768155		22	23	NA	< 5	102%	70%	130%	94%	80%	120%	91%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Certifié par:

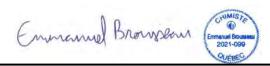
La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR: Jonathan Mole N° BON DE TRAVAIL: 220884840 À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT:Infrastructure future mine


		P	analy	se oi	rgani	que d	de tra	ace							
Date du rapport: 2022-04-25				DUPLICATA	A	MATÉ	RIAU DE RI	ÉFÉREN	ICE	BLANG	FORTI	IFIÉ	ÉCH.	FORTIF	ΞIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lim	nites	% Récup.		nites	% Récup.	Lim	nites
			.,			méthode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.
Hydrocarbures pétroliers C10-C50	0 (SoI)														
Hydrocarbures pétroliers C10 à C50	3767020		<100	<100	NA	< 100	115%	60%	140%	95%	60%	140%	102%	60%	140%
Rec. Nonane	3767020		125	133	6.2	116	131%	60%	140%	96%	60%	140%	115%	60%	140%
% Humidité	3769084 3	3769084	14.8	15.3	3.6	< 0.2	97%	80%	120%	NA			NA		

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 220884840

N° DE PROJET: 201-11330-29

À L'ATTENTION DE: Sirine Boussorra

Date du rapport: 25 avr. 2022		MATÉRIAU D	E RÉFÉI	RENCE	BLAN	C FORT	IFIÉ	ÉCH.	FORTII	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lim	ites	% Récup.		nites	% Récup.		nites
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.		Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.

Analyses inorganiques - WSP (Balayage métaux + mercure)

Antimoine 144% 70% 130% 90% 80% 120% 89% 70% 130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Jonathan Mole N° BON DE TRAVAIL: 220884840 À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT:Infrastructure future mine

FRELEVE PAR.JUIIallialliviole		1			innastructure ruture mine
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse des Sols	•	•	•	•	
Aluminium	2022-04-22	2022-04-22	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Antimoine	2022-04-21	2022-04-21	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Argent	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Arsenic	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Baryum	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Béryllium	2022-04-21	2022-04-21	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Cadmium	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Calcium	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Chrome	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cobalt	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cuivre	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Étain	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Fer	2022-04-21	2022-04-21	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Lithium	2022-04-21	2022-04-21	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Magnésium	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Manganèse	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Mercure	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Molybdène	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Nickel	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Plomb	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Potassium	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sélénium	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sodium	2022-04-21	2022-04-21	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Titane	2022-04-21	2022-04-21	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Vanadium	2022-04-21	2022-04-21	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Zinc	2022-04-21	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Analyse organique de trace					
Hydrocarbures pétroliers C10 à C50	2022-04-21	2022-04-21	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2022-04-21	2022-04-21	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2022-04-21	2022-04-21	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE

7		ă	AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	ss: 350 rue Franquet Quebec City, Quebec (anquet Queb	ec City, Quel	ec Canada,	31P 4P3					
WSP Canada inc. 1135, boul Lebourgneuf Quebec (Quebec) G2K 0MS Telephone, 418-623-7066	A5 Télécopieur 418-523-2434	Délai d'analyse requis (7 § 5 jours i 72 hres	LL	48 hres 24 hres		6-12 hres Date requise:					LL	Bon de commande: No de soumission:	ää
Numëro du projet Bon de commande; Lieu de prélèvement	201-11330-29 infrastructures mane Windfall	Windfall				Criteres à respecter [7] RMD (r RDS (n	specter RMD (mat lixiviable) RDS (mat lixiviable) REIMR	riable)			Eau oo	A F B Eau consommation	U
Prélevé par. Chargé de projet. Coumel:	Jonathan Mole Steve St-Cyr steve st cyr@wsp.com / skine boussorra@wsp.com	ine boussorra@wsp.com					0-050					ran lesnibence	
Matrice: S Sol St Solide SE Sedment FP Fau notable	B Boue EU Eau usée ST Eau souterraine	ES Eau de surface EF Effluent AF Affluent				(Al, Ag, As, Ba, Ba, Ge, Ce, Hg, K, Li, Mg, Mn, Ge, Sn, Ti, V et Zn)	rbures pétroliers C1						
	Identification de l'échantillon	Date do	Date de prélèvement	Matrice	Nombre	étaux r, Cu, l b, Sb,	ydrocs	d٧					
1 F63-22-CF-1	1	20	2022-04-12	v.	-	bl C W	н	тн	-	1		1	
2 F63-22-CF-2B	28	20	2022-04-12	S	-		İ		1	1		1	
	3B	20	2022-04-12	o	-				F	-			
4 F63-22-CF-4A	44	20	2022-04-12	ω	-	×	×						
6 F64-22-CF-1R	¥ @	50	2022-04-13	S	-								
1	2	202	2022-04-13	n u		×	×	×					1
8 F64-22-CF-3		20.	2022-04-13	0 00	-		1			1			1
9 F64-22-CF-4	4	200	2022-04-13	S	-					-			
	SO.	20.	2022-04-13	S	-								l
	113	20.	2022-04-13	S	1	×	×	×				-	
	113	20.	2022-04-13	S	-								-
	113	20:	2022-04-13	S	-							-	
	113	20.	2022-04-13	S	-								
	113	20.	2022-04-13	S	1								
16 DUP06220413	113	20:	2022-04-13	S	1								
17													
18													
13													
20													
22							1					-	
23										1			
24								1	1	1			
25							Ì	1		-			
26							İ				I	-	
27													I
28								Ħ					
30													
31									-	1		1	
32							Ī						
Échantillons remis par:	Jonathan Mole			Échantillons recus par	s recus par:							-	

NOM DU CLIENT: WSP CANADA INC.

1135 BOULEVARD LEBOURGNEUF

QUEBEC, QC G2K 0M5

(418) 623-7066

À L'ATTENTION DE: Sirine Boussorra

N° DE PROJET: 201-11330-29

N° BON DE TRAVAIL: 220885239

ANALYSE DES SOLS VÉRIFIÉ PAR: Hasti Kamalimoghadam, Chimiste, AGAT Montréal ORGANIQUE DE TRACE VÉRIFIÉ PAR: EmmanuelBrousseau, Chimiste, AGAT Québec

DATE DU RAPPORT: 27 avr. 2022

NOMBRE DE PAGES: 9 VERSION*: 1

Pour tout complément d'information concernant cette analyse, veuillez contacter votre chargé(e) de projet client au (418) 266-5511.

Asia da una caracterista de		

Avis de non-responsabilité:

*Notes

- L'ensemble des travaux réalisés dans le présent document ont été effectués en utilisant des protocoles normalisés reconnus, ainsi que des pratiques et des méthodes généralement acceptées. En vue d'améliorer la performance, les méthodes analytiques d'AGAT pourraient comprendre des modifications issues des méthodes de référence spécifiées.
- Tous les échantillons seront éliminés trente (30) jours après réception au laboratoire à moins qu'une Entente d'entreposage à long terme ne soit signée et retournée. Certaines analyses spécialisées peuvent être exemptées. Veuillez communiquer avec votre chargé de projets à la clientèle pour plus d'informations.
- La responsabilité d'AGAT en ce qui concerne tout retard, exécution ou non-exécution de ces services s'applique uniquement envers le client et ne s'étend à aucune autre tierce partie. À moins qu'il n'en soit par ailleurs convenu expressément par écrit, la responsabilité d'AGAT se limite au coût réel de l'analyse ou des analyses spécifiques incluses dans les services.
- Sauf accord écrit préalable d'AGAT Laboratoires, ce certificat ne doit être reproduit que dans sa totalité.
- Les résultats d'analyse communiqués ci-joint ne concernent que les échantillons reçus par le laboratoire.
- L'application des lignes directrices est fournie « en l'état » sans garantie de quelque nature que ce soit, ni expresse ni tacite, y compris, mais sans s'y limiter, les garanties de qualité marchande, d'aptitude à un usage particulier ou de non-contrefaçon. AGAT n'assume aucune responsabilité à l'égard de toute erreur ou omission dans les directives que contient ce document.
- Toutes les informations rapportables sont disponibles sur demande auprès d'AGAT Laboratoires, conformément aux normes ISO/IEC 17025:2017, DR-12-PALA et/ou NELAP.

AGAT Laboratoires (V1) Page 1 de 9

N° BON DE TRAVAIL: 220885239 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:MYRIAM ROY À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT: INFRASTRICTURES FUTURE MINE

Analyses inorganiques - WSP (Balayage métau	x + mercure)
---	--------------

DATE DE RÉCEPTION: 2022-0)4-15								DATE DU RAPPORT: 2022-04-27
				IDENTIF	CATION DE L'É	CHANTILLON:	F50-22-CF-2	DUP-F50-22	
						MATRICE:	Sol	Sol	
				I	DATE D'ÉCHAN ⁻	ΓILLONNAGE:	2022-04-14	2022-04-14	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3771744	3771745	
Aluminium	mg/kg					30	5970	5130	
Antimoine	mg/kg	-	-	-		20	<20	<20	
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	
Arsenic	mg/kg	6	30	50	250	1	<1	<1	
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	
Béryllium	mg/kg					1	<1	<1	
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	
Calcium	mg/kg					100	1840	1680	
Chrome	mg/kg	100	250	800	4000	2	14[<a]< td=""><td>14[<a]< td=""><td></td></a]<></td></a]<>	14[<a]< td=""><td></td></a]<>	
Cobalt	mg/kg	25	50	300	1500	2	4[<a]< td=""><td>4[<a]< td=""><td></td></a]<></td></a]<>	4[<a]< td=""><td></td></a]<>	
Cuivre	mg/kg	50	100	500	2500	1	8[<a]< td=""><td>7[<a]< td=""><td></td></a]<></td></a]<>	7[<a]< td=""><td></td></a]<>	
Étain	mg/kg	5	50	300	1500	5	<5	<5	
Fer	mg/kg					500	7690	7370	
Lithium	mg/kg	-	-	-	-	20	<20	<20	
Magnésium	mg/kg					100	2610	2670	
Manganèse	mg/kg	1000	1000	2200	11000	10	111[<a]< td=""><td>107[<a]< td=""><td></td></a]<></td></a]<>	107[<a]< td=""><td></td></a]<>	
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	
Molybdène	mg/kg	2	10	40	200	1	<1	<1	
Nickel	mg/kg	50	100	500	2500	2	10[<a]< td=""><td>10[<a]< td=""><td></td></a]<></td></a]<>	10[<a]< td=""><td></td></a]<>	
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	
Potassium	mg/kg					100	176	173	
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	
Sodium	mg/kg					100	<100	<100	
Titane	mg/kg					1	629	540	
Vanadium	mg/kg					15	<15	<15	
Zinc	mg/kg	140	500	1500	7500	5	18[<a]< td=""><td>18[<a]< td=""><td></td></a]<></td></a]<>	18[<a]< td=""><td></td></a]<>	

Certifié par:

NOM DU CLIENT: WSP CANADA INC.

PRÉLEVÉ PAR: MYRIAM ROY

Certificat d'analyse

N° BON DE TRAVAIL: 220885239

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT: INFRASTRICTURES FUTURE MINE

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-04-15 DATE DU RAPPORT: 2022-04-27

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se réfèrer directement à la norme applicable pour l'interprétation réglementaire.

3771744-3771745 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 220885239 N° DE PROJET: 201-11330-29

Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

350, rue Franquet

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: MYRIAM ROY

À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT: INFRASTRICTURES FUTURE MINE

			Hyd	rocarbur	es pétrolie	rs C10-C50) (Sol)			
DATE DE RÉCEPTION: 2022-04-	15								DATE DU RAPPORT: 2022-04-27	
				IDENTIF	ICATION DE L'É	CHANTILLON:	F50-22-CF-2	DUP-F50-22		
MATRICE: Sol Sol										
					DATE D'ÉCHAN	ITILLONNAGE:	2022-04-14	2022-04-14		
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3771744	3771745		
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100		
% Humidité	%					0.2	17.0	14.0		
Étalon de recouvrement	Unités			Limites						
Rec. Nonane	%			60-140			89	94		

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3771744-3771745 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR: MYRIAM ROY N° BON DE TRAVAIL: 220885239 À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT: INFRASTRICTURES

				Analy	/se d	es So	ols								
Date du rapport: 2022-04-27				DUPLICAT			RIAU DE RI	ÉFÉREN	NCE	BLANG	C FORT	IFIÉ	ÉCH.	FORTI	ΞΙÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.	Lin	nites	% Récup.	Lin	nites
1700 WETTE			Sup ".	2492	70 4 554.1	méthode	70110004	Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.
Analyses inorganiques - WS	P (Balayage mé	taux + me	ercure)												
Aluminium	3770773		4760	4800	0.8	< 30	73%	70%	130%	95%	80%	120%	97%	70%	130%
Antimoine	3770773		<20	<20	NA	< 20	148%	70%	130%	88%	80%	120%	83%	70%	130%
Argent	3770773		0.9	1.0	NA	< 0.5	109%	70%	130%	95%	80%	120%	89%	70%	130%
Arsenic	3770773		6	6	13.9	< 1	97%	70%	130%	89%	80%	120%	84%	70%	130%
Baryum	3770773		73	74	NA	< 20	104%	70%	130%	92%	80%	120%	85%	70%	130%
Béryllium	3770773		<1	<1	NA	< 1	98%	70%	130%	98%	80%	120%	95%	70%	130%
Cadmium	3770773		3.2	4.7	37.7	< 0.5	101%	70%	130%	94%	80%	120%	89%	70%	130%
Calcium	3770773		19200	17700	8.1	< 100	104%	70%	130%	92%	80%	120%	NA	70%	130%
Chrome	3770773		14	15	9.4	< 2	104%	70%	130%	93%	80%	120%	92%	70%	130%
Cobalt	3770773		13	14	7.0	< 2	109%	70%	130%	94%	80%	120%	87%	70%	130%
Cuivre	3770773		497	462	7.2	< 1	103%	70%	130%	93%	80%	120%	NA	70%	130%
Étain	3770773		<5	<5	NA	< 5	104%	70%	130%	93%	80%	120%	88%	70%	130%
Fer	3770773		18000	18200	1.5	< 500	105%	70%	130%	96%	80%	120%	NA	70%	130%
Lithium	3770773		<20	<20	NA	< 20	109%	70%	130%	102%	80%	120%	97%	70%	130%
Magnésium	3770773		2890	3170	9.4	< 100	105%	70%	130%	97%	80%	120%	95%	70%	130%
Manganèse	3770773		233	233	0.1	< 10	94%	70%	130%	97%	80%	120%	91%	70%	130%
Mercure	3770773		<0.2	< 0.2	NA	< 0.2	94%	70%	130%	103%	80%	120%	123%	70%	130%
Molybdène	3770773		1	2	NA	< 1	111%	70%	130%	97%	80%	120%	90%	70%	130%
Nickel	3770773		256	297	14.7	< 2	101%	70%	130%	90%	80%	120%	NA	70%	130%
Plomb	3770773		56	65	15.6	< 5	107%	70%	130%	96%	80%	120%	95%	70%	130%
Potassium	3770773		740	762	2.9	< 100	101%	70%	130%	98%	80%	120%	91%	70%	130%
Sélénium	3770773		0.5	0.6	NA	< 0.5	94%	70%	130%	89%	80%	120%	87%	70%	130%
Sodium	3770773		<100	101	NA	< 100	96%	70%	130%	95%	80%	120%	88%	70%	130%
Titane	3770773		340	320	5.8	< 1	126%	70%	130%	94%	80%	120%	NA	70%	130%
Vanadium	3770773		18	20	NA	< 15	100%	70%	130%	95%	80%	120%	86%	70%	130%
Zinc	3770773		1040	1210	15.1	6	103%	70%	130%	95%	80%	120%	NA	70%	130%

Commentaires: L'analyse de l'échantillon a été effectuée en duplicata, l'échantillon est hétérogène en Cd.

Le résultat du blanc de méthode en Zn n'a pas été soustrait aux échantillons.

Le pourcentage de récupération du MRC concernant le Sb est conforme à l'écart du certificat du matériau de référence du fournisseur.

L'analyse de l'échantillon a été effectuée à plusieurs reprises pour le Cd, l'échantillon est hétérogène.NA : Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

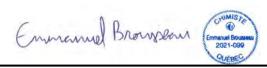
Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR: MYRIAM ROY

N° BON DE TRAVAIL: 220885239 À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT: INFRASTRICTURES


	-						_						•		
		P	naly	se o	rgani	que	de tra	асе							
Date du rapport: 2022-04-27				DUPLICAT	A	MATÉ	RIAU DE R	ÉFÉREN	ICE	BLAN	C FORT	IFIÉ	ÉCH.	FORTIF	ΞIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.		nites	% Récup.		nites
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	méthode	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.
Hydrocarbures pétroliers C10-C	50 (SoI)														
Hydrocarbures pétroliers C10 à C50	3775987		584	500	15.5	< 100	112%	60%	140%	100%	60%	140%	85%	60%	140%
Rec. Nonane	3775987		98	100	2.0	118	122%	60%	140%	99%	60%	140%	102%	60%	140%
% Humidité	3771048		35.0	34.7	1.1	< 0.2	102%	80%	120%	NA			NA		

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentages de différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 220885239

N° DE PROJET: 201-11330-29

À L'ATTENTION DE: Sirine Boussorra

Date du rapport: 27 avr. 2022		MATÉRIAU D	E RÉFÉI	RENCE	BLAN	C FORT	IFIÉ	ÉCH.	FORTII	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lim	ites	% Récup.		nites	% Récup.		nites
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.		Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.

Analyses inorganiques - WSP (Balayage métaux + mercure)

Antimoine 148% 70% 130% 88% 80% 120% 83% 70% 130%

Commentaires: L'analyse de l'échantillon a été effectuée en duplicata, l'échantillon est hétérogène en Cd.

Le résultat du blanc de méthode en Zn n'a pas été soustrait aux échantillons.

Le pourcentage de récupération du MRC concernant le Sb est conforme à l'écart du certificat du matériau de référence du fournisseur.

L'analyse de l'échantillon a été effectuée à plusieurs reprises pour le Cd, l'échantillon est hétérogène.NA : Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR: MYRIAM ROY

N° BON DE TRAVAIL: 220885239 À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT: INFRASTRICTURES

			1		
PARAMÈTRE	PRÉPARÉ L	E ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse des Sols		,		,	
Aluminium	2022-04-25	2022-04-25	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Antimoine	2022-04-25	2022-04-25	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Argent	2022-04-25	2022-04-25	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Arsenic	2022-04-25	2022-04-25	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Baryum	2022-04-25	2022-04-25	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Béryllium	2022-04-25	2022-04-25	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Cadmium	2022-04-25	2022-04-25	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Calcium	2022-04-25	2022-04-25	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Chrome	2022-04-25	2022-04-25	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cobalt	2022-04-25	2022-04-25	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cuivre	2022-04-25	2022-04-25	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Étain	2022-04-25	2022-04-25	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Fer	2022-04-25	2022-04-25	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Lithium	2022-04-25	2022-04-25	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Magnésium	2022-04-25	2022-04-25	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Manganèse	2022-04-25	2022-04-25	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Mercure	2022-04-25	2022-04-25	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Molybdène	2022-04-25	2022-04-25	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Nickel	2022-04-25	2022-04-25	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Plomb	2022-04-25	2022-04-25	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Potassium	2022-04-25	2022-04-25	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sélénium	2022-04-25	2022-04-25	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sodium	2022-04-25	2022-04-25	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Titane	2022-04-25	2022-04-25	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Vanadium	2022-04-25	2022-04-25	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Zinc	2022-04-25	2022-04-25	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Analyse organique de trace					
Hydrocarbures pétroliers C10 à C50	2022-04-25	2022-04-25	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2022-04-25	2022-04-25	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2022-04-22	2022-04-22	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE

220 885 239

WSP Canada inc. 1135, boul Lebourgneuf Guitber (Quichee) GZK 0M5				AGAT	ooratoires: 350 rue	Franquet Quebec	AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	G1P 4P3							
Telephone 418-823-ruco	Di Télécopieun 418-823-2454	Delai d'analyse requis	5 jours 72 hres	48 hres 24 hres		6-12 hres Date requise:					Bon de commande: No de soumission:	iande: ssion:			
Numéro du projet: Bon de commande:	201-11330-29		200			Critères à respecter RME) (mat. liciviable)			∢	ω		u		
	infrestructures future mine Windfall		= (RDS	RDS (mat lixiviable) REIMR			Eauc	Eau consommation		,	0	
ojet	Shave St-Cyr. steve St-Cyr. steve St-Cyr.	mag wap dom				Cd, Co,	09:					-			
						a, Be, Ca, ' Mg, Mn, Mo t Zn)	O-013 stel								
Matrice: S Sol	900	FS Faude surface	2			As, B; ۲, Li, ۱ ۱۱, ۷ eا	loīlēd								
SI Solide SE Sédiment EP Eau ptrable	EU Eau usée ST Eau souterraine	EF Effluent AF Affluent	ł			(ΑΙ, Αg, 1 Fe, Hg, Ι 1 Se, Sn, 1	seindie:		- III.						
	Identification de l'échantillon		Date de	Matrice	Nombre de	usta , Gu , Sb									
1 F50-22-CF-1C	3F-1C		2022-04-14	0	stock	CI W	γH								
2 F50-22-CF-2	XF2		2022-04-14	0		×	>	1							
3 DUP-F50-22	722		2022-04-14	Ø	-	×	×								
w														-	
8															
7 0												1		1	
σ															
10															
11															
2 2															
2 4															
15															
16														l	
17										l					
0 0															
20															
21								1							
22															
23									1					1	
24															
Date: 2022-04-14	Mytam Roy 4-14			Echantillons reçus par:	us par:						r			1	1

NOM DU CLIENT: WSP CANADA INC.

1135 BOULEVARD LEBOURGNEUF

QUEBEC, QC G2K 0M5

(418) 623-7066

À L'ATTENTION DE: Sirine Boussorra

N° DE PROJET: 201-11330-29

ANALYSE DES SOLS VÉRIFIÉ PAR: Hasti Kamalimoghadam, Chimiste, AGAT Montréal ORGANIQUE DE TRACE VÉRIFIÉ PAR: EmmanuelBrousseau, Chimiste, AGAT Québec

DATE DU RAPPORT: 04 mai 2022

N° BON DE TRAVAIL: 220887706

NOMBRE DE PAGES: 28 VERSION*: 1

Pour tout complément d'information concernant cette analyse, veuillez contacter votre chargé(e) de projet client au (418) 266-5511.

Avis de non-responsabilité:	

*Notes

- L'ensemble des travaux réalisés dans le présent document ont été effectués en utilisant des protocoles normalisés reconnus, ainsi que des pratiques et des méthodes généralement acceptées. En vue d'améliorer la performance, les méthodes analytiques d'AGAT pourraient comprendre des modifications issues des méthodes de référence spécifiées.
- Tous les échantillons seront éliminés trente (30) jours après réception au laboratoire à moins qu'une Entente d'entreposage à long terme ne soit signée et retournée. Certaines analyses spécialisées peuvent être exemptées. Veuillez communiquer avec votre chargé de projets à la clientèle pour plus d'informations.
- La responsabilité d'AGAT en ce qui concerne tout retard, exécution ou non-exécution de ces services s'applique uniquement envers le client et ne s'étend à aucune autre tierce partie. À moins qu'il n'en soit par ailleurs convenu expressément par écrit, la responsabilité d'AGAT se limite au coût réel de l'analyse ou des analyses spécifiques incluses dans les services.
- Sauf accord écrit préalable d'AGAT Laboratoires, ce certificat ne doit être reproduit que dans sa totalité.
- Les résultats d'analyse communiqués ci-joint ne concernent que les échantillons reçus par le laboratoire.
- L'application des lignes directrices est fournie « en l'état » sans garantie de quelque nature que ce soit, ni expresse ni tacite, y compris, mais sans s'y limiter, les garanties de qualité marchande, d'aptitude à un usage particulier ou de non-contrefaçon. AGAT n'assume aucune responsabilité à l'égard de toute erreur ou omission dans les directives que contient ce document.
- Toutes les informations rapportables sont disponibles sur demande auprès d'AGAT Laboratoires, conformément aux normes ISO/IEC 17025:2017, DR-12-PALA et/ou NELAP.

AGAT Laboratoires (V1) Page 1 de 28

N° BON DE TRAVAIL: 22O887706 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-04-27 DATE DU RAPPORT: 2022-05-04											
				IDENTII	FICATION DE L'ÉC	CHANTILLON:	F44-22-CF-1A	F44-22-CF-3	F30-22-CF-1	F20-22-CF-2	F23-22-CF-1A
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHANT	TLLONNAGE:	2022-04-23	2022-04-23	2022-04-23	2022-04-22	2022-04-21
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3798004	3798007	3798049	3798052	3798053
Aluminium	mg/kg					30	4240	3960	5790	6180	7570
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	<1	<1	2[<a]< td=""><td><1</td></a]<>	<1
Baryum	mg/kg	340	500	2000	10000	20	<20	24[<a]< td=""><td>22[<a]< td=""><td><20</td><td><20</td></a]<></td></a]<>	22[<a]< td=""><td><20</td><td><20</td></a]<>	<20	<20
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	2380	2620	5670	1380	761
Chrome	mg/kg	100	250	800	4000	2	11[<a]< td=""><td>12[<a]< td=""><td>17[<a]< td=""><td>18[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>17[<a]< td=""><td>18[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	17[<a]< td=""><td>18[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<>	18[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<>	10[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	2[<a]< td=""><td>3[<a]< td=""><td>4[<a]< td=""><td>6[<a]< td=""><td><2</td></a]<></td></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>4[<a]< td=""><td>6[<a]< td=""><td><2</td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>6[<a]< td=""><td><2</td></a]<></td></a]<>	6[<a]< td=""><td><2</td></a]<>	<2
Cuivre	mg/kg	50	100	500	2500	1	2[<a]< td=""><td>8[<a]< td=""><td>16[<a]< td=""><td>42[<a]< td=""><td>2[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>16[<a]< td=""><td>42[<a]< td=""><td>2[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	16[<a]< td=""><td>42[<a]< td=""><td>2[<a]< td=""></a]<></td></a]<></td></a]<>	42[<a]< td=""><td>2[<a]< td=""></a]<></td></a]<>	2[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	5480	6530	10100	13400	5900
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	<20
Magnésium	mg/kg					100	1900	2480	3620	2300	876
Manganèse	mg/kg	1000	1000	2200	11000	10	81[<a]< td=""><td>87[<a]< td=""><td>148[<a]< td=""><td>186[<a]< td=""><td>35[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	87[<a]< td=""><td>148[<a]< td=""><td>186[<a]< td=""><td>35[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	148[<a]< td=""><td>186[<a]< td=""><td>35[<a]< td=""></a]<></td></a]<></td></a]<>	186[<a]< td=""><td>35[<a]< td=""></a]<></td></a]<>	35[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	6[<a]< td=""><td>8[<a]< td=""><td>11[<a]< td=""><td>15[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>11[<a]< td=""><td>15[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>15[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<>	15[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<>	4[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	16[<a]< td=""><td><5</td><td><5</td></a]<>	<5	<5
Potassium	mg/kg					100	137	312	485	115	106
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	<100	137	<100	<100
Vanadium	mg/kg					15	<15	<15	19	17	<15
Zinc	mg/kg	140	500	1500	7500	5	14[<a]< td=""><td>20[<a]< td=""><td>26[<a]< td=""><td>23[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	20[<a]< td=""><td>26[<a]< td=""><td>23[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	26[<a]< td=""><td>23[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<>	23[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<>	12[<a]< td=""></a]<>

Certifié par:

140

mg/kg

500

1500

Certificat d'analyse

N° BON DE TRAVAIL: 22O887706 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: Mohamed Dioumessy

Zinc

À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-04-27 DATE DU RAPPORT: 2022-05-04 F29-22-IDENTIFICATION DE L'ÉCHANTILLON: F23-22-CF-2 F24-22-CF-1A F24-22-CF-4 F29-22-CF-1 DUP01220422 MATRICE: Sol Sol Sol Sol Sol DATE D'ÉCHANTILLONNAGE: 2022-04-21 2022-04-21 2022-04-21 2022-04-22 2022-04-22 3798058 3798100 Paramètre Unités C / N: A C / N: B C / N: C C / N: D LDR 3798057 3798098 3798099 Aluminium 3080 1870 4880 4890 5300 mg/kg 20 <20 <20 <20 <20 Antimoine mg/kg <20 2 20 40 200 0.5 < 0.5 < 0.5 < 0.5 < 0.5 Argent mg/kg < 0.5 Arsenic mg/kg 6 30 50 250 1 <1 <1 <1 <1 <1 Baryum 340 500 2000 10000 20 <20 28[<A] <20 mg/kg <20 <20 Béryllium mg/kg 1 <1 <1 <1 <1 <1 5 20 0.5 < 0.5 <0.5 <0.5 <0.5 Cadmium mg/kg 1.5 100 < 0.5 Calcium mg/kg 100 1410 408 1940 1840 2030 100 250 800 4000 2 Chrome mg/kg 9[<A] 2[<A] 13[<A] 15[<A] 17[<A] 25 50 1500 2 Cobalt mg/kg 300 <2 <2 4[<A]5[<A] 5[<A] Cuivre 50 100 500 2500 3[<A] 2[<A] 19[<A] 17[<A] 17[<A] mg/kg Étain 5 50 300 1500 5 <5 <5 <5 <5 <5 mg/kg Fer mg/kg 500 4600 879 8460 9640 11000 Lithium mg/kg 20 <20 <20 <20 <20 <20 Magnésium mg/kg 100 1500 <100 2250 3680 3670 1000 1000 2200 11000 10 60[<A] <10 126[<A] 134[<A] 139[<A] Manganèse mg/kg Mercure mg/kg 0.2 2 10 50 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 2 10 40 200 Molybdène mg/kg 1 <1 <1 <1 <1 <1 50 100 500 2500 2 <2 Nickel mg/kg 5[<A] 9[<A] 11[<A] 12[<A] Plomb 50 500 5000 5 <5 mg/kg 1000 <5 <5 <5 <5 Potassium 100 124 <100 268 345 377 mg/kg Sélénium mg/kg 1 3 10 50 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 Sodium mg/kg 100 <100 <100 130 <100 <100 Vanadium mg/kg 15 <15 <15 <15 18 19

Certifié par:

5

11[<A]

12[<A]

26[<A]

24[<A]

20[<A]

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures et les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signatures rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

7500

N° BON DE TRAVAIL: 22O887706 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 202	2-04-27							Г	ATE DU RAPP	ORT: 2022-05-	04
				IDENTIFI	CATION DE L'É	CHANTILLON: MATRICE:	F22-22-CF-1C Sol	F22-22-CF-2 Sol	F64-22-CF-2 Sol	F64-22-CF-4 Sol	F64-22- DUP03220413 Sol
				1	DATE D'ÉCHAN	TILLONNAGE:	2022-04-21	2022-04-21	2022-04-13	2022-04-13	2022-04-13
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3798105	3798106	3798146	3798188	3798207
Aluminium	mg/kg					30	6830	8550	3910	4240	3540
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	<1	<1	<1	<1
Baryum	mg/kg	340	500	2000	10000	20	<20	21[<a]< td=""><td><20</td><td><20</td><td><20</td></a]<>	<20	<20	<20
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	930	1780	2240	1700	1620
Chrome	mg/kg	100	250	800	4000	2	16[<a]< td=""><td>19[<a]< td=""><td>13[<a]< td=""><td>13[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	19[<a]< td=""><td>13[<a]< td=""><td>13[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>13[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<>	11[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	3[<a]< td=""><td>3[<a]< td=""><td><2</td><td>3[<a]< td=""><td><2</td></a]<></td></a]<></td></a]<>	3[<a]< td=""><td><2</td><td>3[<a]< td=""><td><2</td></a]<></td></a]<>	<2	3[<a]< td=""><td><2</td></a]<>	<2
Cuivre	mg/kg	50	100	500	2500	1	2[<a]< td=""><td>8[<a]< td=""><td>5[<a]< td=""><td>7[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>5[<a]< td=""><td>7[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	5[<a]< td=""><td>7[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<>	4[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	7360	10400	4380	5920	4070
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	<20
Magnésium	mg/kg					100	1530	2250	1740	2040	1780
Manganèse	mg/kg	1000	1000	2200	11000	10	69[<a]< td=""><td>105[<a]< td=""><td>61[<a]< td=""><td>71[<a]< td=""><td>58[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	105[<a]< td=""><td>61[<a]< td=""><td>71[<a]< td=""><td>58[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	61[<a]< td=""><td>71[<a]< td=""><td>58[<a]< td=""></a]<></td></a]<></td></a]<>	71[<a]< td=""><td>58[<a]< td=""></a]<></td></a]<>	58[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	7[<a]< td=""><td>11[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""><td>6[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""><td>6[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>8[<a]< td=""><td>6[<a]< td=""></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>6[<a]< td=""></a]<></td></a]<>	6[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	105	393	146	154	134
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	159	<100	<100	<100
Vanadium	mg/kg					15	<15	17	<15	<15	<15
Zinc	mg/kg	140	500	1500	7500	5	15[<a]< td=""><td>19[<a]< td=""><td>13[<a]< td=""><td>18[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	19[<a]< td=""><td>13[<a]< td=""><td>18[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>18[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<></td></a]<>	18[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<>	13[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 22O887706 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-04-27 DATE DU RAPPORT: 2022-05-04												
								F42-22-			F55-22-	
				IDENTIFI	CATION DE L'É	CHANTILLON:	F42-22-CF-1B	DUP07220424	F42-22-CF-4	F55-22-CF-2A	DUP03220424	
						MATRICE:	Sol	Sol	Sol	Sol	Sol	
					DATE D'ÉCHAN ⁻	TILLONNAGE:	2022-04-24	2022-04-24	2022-04-24	2022-04-24	2022-04-24	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3798215	3798216	3798218	3798229	3798279	
Aluminium	mg/kg					30	4710	3570	3930	6150	6500	
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20	
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Arsenic	mg/kg	6	30	50	250	1	<1	<1	24[A-B]	<1	<1	
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	<20	<20	
Béryllium	mg/kg					1	<1	<1	<1	<1	<1	
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Calcium	mg/kg					100	2350	2090	2400	1680	1280	
Chrome	mg/kg	100	250	800	4000	2	14[<a]< td=""><td>11[<a]< td=""><td>9[<a]< td=""><td>16[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>9[<a]< td=""><td>16[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	9[<a]< td=""><td>16[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<></td></a]<>	16[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<>	13[<a]< td=""></a]<>	
Cobalt	mg/kg	25	50	300	1500	2	2[<a]< td=""><td><2</td><td>9[<a]< td=""><td>3[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	<2	9[<a]< td=""><td>3[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<>	3[<a]< td=""></a]<>	
Cuivre	mg/kg	50	100	500	2500	1	3[<a]< td=""><td>2[<a]< td=""><td>33[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	2[<a]< td=""><td>33[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	33[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<>	4[<a]< td=""></a]<>	
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5	
Fer	mg/kg					500	7750	4620	18500	9680	8620	
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	<20	
Magnésium	mg/kg					100	2090	1480	2030	2350	2140	
Manganèse	mg/kg	1000	1000	2200	11000	10	76[<a]< td=""><td>51[<a]< td=""><td>201[<a]< td=""><td>109[<a]< td=""><td>109[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	51[<a]< td=""><td>201[<a]< td=""><td>109[<a]< td=""><td>109[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	201[<a]< td=""><td>109[<a]< td=""><td>109[<a]< td=""></a]<></td></a]<></td></a]<>	109[<a]< td=""><td>109[<a]< td=""></a]<></td></a]<>	109[<a]< td=""></a]<>	
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1	
Nickel	mg/kg	50	100	500	2500	2	7[<a]< td=""><td>5[<a]< td=""><td>16[<a]< td=""><td>8[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	5[<a]< td=""><td>16[<a]< td=""><td>8[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	16[<a]< td=""><td>8[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<>	7[<a]< td=""></a]<>	
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5	
Potassium	mg/kg					100	111	<100	293	167	198	
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Sodium	mg/kg					100	<100	<100	132	<100	<100	
Vanadium	mg/kg					15	21	<15	<15	18	<15	
Zinc	mg/kg	140	500	1500	7500	5	15[<a]< td=""><td>12[<a]< td=""><td>44[<a]< td=""><td>16[<a]< td=""><td>17[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>44[<a]< td=""><td>16[<a]< td=""><td>17[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	44[<a]< td=""><td>16[<a]< td=""><td>17[<a]< td=""></a]<></td></a]<></td></a]<>	16[<a]< td=""><td>17[<a]< td=""></a]<></td></a]<>	17[<a]< td=""></a]<>	

Certifié par:

N° BON DE TRAVAIL: 22O887706 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022	2-04-27							DATE DU RAPPORT: 2022-05-04
				IDENTIFIC	CATION DE L'ÉC	CHANTILLON:	F56-22-CF-3	
						MATRICE:	Sol	
				D	ATE D'ÉCHAN	ILLONNAGE:	2022-04-24	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3798294	
Aluminium	mg/kg					30	4590	
Antimoine	mg/kg	-	-	-		20	<20	
Argent	mg/kg	2	20	40	200	0.5	<0.5	
Arsenic	mg/kg	6	30	50	250	1	<1	
Baryum	mg/kg	340	500	2000	10000	20	<20	
Béryllium	mg/kg					1	<1	
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	
Calcium	mg/kg					100	2070	
Chrome	mg/kg	100	250	800	4000	2	14[<a]< td=""><td></td></a]<>	
Cobalt	mg/kg	25	50	300	1500	2	4[<a]< td=""><td></td></a]<>	
Cuivre	mg/kg	50	100	500	2500	1	6[<a]< td=""><td></td></a]<>	
Étain	mg/kg	5	50	300	1500	5	<5	
er	mg/kg					500	7590	
Lithium	mg/kg	-	-	-	-	20	<20	
Magnésium	mg/kg					100	2300	
Manganèse	mg/kg	1000	1000	2200	11000	10	118[<a]< td=""><td></td></a]<>	
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	
Molybdène	mg/kg	2	10	40	200	1	<1	
Nickel	mg/kg	50	100	500	2500	2	9[<a]< td=""><td></td></a]<>	
Plomb	mg/kg	50	500	1000	5000	5	<5	
Potassium	mg/kg					100	234	
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	
Sodium	mg/kg					100	<100	
/anadium	mg/kg					15	<15	
Zinc	mg/kg	140	500	1500	7500	5	17[<a]< td=""><td></td></a]<>	

Certifié par:

N° BON DE TRAVAIL: 220887706

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-04-27 DATE DU RAPPORT: 2022-05-04

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3798004-3798294 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 220887706 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Hydrocarbures aromatiques polycycliques (HAP) (Sol)

DATE DE RÉCEPTION: 2022-04-27 DATE DU RAPPOR											4
				IDENTIFI	CATION DE L'É	CHANTILLON:	F44-22-CF-3	F30-22-CF-1	F20-22-CF-2	F22-22-CF-1C	F64-22-CF-4
						MATRICE:	Sol	Sol	Sol	Sol	Sol
				[DATE D'ÉCHAN	TILLONNAGE:	2022-04-23	2022-04-23	2022-04-22	2022-04-21	2022-04-13
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3798007	3798049	3798052	3798105	3798188
Acénaphtène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acénaphtylène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (a) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (b) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (j) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (k) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (b+j+k) fluoranthène	mg/kg	-	-	-	136	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (c) phénanthrène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (g,h,i) pérylène	mg/kg	0.1	1	10	18	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo (a,h) anthracène	mg/kg	0.1	1	10	82	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo (a,i) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo (a,h) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo (a,l) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Diméthyl-7,12 benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indéno (1,2,3-cd) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Méthyl-3 cholanthrène	mg/kg	0.1	1	10	150	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Naphtalène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phénanthrène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Méthyl-1 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Méthyl-2 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Diméthyl-1,3 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Triméthyl-2,3,5 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Certifié par:

N° BON DE TRAVAIL: 22O887706 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

		H	ydrocarbu	ıres aror	natiques po	lycyclique	es (HAP) (S	ol)			
DATE DE RÉCEPTION: 2022-0	4-27							[DATE DU RAPF	PORT: 2022-05-0)4
				IDENTI	FICATION DE L'É	CHANTILLON:	F44-22-CF-3	F30-22-CF-1	F20-22-CF-2	F22-22-CF-1C	F64-22-CF-4
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2022-04-23	2022-04-23	2022-04-22	2022-04-21	2022-04-13
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3798007	3798049	3798052	3798105	3798188
% Humidité	%					0.2	18.8	9.2	10.9	17.3	16.8
Étalon de recouvrement	Unités			Limites							
Rec. Naphtalène-d8	%			50-140			112	105	100	75	102
Rec. Pyrène-d10	%			50-140			103	95	87	74	82
Rec. p-Terphényl-d14	%			50-140			98	117	101	84	102

Certifié par:

N° BON DE TRAVAIL: 22O887706 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Hydrocarbures aromatiques polycycliques (HAP) (Sol)

			<u>′ </u>			<u> </u>		,	
DATE DE RÉCEPTION: 2022-04-2	27								DATE DU RAPPORT: 2022-05-04
								F42-22-	
				IDENTIFIC	CATION DE L'É			DUP07220424	
						MATRICE:	Sol	Sol	
					DATE D'ÉCHAN		2022-04-24	2022-04-24	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3798215	3798216	
Acénaphtène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Acénaphtylène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Anthracène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Benzo (a) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Benzo (b) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	
Benzo (j) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	
Benzo (k) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	
Benzo (b+j+k) fluoranthène	mg/kg	-	-	-	136	0.1	<0.1	<0.1	
Benzo (c) phénanthrène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Benzo (g,h,i) pérylène	mg/kg	0.1	1	10	18	0.1	<0.1	<0.1	
Chrysène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Dibenzo (a,h) anthracène	mg/kg	0.1	1	10	82	0.1	<0.1	<0.1	
Dibenzo (a,i) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Dibenzo (a,h) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Dibenzo (a,l) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Diméthyl-7,12 benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Fluoranthène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Fluorène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Indéno (1,2,3-cd) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Méthyl-3 cholanthrène	mg/kg	0.1	1	10	150	0.1	<0.1	<0.1	
Naphtalène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	
Phénanthrène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	
Pyrène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Méthyl-1 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Méthyl-2 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Diméthyl-1,3 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	

Certifié par:

manual Browslow (Emmanuel Bousses)

N° BON DE TRAVAIL: 22O887706 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

	· ·	
TE DE RÉCEPTION: 2022-04-27		DATE DU RAPPORT: 2022-05-04

DATE DE RECEPTION: 2022-0	4-27								DATE DU RAPPORT: 2022-05-04
								F42-22-	
				IDENTIF	ICATION DE L'ÉG	CHANTILLON:	F42-22-CF-1B	DUP07220424	
						MATRICE:	Sol	Sol	
					DATE D'ÉCHANT	TILLONNAGE:	2022-04-24	2022-04-24	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3798215	3798216	
Triméthyl-2,3,5 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
% Humidité	%					0.2	19.3	19.6	
Étalon de recouvrement	Unités			Limites					
Rec. Naphtalène-d8	%			50-140			86	93	
Rec. Pyrène-d10	%			50-140			87	77	
Rec. p-Terphényl-d14	%			50-140			101	104	

Hydrocarbures aromatiques polycycliques (HAP) (Sol)

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable pour l'interprétation réglementaire.

3798007-3798216 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice. Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 22O887706 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

PRELEVE PAR. Wionamed Dio	umessy						LIEU DE	PKELEVEIVIEI	vi.vvindiali La	ike	
			Hyd	Irocarbu	res pétrolie	rs C10-C50	O (Sol)				
DATE DE RÉCEPTION: 2022-04-2	27							[DATE DU RAPP	ORT: 2022-05-0	04
				IDENTI	IFICATION DE L'É	CHANTILLON:	F44-22-CF-1A	F44-22-CF-3	F30-22-CF-1	F20-22-CF-2	F24-22-CF-4
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	ITILLONNAGE:	2022-04-23	2022-04-23	2022-04-23	2022-04-22	2022-04-21
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3798004	3798007	3798049	3798052	3798098
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100
% Humidité	%					0.2	16.0	18.8	9.2	10.9	10.5
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			85	90	77	76	62
								F29-22-			
				IDENTI	IFICATION DE L'É	CHANTII I ON:	F29-22-CF-1	DUP01220422	F22-22-CF-1C	F22-22-CF-2	F64-22-CF-4
				IDLINII	II IOATION DE E E	MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	_	2022-04-22	2022-04-22	2022-04-21	2022-04-21	2022-04-13
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C/N: D	LDR	3798099	3798100	3798105	3798106	3798188
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100
% Humidité	//////////////////////////////////////	100	700	0000	10000	0.2	5.1	5.0	17.3	12.6	16.8
Étalon de recouvrement	Unités			Limites		0.2	0.1	0.0	11.0	12.0	10.0
Rec. Nonane	%			60-140			81	85	63	94	73
								F42-22-			F55-22-
				IDENTI	IFICATION DE L'É	CHANTILLON:	F42-22-CF-1B	DUP07220424	F42-22-CF-4	F55-22-CF-2A	DUP03220424
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	ITILLONNAGE:	2022-04-24	2022-04-24	2022-04-24	2022-04-24	2022-04-24
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3798215	3798216	3798218	3798229	3798279
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100
% Humidité	%					0.2	19.3	19.6	11.0	14.2	14.6
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			87	89	91	91	106

Certifié par:

N° BON DE TRAVAIL: 220887706

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra
LIEU DE PRÉLÈVEMENT: Windfall Lake

	Hydrocarbures pétroliers C10-C50 (Sol)													
DATE DE RÉCEPTION: 2022-04-2	27							DATE DU RAPPORT: 2022-05-04						
				IDENTIFI	CATION DE L'É	CHANTILLON:	F56-22-CF-3							
						MATRICE:	Sol							
				[DATE D'ÉCHAN	TILLONNAGE:	2022-04-24							
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3798294							
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100							
% Humidité	%					0.2	16.0							
Étalon de recouvrement	Unités			Limites										
Rec. Nonane	%			60-140			91							

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3798004-3798294 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Emmanuel Browseau

Certifié par:

N° BON DE TRAVAIL: 22O887706 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

		Нус	Irocarbure	es pétrolie	ers C10-C5	60 (SoI) - A	vec purifica	tion			
DATE DE RÉCEPTION: 2022-04-2	27								DATE DU RAPPO	RT: 2022-05	5-04
				IDENTIFI	CATION DE L'É	CHANTILLON:	F23-22-CF-1A		F24-22-CF-1A		F64-22-CF-2
						MATRICE:	Sol		Sol		Sol
				[DATE D'ÉCHAN	TILLONNAGE:	2022-04-21		2022-04-21		2022-04-13
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3798053	LDR	3798058	LDR	3798146
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	250	<250	100	<100
% Humidité	%					0.2	15.2	0.2	79.2	0.2	16.5
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			118	1	97	1	116
							F64-22-				
				IDENTIFI	CATION DE L'É	CHANTILLON:					
						MATRICE:	Sol				
				Г	DATE D'ÉCHAN	_	2022-04-13				
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3798207				
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100				
% Humidité	%					0.2	17.6				
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			127				

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

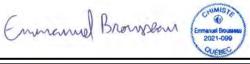
pour l'interprétation réglementaire.

3798053 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Méthode d'analyse effectuée avec traitements supplémentaires pour éliminer la présence de matières organiques.

3798058 La LDR a été ajustée en raison de la faible matière sèche de l'échantillon.

Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.


Méthode d'analyse effectuée avec traitements supplémentaires pour éliminer la présence de matières organiques.

3798146-3798207 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Méthode d'analyse effectuée avec traitements supplémentaires pour éliminer la présence de matières organiques.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Mohamed Dioumessy N° BON DE TRAVAIL: 220887706 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Date du rapport: 2022-05-04			,	Analy	/se d	es So	ols								
Date du rapport: 2022-05-04			1												
				DUPLICATA	A	MATÉ	RIAU DE R	ÉFÉREN	ICE	BLANG	FORT	IFIÉ	ÉCH.	FORTI	FIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.	Lim	nites	% Récup.	Lin	mites
TANAMETIC	201	IN COII.	Dup #1	Dup #2	70 d coart	méthode	70 Nocup.	Inf.	Sup.	70 Necup.	Inf.	Sup.	, 70 Recup.	Inf.	Sup.
Analyses inorganiques - WSF	P (Balayage mé	taux + me	ercure)												
Aluminium	3802062		7110	7530	5.7	< 30	76%	70%	130%	95%	80%	120%	NA	70%	130%
Antimoine	3802062		<20	<20	NA	< 20	130%	70%	130%	88%	80%	120%	83%	70%	130%
Argent	3802062		<0.5	<0.5	NA	< 0.5	95%	70%	130%	96%	80%	120%	88%	70%	130%
Arsenic	3802062		2	3	NA	< 1	89%	70%	130%	91%	80%	120%	87%	70%	130%
Baryum	3802062		146	152	4.2	< 20	85%	70%	130%	94%	80%	120%	NA	70%	130%
Béryllium	3802062		<1	<1	NA	< 1	81%	70%	130%	90%	80%	120%	93%	70%	130%
Cadmium	3802062		<0.5	<0.5	NA	< 0.5	91%	70%	130%	94%	80%	120%	89%	70%	130%
Calcium	3802062		21300	18900	11.8	< 100	88%	70%	130%	95%	80%	120%	NA	70%	130%
Chrome	3802062		14	12	18.4	< 2	96%	70%	130%	92%	80%	120%	87%	70%	130%
Cobalt	3802062		7	7	NA	< 2	97%	70%	130%	92%	80%	120%	88%	70%	130%
Cuivre	3802062		17	21	19.7	< 1	97%	70%	130%	97%	80%	120%	92%	70%	130%
Étain	3802062		<5	<5	NA	< 5	91%	70%	130%	94%	80%	120%	87%	70%	130%
Fer	3802062		17400	18800	7.5	< 500	93%	70%	130%	96%	80%	120%	NA	70%	130%
Lithium	3802062		<20	<20	NA	< 20	82%	70%	130%	87%	80%	120%	88%	70%	130%
Magnésium	3802062		4630	4360	6.1	< 100	95%	70%	130%	100%	80%	120%	90%	70%	130%
Manganèse	3802062		203	229	11.9	< 10	96%	70%	130%	96%	80%	120%	90%	70%	130%
Mercure	3802062		<0.2	< 0.2	NA	< 0.2	81%	70%	130%	92%	80%	120%	70%	70%	130%
Molybdène	3802062		2	<1	NA	< 1	97%	70%	130%	96%	80%	120%	89%	70%	130%
Nickel	3802062		12	11	2.5	< 2	92%	70%	130%	91%	80%	120%	87%	70%	130%
Plomb	3802062		40	52	25,0%	< 5	92%	70%	130%	96%	80%	120%	78%	70%	130%
Potassium	3802062		2790	3060	9.2	< 100	91%	70%	130%	100%	80%	120%	95%	70%	130%
Sélénium	3802062		<0.5	< 0.5	NA	< 0.5	89%	70%	130%	92%	80%	120%	90%	70%	130%
Sodium	3802062		8050	7550	6.5	< 100	88%	70%	130%	98%	80%	120%	NA	70%	130%
Vanadium	3802062		23	23	NA	< 15	92%	70%	130%	93%	80%	120%	88%	70%	130%
Zinc	3802062		66	74	11.4	< 5	92%	70%	130%	95%	80%	120%	89%	70%	130%

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Analyses inorganiques - W	/SP (Balayage métaux	+ mercure)										
Aluminium	3800481	7770	7280	6.6	< 30	64%	70% 1309	% 93%	80% 1	20% N	IA 70%	130%
Antimoine	3800481	<20	<20	NA	< 20	141%	70% 1309	% 90%	80% 1	20% 86	5% 70%	130%
Argent	3800481	<0.5	<0.5	NA	< 0.5	99%	70% 1309	% 96%	80% 1	20% 9	% 70%	130%
Arsenic	3800481	3	2	NA	< 1	91%	70% 1309	% 91%	80% 1	20% 87	7 % 7 0%	130%
Baryum	3800481	95	81	NA	< 20	90%	70% 1309	% 94%	80% 1	20% 7	5% 70%	130%
Béryllium	3800481	<1	<1	NA	< 1	81%	70% 1309	% 88%	80% 1	20% 82	2% 70%	130%
Cadmium	3800481	<0.5	<0.5	NA	< 0.5	95%	70% 1309	% 96%	80% 1	20% 93	3% 70%	130%
Calcium	3800481	24000	17800	29.7	< 100	95%	70% 1309	% 92%	80% 1	20% N	IA 70%	130%
Chrome	3800481	19	18	3.8	< 2	98%	70% 1309	% 93%	80% 1	20% 90	0% 70%	130%
Cobalt	3800481	6	6	NA	< 2	98%	70% 130	% 93%	80% 1	20% 89	9% 70%	130%
Cuivre	3800481	16	14	16.8	< 1	97%	70% 1309	% 96%	80% 1	20% 9 ⁻	% 70%	130%

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR: Mohamed Dioumessy

N° BON DE TRAVAIL: 220887706 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

TREEE VET / TREMONIA INCOME	LEVE 17th Monamod Diodinessy											77111416	an Eano		
			Ana	lyse	des S	Sols (Suite	∋)							
Date du rapport: 2022-05-04				DUPLICATA	A	MATÉ	RIAU DE RI	ÉFÉREN	ICE	BLANG	C FORT	IFIÉ	ÉCH.	FORTI	FIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.		nites	% Récup.	Lin	nites	% Récup.	Lin	nites
			,	·		méthode	·	Inf.	Sup.		Inf.	Sup.		Inf.	Sup.
Étain	3800481		<5	<5	NA	< 5	96%	70%	130%	95%	80%	120%	91%	70%	130%
Fer	3800481		15500	14400	7.3	< 500	98%	70%	130%	100%	80%	120%	NA	70%	130%
Lithium	3800481		<20	<20	NA	< 20	114%	70%	130%	120%	80%	120%	108%	70%	130%
Magnésium	3800481		4200	3990	5.0	< 100	91%	70%	130%	99%	80%	120%	91%	70%	130%
Manganèse	3800481		237	204	14.8	< 10	112%	70%	130%	97%	80%	120%	88%	70%	130%
Mercure	3800481		<0.2	<0.2	NA	< 0.2	87%	70%	130%	91%	80%	120%	106%	70%	130%
Molybdène	3800481		<1	<1	NA	< 1	100%	70%	130%	97%	80%	120%	90%	70%	130%
Nickel	3800481		14	14	5.1	< 2	94%	70%	130%	91%	80%	120%	89%	70%	130%
Plomb	3800481		46	37	23.8	< 5	100%	70%	130%	99%	80%	120%	82%	70%	130%
Potassium	3800481		1290	1270	1.7	< 100	94%	70%	130%	98%	80%	120%	91%	70%	130%
Sélénium	3800481		<0.5	<0.5	NA	< 0.5	94%	70%	130%	97%	80%	120%	90%	70%	130%
Sodium	3800481		746	681	9.2	< 100	87%	70%	130%	97%	80%	120%	96%	70%	130%
Vanadium	3800481		26	24	NA	< 15	93%	70%	130%	96%	80%	120%	87%	70%	130%
Zinc	3800481		58	54	6.6	6	94%	70%	130%	96%	80%	120%	89%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb et Al est conforme à l'écart du certificat du matériau de référence du fournisseur. Le résultat du blanc de méthode en Zn n'a pas été soustrait aux échantillons.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR: Mohamed Dioumessy

N° BON DE TRAVAIL: 220887706 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

		P	naly	se o	rgani	que	de tra	ace							
Date du rapport: 2022-05-04 DUPLICATA MATÉRIAU DE RÉFÉRENCE BLANC FORTIFIÉ ÉCH. FORTIFIÉ															
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lim	nites	% Récup.		nites	% Récup.		nites
PARAMETRE					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	méthode	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.	70.11000	Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.
Hydrocarbures pétroliers C10-C5	0 (SoI)														
Hydrocarbures pétroliers C10 à C50	3798007	3798007	<100	<100	NA	< 100	81%	60%	140%	107%	60%	140%	87%	60%	140%
Rec. Nonane	3798007 (3798007	90	87	3.4	103	86%	60%	140%	111%	60%	140%	92%	60%	140%

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

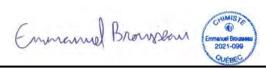
élevée par rapport à l'ajout.														
Hydrocarbures aromatiques po	olycycliques (HAP) ((Sol)												
Acénaphtène	3799902	<0.1	<0.1	NA	< 0.1	104%	50%	140%	108%	50%	140%	121%	50%	140%
Acénaphtylène	3799902	<0.1	<0.1	NA	< 0.1	59%	50%	140%	103%	50%	140%	112%	50%	140%
Anthracène	3799902	<0.1	<0.1	NA	< 0.1	110%	50%	140%	99%	50%	140%	118%	50%	140%
Benzo (a) anthracène	3799902	<0.1	<0.1	NA	< 0.1	117%	50%	140%	100%	50%	140%	125%	50%	140%
Benzo (a) pyrène	3799902	<0.1	<0.1	NA	< 0.1	103%	50%	140%	100%	50%	140%	122%	50%	140%
Benzo (b) fluoranthène	3799902	<0.1	0.1	NA	< 0.1	139%	50%	140%	92%	50%	140%	125%	50%	140%
Benzo (j) fluoranthène	3799902	<0.1	<0.1	NA	< 0.1	137%	50%	140%	105%	50%	140%	123%	50%	140%
Benzo (k) fluoranthène	3799902	<0.1	<0.1	NA	< 0.1	134%	50%	140%	97%	50%	140%	113%	50%	140%
Benzo (c) phénanthrène	3799902	<0.1	<0.1	NA	< 0.1	123%	50%	140%	103%	50%	140%	123%	50%	140%
Benzo (g,h,i) pérylène	3799902	<0.1	<0.1	NA	< 0.1	94%	50%	140%	81%	50%	140%	103%	50%	140%
Chrysène	3799902	<0.1	<0.1	NA	< 0.1	117%	50%	140%	106%	50%	140%	123%	50%	140%
Dibenzo (a,h) anthracène	3799902	<0.1	<0.1	NA	< 0.1	100%	50%	140%	84%	50%	140%	105%	50%	140%
Dibenzo (a,i) pyrène	3799902	<0.1	<0.1	NA	< 0.1	98%	50%	140%	66%	50%	140%	118%	50%	140%
Dibenzo (a,h) pyrène	3799902	<0.1	<0.1	NA	< 0.1	90%	50%	140%	67%	50%	140%	136%	50%	140%
Dibenzo (a,l) pyrène	3799902	<0.1	<0.1	NA	< 0.1	100%	50%	140%	78%	50%	140%	119%	50%	140%
Diméthyl-7,12 benzo (a) anthracène	3799902	<0.1	<0.1	NA	< 0.1	161%	50%	140%	149%	50%	140%	146%	50%	140%
Fluoranthène	3799902	<0.1	0.1	NA	< 0.1	125%	50%	140%	115%	50%	140%	133%	50%	140%
Fluorène	3799902	<0.1	<0.1	NA	< 0.1	119%	50%	140%	96%	50%	140%	115%	50%	140%
Indéno (1,2,3-cd) pyrène	3799902	<0.1	<0.1	NA	< 0.1	109%	50%	140%	80%	50%	140%	109%	50%	140%
Méthyl-3 cholanthrène	3799902	<0.1	<0.1	NA	< 0.1	53%	50%	140%	83%	50%	140%	138%	50%	140%
Naphtalène	3799902	<0.1	<0.1	NA	< 0.1	96%	50%	140%	124%	50%	140%	111%	50%	140%
Phénanthrène	3799902	<0.1	<0.1	NA	< 0.1	109%	50%	140%	97%	50%	140%	111%	50%	140%
Pyrène	3799902	<0.1	<0.1	NA	< 0.1	106%	50%	140%	117%	50%	140%	136%	50%	140%
Méthyl-1 naphtalène	3799902	<0.1	<0.1	NA	< 0.1	95%	50%	140%	113%	50%	140%	112%	50%	140%
Méthyl-2 naphtalène	3799902	<0.1	<0.1	NA	< 0.1	116%	50%	140%	122%	50%	140%	118%	50%	140%
Diméthyl-1,3 naphtalène	3799902	<0.1	<0.1	NA	< 0.1	97%	50%	140%	124%	50%	140%	121%	50%	140%
Triméthyl-2,3,5 naphtalène	3799902	<0.1	<0.1	NA	< 0.1	122%	50%	140%	129%	50%	140%	129%	50%	140%
Rec. Naphtalène-d8	3799902	97	110	12.8	112	89%	50%	140%	110%	50%	140%	101%	50%	140%
Rec. Pyrène-d10	3799902	98	84	16.1	114	95%	50%	140%	104%	50%	140%	118%	50%	140%
Rec. p-Terphényl-d14	3799902	96	94	1.3	111	101%	50%	140%	90%	50%	140%	101%	50%	140%

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Mohamed Dioumessy N° BON DE TRAVAIL: 220887706 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

	Analyse organique de trace (Suite)														
Date du rapport: 2022-05-04 DUPLICATA MATÉRIAU DE RÉFÉRENCE BLANC FORTIFIÉ ÉCH. FORTIFIÉ															
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lim	ites	% Récup.		iites	% Récup.	Lim	nites
			- 1	.,		methode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.

Commentaires: Le pourcentage de récupération est élevé pour Diméthyl-7,12 benzo (a) anthracène. Les résultats peuvent être sur évalués.


NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 220887706

N° DE PROJET: 201-11330-29

À L'ATTENTION DE: Sirine Boussorra

Date du rapport: 04 mai 2022		MATÉRIAU D	E RÉFÉI	RENCE	BLAN	C FORT	IFIÉ	ÉCH.	FORTII	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lim	ites	% Récup.		nites	% Récup.		nites
			Inf.	Sup.		Inf.	Sup.]	Inf.	Sup.

Analyses inorganiques - WSP (Balayage métaux + mercure)

Aluminium 64% 70% 130% 93% 80% 120% NA 70% 130% Antimoine 141% 70% 130% 90% 80% 120% 86% 70% 130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb et Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

Le résultat du blanc de méthode en Zn n'a pas été soustrait aux échantillons.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 220887706

N° DE PROJET: 201-11330-29

À L'ATTENTION DE: Sirine Boussorra

Date du rapport: 04 mai 2022		MATÉRIAU D	E RÉFÉI	RENCE	BLAN	C FORT	TFIÉ	ÉCH.	. FORTI	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lim		% Récup.		nites	% Récup.		nites
		555/	Inf.	Sup.		Inf.	Sup.		Inf.	Sup.

Hydrocarbures aromatiques polycycliques (HAP) (Sol)

Diméthyl-7,12 benzo (a) anthracène

161% 50% 140% 149% 50% 140% 146% 50% 140%

Commentaires: Le pourcentage de récupération est élevé pour Diméthyl-7,12 benzo (a) anthracène. Les résultats peuvent être sur évalués.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Mohamed Dioumessy N° BON DE TRAVAIL: 220887706 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

I NELEVE I AN.INIOITATITEG DIOGIT	loosy		_	ILO DE I NELEVEIVILIVI.	William Lake
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse des Sols		•	•	•	•
Aluminium	2022-05-02	2022-05-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Antimoine	2022-05-02	2022-05-03	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Argent	2022-05-02	2022-05-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Arsenic	2022-05-02	2022-05-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Baryum	2022-05-02	2022-05-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Béryllium	2022-05-02	2022-05-03	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Cadmium	2022-05-02	2022-05-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Calcium	2022-05-02	2022-05-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Chrome	2022-05-02	2022-05-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cobalt	2022-05-02	2022-05-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cuivre	2022-05-02	2022-05-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Étain	2022-05-02	2022-05-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Fer	2022-05-02	2022-05-03	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Lithium	2022-05-02	2022-05-03	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Magnésium	2022-05-02	2022-05-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Manganèse	2022-05-02	2022-05-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Mercure	2022-05-02	2022-05-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Molybdène	2022-05-02	2022-05-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Nickel	2022-05-02	2022-05-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Plomb	2022-05-02	2022-05-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Potassium	2022-05-02	2022-05-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sélénium	2022-05-02	2022-05-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sodium	2022-05-02	2022-05-03	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Vanadium	2022-05-02	2022-05-03	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Zinc	2022-05-02	2022-05-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Mohamed Dioumessy N° BON DE TRAVAIL: 220887706 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Releve i Artimonamed blodinessy			LIEU DE I NELEVEINEIVI. WIII d'AIT L'ARC		
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse organique de trace	<u> </u>	'		'	
Acénaphtène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Acénaphtylène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Anthracène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (a) anthracène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (a) pyrène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (b) fluoranthène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (j) fluoranthène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (k) fluoranthène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (b+j+k) fluoranthène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (c) phénanthrène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (g,h,i) pérylène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Chrysène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,h) anthracène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,i) pyrène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,h) pyrène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,l) pyrène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Diméthyl-7,12 benzo (a) anthracène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Fluoranthène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Fluorène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
ndéno (1,2,3-cd) pyrène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
/léthyl-3 cholanthrène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Naphtalène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Phénanthrène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Pyrène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Méthyl-1 naphtalène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Méthyl-2 naphtalène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Diméthyl-1,3 naphtalène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
riméthyl-2,3,5 naphtalène	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. Naphtalène-d8	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. Pyrène-d10	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. p-Terphényl-d14	2022-05-03	2022-05-03	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
% Humidité	2022-05-02	2022-05-02	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE
lydrocarbures pétroliers C10 à C50	2022-05-02	2022-05-02	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2022-05-02	2022-05-02	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2022-05-02	2022-05-02	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE
Hydrocarbures pétroliers C10 à C50	2022-05-02	2022-05-02	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2022-05-02	2022-05-02	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2022-05-02	2022-05-02	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE

115		и	Bord AGAT Laboratolres : 35	rue Franqu	let Quebec	d'analyses City, Quebec	Canada, G1F	4P3			E E	son de comm	nande:		7
Canada	Inc.		r leuro	hres hres	[] 6-12 Dat	2 hres e requiso:) 	17	10 de soum	lesion:	[1
hen (Qui	ebourgneut 6bec) G2K 0M5 418-623-7066	Telecopleur 418-523-2434	72 11100		Cri	tères à respe	D (Mar lixivi	able)			Eau of	r B onsommation			
mêto du		201-11330-29	·····		ľ	R1	s (mat, lixivi		TT	1 1	Ladie				
de com	mande: lévement:	Windfall Lake mohamed Dioumessy				S in S	1	82	1.1					11	1
levé par	r.		wap.com			S €		365					-		- 1
argé de urriel:	projet.	Steve St-Cyr steve st.cyr@wsp.com / sinne boussorra@				Mg, Mn,	supplémentaire	rollers					11	1	1
						3, As, B	upplén	nes pet		1		1	1 1		
s So	olide	B Boue ES Ear EU Eau usée EF Eff ST Eau souterraine AF Aff	u de eurlace went luent			Mētaux (AJ, Ag, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Sn, V et Zn)	purification s	Hydrocarbures pétroliers C10-C50	НАР						
SE SE	au potoble		Date de prélèvement	Matrice	Nombre de pols		8.	X			++	++	-		
	1de	antification de l'échantillon	2022-04-23	S	1_1_	×				-	++	+			1
1]	F44-22-CF	-1A	2022-04-23	S	1	X		X	X	-	+			-	-
2	F44-22-CF	-1B	2022-04-23	S	1	-			1	-	1				+
3	F44-22-CF	-3	2022-04-23	S	-				- · ·	+-+					+
4	F44-22-CF	-5	2022-04-23	S	1	×		X	X	+-+				1-1-	+
5	F44-22-C	F-7	2022-04-23	S	1 1	-				1-1				1	-
6	F30-22-C		2022-04-23	S	1	+		1	1	+-+	-			1	-
7	F44-22-C		2022-04-22	S		×		X	X	1				1	-
В	F20-22-C		2022-04-22	S	1					+	-			10.0	-
9	F20-22-0				_	-				-	-				
-					-	-				-	-				
-						+				+					
-					_	-				+					-
-	-					-				_	-				
-					_	-					++				-
-					_	-	_			_	++				-
-				1	_					-	+				-
-	-					_				_	++				++
-	+				_	-					++				1
-	+				_			1			++		JI res		1-1
-	-				_						++				1
-	+				_	-	$\neg \vdash$				++		- 1		1
-	-					_				-	++	-1-1			
1	-						-			-	++	-			
-	+-						-				++	-			
1	+-					_	_		1					lago'	1 de
1	-												1	ege:	
	-			É	hantillons	reçus par:									
- 1	Échantillons re	mohamed Dioumessy		In	ato:										

1151)			AGAT Laboratolres : 3	50 rue Fran	quet Quebe	e d'analyse: c City, Quebec	Canada, G	1P 4P3				-		_		\dashv
Canada Inc.		Délaid'analyse r 	ours 4	8 hres 4 hres	Ll 6-	12 hres ale requise:						Bon de	command Boumissid	de: en:		
bec (Québec) G2K 0M5		72	hree 2	4 11100	10		ator	_			_			~ ^	ا ""	
phone: 418-623-7066	Télécopleur. 418-523-2434					ritères à respe	ViD (mal, lixi	viable)			IT A	au consom		C	, ,	
nêro du projet:	201-11330-29				(4)	r RI	DS (mat, lix)	viable)				au résurge				_
de commande:						1	EIMR									
de prélèvement:	Windfall Lake Mohamed Dioumessy					o Z			1.1	1	1 1	1				
levé par:	Steve St-Cyr					P Z	1	250	1 1	1	1 1	1	1		1	
argé de projet:	steve st cyr@wsp.com / sirine.t	boussoma@wsp.c	om			N. N.		10-6	1 1		1 1			1		
uriel.	379 (27) (2.5) (2.5) (3.5) (3.5) (3.5) (3.5) (3.5) (3.5) (3.5) (3.5) (3.5) (3.5) (3.5) (3.5) (3.5) (3.5) (3.5)					, Mn	a is	٥	1 1	Ä	1 1				1 1	
						s, Ba, E Li, Mg et Zn)	іе́тет	étrolie			1 1	4				
strice: S Sol SI Solide SE Sédiment	B Boue EU Eau usée ST Eau souterraine	ES Eau de B EF Effluent AF Affluent	urlace			Métaux (Al, Ag, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Sn, V et Zn)	purification supplémentaire	Hydrocarbures pétroliers C10-C50						ŀ		
EP Eau potable			Date de prélèvement	Matrice	Nombre de pots	Métau Cr, Cr Pb, S			Ā	+	-		1	+	+	
	ntification de l'échantillon		2022-04-21	S	1	X	X	1	++	+					ili	
1 F23-22-CF-	1A		2022-04-21	S	1					-	-					
2 F23-22-CF			2022-04-21	S	1	×			+	-	-					
3 F23-22-CF	-2		2022-04-21	S	1	X	X	1	+++	-	+					
4 F24-22-CF	-1A		2022-04-21	S	1				+-++	-	_					
5 F24-22-CF	-2		2022-04-21	S	1	X		X	+	-						
6 F24-22-CF	4		2022-04-22	S	1	X		X	1-1-1	-						
7 F29-22-CF			2022-04-22	S	1	X		X		-	-					
	JP01220422		2022-04-21	S	1		1			-	_					
9 F22-22-CF			2022-04-21	S	1	X		X	X							
10 F22-22-CF	-1C		2022					-								
							-	+	+							_
							-	+	+							1
							-	+-	_							4
					/		-	-								-
					V.	1	-	-	-						_	-
							-	-	+						1	-
							-	_	+						-	-
						_	4	-							_	-
						_	-	_								-
							-	_						1		-
							-	-				1				
							-	-						1		_
							+-	+	+							_
							+-	-						-		
						_	+	-								_
					ntillons reçu		_							Page:	2	de

				, randant a	uebec City, Q	napac Callan	a, G1P 4P3									
VSP Canada Inc.		Délai d'analyse requis					_				_					
135, boul Lebourgneuf Juébec (Québec) G2K 0M	5	FI 5 jours	48 hres	5	6-12 hres						1	Γ	Bon de co	mman	a.	
Méphone: 418-623-7066	Télécopleur: 418-623-2434	72 hres [7]	24 hres		Date require								Vo de so			
um éro du projet.	201-11330-29				Critères à re	especter RMD (mat.	lixivlable)				<u> </u>		-		==	
on de commande eu de prélèvement	Windfall Lake				F	RDS (mat. I					1		B nsommat	ion	С	r
élevé par	Mohamed Dioumessy			_		REIMR	_				<u></u>	Eau rés	urgence			
arge de projet	Steve St-Cyr			***	0 Z									1		§ 7
ourriel:	steve st cyr@wsp.com / sirine.	boussorra@wsp.com			Cd, C		55									
			70/00		9, As, Ba, Be, Ca, Cd, Co, B, K, Li, Mg, Mn, Mo, Na, Ni, n, V et Zn)	entaire	Hydrocarbures pétroliers C10-C50									
trice: S Sol	B Boue	ES Eau de surface			IS, B	lémé	eta I			1						
SI Solide	EU Eau usée	EF Effluent			9.9.5	핰	81		()					1		
E Sédiment P Eau potable	ST Eau souterraine	AF Affluent			Fe, H	ation s	arbura									
	B Boue ES Eau de surface EU Eau usée EF Effluent ST Eau souterraine AF Affluent Wetaux (Al. Ag. As. B. Be. Cr. Cu. Fe, Hg. K. L. Mg. M. Date de bigliers C. Addingentaire Phydrocarbures pétroliers C. HAP								1							
F22-22-CF-2		2022-04-21	S	1	Х		X					-	+	+		-
F64-22-CF-1A		2022-04-13	S	1								-	+	+	1	-
		2022-04-13	S	1					$\neg \vdash \neg$		-		+	+		-
F64-22-CF-2		2022-04-13	S	1	X	Х	×				-	-	+	-		\rightarrow
		2022-04-13	S	1					-	1	-	-+-	-		\rightarrow	-
F64-22-CF-4		2022-04-13	S	1	×		×	X	_	1			_	-	-	-
F64-22-CF-5		2022-04-13	S	1				<u> </u>			-	+	+		-	-
F64-22-DUP01		2022-04-13	S	1							-	+	+	-		-
F64-22-DUP02		2022-04-13	S	1.							-	+	+		-	-
F64-22-DUP03	220413	2022-04-13	S	1	X	X	×		-			_	+	+	-	-
												+	+-	\vdash	-	-+-
											-	+	+	\vdash	\dashv	-
												+	+		-	-
									_		-	+	+	\vdash		\rightarrow
										\vdash	_	-	+		-	-
											-	$\overline{}$	_		-	-
											-	+	+		-	-
											_	+	+		-	+
											-	+	-		-	-
											-	+			-	-
												_	-		-	-
											-	+		-		
									_	-	-	+	+-		-	-
											-	-	+-		+	
										-	-+-	-	1		-	-
											+	-	+		-	-
										+	+	+-	+	-	+	+
tillons remis par:	Mohamed Djoumessy		Échantillons	reçus pari						_	_		\rightarrow		-	-

1151)		AGAT Laborato			inde d'anal		61P 4P3								
				Taliquot de	abou ony, du	oboc canad	a, OTF 4F5								
WSP Canada Inc. 1135, boul, Lebourgneuf		Délai d'analyse requis 「▽ 5 Jours	48 hres	(m)	0.40.						***				
Quebec (Québec) G2K 0M	15	72 hres	24 hres		6-12 hres Date regulse						L.		command soumlesion		
řělěphone: 418-623-7066	Télécopieur 418-623-2434											, , , , , , ,			
Numéro du projet:	201-11330-29			= 7 = -	Critères à re	RMD (mal,	liviulable)				r-1 A	(E	ļ	_	(-+ D
Bon de commande:	201 11000-20			-		RDS (mat. I					Eau			C	I D
leu de prélévement:	Windfall Lake				Г.	REIMR					∫ Eau	réeurgend	0		
rélevé par:	Mohamed Dioumeesy Steve St-Cyr			-	Q Z										
Chargé de projet: Courriel:	steve st.cyr@wsp.com / sirine t	houseorra@wen.com		_	Na.		8							l i	1
Sobilier.	otoro otorograpio ottoro				8 €		ğ								- 11
					(Al, Ag, As, Ba, Be, Ca, Cd, Co, Fe, Hg, K, Li, Mg, Mn, Mo, Na, Ni, Se, Sn, V et Zn)	- E	25								
					g, 8 € 5	ent	lier							1	41
Matrice:					8 . L. A.	T Sem	étro			1					
S Sol SI Solide	B Boue EU Eau usée	ES Eau de surface EF Effluent			A. 99, V. N. N. N. N. N. N. N. N. N. N. N. N. N.	ldns	s _s							1	
SE Sédiment	ST Eau souterraine	AF Affluent			S e Z	, io	d.								- 11
EP Eau potable			-	Nombre	Métaux (Cr, Cu, F Pb, Sb, S	purification supplémentaire	Hydrocarbures pétroliers C10-C50							1 1	
lden	tification de l'échantillon	Date de prélèvement	Matrice	de pote	P. C. Met	und	F y	HAP							11
1 F64-22-DUP		2022-04-13	S	1											
2 F64-22-DUP		2022-04-13	S	1											
3 F64-22-DUP		2022-04-13	S	1											
4 F42-22-CF-1	В	2022-04-24	S	1	Х		Х	Х							
5 F42-22-DUP	07220424	2022-04-24	S	1	X		X	X							
6 F42-22-CF-2		2022-04-24	S	1											
7 F42-22-CF-4		2022-04-24	S	1	Х		X								
8 F55-22-CF-1		2022-04-24	S	1											
9 F55-22-CF-1		2022-04-24	S	1											3
10 F55-22-CF-2	Α	2022-04-24	S	1	X		X								
									_						
_															
											1		_		
									_				_		
			-			ļ					_		_		-11
											_				
											-		_		
											1				_1_
															_
											4		-		- 11
chantillons remis par:	Mohamed Dloumessy		Échantillo	ns reçus pa	r:								Page:	4	de 6
ate: 2022-04-25			Date:												

//SD		AGAT Laborato	ігев : 350 гие	Franquet Q	uebec City, Qu	ebec Canad	ia, G1P 4P3									
WSP Canada Inc. 135, boul, Lebourgneuf		Délai d'analyse requis						_		_	_	_	_	_		_
Juébec (Québec) G2K 0M.	5	[♥] 5 Jours	48 hres	1.1	6-12 hres							r"	Bon de c	ommano	in	
éléphone: 418-623-7066	Télécopleur: 418-623-2434	72 hres	24 hres		Date requise	18							No de si			
uméro du projet.	201-11330-29				Critéres à re	specter RMD (mat	liviviable)		_			_			_	
on de commande; eu de prélévement.	Windfall Lake			-	rm.	RDS (mat.						A Fau co	l ⊟ neomma	lion [С	Γ
rélevé par:	Mohamed Dioumessy			-	r	REIMR					ŗ		surgence			
nargě de projet.	Sleve St-Cyr				o ž											
ourriel:	steve at cyr@wsp.com / sirine.bo	oussorra@wsp.com		-	Cd.		20							1		
					xx (Al, Ag, As, Ba, Be, Ca, Cd, Co, u, Fe, Hg, K, Li, Mg, Mn, Mo, Na, Ni, b, Se, Sn, V et Zn)	aizire	Hydrocarbures pétroliers C10-C50									
ntrice:					rt Z Ba	èше	15 je					1 1				
S Sol SI Solide		ES Eau de surface EF Effluent			g 7 2	4dd	s pé			1						
SE Sédiment P Eau potable		AF Affluent			Fe, Hg	purification supplémentaire	arbure									
	lentification de l'échantillon Date de prélèvement Matrice Nombre de pote Vicinité de vicinité de v										1					
F55-22-CF-2B F55-22-CF-3		2022-04-24	S	1							1					
F55-22-CF-5		2022-04-24	S	1												_
F55-22-CF-6A		2022-04-24	S	1		1					T					
T. 12. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10		2022-04-24	S	1												
		2022-04-24	S	1												
F55-22-DUP02		2022-04-24	S	1												
F55-22-DUP04		2022-04-24	S	1	X		X			19						
		2022-04-24	S	1												
F55-22-DUP07		2022-04-24	S	1												
1 00-22-1501-07	220424	2022-04-24	S	1					li li							
			-													
1																
															010	
			1													
			-								1					
			-													
<u> </u>			-						1	1						T
												1				
					1											
																T
															\neg	
tillons remis par:	Mohamed Dioumessy		Échantillons													

wsp_			AGAT Laboratofree			inde d'anal		a, G1P 4P3									
WSF Canada Inc. 1135, boul. Lebourgneu! Québec (Québec) G2K 0M5 Téléphone: 418-623-7068	Telecopleur, 418-623-2434	r-	5 jours [72]	48 hres 24 hres	C	6-12 hres Date requise	:		i,					on de co	nmande; misalon:		
Numéro du projet: Bon de commande; Lieu de prélévement:	201-11330-29 Windfall Lake Mohamed Dioumessy				-	Critéres à re	RMD (mat RDS (mat REIMR							B sommati	r (:	l∞+≥ D
Prélevé par: Chargé de projet: Courriel:	Sleve St-Cyr steve st.cyr@wsp.com / sirine.	boussorra@ws	p,com			, Ca, Cd, Co, An, Mo, Na, NI	و	C10-C50									
fatrice: S Sol SI Solide SE Sédiment EP Eau potable	B Boue EU Eau usée ST Eau souterraine	ES Eau de EF Effluer AF Affluer	t			Métaux (Al, Ag, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, Na, Nl, Pb, Sb, Se, Sn, V et Zn)	purification supplémentaire	Hydrocarbures pétroliers C10-C50									
Identi	fication de l'échantillon		Date de prélèvement	Matrice	Nombre de pots	Métau Cr, Ci	purify	hydr HAP									
1 F56-22-CF-1A		-	2022-04-24	S	1												
2 F56-22-CF-2			2022-04-24	S	1												
3 F56-22-CF-3			2022-04-24	S	1	Х		X									Ш
4 F56-22-CF-5			2022-04-24	S	111												
5														_		_	
7													_	1		-	
										-				-		+	
9				_					_	_			_	_		\rightarrow	
10					-				-		+		-	-	-	-	_
10									-	_	1	\vdash	-	-		+	-
					-					_		\vdash	-	+-	-	+	_
									-	-	+-	-	-+	+	+	-	
										_	+	\vdash	-	+		-	+
										_	+		-	+		-	-11-
										_	1	\vdash	-	+	1-1-	+	
									-	_	+-		-	+		+	-
										-	+		-	+		+	+
				-						_	+-		-	+		+	-11-
										_			-	-		+	
										\rightarrow		\vdash	1	+	1	_	-
													-			-	-
										_			-	+		-	-
													_	+-		-	
											-	\vdash	_	+		-	-
										_	1		\neg	+		_	
_											-		_	+		_	-
chantilions remis par:	Mohamed Dloumessy			Échantillor	8 (80)18 20	-					-	_		_			
ate: 2022-04-25				Date:	ruyua pa									P	ige:	6 d	de 6

NOM DU CLIENT: WSP CANADA INC.

1135 BOULEVARD LEBOURGNEUF

QUEBEC, QC G2K 0M5

(418) 623-7066

À L'ATTENTION DE: Sirine Boussorra N° DE PROJET: 201-11330-29

N° BON DE TRAVAIL: 22O890530

ANALYSE DES SOLS VÉRIFIÉ PAR: EmmanuelBrousseau, Chimiste, AGAT Québec ORGANIQUE DE TRACE VÉRIFIÉ PAR: EmmanuelBrousseau, Chimiste, AGAT Québec

DATE DU RAPPORT: 10 mai 2022

NOMBRE DE PAGES: 19 VERSION*: 1

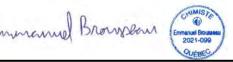
Pour tout complément d'information concernant cette analyse, veuillez contacter votre chargé(e) de projet client au (418) 266-5511.

Avia de non responsabilité:	

*Notes

- L'ensemble des travaux réalisés dans le présent document ont été effectués en utilisant des protocoles normalisés reconnus, ainsi que des pratiques et des méthodes généralement acceptées. En vue d'améliorer la performance, les méthodes analytiques d'AGAT pourraient comprendre des modifications issues des méthodes de référence spécifiées.
- Tous les échantillons seront éliminés trente (30) jours après réception au laboratoire à moins qu'une Entente d'entreposage à long terme ne soit signée et retournée. Certaines analyses spécialisées peuvent être exemptées. Veuillez communiquer avec votre chargé de projets à la clientèle pour plus d'informations.
- La responsabilité d'AGAT en ce qui concerne tout retard, exécution ou non-exécution de ces services s'applique uniquement envers le client et ne s'étend à aucune autre tierce partie. À moins qu'il n'en soit par ailleurs convenu expressément par écrit, la responsabilité d'AGAT se limite au coût réel de l'analyse ou des analyses spécifiques incluses dans les services.
- Sauf accord écrit préalable d'AGAT Laboratoires, ce certificat ne doit être reproduit que dans sa totalité.
- Les résultats d'analyse communiqués ci-joint ne concernent que les échantillons reçus par le laboratoire.
- L'application des lignes directrices est fournie « en l'état » sans garantie de quelque nature que ce soit, ni expresse ni tacite, y compris, mais sans s'y limiter, les garanties de qualité marchande, d'aptitude à un usage particulier ou de non-contrefaçon. AGAT n'assume aucune responsabilité à l'égard de toute erreur ou omission dans les directives que contient ce document.
- Toutes les informations rapportables sont disponibles sur demande auprès d'AGAT Laboratoires, conformément aux normes ISO/IEC 17025:2017, DR-12-PALA et/ou NELAP.

AGAT Laboratoires (V1) Page 1 de 19

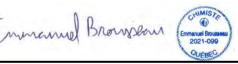

N° BON DE TRAVAIL: 22O890530 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022	2-05-02							[DATE DU RAPP	ORT: 2022-05-	10
				IDENTIFIC	CATION DE L'É	CHANTILLON:	F31-22- DUP03220427	F31-22-CF3A	F33-22-CF1C	F34-22-CF-2	F34-22- DUP02220428
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2022-04-27	2022-04-27	2022-04-27	2022-04-28	2022-04-28
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3822577	3822579	3822581	3822586	3822590
Aluminium	mg/kg					30	4740	4380	5720	5340	5670
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	<1	<1	<1	<1
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	<20	<20
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	1850	1920	1480	1210	1060
Chrome	mg/kg	100	250	800	4000	2	14[<a]< td=""><td>17[<a]< td=""><td>14[<a]< td=""><td>15[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	17[<a]< td=""><td>14[<a]< td=""><td>15[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	14[<a]< td=""><td>15[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<>	15[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<>	14[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	4[<a]< td=""><td>5[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	5[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<>	4[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	7[<a]< td=""><td>7[<a]< td=""><td>6[<a]< td=""><td>7[<a]< td=""><td>6[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>6[<a]< td=""><td>7[<a]< td=""><td>6[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>7[<a]< td=""><td>6[<a]< td=""></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>6[<a]< td=""></a]<></td></a]<>	6[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	8050	9260	7830	8480	7950
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	<20
Magnésium	mg/kg					100	2740	2850	2750	2840	2630
Manganèse	mg/kg	1000	1000	2200	11000	10	113[<a]< td=""><td>126[<a]< td=""><td>126[<a]< td=""><td>136[<a]< td=""><td>134[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	126[<a]< td=""><td>126[<a]< td=""><td>136[<a]< td=""><td>134[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	126[<a]< td=""><td>136[<a]< td=""><td>134[<a]< td=""></a]<></td></a]<></td></a]<>	136[<a]< td=""><td>134[<a]< td=""></a]<></td></a]<>	134[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	10[<a]< td=""><td>12[<a]< td=""><td>11[<a]< td=""><td>10[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>11[<a]< td=""><td>10[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>10[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<>	10[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<>	10[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	200	206	180	169	151
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	<100	<100	<100	<100
Vanadium	mg/kg					15	<15	15	<15	<15	<15
Zinc	mg/kg	140	500	1500	7500	5	18[<a]< td=""><td>17[<a]< td=""><td>21[<a]< td=""><td>20[<a]< td=""><td>21[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	17[<a]< td=""><td>21[<a]< td=""><td>20[<a]< td=""><td>21[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	21[<a]< td=""><td>20[<a]< td=""><td>21[<a]< td=""></a]<></td></a]<></td></a]<>	20[<a]< td=""><td>21[<a]< td=""></a]<></td></a]<>	21[<a]< td=""></a]<>

Certifié par:


N° BON DE TRAVAIL: 22O890530 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022	2-05-02							С	ATE DU RAPPO	ORT: 2022-05-10
				IDENTIF	CATION DE L'ÉC	CHANTILLON:	F58-22-CF-2B	F60-22-CF-2B	F60-22-CF-3	
						MATRICE:	Sol	Sol	Sol	
					DATE D'ÉCHANT	ILLONNAGE:	2022-04-29	2022-04-29	2022-04-29	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3822594	3822700	3822701	
Aluminium	mg/kg					30	6090	4060	3080	
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	
Arsenic	mg/kg	6	30	50	250	1	<1	<1	<1	
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	
Béryllium	mg/kg					1	<1	<1	<1	
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	
Calcium	mg/kg					100	1630	2000	1990	
Chrome	mg/kg	100	250	800	4000	2	16[<a]< td=""><td>13[<a]< td=""><td>10[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>10[<a]< td=""><td></td></a]<></td></a]<>	10[<a]< td=""><td></td></a]<>	
Cobalt	mg/kg	25	50	300	1500	2	4[<a]< td=""><td><2</td><td><2</td><td></td></a]<>	<2	<2	
Cuivre	mg/kg	50	100	500	2500	1	3[<a]< td=""><td>4[<a]< td=""><td>5[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>5[<a]< td=""><td></td></a]<></td></a]<>	5[<a]< td=""><td></td></a]<>	
Fer	mg/kg					500	10800	5120	4520	
Étain	mg/kg	5	50	300	1500	5		<5	<5	
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	
Magnésium	mg/kg					100	2450	1720	1510	
Manganèse	mg/kg	1000	1000	2200	11000	10	177[<a]< td=""><td>54[<a]< td=""><td>48[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	54[<a]< td=""><td>48[<a]< td=""><td></td></a]<></td></a]<>	48[<a]< td=""><td></td></a]<>	
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	
Nickel	mg/kg	50	100	500	2500	2	8[<a]< td=""><td>6[<a]< td=""><td>6[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>6[<a]< td=""><td></td></a]<></td></a]<>	6[<a]< td=""><td></td></a]<>	
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	
Potassium	mg/kg					100	167	127	142	
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	
Sodium	mg/kg					100	<100	<100	<100	
Vanadium	mg/kg					15	17	<15	<15	
Zinc	mg/kg	140	500	1500	7500	5	16[<a]< td=""><td>11[<a]< td=""><td>10[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>10[<a]< td=""><td></td></a]<></td></a]<>	10[<a]< td=""><td></td></a]<>	

Certifié par:

N° BON DE TRAVAIL: 22O890530

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-05-02 DATE DU RAPPORT: 2022-05-10

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3822577-3822701 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 22O890530 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Hydrocarbures	aromatiques	polycycliques	(HAP) (SoI)

DATE DE RÉCEPTION: 2022-05-0)2							DATE DU RAPPORT: 2022-05-10
				IDENTIFIC	CATION DE L'É	CHANTILLON:	F33-22-CF1C	
						MATRICE:	Sol	
				D	ATE D'ÉCHAN	TILLONNAGE:	2022-04-27	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3822581	
Acénaphtène	mg/kg	0.1	10	100	100	0.1	<0.1	
Acénaphtylène	mg/kg	0.1	10	100	100	0.1	<0.1	
Anthracène	mg/kg	0.1	10	100	100	0.1	<0.1	
Benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	
Benzo (a) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	
Benzo (b) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	
Benzo (j) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	
Benzo (k) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	
Benzo (b+j+k) fluoranthène	mg/kg	-	-	-	136	0.1	<0.1	
Benzo (c) phénanthrène	mg/kg	0.1	1	10	56	0.1	<0.1	
Benzo (g,h,i) pérylène	mg/kg	0.1	1	10	18	0.1	<0.1	
Chrysène	mg/kg	0.1	1	10	34	0.1	<0.1	
Dibenzo (a,h) anthracène	mg/kg	0.1	1	10	82	0.1	<0.1	
Dibenzo (a,i) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	
Dibenzo (a,h) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	
Dibenzo (a,l) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	
Diméthyl-7,12 benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	
Fluoranthène	mg/kg	0.1	10	100	100	0.1	<0.1	
Fluorène	mg/kg	0.1	10	100	100	0.1	<0.1	
Indéno (1,2,3-cd) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	
Méthyl-3 cholanthrène	mg/kg	0.1	1	10	150	0.1	<0.1	
Naphtalène	mg/kg	0.1	5	50	56	0.1	<0.1	
Phénanthrène	mg/kg	0.1	5	50	56	0.1	<0.1	
Pyrène	mg/kg	0.1	10	100	100	0.1	<0.1	
Méthyl-1 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	
Méthyl-2 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	
Diméthyl-1,3 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	
Triméthyl-2,3,5 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	

Certifié par:

minamed Browslam (Emmanuel Bousseau 2021-099)
QUEEES.

N° BON DE TRAVAIL: 220890530

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

Hydrocarbures aromatiques polycycliques (HAP) (SoI)														
DATE DE RÉCEPTION: 2022-05-02 DATE DU RAPPORT: 2022-05-10														
						MATRICE:	Sol							
					DATE D'ÉCHAN	TILLONNAGE:	2022-04-27							
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3822581							
% Humidité	%					0.2	8.4							
Étalon de recouvrement	Unités			Limites										
Rec. Naphtalène-d8	%			50-140			85							
Rec. Pyrène-d10	%			50-140			89							
Rec n-Ternhényl-d14	0/2			50-140			95							

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3822581 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 22O890530 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

			Hyd	rocarbu	res pétrolie	ers C10-C5	0 (Sol)				
DATE DE RÉCEPTION: 2022-05-0)2							ı	DATE DU RAPP	ORT: 2022-05-	10
							F31-22-				F34-22-
				IDENTI	FICATION DE L'E	ÉCHANTILLON:	DUP03220427	F31-22-CF3A	F33-22-CF1C	F34-22-CF-2	DUP02220428
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	NTILLONNAGE:	2022-04-27	2022-04-27	2022-04-27	2022-04-28	2022-04-28
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3822577	3822579	3822581	3822586	3822590
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100
% Humidité	%					0.2	15.2	14.0	8.4	2.8	3.0
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			105	102	106	110	105
				IDENTI	FICATION DE L'E	ÉCHANTILLON:	F58-22-CF-2B	F60-22-CF-2B	F60-22-CF-3		
						MATRICE:	Sol	Sol	Sol		
					DATE D'ÉCHAN	NTILLONNAGE:	2022-04-29	2022-04-29	2022-04-29		
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3822594	3822700	3822701		
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100		
% Humidité	%					0.2	14.8	16.5	21.7		
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			121	109	101		

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se réfèrer directement à la norme applicable pour l'interprétation réglementaire.

3822577-3822701 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR: Mohamed Dioumessy

N° BON DE TRAVAIL: 22O890530 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

ELECTE I AKTIMONAMICS DIOGNICSSY														
		A	Analy	/se d	es So	ols								
		1	DUPLICAT	4	MATÉ	RIAU DE RI	ÉFÉREN	ICE	BLANG	FORT	IFIÉ	ÉCH.	FORTIF	ΞIÉ
Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lim	nites	% Récup.	Lim	nites	% Récup.	Lin	nites
					méthode	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.	70 11000 p.1	Inf.	Sup.		Inf.	Sup.
alayage m	étaux + me	ercure)						•			•	•		•
3822577	3822577	4740	4620	2.5	< 30	62%	70%	130%	95%	80%	120%	97%	70%	130%
3822577	3822577	<20	<20	NA	< 20	138%	70%	130%	88%	80%	120%	86%	70%	130%
3822577	3822577	<0.5	< 0.5	NA	< 0.5	107%	70%	130%	95%	80%	120%	92%	70%	130%
3822577	3822577	<1	<1	NA	< 1	97%	70%	130%	90%	80%	120%	90%	70%	130%
3822577	3822577	<20	<20	NA	< 20	98%	70%	130%	94%	80%	120%	94%	70%	130%
3822577	3822577	<1	<1	NA	< 1	88%	70%	130%	92%	80%	120%	94%	70%	130%
3822577	3822577	<0.5	< 0.5	NA	< 0.5	100%	70%	130%	94%	80%	120%	91%	70%	130%
3822577	3822577	1850	1820	1.7	< 100	89%	70%	130%	96%	80%	120%	100%	70%	130%
3822577	3822577	14	14	0.1	< 2	102%	70%	130%	92%	80%	120%	92%	70%	130%
3822577	3822577	4	4	NA	< 2	100%	70%	130%	91%	80%	120%	90%	70%	130%
3822577	3822577	7	7	11.4	< 1	97%	70%	130%	96%	80%	120%	95%	70%	130%
		<5	<5	NA	< 5	98%	70%	130%	93%	80%	120%	89%	70%	130%
3822577	3822577	8050	7870	2.2	< 500	99%	70%	130%	96%	80%	120%	NA	70%	130%
3822577	3822577	<20	<20	NA	< 20	90%	70%	130%	90%	80%	120%	92%	70%	130%
3822577	3822577	2740	2630	3.9	< 100	96%	70%	130%	98%	80%	120%	95%	70%	130%
3822577	3822577	113	120	5.8	< 10	122%	70%	130%	97%	80%	120%	93%	70%	130%
		<0.2	<0.2	NA	< 0.2	92%	70%	130%	87%	80%	120%	86%	70%	130%
3822577	3822577	<1	<1	NA	< 1	109%	70%	130%	97%	80%	120%	92%	70%	130%
3822577	3822577	10	9	NA	< 2	100%	70%	130%	91%	80%	120%	90%	70%	130%
3822577	3822577	<5	<5	NA	< 5	104%	70%	130%	96%	80%	120%	93%	70%	130%
3822577	3822577	200	209	NA	< 100	93%	70%	130%	99%	80%	120%	93%	70%	130%
		<0.5	<0.5	NA	< 0.5	94%	70%	130%	94%	80%	120%	94%	70%	130%
3822577	3822577	<100	<100	NA	< 100	88%	70%	130%	96%	80%	120%	92%	70%	130%
		<15	<15	NA	< 15	98%	70%	130%	92%	80%	120%	90%	70%	130%
		18	17	NA	< 5	102%	70%	130%	96%			94%	70%	130%
	alayage ma 3822577	Lot N° éch.	Lot N° éch. Dup #1 alayage métaux + mercure) 3822577 3822577 4740 3822577 3822577 <20 3822577 3822577 <1 3822577 3822577 <20 3822577 3822577 <20 3822577 3822577 <1 3822577 3822577 <0.5 3822577 3822577 1850 3822577 3822577 14 3822577 3822577 14 3822577 3822577 4 3822577 3822577 4 3822577 3822577 7 3822577 3822577 2740 3822577 3822577 3822577 40 3822577 3822577 3822577 2740 3822577 3822577 3822577 50.2 3822577 3822577 3822577 50.2 3822577 3822577 50.2 3822577 3822577 50.2 3822577 3822577 50.2 3822577 3822577 50.2 3822577 3822577 50.2 3822577 3822577 50.2 3822577 3822577 50.2 3822577 3822577 50.2 3822577 3822577 50.2 3822577 3822577 50.5 3822577 3822577 50.5 3822577 3822577 50.5 3822577 3822577 50.5	Analy Duplicate	Analyse d DUPLICATA	Analyse des Solution Dup Dup Dup Dup Work	Analyse des Sols DUPLICATA MATÉRIAU DE RI	Duplicata	Analyse des Sols DUPLICATA MATÉRIAU DE RÉFÉRENCE	DUPLICATA	DUPLICATA	DUPLICATA	DUPLICATA	Duplicata

Commentaires: Le pourcentage de récupération du MRC concernant le Sb et Al est conforme à l'écart du certificat du matériau de référence du fournisseur. NA : Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Analyses inorganiques - WSP (Balayage métaux + mercure)

Analyses morganiques - WSP (Ba	alayage metaux + me	ercure)												
Aluminium	3832797	10500	10400	1.0	< 30	64%	70%	130%	96%	80%	120%	NA	70%	130%
Antimoine	3832797	<20	<20	NA	< 20	137%	70%	130%	90%	80%	120%	90%	70%	130%
Argent	3832797	<0.5	<0.5	NA	< 0.5	99%	70%	130%	96%	80%	120%	95%	70%	130%
Arsenic	3832797	1	2	NA	< 1	90%	70%	130%	91%	80%	120%	92%	70%	130%
Baryum	3832797	46	46	NA	< 20	88%	70%	130%	94%	80%	120%	97%	70%	130%
Béryllium	3832797	<1	<1	NA	< 1	87%	70%	130%	97%	80%	120%	96%	70%	130%
Cadmium	3832797	<0.5	<0.5	NA	< 0.5	94%	70%	130%	94%	80%	120%	96%	70%	130%
Calcium	3832797	3320	3230	2.8	< 100	88%	70%	130%	96%	80%	120%	99%	70%	130%
Chrome	3832797	28	28	0.4	< 2	96%	70%	130%	93%	80%	120%	93%	70%	130%
Cobalt	3832797	7	7	NA	< 2	98%	70%	130%	93%	80%	120%	91%	70%	130%
	Aluminium Antimoine Argent Arsenic Baryum Béryllium Cadmium Calcium Chrome	Aluminium 3832797 Antimoine 3832797 Argent 3832797 Arsenic 3832797 Baryum 3832797 Béryllium 3832797 Cadmium 3832797 Calcium 3832797 Chrome 3832797	Antimoine 3832797 <20	Aluminium 3832797 10500 10400 Antimoine 3832797 <20	Aluminium 3832797 10500 10400 1.0 Antimoine 3832797 <20	Aluminium 3832797 10500 10400 1.0 < 30	Aluminium 3832797 10500 10400 1.0 < 30	Aluminium 3832797 10500 10400 1.0 < 30	Aluminium 3832797 10500 10400 1.0 < 30 64% 70% 130% Antimoine 3832797 <20	Aluminium 3832797 10500 10400 1.0 < 30 64% 70% 130% 96% Antimoine 3832797 <20	Aluminium 3832797 10500 10400 1.0 < 30 64% 70% 130% 96% 80% Antimoine 3832797 <20	Aluminium 3832797 10500 10400 1.0 < 30 64% 70% 130% 96% 80% 120% Antimoine 3832797 <20	Aluminium 3832797 10500 10400 1.0 < 30 64% 70% 130% 96% 80% 120% NA Antimoine 3832797 <20	Aluminium 3832797 10500 10400 1.0 < 30 64% 70% 130% 96% 80% 120% NA 70% Antimoine 3832797 <20

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Mohamed Dioumessy N° BON DE TRAVAIL: 220890530 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

TREEE VET / TR: MOHamed	Diedilieeey											77111416	an Lano		
			Ana	lyse	des S	Sols (Suite	e)							
Date du rapport: 2022-05-10				DUPLICATA	Ą	MATÉ	RIAU DE RI	ÉFÉREN	NCE	BLANG	C FORT	IFIÉ	ÉCH.	FORTIF	ΞIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.		nites	% Récup.	Lin	nites	% Récup.	Lin	nites
			·	·		méthode		Inf.	Sup.		Inf.	Sup.	·	Inf.	Sup.
Cuivre	3832797		10	10	1.9	< 1	97%	70%	130%	95%	80%	120%	96%	70%	130%
Fer	3832797		16400	16300	0.3	< 500	92%	70%	130%	96%	80%	120%	NA	70%	130%
Lithium	3832797		<20	<20	NA	< 20	94%	70%	130%	102%	80%	120%	99%	70%	130%
Magnésium	3832797		3710	3690	0.5	< 100	91%	70%	130%	97%	80%	120%	99%	70%	130%
Manganèse	3832797		171	170	0.4	< 10	100%	70%	130%	96%	80%	120%	93%	70%	130%
Mercure	3832797		<0.2	<0.2	NA	< 0.2	88%	70%	130%	89%	80%	120%	89%	70%	130%
Molybdène	3832797		<1	<1	NA	< 1	101%	70%	130%	98%	80%	120%	97%	70%	130%
Nickel	3832797		16	16	0.4	< 2	94%	70%	130%	91%	80%	120%	92%	70%	130%
Plomb	3832797		<5	<5	NA	< 5	99%	70%	130%	97%	80%	120%	96%	70%	130%
Potassium	3832797		884	864	2.3	< 100	87%	70%	130%	95%	80%	120%	96%	70%	130%
Sélénium	3832797		<0.5	<0.5	NA	< 0.5	86%	70%	130%	93%	80%	120%	95%	70%	130%
Sodium	3832797		121	133	NA	< 100	81%	70%	130%	94%	80%	120%	93%	70%	130%
Vanadium	3832797		29	29	NA	< 15	92%	70%	130%	95%	80%	120%	93%	70%	130%
Zinc	3832797		29	29	0.8	< 5	95%	70%	130%	96%	80%	120%	96%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb et Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA : Non applicable


NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Certifié par:

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR: Mohamed Dioumessy

N° BON DE TRAVAIL: 220890530 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

		P	Analy	se o	rgani	que	de tra	ace							
Date du rapport: 2022-05-10				DUPLICAT	A	MATÉ	RIAU DE R	ÉFÉREN	NCE	BLAN	C FORT	IFIÉ	ÉCH.	FORTIF	ΞΙÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.		nites	% Récup		nites	% Récup.		nites
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	méthode	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.
Hydrocarbures pétroliers C10-C	50 (SoI)														
Hydrocarbures pétroliers C10 à C50	3824368		<100	<100	NA	< 100	133%	60%	140%	104%	60%	140%	128%	60%	140%
Rec. Nonane	3824368		108	107	0.9	108	128%	60%	140%	104%	60%	140%	127%	60%	140%
% Humidité	3819024		6.9	7.0	2.3	< 0.2	100%	80%	120%	NA			NA		

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'aiout.

élevée par rapport à l'ajout.														
Hydrocarbures aromatiques p	olycycliques (HAP)	(SoI)												
Acénaphtène	3824368	<0.1	<0.1	NA	< 0.1	93%	50%	140%	104%	50%	140%	93%	50%	140%
Acénaphtylène	3824368	<0.1	<0.1	NA	< 0.1	50%	50%	140%	96%	50%	140%	79%	50%	140%
Anthracène	3824368	<0.1	<0.1	NA	< 0.1	89%	50%	140%	102%	50%	140%	88%	50%	140%
Benzo (a) anthracène	3824368	<0.1	<0.1	NA	< 0.1	89%	50%	140%	95%	50%	140%	78%	50%	140%
Benzo (a) pyrène	3824368	<0.1	<0.1	NA	< 0.1	75%	50%	140%	93%	50%	140%	82%	50%	140%
Benzo (b) fluoranthène	3824368	<0.1	<0.1	NA	< 0.1	80%	50%	140%	89%	50%	140%	65%	50%	140%
Benzo (j) fluoranthène	3824368	<0.1	<0.1	NA	< 0.1	82%	50%	140%	97%	50%	140%	75%	50%	140%
Benzo (k) fluoranthène	3824368	<0.1	<0.1	NA	< 0.1	81%	50%	140%	98%	50%	140%	69%	50%	140%
Benzo (c) phénanthrène	3824368	<0.1	<0.1	NA	< 0.1	96%	50%	140%	101%	50%	140%	86%	50%	140%
Benzo (g,h,i) pérylène	3824368	<0.1	<0.1	NA	< 0.1	66%	50%	140%	82%	50%	140%	63%	50%	140%
Chrysène	3824368	<0.1	<0.1	NA	< 0.1	90%	50%	140%	100%	50%	140%	86%	50%	140%
Dibenzo (a,h) anthracène	3824368	<0.1	<0.1	NA	< 0.1	67%	50%	140%	81%	50%	140%	63%	50%	140%
Dibenzo (a,i) pyrène	3824368	<0.1	<0.1	NA	< 0.1	49%	50%	140%	60%	50%	140%	45%	50%	140%
Dibenzo (a,h) pyrène	3824368	<0.1	<0.1	NA	< 0.1	54%	50%	140%	59%	50%	140%	51%	50%	140%
Dibenzo (a,I) pyrène	3824368	<0.1	<0.1	NA	< 0.1	58%	50%	140%	78%	50%	140%	54%	50%	140%
Diméthyl-7,12 benzo (a) anthracène	3824368	<0.1	<0.1	NA	< 0.1	100%	50%	140%	148%	50%	140%	94%	50%	140%
Fluoranthène	3824368	<0.1	<0.1	NA	< 0.1	100%	50%	140%	106%	50%	140%	90%	50%	140%
Fluorène	3824368	<0.1	<0.1	NA	< 0.1	98%	50%	140%	104%	50%	140%	87%	50%	140%
Indéno (1,2,3-cd) pyrène	3824368	<0.1	<0.1	NA	< 0.1	67%	50%	140%	80%	50%	140%	61%	50%	140%
Méthyl-3 cholanthrène	3824368	<0.1	<0.1	NA	< 0.1	15%	50%	140%	68%	50%	140%	44%	50%	140%
Naphtalène	3824368	<0.1	<0.1	NA	< 0.1	101%	50%	140%	107%	50%	140%	96%	50%	140%
Phénanthrène	3824368	<0.1	<0.1	NA	< 0.1	97%	50%	140%	104%	50%	140%	93%	50%	140%
Pyrène	3824368	<0.1	<0.1	NA	< 0.1	98%	50%	140%	108%	50%	140%	95%	50%	140%
Méthyl-1 naphtalène	3824368	<0.1	<0.1	NA	< 0.1	95%	50%	140%	99%	50%	140%	90%	50%	140%
Méthyl-2 naphtalène	3824368	<0.1	<0.1	NA	< 0.1	109%	50%	140%	110%	50%	140%	102%	50%	140%
Diméthyl-1,3 naphtalène	3824368	<0.1	<0.1	NA	< 0.1	99%	50%	140%	103%	50%	140%	92%	50%	140%
Triméthyl-2,3,5 naphtalène	3824368	<0.1	<0.1	NA	< 0.1	99%	50%	140%	103%	50%	140%	91%	50%	140%
Rec. Naphtalène-d8	3824368	95	90	5.5	89	96%	50%	140%	102%	50%	140%	90%	50%	140%
Rec. Pyrène-d10	3824368	102	90	12.6	92	93%	50%	140%	103%	50%	140%	86%	50%	140%
Rec. p-Terphényl-d14	3824368	108	102	5.9	107	96%	50%	140%	104%	50%	140%	92%	50%	140%
% Humidité	3818603	22.6	23.0	1.8	< 0.2	84%	80%	120%	NA			NA		

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Mohamed Dioumessy N° BON DE TRAVAIL: 220890530 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

		Anal	yse	orgar	nique	de t	race	(Su	ite)						
Date du rapport: 2022-05-10				DUPLICATA	4	MATÉ	RIAU DE RI	ÉFÉREN	CE	BLANG	FORTI	FIÉ	ÉCH.	FORTIF	ΙÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.		ites	% Récup.		nites	% Récup.		nites
				·		méthode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.

Commentaires: Le pourcentage de récupération du matériau de référence en Méthyl-3 cholanthrène est non conforme. La validité de l'analyse est démontrée par la conformité des autres éléments de contrôle de qualité.

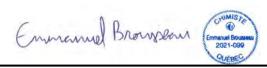
NA : Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Hydrocarbures pétroliers C10-C50 (Sol)


Hydrocarbures pétroliers C10 à C50	3832797	<100	<100	NA	< 100	96%	60%	140%	110%	60%	140%	93%	60%	140%
Rec. Nonane	3832797	110	105	4.7	104	106%	60%	140%	112%	60%	140%	108%	60%	140%

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 220890530

N° DE PROJET: 201-11330-29

À L'ATTENTION DE: Sirine Boussorra

Date du rapport: 10 mai 2022		MATÉRIAU D	E RÉFÉ	RENCE	BLAN	C FORT	TFIÉ	ÉCH.	FORTII	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lim	nites	% Récup.		nites	% Récup.		nites
		,	Inf.	Sup.		Inf.	Sup.		Inf.	Sup.
Analyses inorganiques - WSP (Balayage métaux + mercure)										
Aluminium	3822577	62%	70%	130%	95%	80%	120%	97%	70%	130%

3822577

138%

70% 130%

88%

80% 120%

86%

70% 130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb et Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

Antimoine

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Analyses inorganiques - WSP (Balayage métaux + mercure)

64% Aluminium 70% 130% 96% 80% 120% NA 70% 130% 137% Antimoine 70% 130% 90% 80% 120% 90% 70% 130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb et Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 220890530

N° DE PROJET: 201-11330-29

À L'ATTENTION DE: Sirine Boussorra

Date du rapport: 10 mai 2022		MATÉRIAU D	E RÉFÉ	RENCE	BLAN	C FORT	TFIÉ	ÉCH	. FORTI	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lim	ites	% Récup.		nites	% Récup.		nites
			Inf.	Sup.		Inf.	Sup.		Inf.	Sup.
Hydrocarbures aromatiques polycycliques (HAP) (SoI)										
Dibenzo (a,i) pyrène		49%	50%	140%	60%	50%	140%	45%	50%	140%
Diméthyl-7,12 benzo (a) anthracène		100%	50%	140%	148%	50%	140%	94%	50%	140%
Méthyl-3 cholanthrène		15%	50%	140%	68%	50%	140%	44%	50%	140%

Commentaires: Le pourcentage de récupération du matériau de référence en Méthyl-3 cholanthrène est non conforme. La validité de l'analyse est démontrée par la conformité des autres éléments de contrôle de qualité.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Mohamed Dioumessy N° BON DE TRAVAIL: 220890530 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

PRELEVE PAR.Monamed Dioumes	> y		L	IEU DE PRELEVEIVIENT.	windian Lake
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse des Sols	•	•	•	•	•
Aluminium	2022-05-06	2022-05-10	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Antimoine	2022-05-06	2022-05-10	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Argent	2022-05-06	2022-05-10	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Arsenic	2022-05-06	2022-05-10	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Baryum	2022-05-06	2022-05-10	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Béryllium	2022-05-06	2022-05-10	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Cadmium	2022-05-06	2022-05-10	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Calcium	2022-05-06	2022-05-10	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Chrome	2022-05-06	2022-05-10	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cobalt	2022-05-06	2022-05-10	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cuivre	2022-05-06	2022-05-10	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Étain	2022-05-06	2022-05-06	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Fer	2022-05-06	2022-05-10	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Lithium	2022-05-06	2022-05-06	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Magnésium	2022-05-06	2022-05-10	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Manganèse	2022-05-06	2022-05-10	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Lithium	2022-05-09	2022-05-10	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Mercure	2022-05-06	2022-05-10	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Molybdène	2022-05-06	2022-05-10	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Nickel	2022-05-06	2022-05-10	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Plomb	2022-05-06	2022-05-10	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Potassium	2022-05-06	2022-05-10	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sélénium	2022-05-06	2022-05-10	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sodium	2022-05-06	2022-05-10	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
/anadium	2022-05-06	2022-05-10	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Zinc	2022-05-06	2022-05-10	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR: Mohamed Dioumessy N° BON DE TRAVAIL: 220890530 À L'ATTENTION DE: Sirine Boussorra

PRELEVE PAR:Mohamed Dioumes	ssy			LIEU DE PRELEVEMENT:	windfall Lake
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse organique de trace		•	•	•	<u>'</u>
Acénaphtène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Acénaphtylène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Anthracène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (a) anthracène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (a) pyrène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (b) fluoranthène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (j) fluoranthène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (k) fluoranthène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (b+j+k) fluoranthène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (c) phénanthrène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (g,h,i) pérylène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Chrysène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,h) anthracène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,i) pyrène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,h) pyrène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,l) pyrène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Diméthyl-7,12 benzo (a) anthracène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Fluoranthène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Fluorène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
ndéno (1,2,3-cd) pyrène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Méthyl-3 cholanthrène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Naphtalène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Phénanthrène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Pyrène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Méthyl-1 naphtalène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Méthyl-2 naphtalène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Diméthyl-1,3 naphtalène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Friméthyl-2,3,5 naphtalène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. Naphtalène-d8	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. Pyrène-d10	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. p-Terphényl-d14	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
% Humidité	2022-05-05	2022-05-05	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE
Hydrocarbures pétroliers C10 à C50	2022-05-06	2022-05-09	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2022-05-06	2022-05-09	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2022-05-05	2022-05-06	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE

						CLA LID (present of the second							
WSP Canada Inc. 1135, boli. Labourgneuf Guébec (Guébec) G2K 0M5 Teléphone: 418-623-7065	MS Tělédopleur 418.623.2434	Detai of analyse requis [7] 5 jours 72 bres	LL	48 hres 24 hres	Е	5-12 bres Date requise					No de	Bon de commande. No de soumission.	
Numêro du projet: Bon de commande: Lieu de prêlêvement:	201-11330-29 Windfall Lake					Critères à respecter	specter RMD (met lawable) RDS (met lawable) REIMR	Wable)		ELL	A B Eau consommation	B T c	L
Prélevé par:	mohamed Dioumessy					I	Similar			7	Eau résurgence	60	ĺ
Chargé de projet:	Steve St-Cyr				Ų.	IN '							
Courriel:	steve st cyr@wsp com / sirine boussorra@wsp com	ne boussorra@wsp com				, Gd, C		090					
					1	ie, Ca. Mn, M	out	cio					
						'6W	latne	ers					
Matrica:						רוין	owo	loui	-				
S Solide SE Sediment EP Esu potable	EU Eau usée ST Eau souterrane	ES Eau de surface EF Effluent AF Affluent				(Al, Ag, A Fe, Hg, K, Se, Sn, V	ddns uon	ntbures po					
	Identification de l'échantillon	Date de pri	Date de prefévement	Matrice	Nombre	étaux ', Gu,	sollin	droct	di				
1 F31-22-DUP01220427	01220427	70 100 0000	70 10		de pots	W	nd	(H	/H				-
2 F31-22-CF-1B	8	75-40-2002	17-40	0	- -								
	02220427	70 40 0000	17-40	0							-		
	03220427	70 40 6606	12-40	2 0	-	,		,					
L		70.40-2002	17-F1	0		<		<			-		-
6 F31-22-CF-3A	3A	70-70-2002	72-TC	0		>		,					
7 F33-22-CF-1A	A	70 00 0000	12 M	2		<		<			-		
8 F33-22-CF-1C	0	70 70 0000	12-40	0 0	-	,		,			-		
		70 10 2000	72 M	0		<		<	<				
-		F7707	17-4	0	-								
		2022-04-27	14-27	w	-								
												F	-
											-		L
					1					1			4
										1		ļ	1
											-		
			1									-	-
										-	F	ŀ	
										-			
											F		
			1								7		
								1		1			
Échantillons remis par:	Jonathan Mole										1		
				ECHANDION	s recus pa								

	usp	AG	AT Laboratoires	3ordereau : 350 rue Fr	de demai	Bordereau de demande d'analyses AGAT Laboratbires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	anađa, G1	P 4P3					
Column C	WSP Canada inc. 1135, boul Lebourgneuf Québec (Québec) G2K 0M5	Détal d'analyse requis	LE	48 hres 24 hres	1	5-12 hres				L., Ì	Bon de comma	apu	
Section Procession Proces											No de soumiss	.io	
Comparison Com						Criteres à respecter	r mat lixívia	ole)		Į.			
See Force Control Force Forc	ŧ.						mat lixiviat	(e)		Eauco	nsommation		
Second S								-	-		surgence		
Section Date of production						Co,							-
Section 2 State		rine boussorra@wsp.com			Ī	ио' и Мо' и		-C20			-		
Solidor El Bone Els Eluces centres Solidor El Eluces centres Solidor El Eluces centres Solidor El Eluces centres Solidor Electrones Solidor						((a ii Pili	ers C10					
Solition Control Con	t					12 19	211121	lloniè					
Figh 22.0 CF of Figh 20.0 CF	Solide EU Sediment ST Eau potable					2e, Sn, V	iddne uon	od saunqu					
F38.22.CF-5 F38.22.CF-5 F38.22.CF-5 F38.22.CF-5 F38.22.CF-5 F38.22.CF-5 F38.22.CF-1 F38.22.CF-1 F38.22.CF-1 F38.22.CF-1 F38.22.CF-1 F38.22.CF-1 F38.22.CF-1 F38.22.CF-2	Identification de l'échantillon	Date de	prélèvement	Matrice	Nombre	'qs 'q	nauur						
F54.2C G-1.A		202	2-04-27	U	de pots	ld	1				1	1	+
F54.22.CF-3 F54.22.CF-4 F54.22.CF-4 F54.22.CF-4 F34.22.DIPO0220428 F34		202	2-04-28	o	-	×	+	>				1	+
F34-22-CF-3 F34-22-CF-3 F34-22-C4-28 F34-22-		202	2-04-28	S	-	×		× ×				1	+
FG4.22-DU-POIZ20428 S 1 X X X X E34.22-DU-POIZ20428 S 1 1 X X X X X E34.22-DU-POIZ20428 S 1 1 X X X X X X E34.22-DU-POIZ20428 S 1 1 X X X X X X X X E34.22-DU-POIZ20428 S 1 1 X X X X X X X X X X X X X X X X X	1	202	2-04-28	S	-							ļ	+
F34-22-DUPO/120428 S 1	-	202	2-04-28	s	-		-				F	ļ	+
F34.22.0UP02220428 S 1 X X X X X X X X X X X X X X X X X X	-	202	2-04-28	s	-		-						+
F34/22 DJP 00220428 S	-	202	2-04-28	S	-	×		×				1	+
F34/32-DUPO4220428	-	202	2-04-28	S	-							ļ	-
Hillone remis par: Jonathan Mole Echantillone regula par: Page: 2 de Page:	-	202	2-04-28	တ	-								+
Hillone remix part: Jonathan Mole Harman Jonathan Mole Jonathan Mole Jonathan Mole Jonathan Jonathan Mole	10											F	-
## Additions termin pear: Jonathan Molte Page: 2 de p													-
					1		+	-					
## Additional and the control of the								-				1	
					1	-	1					1	+
Millione remis par: Jonethan Mole Echantillons regus par: Date: Date: Date: Page: 2 de					Ī		+	-			1	1	+
Millione remis par: Jonathan Mole Echantillons regus par: Date: Date: Page: 2 de							-						-
Millions remis par: Jonathan Mole Echantillons regus par: Date: Page: 2 de												I	-
Millions remis par: Jonathan Mole Echantillons regus par: Date: Page: 2 de													
Millions remis par: Jonathan Mole Échantillons reçus par: Date:				F									-
Atilions remis par: Jonathan Mole Échantillons régus par: Date:													Н
Attilions remis par: Jonathan Mole Échantillons reçus par: Date:					1		+	1					Н
titilions remis par: Jonathan Mole Échantillons reçus par: Date:					Ī		+	-					-
Attitions remis par: Jonathan Mole Échantillons reçus par: Page: 2 de Date:					Ī		+	+				İ	-
Date: 2 de				Échantillon	reçus par:								1
	Date:			Date:							Page:		

	usp			AGAT Labo	Boratoires	ordereau d 350 rue Frai	te demai	Bordereau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	/Ses abec Canada	1, G1P 4P3							
WSP (1135, Québe Téléph	WSP Canada inc. 1135, boul Lebourgneuf Québec (Québec) G2K DM5	Telècopieur, 418-523-2434	Délai d'	analyse requis 7 5 jours 7 72 hres	LE	48 hres 24 hres		6-12 hres Date requise:					& ž	Bon de commande: No de soumission:	ande:		
Numél Bon de Lieu de	Numéro du projet. Bon de commande: Lieu de prélèvement:	201-11330-29 Windfall Lake						Criteres a respecter	specter RMD (mat lixiviable) RDS (mat lixiviable) REIMR	ixiviable) xiviable)				A (* B Eau consommation Eau résurgence	o L	L	0
Prélevé p Chargé d Coumiel:		Jonathan Mole Steve St-Cyr steve st cyr@wsp.com / sirine boussorra@wsp.com	boussorra@wsp	woon		1				090-0							
Martine:	e: Sol Solide SAfilment	B Boue EU Eau usée ST Fau contacraine	ES Eaudes EF Effluent AF Affluent	Eau de surface Effluent Afflient				l, Ag, As, Ba, Be, C , Hg, K, Ll, Mg, Mn, , Sn, V et Zn)	enisinemisire	oures pétrollers C10							
	Eau potable Identific	Identfication de l'échantillon		Date de prélèvement	ment	Matrice	Nombre de pots	Métaux (A Cr, Cu, Fe ob, Sb, Se	ourificatio	Нудгосагі	d∀⊦						
-	F58-22-CF-1			2022-04-29	66	S	-	×	×	×					H	L	
2	F58-22-CF-2B			2022-04-29	62	S	+										
ო .	F58-22-CF-4			2022-04-29	63	S	-								+		
4 rc	F58-22-CF-5			2022-04-29	61 0	s v							1	-	1		
9	F60-22-CF-2B			2022-04-29	000	o w		×		×			İ	I			T
7	F60-22-CF-3			2022-04-29	65	S	-	×		×							
ω	F60-22-CF-4			2022-04-29	53	S	-							H			
												-		1	+	1	
												-	L		H		
															+		
														-			
														4	1		
												-	Ī	F			
															_		
														-		I	
															H		
												Ų	1				T
Echan Date:	Echantillons remis par: Date:	Jonathan Mole				Échantillons reçus par: Date:	s reçus pa	22						Page:	3e:	ę	2
																l	

NOM DU CLIENT: WSP CANADA INC.

1135 BOULEVARD LEBOURGNEUF

QUEBEC, QC G2K 0M5

(418) 623-7066

À L'ATTENTION DE: Sirine Boussorra

N° DE PROJET: 201-11330-29

N° BON DE TRAVAIL: 220890533

ANALYSE DES SOLS VÉRIFIÉ PAR: Hasti Kamalimoghadam, Chimiste, AGAT Montréal ORGANIQUE DE TRACE VÉRIFIÉ PAR: EmmanuelBrousseau, Chimiste, AGAT Québec

DATE DU RAPPORT: 11 mai 2022

NOMBRE DE PAGES: 18 VERSION*: 1

Pour tout complément d'information concernant cette analyse, veuillez contacter votre chargé(e) de projet client au (418) 266-5511.

Avia de non responsabilité:	

*Notes

- L'ensemble des travaux réalisés dans le présent document ont été effectués en utilisant des protocoles normalisés reconnus, ainsi que des pratiques et des méthodes généralement acceptées. En vue d'améliorer la performance, les méthodes analytiques d'AGAT pourraient comprendre des modifications issues des méthodes de référence spécifiées.
- Tous les échantillons seront éliminés trente (30) jours après réception au laboratoire à moins qu'une Entente d'entreposage à long terme ne soit signée et retournée. Certaines analyses spécialisées peuvent être exemptées. Veuillez communiquer avec votre chargé de projets à la clientèle pour plus d'informations.
- La responsabilité d'AGAT en ce qui concerne tout retard, exécution ou non-exécution de ces services s'applique uniquement envers le client et ne s'étend à aucune autre tierce partie. À moins qu'il n'en soit par ailleurs convenu expressément par écrit, la responsabilité d'AGAT se limite au coût réel de l'analyse ou des analyses spécifiques incluses dans les services.
- Sauf accord écrit préalable d'AGAT Laboratoires, ce certificat ne doit être reproduit que dans sa totalité.
- Les résultats d'analyse communiqués ci-joint ne concernent que les échantillons reçus par le laboratoire.
- L'application des lignes directrices est fournie « en l'état » sans garantie de quelque nature que ce soit, ni expresse ni tacite, y compris, mais sans s'y limiter, les garanties de qualité marchande, d'aptitude à un usage particulier ou de non-contrefaçon. AGAT n'assume aucune responsabilité à l'égard de toute erreur ou omission dans les directives que contient ce document.
- Toutes les informations rapportables sont disponibles sur demande auprès d'AGAT Laboratoires, conformément aux normes ISO/IEC 17025:2017, DR-12-PALA et/ou NELAP.

AGAT Laboratoires (V1) Page 1 de 18

N° BON DE TRAVAIL: 22O890533 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-	05-02								ATE DU RAPF	ORT: 2022-05-1	1
				IDENTIF	FICATION DE L'É	CHANTILLON:	F59-22-CF-2	F35-22-CF-2B	F35-22-CF-3	F36-22-CF-1B	F04-22-CF-1
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	ΓILLONNAGE:	2022-04-30	2022-05-01	2022-05-01	2022-05-01	2022-05-01
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3824357	3824362	3824363	3824365	3824367
Aluminium	mg/kg					30	5400	4620	3780	4850	4980
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	2[<a]< td=""><td>31[B-C]</td><td><1</td><td><1</td></a]<>	31[B-C]	<1	<1
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	<20	<20
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	1970	2300	1900	2300	2100
Chrome	mg/kg	100	250	800	4000	2	13[<a]< td=""><td>15[<a]< td=""><td>12[<a]< td=""><td>15[<a]< td=""><td>16[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	15[<a]< td=""><td>12[<a]< td=""><td>15[<a]< td=""><td>16[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>15[<a]< td=""><td>16[<a]< td=""></a]<></td></a]<></td></a]<>	15[<a]< td=""><td>16[<a]< td=""></a]<></td></a]<>	16[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	<2	3[<a]< td=""><td>5[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	5[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<>	4[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	2[<a]< td=""><td>6[<a]< td=""><td>23[<a]< td=""><td>3[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>23[<a]< td=""><td>3[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	23[<a]< td=""><td>3[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<>	14[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	3900	9220	13600	9220	8390
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	<20
Magnésium	mg/kg					100	1330	2470	1670	3100	2940
Manganèse	mg/kg	1000	1000	2200	11000	10	47[<a]< td=""><td>137[<a]< td=""><td>112[<a]< td=""><td>123[<a]< td=""><td>132[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	137[<a]< td=""><td>112[<a]< td=""><td>123[<a]< td=""><td>132[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	112[<a]< td=""><td>123[<a]< td=""><td>132[<a]< td=""></a]<></td></a]<></td></a]<>	123[<a]< td=""><td>132[<a]< td=""></a]<></td></a]<>	132[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	5[<a]< td=""><td>9[<a]< td=""><td>10[<a]< td=""><td>10[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	9[<a]< td=""><td>10[<a]< td=""><td>10[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	10[<a]< td=""><td>10[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<>	10[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<>	10[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	110	114	121	<100	365
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	<100	<100	<100	115
Vanadium	mg/kg					15	<15	17	<15	16	15
Zinc	mg/kg	140	500	1500	7500	5	10[<a]< td=""><td>17[<a]< td=""><td>21[<a]< td=""><td>17[<a]< td=""><td>25[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	17[<a]< td=""><td>21[<a]< td=""><td>17[<a]< td=""><td>25[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	21[<a]< td=""><td>17[<a]< td=""><td>25[<a]< td=""></a]<></td></a]<></td></a]<>	17[<a]< td=""><td>25[<a]< td=""></a]<></td></a]<>	25[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 22O890533 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

	-			· · · · · · · · · · · · · · · · · · ·	
DATE DE RÉCEPTION: 2022-05-02					DATE DU RAPPORT: 2022-05-11
		IDENT	TFICATION DE L'ÉCHANTILLON:	F04-22-CF-3	

Analyses inorganiques - WSP (Balayage métaux + mercure)

								-
				IDENTIFIC	CATION DE L'É	CHANTILLON:	F04-22-CF-3	
						MATRICE:	Sol	
					DATE D'ÉCHAN	ΓILLONNAGE:	2022-05-01	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3824368	
Aluminium	mg/kg					30	4390	
Antimoine	mg/kg	-	-	-		20	<20	
Argent	mg/kg	2	20	40	200	0.5	<0.5	
Arsenic	mg/kg	6	30	50	250	1	<1	
Baryum	mg/kg	340	500	2000	10000	20	<20	
Béryllium	mg/kg					1	<1	
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	
Calcium	mg/kg					100	1690	
Chrome	mg/kg	100	250	800	4000	2	14[<a]< td=""><td></td></a]<>	
Cobalt	mg/kg	25	50	300	1500	2	4[<a]< td=""><td></td></a]<>	
Cuivre	mg/kg	50	100	500	2500	1	10[<a]< td=""><td></td></a]<>	
Étain	mg/kg	5	50	300	1500	5	<5	
Fer	mg/kg					500	9310	
Lithium	mg/kg	-	-	-	-	20	<20	
Magnésium	mg/kg					100	3230	
Manganèse	mg/kg	1000	1000	2200	11000	10	129[<a]< td=""><td></td></a]<>	
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	
Molybdène	mg/kg	2	10	40	200	1	<1	
Nickel	mg/kg	50	100	500	2500	2	11[<a]< td=""><td></td></a]<>	
Plomb	mg/kg	50	500	1000	5000	5	<5	
Potassium	mg/kg					100	256	
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	
Sodium	mg/kg					100	<100	
Vanadium	mg/kg					15	16	
Zinc	mg/kg	140	500	1500	7500	5	20[<a]< td=""><td></td></a]<>	

Certifié par:

N° BON DE TRAVAIL: 220890533

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-05-02 DATE DU RAPPORT: 2022-05-11

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se réfèrer directement à la norme applicable

pour l'interprétation réglementaire.

3824357-3824368 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 22O890533 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Hydrocarbures	aromatiques	polycycliques	(HAP) (SoI)
,		1 - 1 - 1 - 1 - 1 - 1 - 1	() ()

DATE DE RÉCEPTION: 2022-05-0)2								ATE DU RAPPO	ORT: 2022-05-11
				IDENTIFI	CATION DE L'É	CHANTILLON:	F59-22-CF-2	F35-22-CF-2B	F04-22-CF-3	
						MATRICE:	Sol	Sol	Sol	
				I	DATE D'ÉCHAN	TILLONNAGE:	2022-04-30	2022-05-01	2022-05-01	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3824357	3824362	3824368	
Acénaphtène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	
Acénaphtylène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	
Anthracène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	
Benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	
Benzo (a) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	
Benzo (b) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	<0.1	
Benzo (j) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	<0.1	
Benzo (k) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	<0.1	
Benzo (b+j+k) fluoranthène	mg/kg	-	-	-	136	0.1	<0.1	<0.1	<0.1	
Benzo (c) phénanthrène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	
Benzo (g,h,i) pérylène	mg/kg	0.1	1	10	18	0.1	<0.1	<0.1	<0.1	
Chrysène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	
Dibenzo (a,h) anthracène	mg/kg	0.1	1	10	82	0.1	<0.1	<0.1	<0.1	
Dibenzo (a,i) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	
Dibenzo (a,h) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	
Dibenzo (a,l) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	
Diméthyl-7,12 benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	
Fluoranthène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	
Fluorène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	
Indéno (1,2,3-cd) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	
Méthyl-3 cholanthrène	mg/kg	0.1	1	10	150	0.1	<0.1	<0.1	<0.1	
Naphtalène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	<0.1	
Phénanthrène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	<0.1	
Pyrène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	
Méthyl-1 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	
Méthyl-2 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	
Diméthyl-1,3 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	
Triméthyl-2,3,5 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	

Certifié par:

N° BON DE TRAVAIL: 22O890533 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: Mohamed Dioumessy

Rec. p-Terphényl-d14

À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

108

		H	ydrocarbu	ires arom	atiques po	lycyclique	es (HAP) (S	Sol)		
DATE DE RÉCEPTION: 2022-09	5-02							Γ	DATE DU RAPPO	ORT: 2022-05-11
				IDENTIF	ICATION DE L'É	CHANTILLON:	F59-22-CF-2	F35-22-CF-2B	F04-22-CF-3	
						MATRICE:	Sol	Sol	Sol	
					DATE D'ÉCHAN	TILLONNAGE:	2022-04-30	2022-05-01	2022-05-01	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3824357	3824362	3824368	
% Humidité	%					0.2	22.3	17.8	3.3	
Étalon de recouvrement	Unités			Limites						
Rec. Naphtalène-d8	%			50-140			81	85	95	
Rec. Pyrène-d10	%			50-140			93	88	102	

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

50-140

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable pour l'interprétation réglementaire.

3824357-3824368 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 22O890533 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

TREEL VE TAIN. MOHAMICA DIO	unicooy						LILO DL	I IVEEE VEIVIEI	VI.VVIII GIGII L	<u> </u>	
			Hyd	Irocarbu	res pétrolie	rs C10-C50	O (Sol)				
DATE DE RÉCEPTION: 2022-05-0	02							[DATE DU RAPI	PORT: 2022-05-1	11
				IDENTI	FICATION DE L'É	CHANTILLON:	F59-22-CF-2	F35-22-CF-2B	F35-22-CF-3	F36-22-CF-1B	F04-22-CF-1
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	ITILLONNAGE:	2022-04-30	2022-05-01	2022-05-01	2022-05-01	2022-05-01
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3824357	3824362	3824363	3824365	3824367
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100
% Humidité	%					0.2	22.3	17.8	14.2	15.4	8.9
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			98	107	121	95	122
				IDENTI	FICATION DE L'É	CHANTILLON:	F04-22-CF-3				
						MATRICE:	Sol				
					DATE D'ÉCHAN	ITILLONNAGE:	2022-05-01				
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3824368				
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100				
% Humidité	%					0.2	3.3				
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			108				
i											


Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se réfèrer directement à la norme applicable pour l'interprétation réglementaire.

3824357-3824368 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR:Mohamed Dioumessy

N° BON DE TRAVAIL: 220890533 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

TREEZ TANKING MAING BIO				٩nal	/se d	es So	ols								
Date du rapport: 2022-05-11				DUPLICAT/			RIAU DE RI	ÉFÉREN	ICE	BLANG	FORT	IFIÉ	ÉCH.	FORTIF	FIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.	Lim	nites	% Récup.	Lin	nites
TANAMETRE	201	14 0011.	Dup "1	Dup #2	70 d court	méthode	70 recoup.	Inf.	Sup.	70 recoup.	Inf.	Sup.	, 70 recoup.	Inf.	Sup.
Analyses inorganiques - WSP (Ba	alayage mé	taux + me	ercure)												
Aluminium	3824740		14200	14800	3.9	< 30	79%	70%	130%	90%	80%	120%	NA	70%	130%
Antimoine	3824740		<20	<20	NA	< 20	141%	70%	130%	87%	80%	120%	86%	70%	130%
Argent	3824740		<0.5	<0.5	NA	< 0.5	106%	70%	130%	95%	80%	120%	95%	70%	130%
Arsenic	3824740		6	6	0.6	< 1	96%	70%	130%	92%	80%	120%	90%	70%	130%
Baryum	3824740		296	260	12.9	< 20	107%	70%	130%	96%	80%	120%	NA	70%	130%
Béryllium	3824740		<1	<1	NA	< 1	75%	70%	130%	80%	80%	120%	72%	70%	130%
Cadmium	3824740		<0.5	< 0.5	NA	< 0.5	99%	70%	130%	94%	80%	120%	94%	70%	130%
Calcium	3824740		3450	3470	0.5	< 100	96%	70%	130%	98%	80%	120%	92%	70%	130%
Chrome	3824740		22	23	5.8	< 2	103%	70%	130%	94%	80%	120%	90%	70%	130%
Cobalt	3824740		10	10	2.3	< 2	103%	70%	130%	95%	80%	120%	90%	70%	130%
Cuivre	3824740		22	22	3.0	< 1	103%	70%	130%	97%	80%	120%	97%	70%	130%
Étain	3824740		<5	<5	NA	< 5	99%	70%	130%	92%	80%	120%	92%	70%	130%
Fer	3824740		26600	27400	2.9	< 500	101%	70%	130%	98%	80%	120%	NA	70%	130%
Lithium	3824740		25	25	NA	< 20	95%	70%	130%	95%	80%	120%	88%	70%	130%
Magnésium	3824740		6890	7200	4.4	< 100	101%	70%	130%	94%	80%	120%	NA	70%	130%
Manganèse	3824740		431	418	3.0	< 10	97%	70%	130%	96%	80%	120%	89%	70%	130%
Mercure	3824740		< 0.2	<0.2	NA	< 0.2	88%	70%	130%	84%	80%	120%	82%	70%	130%
Molybdène	3824740		<1	<1	NA	< 1	106%	70%	130%	96%	80%	120%	95%	70%	130%
Nickel	3824740		25	27	9.2	< 2	99%	70%	130%	92%	80%	120%	91%	70%	130%
Plomb	3824740		16	16	NA	< 5	99%	70%	130%	96%	80%	120%	92%	70%	130%
Potassium	3824740		1960	1940	1.4	< 100	97%	70%	130%	98%	80%	120%	98%	70%	130%
Sélénium	3824740		<0.5	<0.5	NA	< 0.5	97%	70%	130%	96%	80%	120%	93%	70%	130%
Sodium	3824740		272	282	NA	< 100	84%	70%	130%	93%	80%	120%	88%	70%	130%
Vanadium	3824740		21	22	NA	< 15	97%	70%	130%	95%	80%	120%	90%	70%	130%
Zinc	3824740		75	76	2.1	< 5	99%	70%	130%	96%	80%	120%	93%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA : Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Mohamed Dioumessy N° BON DE TRAVAIL: 22O890533 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

		A	Analy	se o	rgani	que (de tra	ace							
Date du rapport: 2022-05-11			DUPLICATA			MATÉ	RIAU DE R	ICE	BLANC FORTIFIÉ			ÉCH. FORTI		FIÉ	
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de		Limites		% Récup.	Limites		% Récup.	Lin	nites
			''	''		méthode		Inf.	Sup.		Inf.	Sup.]	Inf.	Sup.
Hydrocarbures aromatiques p	oolycycliques ((HAP) (Sol	 I)		•		•	•	•	•	•	•			•
Acénaphtène	3824368	3824368	<0.1	<0.1	NA	< 0.1	93%	50%	140%	104%	50%	140%	93%	50%	140%
Acénaphtylène	3824368	3824368	<0.1	<0.1	NA	< 0.1	50%	50%	140%	96%	50%	140%	79%	50%	140%
Anthracène	3824368	3824368	<0.1	<0.1	NA	< 0.1	89%	50%	140%	102%	50%	140%	88%	50%	140%
Benzo (a) anthracène	3824368	3824368	<0.1	<0.1	NA	< 0.1	89%	50%	140%	95%	50%	140%	78%	50%	140%
Benzo (a) pyrène	3824368		<0.1	<0.1	NA	< 0.1	75%	50%	140%	93%	50%	140%	82%	50%	140%
Benzo (b) fluoranthène	3824368	3824368	<0.1	<0.1	NA	< 0.1	80%	50%	140%	89%	50%	140%	65%	50%	140%
Benzo (j) fluoranthène	3824368		<0.1	<0.1	NA	< 0.1	82%	50%	140%	97%	50%	140%	75%	50%	140%
Benzo (k) fluoranthène	3824368	3824368	<0.1	<0.1	NA	< 0.1	81%	50%	140%	98%	50%		69%	50%	
Benzo (c) phénanthrène	3824368		<0.1	<0.1	NA	< 0.1	96%	50%	140%	101%	50%	140%	86%	50%	140%
Benzo (g,h,i) pérylène	3824368		<0.1	<0.1	NA	< 0.1	66%	50%	140%	82%	50%	140%	63%	50%	140%
Chrysène	3824368	3824368	<0.1	<0.1	NA	< 0.1	90%	50%	140%	100%	50%	140%	86%	50%	140%
Dibenzo (a,h) anthracène	3824368		<0.1	<0.1	NA	< 0.1	67%	50%	140%	81%	50%	140%	63%	50%	140%
Dibenzo (a,i) pyrène	3824368		<0.1	<0.1	NA	< 0.1	49%	50%	140%	60%	50%		45%	50%	140%
Dibenzo (a,h) pyrène	3824368		<0.1	<0.1	NA	< 0.1	54%	50%	140%	59%	50%	140%	51%	50%	140%
Dibenzo (a,l) pyrène	3824368		<0.1	<0.1	NA	< 0.1	58%	50%	140%	78%	50%	140%	54%	50%	140%
Diméthyl-7,12 benzo (a) anthracène	3824368	3824368	<0.1	<0.1	NA	< 0.1	100%	50%	140%	148%	50%	140%	94%	50%	140%
Fluoranthène	3824368	3824368	<0.1	<0.1	NA	< 0.1	100%	50%	140%	106%	50%	140%	90%	50%	140%
Fluorène	3824368		<0.1	<0.1	NA	< 0.1	98%	50%	140%	104%	50%	140%	87%	50%	140%
Indéno (1,2,3-cd) pyrène	3824368		<0.1	<0.1	NA	< 0.1	67%	50%	140%	80%	50%	140%	61%	50%	140%
Méthyl-3 cholanthrène	3824368	3824368	<0.1	<0.1	NA	< 0.1	15%	50%	140%	68%	50%	140%	44%	50%	140%
Naphtalène	3824368	3824368	<0.1	<0.1	NA	< 0.1	101%	50%	140%	107%	50%	140%	96%	50%	140%
Phénanthrène	3824368		<0.1	<0.1	NA	< 0.1	97%	50%	140%	104%	50%	140%	93%	50%	140%
Pyrène	3824368		<0.1	<0.1	NA	< 0.1	98%	50%	140%	108%	50%	140%	95%	50%	140%
Méthyl-1 naphtalène	3824368		<0.1	<0.1	NA	< 0.1	95%	50%	140%	99%	50%	140%	90%	50%	140%
Méthyl-2 naphtalène	3824368		<0.1	<0.1	NA	< 0.1	109%	50%	140%	110%	50%	140%	102%	50%	140%
Diméthyl-1,3 naphtalène	3824368 ;	3824368	<0.1	<0.1	NA	< 0.1	99%	50%	140%	103%	50%	140%	92%	50%	140%
Triméthyl-2,3,5 naphtalène	3824368		<0.1	<0.1	NA	< 0.1	99%	50%	140%	103%	50%	140%	91%	50%	140%
Rec. Naphtalène-d8	3824368		95	90	5.5	89	96%	50%	140%	102%	50%	140%	90%	50%	140%
Rec. Pyrène-d10	3824368		102	90	12.6	92	93%	50%	140%	103%	50%	140%	86%	50%	140%
Rec. p-Terphényl-d14	3824368		108	102	5.9	107	96%	50%	140%	104%	50%		92%	50%	140%
% Humidité	3824367	3824367	8.9	9.1	2.1	< 0.2	84%	80%	120%	NA			NA		

Commentaires: Le pourcentage de récupération du matériau de référence en Méthyl-3 cholanthrène est non conforme. La validité de l'analyse est démontrée par la conformité des autres éléments de contrôle de qualité.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

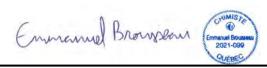
L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Hydrocarbures pétroliers C10-C50 (Sol)

Hydrocarbures pétroliers C10 à C50	3824368 3824368	<100	<100	NA	< 100	133%	60%	140%	104%	60%	140%	128%	60%	140%
Rec. Nonane % Humidité	3824368 3824368 3824367 3824367	108 8.9	107 9.1	0.9	108 < 0.2	128% 84%	60% 80%	140% 120%	104% NA	60%	140%	127% NA	60%	140%
% Humaite	3024307 3024307	0.9	9.1	2.1	< 0.2	0470	00%	120%	INA			INA		

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Mohamed Dioumessy N° BON DE TRAVAIL: 220890533 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake


Analyse organique de trace (Suite)															
Date du rapport: 2022-05-11 DUPLICATA						MATÉRIAU DE RÉFÉRENCE				BLANC FORTIFIÉ			ÉCH. FORTIFIÉ		
PARAMÈTRE	ARAMÈTRE Lot N° éc	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Limites Inf. Sup.		% Récup.	Limites		% Récup.	Limites	
			''			methode					Inf.	Sup.		Inf.	Sup.

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 220890533

N° DE PROJET: 201-11330-29

À L'ATTENTION DE: Sirine Boussorra

Date du rapport: 11 mai 2022	MATÉRIAU DE RÉFÉRENCE			BLANC FORTIFIÉ			ÉCH. FORTIFIÉ			
PARAMÈTRE	N° éch.	% Récup.	Limites		% Récup.	Limites		% Récup.		nites
			Inf.	Sup.		Inf.	Sup.		Inf.	Sup.

Analyses inorganiques - WSP (Balayage métaux + mercure)

Antimoine 141% 70% 130% 87% 80% 120% 86% 70% 130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 220890533

N° DE PROJET: 201-11330-29

À L'ATTENTION DE: Sirine Boussorra

N DE FROJET. 201-11330-29			LAI	ILIVI	ION DL.	Sirili	- Dous	Solia		
Date du rapport: 11 mai 2022		MATÉRIAU D	E RÉFÉ	RENCE	BLAN	C FORT	TFIÉ	ÉCH.	FORTI	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lim	iites	% Récup.		nites	% Récup.		nites
.,		70 11000 [Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.
Hydrocarbures aromatiques polycycliques (HAP) (Sol)	,									
Dibenzo (a,i) pyrène	3824368	49%	50%	140%	60%	50%	140%	45%	50%	140%
Diméthyl-7,12 benzo (a) anthracène	3824368	100%	50%	140%	148%	50%	140%	94%	50%	140%
Méthyl-3 cholanthrène	3824368	15%	50%	140%	68%	50%	140%	44%	50%	140%

Commentaires: Le pourcentage de récupération du matériau de référence en Méthyl-3 cholanthrène est non conforme. La validité de l'analyse est démontrée par la conformité des autres éléments de contrôle de qualité.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Mohamed Dioumessy N° BON DE TRAVAIL: 220890533 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

I NELEVE I AN. Monamed Dioun	1000 y		_	ILO DE I NELEVEINIENI.	William Lake
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse des Sols		•	•	•	-
Aluminium	2022-05-06	2022-05-06	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Antimoine	2022-05-06	2022-05-06	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Argent	2022-05-06	2022-05-06	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Arsenic	2022-05-06	2022-05-06	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Baryum	2022-05-06	2022-05-06	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Béryllium	2022-05-06	2022-05-06	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Cadmium	2022-05-06	2022-05-06	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Calcium	2022-05-06	2022-05-06	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Chrome	2022-05-06	2022-05-06	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cobalt	2022-05-06	2022-05-06	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cuivre	2022-05-06	2022-05-06	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Étain	2022-05-06	2022-05-06	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Fer	2022-05-06	2022-05-06	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Lithium	2022-05-06	2022-05-06	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Magnésium	2022-05-06	2022-05-06	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Manganèse	2022-05-06	2022-05-06	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Mercure	2022-05-06	2022-05-06	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Molybdène	2022-05-06	2022-05-06	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Nickel	2022-05-06	2022-05-06	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Plomb	2022-05-06	2022-05-06	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Potassium	2022-05-06	2022-05-06	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sélénium	2022-05-06	2022-05-06	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sodium	2022-05-06	2022-05-06	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Vanadium	2022-05-06	2022-05-06	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Zinc	2022-05-06	2022-05-06	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR: Mohamed Dioumessy N° BON DE TRAVAIL: 220890533
À L'ATTENTION DE: Sirine Boussorra
LIEU DE PRÉLÈVEMENT: Windfall Lake

PRELEVE PAR: Mohamed Dioumes	ssy			LIEU DE PRELEVEMENT:	windfall Lake
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse organique de trace		•	•	•	<u>'</u>
Acénaphtène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Acénaphtylène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Anthracène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (a) anthracène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (a) pyrène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (b) fluoranthène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (j) fluoranthène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (k) fluoranthène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (b+j+k) fluoranthène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (c) phénanthrène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (g,h,i) pérylène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Chrysène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,h) anthracène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,i) pyrène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,h) pyrène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,l) pyrène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Diméthyl-7,12 benzo (a) anthracène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Fluoranthène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Fluorène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
ndéno (1,2,3-cd) pyrène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Méthyl-3 cholanthrène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Naphtalène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Phénanthrène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Pyrène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Méthyl-1 naphtalène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Méthyl-2 naphtalène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Diméthyl-1,3 naphtalène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Friméthyl-2,3,5 naphtalène	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. Naphtalène-d8	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. Pyrène-d10	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. p-Terphényl-d14	2022-05-06	2022-05-06	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
% Humidité	2022-05-05	2022-05-05	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE
Hydrocarbures pétroliers C10 à C50	2022-05-06	2022-05-06	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2022-05-06	2022-05-06	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2022-05-05	2022-05-05	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE

WSP Canada inc.		Détai d'analyse requis								-			
1135, boul Lebourgneuf Québec (Québec) GZK 0M5 Téléphone 418-623-7066	f OM5 S Telecopieur 418-823-2434		LIL	48 hres 24 hres	<u></u>	6-12 hres Date requise:					L L	Bon de commande; No de soumission:	
Numèro du projet: Bon de commande: Lieu de prélèvement.	201-11330-29 Windfall Lake				4.4	Criteres a respecter	pecter RMD (mat lixiviable) RDS (mat lixiviable) REIMR					L	0
Prélevé par.	mohamed Dioumessy	To be an expression of the first services.		THE PERSON NAMED IN COLUMN		,				-	Eau résuigence	Jence	
Charge de projet:	Steve St-Cyr				-Ac	Co,		lii-					-
Courtrel,	steve st.cyr@wsp.com / sirine boussorra@wsp.com	ine boussorra@wsp com			4 7	No' N	090						
						i aM.	_						
						(uz							-
S Sol		ES Eau de surface				(, LI,	_						
SI Solide SE Sédiment EP Eau potable	EU Eau usée ST Eau souterraine	EF Effluent AF Affluent				(Al, Ag, i Fe, Hg, K Se, Sn, /	tion supp						
φ	Identification de l'échantillon	Date de	Date de prélèvement	Matrice	Nombre	p' ap'		dV					
1 F59-22-CF-1A	-1A	cuc	2022-04-30	o	de pors	d 0	+	1		-	1		1
2 F59-22-CF-2	-2	202	2022-04-30	0		>	,	-					
	4	202	2022-04-30	o v	-	<	<	<			1		-
4 F59-22-CF-5	φ.	202	2022-04-30	S						-			+
5 F40-22-CF-1	-1	202	2022-04-30	S	-	×	×	-		-	I		1
	-1	202	2022-05-01	S	-			1			-		+
7 F35-22-CF-2B	-2B	202	2022-05-01	S	-	×	×	×					1
_	ep.	202	2022-05-01	S	-	×	×	-					+
9 F36-22-CF-1A	-1A	202	2022-05-01	S	-		-						-
F36-22-CF-1B	-18	202	2022-05-01	S	-	×	×						H
													H
							1						
											1		
													t
							3						+
													-
		-											
							1						
													-
													+
													+
										1			+
							-		E		L	Į.	-
													H
tillons	mohamed Dioumessy	sy		Echaptillone source									1
				- Claim	is reçus par								

	usp			AGAT Labo	Bor ratoires : 3.	dereau de 50 rue Franc	e deman quet Queb	Bordereau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	/Ses	, G1P 4P3				1				
WSP 1135, Quebr Telept	WSP Canada inc. 1135, boul. Lebourgneuf Guebec (Guebec) GZK 0M5 Telephone 418-623-7066	5 Télècopieur. 418-623-2434	Detail d'a		7 7 48	48 hres 24 hres	Ē	6-12 hres Date requise:						L L	Bon de commande: No de soumission:	ande: sion:	4	
Nume Bon de Lieu d	ojet. ande: rement:	201-11330-29 Windfall Lake					0	Criteros a respector TI RMD (r TRDS (n	specier RMD (mat lixiviable) RDS (mat lixiviable) REIMR	xiviable) kiviable)			And Nace	Eauce	A F B Eau consommation	o L	l	۵
Preteve p Charge d Courrier	ar. s projet:	Mohamed Dioumessy Steve St-Cyr steve st-cyr	ne boussorra@wsp.	com						C20						-		
								a, Be, Ca Mg, Mn, M	entaire	lers C10-								
Matrice; S So SE SE EP En	Matrice; S Sol SI Solide SE Sédiment EP Eau potablie	Boue EU Eau usée ST Eau souterraine	ES Eau de surface EF Effluent AF Affluent	surface				: (Al, Ag, As, B Fe, Hg, K, Ll, I Se, Sn, V et Z	eməlqque notti	lorièq gerudin								
		Identification de l'échantillon		Date de prélèvement		Matrice de	Nombre de pots	Métaux Cr, Cu, Pb, Sb,	solline	ήλαιοσ	d∀ŀ							
-	F36-22-CF-2B	8		2022-05-01		S	-		1	4	1	-			ŀ	-	1	10
7	4			2022-05-01		S	-	×		×						H		
m ,				2022-05-01		S	-	×		×	×					-		
4 r	F04-22-CF-7			2022-05-01		S	-								F	+		
n d	4			2022-05-01		S	-									-		I
0 ~	L04-22-01-3			2022-05-01		S	-									H		
ω												-			1	-		
o					-		1					-		1	1	-		T
10												-		-	-	+		I
												-		1	1	1		
														H		-		
							1											
					1		1											
						1	1						1			-		
					-	-	T						1	1		+		
							-				t	-			İ	1		I
					1		1											
					-	+	1											
							1								1	-		I
											ľ		-		ŀ			T
											Ī					-		
																Н		
Échant	Échantillons remis par	Mohamed Diotraesex			1								3			-		
Date:	2022-05-02				Echar Date:	Echantillons reçus par: Date:	scus par:								Page:	2	g	2
											l	١		l			1	1

À envoyer au bureau d'AGAT Québec

		Bordereau de demande d'analyses AGAT Laboratoire 1185 Rue des Foreurs, Val-d'Or QC	Bordereau de demande d'analyses Laboratoire 1185 Rue des Foreurs, Val-d'O	e d'analy Foreurs, Va	ses II-d'Or QC	S	77700000	
WSP Canada inc. 1600, boulevard René-Lévesque Ouest 11e étage Montréal (Québec) H3H 1P9 Téléphone: 514-340-0046	Délai d'analyse requis FT 5 jours 72 hres	luis irs	48 hres 24 hres		6-12 hres Date requise:		. Bon de commande:	
Numéro du projet: 201-11330-29 Soumission: Lieu de prélèvement: Infrastructures future mine Windfall	s Windfall			0	Critères à respecter RMD (mat. lixiviable) RDS (mat. lixiviable)		A	L
Chargée de projet: Sirine Boussora Sirine. Boussora@wsp.com		(418)623-2254 C; 581-398-8518	518					
Commentaires: En attente des demandes d'analyses	d'analyses (À venir)	nir)						
Matrice: S Sol B Boue SI Solide EU Eau usée SE Sédiment ST Eau souterraine EP Eau potable	ES Eau de surface EF Effluent AF Affluent	83						
Identification de l'échantillon		Date de prélèvement	Matrice	Nombre de pots	oro qi qAi kisau			
1 F-59-22 CF-1A	***	30-04-22	ώ	-	4			1
2 F-59-22 CF-2			S	_				1
F-SI			S					
4 F-54-22 CF-	ما	=	S	_				
الما	-	30-04-25	S	-				-
F-35-	9	22-50-10	S	_				
7 F-35-22 CF-2	8		တ	_				
8 F-35-22 CF-	3		ဟ	_				
T	4		S	_				-
10 +-36-22 CF-	18	=	S					
Echantillons remis par: Charmed Date: (O) - 05 - 72072	1 Coursesso	5	Échantillons reçus par.		NOVO	275-2014	Page:	98
				2	8			1

À envoyer au bureau d'AGAT Québec

	Borderea AGAT Laboratoir	Bordereau de demande d'analyses AGAT Laboratoire 1185 Rue des Foreurs, Val-d'Or QC	alyses Val-d'Or QC	
WSP Canada inc. 1600, boulevard René-Lévesque Ouest 11e étage Montréal (Québec) H3H 1P9 Téléphone: 514-340-0046	Délai d'analyse requis [7] 5 jours 72 hres	48 hres [7],	6-12 hres Date requise:	│ │
Numěro du projet: 201-11330-29 Soumission:			Critères à respecter	
Lieu de prélèvement: Infrastructures future mine Windfall	s Windfall		RDS (mat lixiviable) REIMR	Eau consommation Eau résurgence
Courriel: Sirine Boussora Courriel: Sirine.Boussora@wsp.com	(418)623-2254 C: 581-398-8518 2wsp.com	85		
Commentaires: En attente des demandes d'analyses	d'analyses (À venir)			
Matrice: S Sol B Boue SI Solide EU Eau usée SE Sédiment ST Eau souterraine EP Euu potable ST Eau souterraine	ES Eau de surface EF Effluent AF Affluent			
Identification de l'échantillon	Date de prélèvement	Matrice de pots	-P C10- HAP Wétaux	
1 F-36-22 CF-2	22-50-10	S		
F-04-22 CF-1	_	S		
F-04-22 CF-		s		
1		S		
6 1-06-22 01-70	01-05-22	s s		
7		S		
8		S		
O	(S		
10		S		
Échantillons remis par:	2702-SO-	Echantillons reçus par.	P	3-05-2012 Page: 2 de 2
		1		

13h13 PM

NOM DU CLIENT: WSP CANADA INC.

1135 BOULEVARD LEBOURGNEUF

QUEBEC, QC G2K 0M5

(418) 623-7066

À L'ATTENTION DE: Sirine Boussorra

N° DE PROJET: 201-11330-29 N° BON DE TRAVAIL: 220892570

ANALYSE DES SOLS VÉRIFIÉ PAR: Hasti Kamalimoghadam, Chimiste, AGAT Montréal ORGANIQUE DE TRACE VÉRIFIÉ PAR: EmmanuelBrousseau, Chimiste, AGAT Québec

DATE DU RAPPORT: 19 mai 2022

NOMBRE DE PAGES: 17 VERSION*: 1

Pour tout complément d'information concernant cette analyse, veuillez contacter votre chargé(e) de projet client au (418) 266-5511.

Avia de non responsabilité:	

*Notes

- L'ensemble des travaux réalisés dans le présent document ont été effectués en utilisant des protocoles normalisés reconnus, ainsi que des pratiques et des méthodes généralement acceptées. En vue d'améliorer la performance, les méthodes analytiques d'AGAT pourraient comprendre des modifications issues des méthodes de référence spécifiées.
- Tous les échantillons seront éliminés trente (30) jours après réception au laboratoire à moins qu'une Entente d'entreposage à long terme ne soit signée et retournée. Certaines analyses spécialisées peuvent être exemptées. Veuillez communiquer avec votre chargé de projets à la clientèle pour plus d'informations.
- La responsabilité d'AGAT en ce qui concerne tout retard, exécution ou non-exécution de ces services s'applique uniquement envers le client et ne s'étend à aucune autre tierce partie. À moins qu'il n'en soit par ailleurs convenu expressément par écrit, la responsabilité d'AGAT se limite au coût réel de l'analyse ou des analyses spécifiques incluses dans les services.
- Sauf accord écrit préalable d'AGAT Laboratoires, ce certificat ne doit être reproduit que dans sa totalité.
- Les résultats d'analyse communiqués ci-joint ne concernent que les échantillons reçus par le laboratoire.
- L'application des lignes directrices est fournie « en l'état » sans garantie de quelque nature que ce soit, ni expresse ni tacite, y compris, mais sans s'y limiter, les garanties de qualité marchande, d'aptitude à un usage particulier ou de non-contrefaçon. AGAT n'assume aucune responsabilité à l'égard de toute erreur ou omission dans les directives que contient ce document.
- Toutes les informations rapportables sont disponibles sur demande auprès d'AGAT Laboratoires, conformément aux normes ISO/IEC 17025:2017, DR-12-PALA et/ou NELAP.

AGAT Laboratoires (V1) Page 1 de 17

N° BON DE TRAVAIL: 22O892570 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022	2-05-06							[ATE DU RAPF	ORT: 2022-05-1	9
				IDENTIFIC	CATION DE L'É	CHANTILLON:	F05-22-CF-1	F06-22-CF-2	F06-22-CF-3	F01-22-CF-1B	F01-22-CF-2
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					ATE D'ÉCHAN	TILLONNAGE:	2022-05-02	2022-05-02	2022-05-02	2022-05-05	2022-05-05
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3847642	3847784	3847785	3847790	3847791
Aluminium	mg/kg					30	5040	3070	3550	6720	4410
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	3[<a]< td=""><td><1</td><td><1</td><td><1</td><td><1</td></a]<>	<1	<1	<1	<1
Baryum	mg/kg	340	500	2000	10000	20	26[<a]< td=""><td><20</td><td><20</td><td><20</td><td><20</td></a]<>	<20	<20	<20	<20
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	2140	1410	1310	1050	1680
Chrome	mg/kg	100	250	800	4000	2	14[<a]< td=""><td>11[<a]< td=""><td>10[<a]< td=""><td>20[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>10[<a]< td=""><td>20[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	10[<a]< td=""><td>20[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<>	20[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<>	14[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	4[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""><td>3[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>4[<a]< td=""><td>3[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>3[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<>	4[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	14[<a]< td=""><td>4[<a]< td=""><td>9[<a]< td=""><td>4[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>9[<a]< td=""><td>4[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	9[<a]< td=""><td>4[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<>	9[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	8230	5660	5270	8320	7800
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	<20
Magnésium	mg/kg					100	3220	1980	2030	2360	3130
Manganèse	mg/kg	1000	1000	2200	11000	10	129[<a]< td=""><td>82[<a]< td=""><td>88[<a]< td=""><td>80[<a]< td=""><td>116[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	82[<a]< td=""><td>88[<a]< td=""><td>80[<a]< td=""><td>116[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	88[<a]< td=""><td>80[<a]< td=""><td>116[<a]< td=""></a]<></td></a]<></td></a]<>	80[<a]< td=""><td>116[<a]< td=""></a]<></td></a]<>	116[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	11[<a]< td=""><td>8[<a]< td=""><td>9[<a]< td=""><td>11[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>9[<a]< td=""><td>11[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	9[<a]< td=""><td>11[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<>	10[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	506	141	142	104	206
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	154	<100	<100	<100	<100
Vanadium	mg/kg					15	15	<15	<15	<15	16
Zinc	mg/kg	140	500	1500	7500	5	24[<a]< td=""><td>13[<a]< td=""><td>15[<a]< td=""><td>16[<a]< td=""><td>20[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>15[<a]< td=""><td>16[<a]< td=""><td>20[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	15[<a]< td=""><td>16[<a]< td=""><td>20[<a]< td=""></a]<></td></a]<></td></a]<>	16[<a]< td=""><td>20[<a]< td=""></a]<></td></a]<>	20[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 22O892570 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022	-05-06							Ε	ATE DU RAPP	ORT: 2022-05-1	19
				IDENTIFIC	CATION DE L'É	CHANTILLON:	F85-22-CF-2	F02-22-CF-1B	F02-22-CF-3	F43-22-CF-1	F43-22-CF-2
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2022-05-04	2022-05-02	2022-05-02	2022-05-03	2022-05-03
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3847797	3847800	3847801	3847804	3847805
Aluminium	mg/kg					30	5260	6880	4590	5250	6730
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	<1	<1	<1	<1
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	22[<a]< td=""><td>27[<a]< td=""></a]<></td></a]<>	27[<a]< td=""></a]<>
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	1630	1360	1810	2440	2670
Chrome	mg/kg	100	250	800	4000	2	12[<a]< td=""><td>18[<a]< td=""><td>14[<a]< td=""><td>15[<a]< td=""><td>24[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	18[<a]< td=""><td>14[<a]< td=""><td>15[<a]< td=""><td>24[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	14[<a]< td=""><td>15[<a]< td=""><td>24[<a]< td=""></a]<></td></a]<></td></a]<>	15[<a]< td=""><td>24[<a]< td=""></a]<></td></a]<>	24[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	4[<a]< td=""><td>5[<a]< td=""><td>4[<a]< td=""><td>5[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	5[<a]< td=""><td>4[<a]< td=""><td>5[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>5[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<></td></a]<>	5[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<>	5[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	10[<a]< td=""><td>7[<a]< td=""><td>12[<a]< td=""><td>17[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>12[<a]< td=""><td>17[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>17[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<>	17[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<>	12[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	8370	8430	8470	8780	12000
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	<20
Magnésium	mg/kg					100	3550	3350	3240	3810	3880
Manganèse	mg/kg	1000	1000	2200	11000	10	108[<a]< td=""><td>116[<a]< td=""><td>136[<a]< td=""><td>134[<a]< td=""><td>152[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	116[<a]< td=""><td>136[<a]< td=""><td>134[<a]< td=""><td>152[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	136[<a]< td=""><td>134[<a]< td=""><td>152[<a]< td=""></a]<></td></a]<></td></a]<>	134[<a]< td=""><td>152[<a]< td=""></a]<></td></a]<>	152[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	2[A]
Nickel	mg/kg	50	100	500	2500	2	10[<a]< td=""><td>12[<a]< td=""><td>10[<a]< td=""><td>11[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>10[<a]< td=""><td>11[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	10[<a]< td=""><td>11[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<>	12[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	191	182	355	413	801
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	<100	<100	<100	195
Vanadium	mg/kg					15	<15	<15	15	16	19
Zinc	mg/kg	140	500	1500	7500	5	23[<a]< td=""><td>27[<a]< td=""><td>24[<a]< td=""><td>25[<a]< td=""><td>33[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	27[<a]< td=""><td>24[<a]< td=""><td>25[<a]< td=""><td>33[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	24[<a]< td=""><td>25[<a]< td=""><td>33[<a]< td=""></a]<></td></a]<></td></a]<>	25[<a]< td=""><td>33[<a]< td=""></a]<></td></a]<>	33[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 220892570

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-05-06 DATE DU RAPPORT: 2022-05-19

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se réfèrer directement à la norme applicable

pour l'interprétation réglementaire.
3847642-3847805 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 22O892570 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Hydrocarbures aromatiques polycycliques (HAP) (SoI)

DATE DE RÉCEPTION: 2022-05-0	06							Ι	DATE DU RAPP	ORT: 2022-05-1	19
				IDENTIFI	CATION DE L'É	CHANTILLON:	F05-22-CF-1	F06-22-CF-2	F01-22-CF-1B	F85-22-CF-2	F43-22-CF-1
						MATRICE:	Sol	Sol	Sol	Sol	Sol
				I	DATE D'ÉCHAN	TILLONNAGE:	2022-05-02	2022-05-02	2022-05-05	2022-05-04	2022-05-03
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3847642	3847784	3847790	3847797	3847804
Acénaphtène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acénaphtylène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (a) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (b) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (j) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (k) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (b+j+k) fluoranthène	mg/kg	-	-	-	136	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (c) phénanthrène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (g,h,i) pérylène	mg/kg	0.1	1	10	18	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo (a,h) anthracène	mg/kg	0.1	1	10	82	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo (a,i) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo (a,h) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo (a,l) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Diméthyl-7,12 benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indéno (1,2,3-cd) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Méthyl-3 cholanthrène	mg/kg	0.1	1	10	150	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Naphtalène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phénanthrène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Méthyl-1 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Méthyl-2 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Diméthyl-1,3 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Triméthyl-2,3,5 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Certifié par:

N° BON DE TRAVAIL: 22O892570 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

		H	ydrocarbu	ıres aron	natiques po	lycyclique	es (HAP) (S	ol)			
DATE DE RÉCEPTION: 2022-09	5-06							ļ	DATE DU RAPP	ORT: 2022-05-	19
				IDENTII	FICATION DE L'É	MATRICE:	F05-22-CF-1 SoI 2022-05-02	F06-22-CF-2 Sol 2022-05-02	F01-22-CF-1B Sol 2022-05-05	F85-22-CF-2 Sol 2022-05-04	F43-22-CF-1 Sol 2022-05-03
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C/N: D	LDR	3847642	3847784	3847790	3847797	3847804
% Humidité	%					0.2	7.1	6.1	15.5	3.1	1.7
Étalon de recouvrement	Unités			Limites							
Rec. Naphtalène-d8	%			50-140			81	89	77	88	92
Rec. Pyrène-d10	%			50-140			87	93	81	93	91
Rec. p-Terphényl-d14	%			50-140			90	97	87	100	100

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable pour l'interprétation réglementaire.

3847642-3847804 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

pour l'interprétation réglementaire.

Certificat d'analyse

N° BON DE TRAVAIL: 22O892570 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

			Hyd	rocarbu	res pétrolie	rs C10-C50) (Sol)				
DATE DE RÉCEPTION: 2022-05-0	06							Г	DATE DU RAPE	PORT: 2022-05-1	19
				IDENTI	FICATION DE L'É	CHANTILLON:	F05-22-CF-1	F06-22-CF-2	F06-22-CF-3	F01-22-CF-1B	F01-22-CF-2
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2022-05-02	2022-05-02	2022-05-02	2022-05-05	2022-05-05
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3847642	3847784	3847785	3847790	3847791
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100
% Humidité	%					0.2	7.1	6.1	18.0	15.5	8.5
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			119	106	114	117	120
				IDENTI	FICATION DE L'É	CHANTILLON:	F85-22-CF-2	F02-22-CF-1B	F02-22-CF-3	F43-22-CF-1	F43-22-CF-2
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2022-05-04	2022-05-02	2022-05-02	2022-05-03	2022-05-03
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3847797	3847800	3847801	3847804	3847805
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100
% Humidité	%					0.2	3.1	2.9	3.5	1.7	3.4
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			119	109	114	116	97

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se réfèrer directement à la norme applicable

3847642-3847805 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice. Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR: Mohamed Dioumessy N° BON DE TRAVAIL: 220892570 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

			,	Analy	/se d	es So	ols								
Date du rapport: 2022-05-19				DUPLICAT	A	MATÉ	RIAU DE RI	ÉFÉREN	NCE	BLANG	C FORT	IFIÉ	ÉCH.	FORTI	ΞIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.	Lin	nites	% Récup.	Lin	nites
TANAMETRE	Lot	IN COII.	Бир #1	Dup #2	70 d coart	méthode	70 Nocup.	Inf.	Sup.	, 70 Nocup.	Inf.	Sup.	, 70 Recup.	Inf.	Sup.
Analyses inorganiques - WSP (I	Balayage mé	taux + me	ercure)		•			•	•			•			
Aluminium	3852782		19900	19800	0.3	< 30	53%	70%	130%	87%	80%	120%	NA	70%	130%
Antimoine	3852782		<20	<20	NA	< 20	119%	70%	130%	79%	80%	120%	76%	70%	130%
Argent	3852782		<0.5	<0.5	NA	< 0.5	91%	70%	130%	92%	80%	120%	89%	70%	130%
Arsenic	3852782		3	3	NA	< 1	77%	70%	130%	80%	80%	120%	77%	70%	130%
Baryum	3852782		57	58	NA	< 20	86%	70%	130%	91%	80%	120%	110%	70%	130%
Béryllium	3852782		<1	<1	NA	< 1	77%	70%	130%	89%	80%	120%	85%	70%	130%
Cadmium	3852782		<0.5	< 0.5	NA	< 0.5	80%	70%	130%	84%	80%	120%	82%	70%	130%
Calcium	3852782		965	976	1.2	< 100	79%	70%	130%	87%	80%	120%	83%	70%	130%
Chrome	3852782		25	26	2.0	< 2	85%	70%	130%	86%	80%	120%	83%	70%	130%
Cobalt	3852782		13	14	3.9	< 2	86%	70%	130%	87%	80%	120%	83%	70%	130%
Cuivre	3852782		17	18	6.1	< 1	83%	70%	130%	86%	80%	120%	87%	70%	130%
Étain	3852782		<5	<5	NA	< 5	81%	70%	130%	84%	80%	120%	83%	70%	130%
Fer	3852782		29900	30200	0.9	< 500	82%	70%	130%	83%	80%	120%	NA	70%	130%
Lithium	3852782		31	32	NA	< 20	81%	70%	130%	92%	80%	120%	88%	70%	130%
Magnésium	3852782		9120	9080	0.5	< 100	79%	70%	130%	87%	80%	120%	NA	70%	130%
Manganèse	3852782		913	924	1.2	< 10	84%	70%	130%	87%	80%	120%	118%	70%	130%
Mercure	3852782		<0.2	<0.2	NA	< 0.2	81%	70%	130%	88%	80%	120%	74%	70%	130%
Molybdène	3852782		<1	<1	NA	< 1	95%	70%	130%	96%	80%	120%	93%	70%	130%
Nickel	3852782		33	33	1.9	< 2	87%	70%	130%	88%	80%	120%	87%	70%	130%
Plomb	3852782		12	12	NA	< 5	84%	70%	130%	88%	80%	120%	86%	70%	130%
Potassium	3852782		1360	1380	1.5	< 100	82%	70%	130%	89%	80%	120%	92%	70%	130%
Sélénium	3852782		<0.5	<0.5	NA	< 0.5	77%	70%	130%	83%	80%	120%	80%	70%	130%
Sodium	3852782		216	205	NA	< 100	75%	70%	130%	84%	80%	120%	81%	70%	130%
Vanadium	3852782		21	20	NA	< 15	84%	70%	130%	88%	80%	120%	83%	70%	130%
Zinc	3852782		62	65	5.4	< 5	83%	70%	130%	82%	80%	120%	79%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

Le pourcentage de récupération du blanc fortifié en Sb ne respecte pas les critères établis. La validité de l'analyse est démontrée par la conformité des autres éléments de contrôle de qualité.

NA: Non applicable

Chrome

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

14

15

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

3859134

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Aluminium	3859134	9650	11500	17.2	< 30	75%	70%	130%	84%	80%	120%	NA	70%	130%
Antimoine	3859134	47	39	NA	< 20	125%	70%	130%	86%	80%	120%	NA	70%	130%
Argent	3859134	2.0	0.6	NA	< 0.5	99%	70%	130%	85%	80%	120%	117%	70%	130%
Arsenic	3859134	2	2	NA	< 1	88%	70%	130%	81%	80%	120%	85%	70%	130%
Baryum	3859134	1090	1030	5.9	< 20	95%	70%	130%	83%	80%	120%	NA	70%	130%
Béryllium	3859134	1	<1	NA	< 1	89%	70%	130%	84%	80%	120%	91%	70%	130%
Cadmium	3859134	1.3	0.6	NA	< 0.5	91%	70%	130%	85%	80%	120%	89%	70%	130%
Calcium	3859134	7970	8120	1.9	< 100	93%	70%	130%	89%	80%	120%	82%	70%	130%

3.8

< 2

97%

70% 130%

87%

120%

80%

87%

Analyses inorganiques - WSP (Balayage métaux + mercure)

70% 130%

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR: Mohamed Dioumessy

N° BON DE TRAVAIL: 220892570 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

	lyse	des S	Sols (Suite	ر د							
			`	Carte	-)							
	DUPLICAT	A	MATÉ	RIAU DE RE	ÉFÉREN	ICE	BLANG	FORTI	IFIÉ	ÉCH.	FORTIF	-IÉ
Dup #1	Dup #2	% d'écart		% Récup.	Lim	nites	% Récup.	Lim	nites	% Récup.	Lin	nites
,	·		methode	·	Inf.	Sup.	·	Inf.	Sup.		Inf.	Sup.
6	5	NA	< 2	99%	70%	130%	89%	80%	120%	86%	70%	130%
9830	17000	53.4	< 1	97%	70%	130%	89%	80%	120%	NA	70%	130%
59	14	124.3	< 5	93%	70%	130%	83%	80%	120%	127%	70%	130%
13500	11600	15.1	< 500	97%	70%	130%	93%	80%	120%	88%	70%	130%
<20	<20	NA	< 20	90%	70%	130%	81%	80%	120%	91%	70%	130%
6590	6220	5.8	< 100	88%	70%	130%	87%	80%	120%	NA	70%	130%
266	245	8.2	< 10	114%	70%	130%	88%	80%	120%	90%	70%	130%
<0.2	<0.2	NA	< 0.2	87%	70%	130%	87%	80%	120%	87%	70%	130%
4	5	NA	< 1	101%	70%	130%	88%	80%	120%	NA	70%	130%
842	31	185.6	< 2	93%	70%	130%	84%	80%	120%	NA	70%	130%
106	85	21.3	< 5	95%	70%	130%	94%	80%	120%	NA	70%	130%
947	863	9.2	< 100	93%	70%	130%	86%	80%	120%	89%	70%	130%
<0.5	<0.5	NA	< 0.5	90%	70%	130%	84%	80%	120%	90%	70%	130%
207	208	NA	< 100	80%	70%	130%	86%	80%	120%	89%	70%	130%
<15	<15	NA	< 15	93%	70%	130%	88%	80%	120%	88%	70%	130%
2870	2650	8.0	< 5	96%	70%	130%	87%	80%	120%	NA	70%	130%
	6 9830 59 13500 <20 6590 266 <0.2 4 842 106 947 <0.5 207 <15	6 5 9830 17000 59 14 13500 11600 <20 <20 6590 6220 266 245 <0.2 <0.2 4 5 842 31 106 85 947 863 <0.5 <0.5 207 208 <15 <15	6 5 NA 9830 17000 53.4 59 14 124.3 13500 11600 15.1 <20 <20 NA 6590 6220 5.8 266 245 8.2 <0.2 <0.2 NA 4 5 NA 842 31 185.6 106 85 21.3 947 863 9.2 <0.5 <0.5 NA 207 208 NA <15 NA	Blanc de méthode 6 5 NA < 2 9830 17000 53.4 < 1 59 14 124.3 < 5 13500 11600 15.1 < 500 <20 <20 NA < 20 6590 6220 5.8 < 100 266 245 8.2 < 10 <0.2 <0.2 NA < 0.2 4 5 NA < 1 842 31 185.6 < 2 106 85 21.3 < 5 947 863 9.2 < 100 <0.5 <0.5 NA < 0.5 207 208 NA < 100 <15 NA < 100 <15 NA < 100 <15 NA < 100 <15 NA < 100 <15 NA < 100 <15 NA < 100 <15 NA < 100 <15 NA < 100 <15 NA < 15	Blanc de méthode % Récup. 6 5 NA <2 99% 9830 17000 53.4 <1 97% 59 14 124.3 <5 93% 13500 11600 15.1 <500 97% <20 <20 NA <20 90% 6590 6220 5.8 <100 88% 266 245 8.2 <10 114% <0.2 <0.2 NA <0.2 87% 4 5 NA <1 101% 842 31 185.6 <2 93% 106 85 21.3 <5 95% 947 863 9.2 <100 93% <0.5 <0.5 NA <0.5 90% 207 208 NA <100 80% <15 <15 NA <100 80% <15 <15 NA <15 93%	Dup #1 Dup #2 % d'écart Blanc de méthode % Récup. Inf. Inf.	Dup #1 Dup #2 % d'écart méthode Blanc de méthode % Récup. Limites 6 5 NA < 2	Dup #1 Dup #2 % d'écart méthode Blanc de méthode % Récup. Limites % Récup. 6 5 NA < 2	Dup #1 Dup #2 % d'écart méthode Blanc de méthode % Récup. Limites % Récup. Limites 6 5 NA < 2	Dup #1 Dup #2 % d'écart méthode Blanc de méthode méthode % Récup. Limites % Récup. Limites 6 5 NA < 2	Dup #1 Dup #2 % d'écart méthode Blanc de méthode méthode % Récup. Limites % Récup. Limites % Récup. Limites % Récup. Inf. Sup. Sup. % Récup. Inf. Sup. % Récup. % Ré	Dup #1 Dup #2 % d'écart Blanc de méthode % Récup. Limites Inf. Sup. Inf. Sup. Inf. Sup. Inf. Sup. Inf. Sup. Inf. Sup. Inf. Sup. Inf. Sup. Inf.

Commentaires: L'analyse de l'échantillon a été effectuée en duplicata, l'échantillon est hétérogène en Sn, Ni et Cu.

Le résultat de récupération pour l'échantillon fortifié est non disponible (NA) pour l'analyse Mo et Sb, l'ajout de la solution fortifiante a été omis au laboratoire. La validité de l'analyse est démontrée par la conformité des autres éléments de contrôle de qualité.

NA : Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentage de différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR: Mohamed Dioumessy

N° BON DE TRAVAIL: 220892570 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

															-
		F	Analy	se o	rgani	que d	de tra	ace							
Date du rapport: 2022-05-19				DUPLICATA			RIAU DE R			BLANG	CFORT	IFIÉ	ÉCH.	FORTIF	īÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.		nites	% Récup.		nites
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	méthode	, , , , , , , , , , , , , , , , , , ,	Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.	70.11000	Inf.	Sup.
Hydrocarbures pétroliers C10-C	50 (SoI)														
Hydrocarbures pétroliers C10 à C50	3847642	3847642	<100	<100	NA	< 100	103%	60%	140%	99%	60%	140%	103%	60%	140%
Rec. Nonane	3847642	3847642	119	102	15.4	136	109%	60%	140%	107%	60%	140%	116%	60%	140%
% Humidité	3847784	3847784	6.1	5.8	4.9	< 0.2	100%	80%	120%	NA			NA		

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

élevée par rapport à l'ajout.														
Hydrocarbures aromatiques po	lycycliques (HAP) (Sol	1)												
Acénaphtène	3847642 3847642	, <0.1	<0.1	NA	< 0.1	94%	50%	140%	104%	50%	140%	103%	50%	140%
Acénaphtylène	3847642 3847642	<0.1	<0.1	NA	< 0.1	83%	50%	140%	95%	50%	140%	91%	50%	140%
Anthracène	3847642 3847642	<0.1	<0.1	NA	< 0.1	88%	50%	140%	97%	50%	140%	94%	50%	140%
Benzo (a) anthracène	3847642 3847642	<0.1	<0.1	NA	< 0.1	85%	50%	140%	93%	50%	140%	98%	50%	140%
Benzo (a) pyrène	3847642 3847642	<0.1	<0.1	NA	< 0.1	88%	50%	140%	95%	50%	140%	95%	50%	140%
Benzo (b) fluoranthène	3847642 3847642	<0.1	<0.1	NA	< 0.1	79%	50%	140%	88%	50%	140%	100%	50%	140%
Benzo (j) fluoranthène	3847642 3847642	<0.1	<0.1	NA	< 0.1	89%	50%	140%	99%	50%	140%	104%	50%	140%
Benzo (k) fluoranthène	3847642 3847642	<0.1	<0.1	NA	< 0.1	81%	50%	140%	91%	50%	140%	97%	50%	140%
Benzo (c) phénanthrène	3847642 3847642	<0.1	<0.1	NA	< 0.1	88%	50%	140%	95%	50%	140%	98%	50%	140%
Benzo (g,h,i) pérylène	3847642 3847642	<0.1	<0.1	NA	< 0.1	75%	50%	140%	83%	50%	140%	85%	50%	140%
Chrysène	3847642 3847642	<0.1	<0.1	NA	< 0.1	88%	50%	140%	99%	50%	140%	96%	50%	140%
Dibenzo (a,h) anthracène	3847642 3847642	<0.1	<0.1	NA	< 0.1	80%	50%	140%	88%	50%	140%	88%	50%	140%
Dibenzo (a,i) pyrène	3847642 3847642	<0.1	<0.1	NA	< 0.1	54%	50%	140%	69%	50%	140%	76%	50%	140%
Dibenzo (a,h) pyrène	3847642 3847642	<0.1	<0.1	NA	< 0.1	56%	50%	140%	72%	50%	140%	82%	50%	140%
Dibenzo (a,l) pyrène	3847642 3847642	<0.1	<0.1	NA	< 0.1	64%	50%	140%	76%	50%	140%	83%	50%	140%
Diméthyl-7,12 benzo (a) anthracène	3847642 3847642	<0.1	<0.1	NA	< 0.1	83%	50%	140%	137%	50%	140%	128%	50%	140%
Fluoranthène	3847642 3847642	<0.1	<0.1	NA	< 0.1	90%	50%	140%	101%	50%	140%	97%	50%	140%
Fluorène	3847642 3847642	<0.1	<0.1	NA	< 0.1	90%	50%	140%	101%	50%	140%	98%	50%	140%
Indéno (1,2,3-cd) pyrène	3847642 3847642	<0.1	<0.1	NA	< 0.1	76%	50%	140%	83%	50%	140%	85%	50%	140%
Méthyl-3 cholanthrène	3847642 3847642	<0.1	<0.1	NA	< 0.1	76%	50%	140%	89%	50%	140%	111%	50%	140%
Naphtalène	3847642 3847642	<0.1	<0.1	NA	< 0.1	91%	50%	140%	106%	50%	140%	99%	50%	140%
Phénanthrène	3847642 3847642	<0.1	<0.1	NA	< 0.1	95%	50%	140%	108%	50%	140%	105%	50%	140%
Pyrène	3847642 3847642	<0.1	<0.1	NA	< 0.1	95%	50%	140%	108%	50%	140%	100%	50%	140%
Méthyl-1 naphtalène	3847642 3847642	<0.1	<0.1	NA	< 0.1	88%	50%	140%	98%	50%	140%	95%	50%	140%
Méthyl-2 naphtalène	3847642 3847642	<0.1	<0.1	NA	< 0.1	96%	50%	140%	108%	50%	140%	104%	50%	140%
Diméthyl-1,3 naphtalène	3847642 3847642	<0.1	<0.1	NA	< 0.1	91%	50%	140%	101%	50%	140%	100%	50%	140%
Triméthyl-2,3,5 naphtalène	3847642 3847642	<0.1	<0.1	NA	< 0.1	95%	50%	140%	103%	50%	140%	104%	50%	140%
Rec. Naphtalène-d8	3847642 3847642	81	84	3.2	92	88%	50%	140%	100%	50%	140%	96%	50%	140%
Rec. Pyrène-d10	3847642 3847642	87	88	1.2	94	91%	50%	140%	101%	50%	140%	98%	50%	140%
Rec. p-Terphényl-d14	3847642 3847642	90	94	3.6	102	92%	50%	140%	100%	50%	140%	104%	50%	140%
% Humidité	3847784 3847784	6.1	5.8	4.9	< 0.2	100%	80%	120%	NA			NA		

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Mohamed Dioumessy N° BON DE TRAVAIL: 220892570 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

		Anal	yse	orgar	nique	de t	race	(Su	ite)						
Date du rapport: 2022-05-19			I	DUPLICATA	4	MATÉ	RIAU DE R	ÉFÉREN	CE	BLANG	FORTI	FIÉ	ÉCH.	FORTIF	ΊÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de méthode	% Récup.	Lim	ites	% Récup.	Lim	iites	% Récup.	Lim	nites
				''		methode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Hydrocarbures pétroliers C10-C50 (Sol)

Hydrocarbures pétroliers C10 à C50	3863817	4740	4470	5.9	< 100	78%	60%	140%	104%	60%	140%	NA	60%	140%
Rec. Nonane	3863817	131	134	2.3	114	97%	60%	140%	108%	60%	140%	NA	60%	140%

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 220892570

N° DE PROJET: 201-11330-29

À L'ATTENTION DE: Sirine Boussorra

Date du rapport: 19 mai 2022		MATÉRIAU D	E RÉFÉI	RENCE	BLAN	C FORT	TFIÉ	ÉCH.	FORTII	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lim	ites	% Récup.		nites	% Récup.		nites
			Inf.	Sup.		Inf.	Sup.		Inf.	Sup.

Analyses inorganiques - WSP (Balayage métaux + mercure)

Aluminium Antimoine 53% 70% 130% 87% 80% 120% NA 70% 130% 119% 70% 130% 80% 120% 76% 70% 130%

Commentaires: Le pourcentage de récupération du MRC concernant le Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

Le pourcentage de récupération du blanc fortifié en Sb ne respecte pas les critères établis. La validité de l'analyse est démontrée par la conformité des autres éléments de contrôle de qualité.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Mohamed Dioumessy N° BON DE TRAVAIL: 220892570 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

PRELEVE PAR.IVIOITAITIEU DIOUI	ii essy		_	IEU DE PRELEVEINIENT.	Willulali Lake
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse des Sols					•
Aluminium	2022-05-16	2022-05-17	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Antimoine	2022-05-16	2022-05-17	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Argent	2022-05-16	2022-05-17	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Arsenic	2022-05-16	2022-05-17	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Baryum	2022-05-16	2022-05-17	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Béryllium	2022-05-16	2022-05-17	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Cadmium	2022-05-16	2022-05-17	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Calcium	2022-05-16	2022-05-17	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Chrome	2022-05-16	2022-05-17	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cobalt	2022-05-16	2022-05-17	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cuivre	2022-05-16	2022-05-17	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Étain	2022-05-16	2022-05-17	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Fer	2022-05-16	2022-05-17	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Lithium	2022-05-16	2022-05-17	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Magnésium	2022-05-16	2022-05-17	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Manganèse	2022-05-16	2022-05-17	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Mercure	2022-05-16	2022-05-17	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Molybdène	2022-05-16	2022-05-17	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Nickel	2022-05-16	2022-05-17	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Plomb	2022-05-16	2022-05-17	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Potassium	2022-05-16	2022-05-17	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sélénium	2022-05-16	2022-05-17	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sodium	2022-05-16	2022-05-17	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Vanadium	2022-05-16	2022-05-17	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Zinc	2022-05-16	2022-05-17	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Mohamed Dioumessy N° BON DE TRAVAIL: 220892570 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

FRELEVE FAR. Monamed Dioumessy				LIEU DE PRELEVEIVIENT.V	VIIIGIAII LAKE
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse organique de trace	•				•
Acénaphtène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Acénaphtylène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Anthracène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (a) anthracène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (a) pyrène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (b) fluoranthène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (j) fluoranthène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (k) fluoranthène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (b+j+k) fluoranthène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (c) phénanthrène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (g,h,i) pérylène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Chrysène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,h) anthracène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,i) pyrène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,h) pyrène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,l) pyrène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Diméthyl-7,12 benzo (a) anthracène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Fluoranthène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Fluorène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Indéno (1,2,3-cd) pyrène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Méthyl-3 cholanthrène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Naphtalène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Phénanthrène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Pyrène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Méthyl-1 naphtalène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Méthyl-2 naphtalène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Diméthyl-1,3 naphtalène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Triméthyl-2,3,5 naphtalène	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. Naphtalène-d8	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. Pyrène-d10	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. p-Terphényl-d14	2022-05-13	2022-05-13	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
% Humidité	2022-05-12	2022-05-12	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE
Hydrocarbures pétroliers C10 à C50	2022-05-13	2022-05-17	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2022-05-13	2022-05-17	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2022-05-12	2022-05-12	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE

The Control of Contr			AG	AT Laboratoire	Bordereau s:350 rue Fi	de dema	Bordereau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	Sanada, G1P	4P3					
Commonweal broken Comm	WSP Canada Inc. 1135 boul Lebourgneuf Gueber (Québec) G2K OME Téléphohe: 418-623-7066	1 1		1_1 £_	48 hres 24 hres		6-12 hres Date requise:						t de command de soumission	61 -
Secretary December	Numëro du projet: Bon de commande: Lieu de prélèvement	201-11330-29 Windfall Lake					Crithres à respecti TRMD TRDS	H (mat lixiviab (mat lixiviab IR	(e)					
State 2 Each of	Presevt par. Charge de projet: Courriei	manamed Dioumessy Steve St-Cyr steve st cyr@wsp.com / sirine	boussorra@wsp сот				, IN , sN , oM ,r	-	10-020					
Solution Columnic							(uz uw '6w		ners Cr					
Control of the Character Control of the Char	Matrice: S Sol Si Solide SE Sédiment EP Eau potable	B Boue EU Eau usée ST Eau souterraine					, Se, Sn, V et i		sarbures petro					
F06-22.CF-1	Ident	ification de l'échantillon	Date de	prélèvement	Matrice	Nombre de pots	ap' ap							
FO6-22-CF-4	\vdash		202	22-05-02	S	-	×		1		l	ŀ	1.	
FOR 22.CF-4 FOR 22.CF-2 FOR 22.CF-2 FOR 22.CF-2 FOR 22.CF-2 FOR 22.CF-2 FOR 22.CF-3 FOR 22	1		202	22-05-02	S	-								
F06-22-CF-3 2002-05-02 S 1 X	-		200	22-05-02	S	-		+						
F06-22-CF-3	-		20.	22-05-02	n v		×		+	Ī				
DUPOIZZOGGOZ S 1 CONZOG-6-02 S 1 DUPOIZZOGGOZ 2022-05-02 S 1 CONZOG-02			202	22-05-02	S	-	×	-	-	İ		-		
DUPP022205602 S 1 Con22-05-02 S 1 Con22-05-02 Con22-05-02 S 1 Con22-05-02 Con22-05-02 S 1 Con22-05-02 Con22-02-02 ></td> <td>2</td> <td>20%</td> <td>22-05-02</td> <td>S</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		2	20%	22-05-02	S	-		-						
DUP03220502	4	2	20%	22-05-02	S	+			H					
	-	2	200	22-05-02	S	-								
Moltamed Diomessy Echantilons regus par:								-	+					
Mohamed Dioumessy Echankilons regus par;									H					
tillions temis par: Wohamed Diournessy Echantillons regus par:									Н					
								-	+					
Millons remis par: Motamed Dioumessy Echantillons regus par: Rage: 1 de								-		ļ				
titilons remis par: Wohamed Diournessy Echantilions regus par:														
utilions remis par: Mohamed Dioumessy Echantilions reçus par:								+						
titilons temis par: Mohamed Diournessy Echantilions regus par: Echantilions regus par: Rage: 1 de														
titilons remis par: Mohamed Dioumessy Échantilions reçus par: Echantilions reçus par: Fage: 1 de								+						
titions remis par: Mohamed Dioumessy Échantilions reçus par: Echantilions reçus par: Faqee: 1 de													H	
titions remis par: Mohamed Dioumessy Échantillons reçus par: Echantillons reçus par: Faqe: 1 de														
tillons remis par: Mohamed Dioumessy Échantillons reçus par: Échantillons reçus par: Page: 1 de								-						
	tillons	Mohamed Dioumessy			Échantillor	ıs reçus paı							Page:	

118		AGAT Lab	Borders oratoires: 350 ru	eau de dem	Bordereau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada. G1P 4P3	anada, G1P 4P3	F				
WSP Canada inc. 1135, boul Lebourgneuf Québec (Québec) G2K 0M5 Téléphone: 418-523-7066	c. ougneuf oj GXK 0MS 623-7066 Télécopieur, 418-623-243A	Délai d'analyse requis 7 5 jours 72 hres	7 48 hres		6-12 hres Dale requise:				F Bonde	Bon de commande No de soumission	
Numero du projet: Bon de commande:					Critities à respecter	pecter RMD (mat lixiviable)					
Lieu de prélèvement	ц					RDS (mat lixiviable)			Eau consommation	rtion C	L.
Chargé de projet:	Monamed Dioumessy E: Steve St.Cyr				'IN '	-			Eau résurgence	_	İ
Cournel	steve st cyr@wsp com / sirin∈	boussona (2wsp.com			No, Na	C20					
					i) (a' ww' g						
Matrice: S Sol SI Solide SE Sédiment EP Eau potable	B Boue EU Eau usée ST Eau soulerraine	ES Eau de surface EF Effluent AF Affluent			11, Ag, As, Ba 2, Hg, K, Ll, M 8, Sn, V et Zn 6, Sn, V et Zn	ellorièq senuc			1911		
	Identification de l'échantillon	Date de prélèvement	Martine	Nombre	taux (/ Cu, Fe						
1 F01-3	F01-22-CF-1A	20 20 0000		-	Ot.		IAH				
2 F01-;	F01-22-CF-1B	2022-03-03	מ מ	-							
3 F01-2	F01-22-CF-2	2022-03-03	-	-	× >	×	×				
	F01-22-CF-4	2022-05-05	1		Y	×					
	F01-22-CF-6	2022-05-05		- +							
	F01-22-CF-8	2022-05-05	-			-				-	
	F01-22-CF-9	2022-05-05									
	F85-22-CF-1	2022-05-04				1					
	F85-22-CF-2	2022-05-04			>	>					
10 F85-2	F85-22-CF-3	2022-05-04			<	<	×				T.
						-			1		
									-		
										1	
										-	
			1								L
			-								
					-					-	
						-					
-											
										1	
-										l	
			+								
Échantillons remis par:	is par: Mohamed Dioumessy		4					_			
Date: 202	10		Echantill Date:	Echantillons reçus par: Date:	12				b.	Page: 3	de
							1				

March Carbon Ca		dsn			AGAT Labo	Borratoires : 35	dereau de	demand	Bordereau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	ec Canada	G1P 4P3		-						
Comparison Com	WSP C 1135, E Queber Telepho			iélai d'analyse re F/ 5 jo		1	hres		-12 hres ate requise:						1	de commar de soumissi	on:		
See Public Notice See Sub-jet Sub-jet See Sub-jet Sub-jet See Sub-jet Su	Numero Bon de Lieu de					-1	H	ω	Illores à resp	ecter RMD (mat lib RDS (mat lix	tiviable) iviable)			TLI					
Second Electronic Electro	Charge Courtle	ar a projet	nesay p com / sinne bo	ибуотга@мир сог			Ш	<u> </u>	'IN 'EN 'ON		·C20					e loe			
Second Ell Board Ell Boa									'uw '6w '	entaine	olo eralle								
Foreign contribution on the beautifier Data of profession and Marking Montro September Sep	S S S	lide EU diment ST	rraine	ES Eau de surt EF Effluent AF Affluent	ace				בפ' עופו' ע' דו'	məlqqus nolit	orièq serudia								
FIG.222-CF-1A FIG.222-GF-GR S 1 X X X X X X X X X		identification de l'échai	ntillon		ate de prélèven			-	יוי כחי	solihuo	lydroc	qAl							
F02.20-Cf-18 F02.20-Cf-3 F02.20-Cf-4 F02.20-Cf-4 F02.20-Cf-4 F02.20-Cf-4 F02.20-Cf-4 F02.20-Cf-4 F02.20-Cf-6 F02.20-Cf-7 F02.2	÷	F02-22-CF-1A			2022-05-02			+	VI.	d	+	+			1	1		1	T
F0222-CF-6 F0222-CF-6	2	F02-22-CF-1B			2022-05-02		s	-	×		×	1	ŀ			ļ	1	t	T
FUG22CG-F4	60	F02-22-CF-3			2022-05-02		s	1	×		×				l			1	T
F48.22.CF-5 F48.22.CF-7 F48.22.CF-7 F48.22.CF-5 F48.22	4	F02-22-CF-4			2022-05-02		w										L	t	T
F4322.CF-1 F4322.CF-2 F4322.CF-3 F4322.CF-5 F4322.CF-5 F4322.CF-6	u)	F02-22-CF-6			2022-05-02		s	1										1	T
F43-22-CF-2 F43-22-CF-5 F43-22	φ	F43-22-CF-1			2022-05-03	-	s)		×		×	×						t	T
F44-22-CF-5 2022-05-03 S 1 F43-22-CF-5 S 1 Inflavoration pages S 1 Inflavoration pages Inflavoration pages <td>1</td> <td>F43-22-CF-2</td> <td></td> <td></td> <td>2022-05-03</td> <td></td> <td>s</td> <td>÷</td> <td>×</td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td>l</td> <td></td> <td>-</td> <td>T</td>	1	F43-22-CF-2			2022-05-03		s	÷	×		×					l		-	T
F43-22-CF-5 S 1	00	F43-22-CF-3			2022-05-03		s	+									L	t	T
S 1	cn	F43-22-CF-5			2022-05-03		co.	1									ľ	t	T
Illents remis par: 2022.05-655 Date: Page 2 de	2						s										I	r	T
Illone remis par: Mohamed Diounessy Echantilens reque par: Page: 2 de 2 de 2 de 2 de 2 de 2 de 2 de 2																l	ľ	1	T
Illians remis par: Mohamed Dloumessy Echanisinos reque par: Page: 2 de Pa							9												T
# Fillons tenis par: Mohamed Dloumessy Echantilions requs par: Page; 2. de Page; 3. de Pa							Ÿ												T
#Illonts temis par: Mohamed Dioumessy																			Г
#Illonts temis par: Mohamed Dioumessy																			
#Illonts temis par: Mohamed Dioumessy						1		1	1						-				
#llont remis par: Mohamed Diounessy						1		+	1			1							
#llons remis par: Mohamed Dloumessy						-		1	1			1						1	T
#liforts remis par: Mohamed Dloumessy						F		T	Ì			1			1			1	
#Illonts remis par: Mohamed Diounessy							-		Ī			T	ŧ			1	I	+	T
#!lonts remis par: Mohamed Dioumessy							H								1	l		-	-
#!lions remis par: Mohamed Dioumessy							7								F	t		+	
#illors remis par: Mohamed Dioumessy																		H	T
Lillona remis par: Mohamed Dioumessy Échantilions reçus par: Echantilions reçus par: Pages 2 de Pages 2 de	Ī																		
Illights remits par: Mohamed Dioumessy Echantillons regus par: Echantillons regus par: Pages 2 de Date:									1										
2022-05-05 Date: Containing Page Par: Date: 2 de	Echant		Dioumessy			100				1		-							T
	Date:		Ì			Da de	allumons re	čns bar:								Page	14		er

NOM DU CLIENT: WSP CANADA INC.

1135 BOULEVARD LEBOURGNEUF

QUEBEC, QC G2K 0M5

(418) 623-7066

À L'ATTENTION DE: Sirine Boussorra

N° DE PROJET: 201-11330-29

N° BON DE TRAVAIL: 220893164

ANALYSE DES SOLS VÉRIFIÉ PAR: Hasti Kamalimoghadam, Chimiste, AGAT Montréal ORGANIQUE DE TRACE VÉRIFIÉ PAR: EmmanuelBrousseau, Chimiste, AGAT Québec

DATE DU RAPPORT: 20 mai 2022

NOMBRE DE PAGES: 20 VERSION*: 1

Pour tout complément d'information concernant cette analyse, veuillez contacter votre chargé(e) de projet client au (418) 266-5511.

Avis de non-responsabilité:	

*Notes

- L'ensemble des travaux réalisés dans le présent document ont été effectués en utilisant des protocoles normalisés reconnus, ainsi que des pratiques et des méthodes généralement acceptées. En vue d'améliorer la performance, les méthodes analytiques d'AGAT pourraient comprendre des modifications issues des méthodes de référence spécifiées.
- Tous les échantillons seront éliminés trente (30) jours après réception au laboratoire à moins qu'une Entente d'entreposage à long terme ne soit signée et retournée. Certaines analyses spécialisées peuvent être exemptées. Veuillez communiquer avec votre chargé de projets à la clientèle pour plus d'informations.
- La responsabilité d'AGAT en ce qui concerne tout retard, exécution ou non-exécution de ces services s'applique uniquement envers le client et ne s'étend à aucune autre tierce partie. À moins qu'il n'en soit par ailleurs convenu expressément par écrit, la responsabilité d'AGAT se limite au coût réel de l'analyse ou des analyses spécifiques incluses dans les services.
- Sauf accord écrit préalable d'AGAT Laboratoires, ce certificat ne doit être reproduit que dans sa totalité.
- Les résultats d'analyse communiqués ci-joint ne concernent que les échantillons reçus par le laboratoire.
- L'application des lignes directrices est fournie « en l'état » sans garantie de quelque nature que ce soit, ni expresse ni tacite, y compris, mais sans s'y limiter, les garanties de qualité marchande, d'aptitude à un usage particulier ou de non-contrefaçon. AGAT n'assume aucune responsabilité à l'égard de toute erreur ou omission dans les directives que contient ce document.
- Toutes les informations rapportables sont disponibles sur demande auprès d'AGAT Laboratoires, conformément aux normes ISO/IEC 17025:2017, DR-12-PALA et/ou NELAP.

AGAT Laboratoires (V1) Page 1 de 20

N° BON DE TRAVAIL: 22O893164 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022	2-05-09							1	DATE DU RAPP	ORT: 2022-05-2	20
				IDENTIFIC	CATION DE L'É	CHANTILLON:	F07-22-CF-2	F07-22-CF-3	F08-22-CF-1B	DUP01220507	F03-22-CF-1B
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2022-05-06	2022-05-06	2022-05-07	2022-05-07	2022-05-06
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3861528	3861529	3861532	3861536	3861541
Aluminium	mg/kg					30	3000	5970	12600	12200	5180
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	<1	<1	<1	<1
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	<20	<20
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	1170	1760	1190	1320	1110
Chrome	mg/kg	100	250	800	4000	2	9[<a]< td=""><td>16[<a]< td=""><td>18[<a]< td=""><td>18[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	16[<a]< td=""><td>18[<a]< td=""><td>18[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	18[<a]< td=""><td>18[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<>	18[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<>	10[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	2[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<>	4[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	4[<a]< td=""><td>14[<a]< td=""><td>6[<a]< td=""><td>7[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	14[<a]< td=""><td>6[<a]< td=""><td>7[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>7[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<>	7[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	4150	10400	10500	10800	6290
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	<20
Magnésium	mg/kg					100	1510	3450	2900	3250	2770
Manganèse	mg/kg	1000	1000	2200	11000	10	57[<a]< td=""><td>142[<a]< td=""><td>112[<a]< td=""><td>122[<a]< td=""><td>79[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	142[<a]< td=""><td>112[<a]< td=""><td>122[<a]< td=""><td>79[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	112[<a]< td=""><td>122[<a]< td=""><td>79[<a]< td=""></a]<></td></a]<></td></a]<>	122[<a]< td=""><td>79[<a]< td=""></a]<></td></a]<>	79[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	6[<a]< td=""><td>13[<a]< td=""><td>11[<a]< td=""><td>13[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>11[<a]< td=""><td>13[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>13[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<>	9[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	133	301	129	121	156
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	<100	<100	<100	<100
Vanadium	mg/kg					15	<15	16	17	18	<15
Zinc	mg/kg	140	500	1500	7500	5	11[<a]< td=""><td>25[<a]< td=""><td>26[<a]< td=""><td>27[<a]< td=""><td>19[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	25[<a]< td=""><td>26[<a]< td=""><td>27[<a]< td=""><td>19[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	26[<a]< td=""><td>27[<a]< td=""><td>19[<a]< td=""></a]<></td></a]<></td></a]<>	27[<a]< td=""><td>19[<a]< td=""></a]<></td></a]<>	19[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 22O893164 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022	2-05-09								ATE DU RAPF	ORT: 2022-05-	20
				IDENTIFI	CATION DE L'É	CHANTILLON:	F03-22-CF-3	F62-22-CF-1B	F61-22-CF-1	F15-22-CF-2	F10-22-CF-1B
						MATRICE:	Sol	Sol	Sol	Sol	Sol
				Г	DATE D'ÉCHAN	TILLONNAGE:	2022-05-06	2022-05-08	2022-05-08	2022-05-08	2022-05-08
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3861542	3861545	3861546	3861548	3861551
Aluminium	mg/kg					30	4120	8210	6710	3840	19500
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	<1	2[<a]< td=""><td>2[<a]< td=""><td>1[<a]< td=""></a]<></td></a]<></td></a]<>	2[<a]< td=""><td>1[<a]< td=""></a]<></td></a]<>	1[<a]< td=""></a]<>
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	<20	<20
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	1410	950	1560	2250	1100
Chrome	mg/kg	100	250	800	4000	2	11[<a]< td=""><td>18[<a]< td=""><td>15[<a]< td=""><td>13[<a]< td=""><td>26[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	18[<a]< td=""><td>15[<a]< td=""><td>13[<a]< td=""><td>26[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	15[<a]< td=""><td>13[<a]< td=""><td>26[<a]< td=""></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>26[<a]< td=""></a]<></td></a]<>	26[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	3[<a]< td=""><td>2[<a]< td=""><td>3[<a]< td=""><td>2[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	2[<a]< td=""><td>3[<a]< td=""><td>2[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>2[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<></td></a]<>	2[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<>	5[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	11[<a]< td=""><td>2[<a]< td=""><td>7[<a]< td=""><td>15[<a]< td=""><td>8[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	2[<a]< td=""><td>7[<a]< td=""><td>15[<a]< td=""><td>8[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>15[<a]< td=""><td>8[<a]< td=""></a]<></td></a]<></td></a]<>	15[<a]< td=""><td>8[<a]< td=""></a]<></td></a]<>	8[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	6340	7400	8110	5720	14500
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	<20
Magnésium	mg/kg					100	3110	1480	1810	1730	3050
Manganèse	mg/kg	1000	1000	2200	11000	10	108[<a]< td=""><td>58[<a]< td=""><td>80[<a]< td=""><td>58[<a]< td=""><td>87[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	58[<a]< td=""><td>80[<a]< td=""><td>58[<a]< td=""><td>87[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	80[<a]< td=""><td>58[<a]< td=""><td>87[<a]< td=""></a]<></td></a]<></td></a]<>	58[<a]< td=""><td>87[<a]< td=""></a]<></td></a]<>	87[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	9[<a]< td=""><td>7[<a]< td=""><td>10[<a]< td=""><td>7[<a]< td=""><td>16[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>10[<a]< td=""><td>7[<a]< td=""><td>16[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	10[<a]< td=""><td>7[<a]< td=""><td>16[<a]< td=""></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>16[<a]< td=""></a]<></td></a]<>	16[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	298	<100	160	125	137
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	<100	<100	<100	<100
Vanadium	mg/kg					15	<15	15	<15	<15	22
Zinc	mg/kg	140	500	1500	7500	5	21[<a]< td=""><td>12[<a]< td=""><td>15[<a]< td=""><td>14[<a]< td=""><td>27[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>15[<a]< td=""><td>14[<a]< td=""><td>27[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	15[<a]< td=""><td>14[<a]< td=""><td>27[<a]< td=""></a]<></td></a]<></td></a]<>	14[<a]< td=""><td>27[<a]< td=""></a]<></td></a]<>	27[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 22O893164 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022	2-05-09							DATE DU RAPPORT: 2022-05-20
				IDENTIFIC	CATION DE L'ÉC	HANTILLON:	F10-22-CF-3	
						MATRICE:	Sol	
				D	ATE D'ÉCHANT	ILLONNAGE:	2022-05-08	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3861552	
Muminium	mg/kg					30	5270	
Antimoine	mg/kg	-	-	-		20	<20	
Argent	mg/kg	2	20	40	200	0.5	<0.5	
rsenic	mg/kg	6	30	50	250	1	<1	
Baryum	mg/kg	340	500	2000	10000	20	<20	
Béryllium	mg/kg					1	<1	
admium	mg/kg	1.5	5	20	100	0.5	<0.5	
Calcium	mg/kg					100	1750	
chrome	mg/kg	100	250	800	4000	2	18[<a]< td=""><td></td></a]<>	
Cobalt	mg/kg	25	50	300	1500	2	5[<a]< td=""><td></td></a]<>	
Cuivre	mg/kg	50	100	500	2500	1	13[<a]< td=""><td></td></a]<>	
tain	mg/kg	5	50	300	1500	5	<5	
er	mg/kg					500	8490	
ithium	mg/kg	-	-	-	-	20	<20	
lagnésium	mg/kg					100	3670	
/langanèse	mg/kg	1000	1000	2200	11000	10	136[<a]< td=""><td></td></a]<>	
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	
Molybdène	mg/kg	2	10	40	200	1	<1	
lickel	mg/kg	50	100	500	2500	2	11[<a]< td=""><td></td></a]<>	
lomb	mg/kg	50	500	1000	5000	5	<5	
otassium	mg/kg					100	358	
élénium	mg/kg	1	3	10	50	0.5	<0.5	
Sodium	mg/kg					100	<100	
/anadium	mg/kg					15	16	
Zinc Zinc	mg/kg	140	500	1500	7500	5	25[<a]< td=""><td></td></a]<>	

Certifié par:

N° BON DE TRAVAIL: 22O893164

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-05-09 DATE DU RAPPORT: 2022-05-20

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3861528-3861552 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 22O893164 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Hydrocarbures aromatiques polycycliques (HAP) (Sol)

DATE DE RÉCEPTION: 2022-05-0	09							[DATE DU RAPP	ORT: 2022-05-2	0
				IDENTIF	ICATION DE L'ÉC	CHANTILLON:	F07-22-CF-2	F08-22-CF-1B	DUP01220507	F03-22-CF-1B	F03-22-CF-3
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHANT	ΓILLONNAGE:	2022-05-06	2022-05-07	2022-05-07	2022-05-06	2022-05-06
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3861528	3861532	3861536	3861541	3861542
Acénaphtène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acénaphtylène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (a) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (b) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (j) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (k) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (b+j+k) fluoranthène	mg/kg	-	-	-	136	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (c) phénanthrène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (g,h,i) pérylène	mg/kg	0.1	1	10	18	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo (a,h) anthracène	mg/kg	0.1	1	10	82	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo (a,i) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo (a,h) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo (a,l) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Diméthyl-7,12 benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indéno (1,2,3-cd) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Méthyl-3 cholanthrène	mg/kg	0.1	1	10	150	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Naphtalène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phénanthrène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Méthyl-1 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Méthyl-2 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Diméthyl-1,3 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Triméthyl-2,3,5 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Certifié par:

N° BON DE TRAVAIL: 22O893164 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

	Hydrocarbures	aromatiques	polycycli	aues	(HAP)	(Sol)	
--	---------------	-------------	-----------	------	-------	-------	--

DATE DE RÉCEPTION: 2022-0	5-09							[DATE DU RAPP	ORT: 2022-05-2	20
				IDENTII	FICATION DE L'É	CHANTILLON:	F07-22-CF-2	F08-22-CF-1B	DUP01220507	F03-22-CF-1B	F03-22-CF-3
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2022-05-06	2022-05-07	2022-05-07	2022-05-06	2022-05-06
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3861528	3861532	3861536	3861541	3861542
% Humidité	%					0.2	10.0	9.0	8.4	4.9	3.9
Étalon de recouvrement	Unités			Limites							
Rec. Naphtalène-d8	%			50-140			92	98	97	97	100
Rec. Pyrène-d10	%			50-140			82	87	84	84	85
Rec. p-Terphényl-d14	%			50-140			89	91	92	92	95

Certifié par:

N° BON DE TRAVAIL: 22O893164 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Hydrocarbures aromatiques polycycliques (HAP) (Sol)

			•				, , ,	•	
DATE DE RÉCEPTION: 2022-05-	09								DATE DU RAPPORT: 2022-05-20
				IDENTIFI	CATION DE L'É	CHANTILLON:	F62-22-CF-1B	F10-22-CF-1B	
						MATRICE:	Sol	Sol	
					DATE D'ÉCHAN	ΓILLONNAGE:	2022-05-08	2022-05-08	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3861545	3861551	
Acénaphtène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Acénaphtylène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Anthracène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Benzo (a) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Benzo (b) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	
Benzo (j) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	
Benzo (k) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	
Benzo (b+j+k) fluoranthène	mg/kg	-	-	-	136	0.1	<0.1	<0.1	
Benzo (c) phénanthrène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Benzo (g,h,i) pérylène	mg/kg	0.1	1	10	18	0.1	<0.1	<0.1	
Chrysène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Dibenzo (a,h) anthracène	mg/kg	0.1	1	10	82	0.1	<0.1	<0.1	
Dibenzo (a,i) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Dibenzo (a,h) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Dibenzo (a,l) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Diméthyl-7,12 benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Fluoranthène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Fluorène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Indéno (1,2,3-cd) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Méthyl-3 cholanthrène	mg/kg	0.1	1	10	150	0.1	<0.1	<0.1	
Naphtalène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	
Phénanthrène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	
Pyrène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Méthyl-1 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Méthyl-2 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Diméthyl-1,3 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Triméthyl-2,3,5 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	

Certifié par:

N° BON DE TRAVAIL: 220893164

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

		H	ydrocarbı	ıres aron	natiques po	olycyclique	es (HAP) (S	ol)	
DATE DE RÉCEPTION: 2022-0	5-09								DATE DU RAPPORT: 2022-05-20
				IDENTII	FICATION DE L'É	CHANTILLON:	F62-22-CF-1B	F10-22-CF-1B	
						MATRICE:	Sol	Sol	
					DATE D'ÉCHAN	ITILLONNAGE:	2022-05-08	2022-05-08	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3861545	3861551	
% Humidité	%					0.2	18.2	19.3	
Étalon de recouvrement	Unités			Limites					
Rec. Naphtalène-d8	%			50-140			96	93	
Rec. Pyrène-d10	%			50-140			87	82	
Rec. p-Terphényl-d14	%			50-140			87	89	

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable pour l'interprétation réglementaire.

3861528-3861551 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

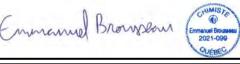
Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 22O893164 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

I ILLEVE I AIX. Monamed Dio	unicooy						LILODE	I IVEEE VEIVIEI	VII.VVIIIGIAII LE	are	
			Hyd	rocarbur	es pétrolie	rs C10-C50) (Sol)				
DATE DE RÉCEPTION: 2022-05-	09							I	DATE DU RAPF	PORT: 2022-05-2	20
				IDENTIF	ICATION DE L'E	ÉCHANTILLON:	F07-22-CF-2	F07-22-CF-3	F08-22-CF-1B	DUP01220507	F03-22-CF-1B
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	NTILLONNAGE:	2022-05-06	2022-05-06	2022-05-07	2022-05-07	2022-05-06
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3861528	3861529	3861532	3861536	3861541
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100
% Humidité	%					0.2	10.0	14.2	9.0	8.4	4.9
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			103	113	108	94	117
				IDENTIF		-	F00 00 0F 0	500 00 05 4B	F04 00 0F 4	F45.00.0F.0	540 00 05 4B
				IDENTIF	ICATION DE L'E	ÉCHANTILLON:	F03-22-CF-3	F62-22-CF-1B	F61-22-CF-1	F15-22-CF-2	F10-22-CF-1B
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN		2022-05-06	2022-05-08	2022-05-08	2022-05-08	2022-05-08
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3861542	3861545	3861546	3861548	3861551
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	128[A-B]	<100	<100
% Humidité	%					0.2	3.9	18.2	15.2	22.0	19.3
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			119	115	119	124	112
				IDENTIF	ICATION DE L'E	ÉCHANTILLON:	F10-22-CF-3				
						MATRICE:	Sol				
					DATE D'ÉCHAN	NTILLONNAGE:	2022-05-08				
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3861552				
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100				
% Humidité	%					0.2	3.9				
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			112				


Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se réfèrer directement à la norme applicable pour l'interprétation réglementaire.

3861528-3861552 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR: Mohamed Dioumessy

N° BON DE TRAVAIL: 220893164 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyse des Sols															
Date du rapport: 2022-05-20			DUPLICATA			MATÉRIAU DE RÉFÉRENCE				BLANC FORTIFIÉ			ÉCH. FORTIFIÉ		
PARAMÈTRE		Nº ách	Dup #1	Dup #2	0/ d'éaart	Blanc de	% Récup.	Limites		% Récup.	Limites		% Récup.	Lin	nites
FAINAMETIC		méthode	76 Necup.	Inf.	Sup.	. 76 Necup.	Inf.	Sup.	, with the cup.	Inf.	Sup.				
Analyses inorganiques - WSP (B	ercure)														
Aluminium	3848539		11700	13000	10.4	< 30	65%	70%	130%	93%	80%	120%	NA	70%	130%
Antimoine	3848539		<20	<20	NA	< 20	124%	70%	130%	84%	80%	120%	82%	70%	130%
Argent	3848539		< 0.5	<0.5	NA	< 0.5	102%	70%	130%	93%	80%	120%	91%	70%	130%
Arsenic	3848539		9	6	42.4	< 1	90%	70%	130%	88%	80%	120%	78%	70%	130%
Baryum	3848539		84	95	NA	< 20	99%	70%	130%	92%	80%	120%	82%	70%	130%
Béryllium	3848539		<1	<1	NA	< 1	88%	70%	130%	94%	80%	120%	87%	70%	130%
Cadmium	3848539		<0.5	< 0.5	NA	< 0.5	91%	70%	130%	91%	80%	120%	89%	70%	130%
Calcium	3848539		26600	26200	1.5	< 100	89%	70%	130%	91%	80%	120%	NA	70%	130%
Chrome	3848539		22	23	5.2	< 2	102%	70%	130%	94%	80%	120%	89%	70%	130%
Cobalt	3848539		8	9	NA	< 2	103%	70%	130%	95%	80%	120%	87%	70%	130%
Cuivre	3848539		17	17	1.3	< 1	96%	70%	130%	93%	80%	120%	84%	70%	130%
Étain	3848539		<5	<5	NA	< 5	92%	70%	130%	90%	80%	120%	88%	70%	130%
Fer	3848539		17100	18900	10.2	< 500	94%	70%	130%	91%	80%	120%	NA	70%	130%
Lithium	3848539		<20	<20	NA	< 20	95%	70%	130%	98%	80%	120%	90%	70%	130%
Magnésium	3848539		6670	6800	1.9	< 100	97%	70%	130%	97%	80%	120%	NA	70%	130%
Manganèse	3848539		288	296	2.7	< 10	90%	70%	130%	95%	80%	120%	90%	70%	130%
Mercure	3848539		<0.2	<0.2	NA	< 0.2	91%	70%	130%	82%	80%	120%	71%	70%	130%
Molybdène	3848539		<1	<1	NA	< 1	105%	70%	130%	97%	80%	120%	95%	70%	130%
Nickel	3848539		28	25	10.4	< 2	98%	70%	130%	94%	80%	120%	87%	70%	130%
Plomb	3848539		10	10	NA	< 5	93%	70%	130%	93%	80%	120%	84%	70%	130%
Potassium	3848539		2370	2560	7.9	< 100	89%	70%	130%	92%	80%	120%	88%	70%	130%
Sélénium	3848539		<0.5	<0.5	NA	< 0.5	86%	70%	130%	87%	80%	120%	87%	70%	130%
Sodium	3848539		931	980	5.1	< 100	79%	70%	130%	96%	80%	120%	89%	70%	130%
Vanadium	3848539		28	33	NA	< 15	97%	70%	130%	95%	80%	120%	88%	70%	130%
Zinc	3848539		79	84	6.6	< 5	98%	70%	130%	95%	80%	120%	89%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

L'analyse de l'échantillon a été effectuée en duplicata, l'échantillon est hétérogène en As.

NA : Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR: Mohamed Dioumessy

N° BON DE TRAVAIL: 220893164 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

Analyse organique de trace															
Date du rapport: 2022-05-20			DUPLICATA			MATÉRIAU DE RÉFÉRENCE				BLANC FORTIFIÉ			ÉCH. FORTIFIÉ		
PARAMÈTRE	Lot N° éch. [Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	imites % Récu		Limites		% Récup.	Limites		
			- 44	.,		méthode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.
Hydrocarbures pétroliers C10-C	50 (SoI)														
Hydrocarbures pétroliers C10 à C50	3861528 (3861528	<100	<100	NA	< 100	81%	60%	140%	90%	60%	140%	75%	60%	140%
Rec. Nonane	3861528	3861528	103	122	16.9	94	117%	60%	140%	108%	60%	140%	100%	60%	140%
% Humidité	3861529 (3861529	14.2	13.6	4.3	< 0.2	100%	80%	120%	NA			NA		

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

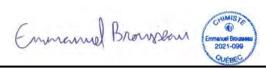
NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop

élevée par rapport à l'ajout.	eration de rechantillon foi	une maiqu	ie que le re	sullal n es	st pas iouri	ii en raisc	maen	ieteroge	neile de i	rechani	illon ou (ue la con	centrati	on trop
Hydrocarbures aromatiques po	olycycliques (HAP) (So)												
Acénaphtène	3861528 3861528	<0.1	<0.1	NA	< 0.1	114%	50%	140%	109%	50%	140%	120%	50%	140%
Acénaphtylène	3861528 3861528	<0.1	<0.1	NA	< 0.1	83%	50%	140%	107%	50%	140%	109%	50%	140%
Anthracène	3861528 3861528	<0.1	<0.1	NA	< 0.1	111%	50%	140%	106%	50%	140%	116%	50%	140%
Benzo (a) anthracène	3861528 3861528	<0.1	<0.1	NA	< 0.1	116%	50%	140%	104%	50%	140%	104%	50%	140%
Benzo (a) pyrène	3861528 3861528	<0.1	<0.1	NA	< 0.1	101%	50%	140%	96%	50%	140%	102%	50%	140%
Benzo (b) fluoranthène	3861528 3861528	<0.1	<0.1	NA	< 0.1	115%	50%	140%	110%	50%	140%	94%	50%	140%
Benzo (j) fluoranthène	3861528 3861528	<0.1	<0.1	NA	< 0.1	121%	50%	140%	107%	50%	140%	121%	50%	140%
Benzo (k) fluoranthène	3861528 3861528	<0.1	<0.1	NA	< 0.1	111%	50%	140%	105%	50%	140%	108%	50%	140%
Benzo (c) phénanthrène	3861528 3861528	<0.1	<0.1	NA	< 0.1	127%	50%	140%	111%	50%	140%	117%	50%	140%
Benzo (g,h,i) pérylène	3861528 3861528	<0.1	<0.1	NA	< 0.1	97%	50%	140%	93%	50%	140%	93%	50%	140%
Chrysène	3861528 3861528	<0.1	<0.1	NA	< 0.1	122%	50%	140%	104%	50%	140%	119%	50%	140%
Dibenzo (a,h) anthracène	3861528 3861528	<0.1	<0.1	NA	< 0.1	101%	50%	140%	95%	50%	140%	94%	50%	140%
Dibenzo (a,i) pyrène	3861528 3861528	<0.1	<0.1	NA	< 0.1	83%	50%	140%	119%	50%	140%	75%	50%	140%
Dibenzo (a,h) pyrène	3861528 3861528	<0.1	<0.1	NA	< 0.1	85%	50%	140%	93%	50%	140%	63%	50%	140%
Dibenzo (a,l) pyrène	3861528 3861528	<0.1	<0.1	NA	< 0.1	82%	50%	140%	115%	50%	140%	70%	50%	140%
Diméthyl-7,12 benzo (a) anthracène	3861528 3861528	<0.1	<0.1	NA	< 0.1	103%	50%	140%	132%	50%	140%	92%	50%	140%
Fluoranthène	3861528 3861528	<0.1	<0.1	NA	< 0.1	131%	50%	140%	112%	50%	140%	124%	50%	140%
Fluorène	3861528 3861528	<0.1	<0.1	NA	< 0.1	122%	50%	140%	113%	50%	140%	116%	50%	140%
Indéno (1,2,3-cd) pyrène	3861528 3861528	<0.1	<0.1	NA	< 0.1	101%	50%	140%	119%	50%	140%	93%	50%	140%
Méthyl-3 cholanthrène	3861528 3861528	<0.1	<0.1	NA	< 0.1	73%	50%	140%	128%	50%	140%	94%	50%	140%
Naphtalène	3861528 3861528	<0.1	<0.1	NA	< 0.1	125%	50%	140%	107%	50%	140%	121%	50%	140%
Phénanthrène	3861528 3861528	<0.1	<0.1	NA	< 0.1	137%	50%	140%	111%	50%	140%	126%	50%	140%
Pyrène	3861528 3861528	<0.1	<0.1	NA	< 0.1	124%	50%	140%	108%	50%	140%	126%	50%	140%
Méthyl-1 naphtalène	3861528 3861528	<0.1	<0.1	NA	< 0.1	115%	50%	140%	99%	50%	140%	111%	50%	140%
Méthyl-2 naphtalène	3861528 3861528	<0.1	<0.1	NA	< 0.1	133%	50%	140%	109%	50%	140%	125%	50%	140%
Diméthyl-1,3 naphtalène	3861528 3861528	<0.1	<0.1	NA	< 0.1	132%	50%	140%	108%	50%	140%	120%	50%	140%
Triméthyl-2,3,5 naphtalène	3861528 3861528	<0.1	<0.1	NA	< 0.1	124%	50%	140%	110%	50%	140%	119%	50%	140%
Rec. Naphtalène-d8	3861528 3861528	92	100	7.9	96	93%	50%	140%	94%	50%	140%	88%	50%	140%
Rec. Pyrène-d10	3861528 3861528	82	87	6.5	89	91%	50%	140%	103%	50%	140%	84%	50%	140%
Rec. p-Terphényl-d14	3861528 3861528	89	95	6.5	94	88%	50%	140%	96%	50%	140%	81%	50%	140%
% Humidité	3861529 3861529	14.2	13.6	4.3	< 0.2	100%	80%	120%	NA			NA		

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Mohamed Dioumessy N° BON DE TRAVAIL: 220893164 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

		Anal	yse	orgar	nique	de t	race	(Su	ite)						
Date du rapport: 2022-05-20			ı	DUPLICATA	Ą	MATÉ	RIAU DE RI	ÉFÉREN	CE	BLANG	FORTI	FIÉ	ÉCH.	FORTIF	ΊÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lim	ites	% Récup.		iites	% Récup.	Lim	nites
			- 1	.,		methode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.


Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Certifié par:

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 220893164

N° DE PROJET: 201-11330-29

À L'ATTENTION DE: Sirine Boussorra

Date du rapport: 20 mai 2022	_	MATÉRIAU D	E RÉFÉI	RENCE	BLAN	C FORT	IFIÉ	ÉCH.	FORTI	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lim		% Récup.		nites	% Récup.		nites
			Inf.	Sup.		Inf.	Sup.]	Inf.	Sup.

Analyses inorganiques - WSP (Balayage métaux + mercure)

Aluminium 65% 70% 130% 93% 80% 120% NA 70% 130%

Commentaires: Le pourcentage de récupération du MRC concernant le Al est conforme à l'écart du certificat du matériau de référence du fournisseur. L'analyse de l'échantillon a été effectuée en duplicata, l'échantillon est hétérogène en As.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Mohamed Dioumessy N° BON DE TRAVAIL: 220893164 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

I NELEVE I AN. Monamed Dioun	1000 y		_	ILO DE I NELLEVENILINI.	William Lake
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse des Sols		•	•	•	•
Aluminium	2022-05-18	2022-05-18	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Antimoine	2022-05-18	2022-05-19	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Argent	2022-05-18	2022-05-19	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Arsenic	2022-05-18	2022-05-19	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Baryum	2022-05-18	2022-05-19	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Béryllium	2022-05-18	2022-05-19	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Cadmium	2022-05-18	2022-05-19	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Calcium	2022-05-18	2022-05-19	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Chrome	2022-05-18	2022-05-19	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cobalt	2022-05-18	2022-05-19	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cuivre	2022-05-18	2022-05-19	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Étain	2022-05-18	2022-05-19	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Fer	2022-05-18	2022-05-19	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Lithium	2022-05-18	2022-05-19	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Magnésium	2022-05-18	2022-05-19	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Manganèse	2022-05-18	2022-05-19	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Mercure	2022-05-18	2022-05-19	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Molybdène	2022-05-18	2022-05-19	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Nickel	2022-05-18	2022-05-19	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Plomb	2022-05-18	2022-05-19	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Potassium	2022-05-18	2022-05-19	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sélénium	2022-05-18	2022-05-19	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sodium	2022-05-18	2022-05-19	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Vanadium	2022-05-18	2022-05-19	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Zinc	2022-05-18	2022-05-19	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Mohamed Dioumessy N° BON DE TRAVAIL: 220893164 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

PRELEVE PAR.IVIOITAITIEU DIOUTITES	ъу			LIEU DE PRELEVEIVIEINT.	Willurali Lake
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse organique de trace	•	•			
Acénaphtène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Acénaphtylène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Anthracène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (a) anthracène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (a) pyrène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (b) fluoranthène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (j) fluoranthène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (k) fluoranthène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (b+j+k) fluoranthène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (c) phénanthrène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (g,h,i) pérylène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Chrysène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,h) anthracène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,i) pyrène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,h) pyrène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,l) pyrène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Diméthyl-7,12 benzo (a) anthracène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Fluoranthène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Fluorène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
ndéno (1,2,3-cd) pyrène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Méthyl-3 cholanthrène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Naphtalène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Phénanthrène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Pyrène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Méthyl-1 naphtalène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Méthyl-2 naphtalène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Diméthyl-1,3 naphtalène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Triméthyl-2,3,5 naphtalène	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. Naphtalène-d8	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. Pyrène-d10	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. p-Terphényl-d14	2022-05-18	2022-05-18	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
% Humidité	2022-05-17	2022-05-17	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE
Hydrocarbures pétroliers C10 à C50	2022-05-18	2022-05-18	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2022-05-18	2022-05-18	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2022-05-17	2022-05-17	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE

320893164

	usp			Bordereau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec Cliy, Quebec Canada, G1P 4P3	Bordereau s:350 rue Fr	de dema	Bordereau de demande d'analyses es : 350 rue Franquet Quebec City, Quebec	es ec Canada, G	IP 4P3	1		5			7
WSP C 1135, t Queber Teléph	WSP Canada inc. 1135, boul Lebourgneuf Guebber (Quebber) G2K 0M5 Telephone: 418-623-7066	Telecopleur: 418-523-2434	Délai d'analyse requis	LIL	48 hres 24 hres	E	6-12 hres Date requise:					L £	Bon de commande: No de soumission:	nde: ion:	
Numéra Bon de Lieu de	rojet: nande: vement	201-11336-29 Windfall Lake					Critibres à respection RMD (RDS (spectar RMD (mat lixiviable) RDS (mat lixiviable) REIMR	able) ible)			T L Eauc	A 「 B Eau consommation Eau returnance	o L	L
Prélevé par. Chargé de pr Courriel:	ar. ; projet:	Mohamed Dioumessy Steve St.Cyr steve St.Cyr	e boussorra@wsp com						090-						
							, Mg, Mn,	entaire	ollers C10						
Matrices S S S S S S S S S S S S S S S S S S S	Matrice: S Sol SI Solide SE Sédiment EP Eau potable	B Boue EU Eau usée ST Eau souterraine	ES Eau de surface EF Effluent AF Affluent				(ΑΙ, Αg, Αs, , Fe, Hg, Κ, Ll, , Se, Sn, V et	nėlqque notie	arbures pétro						
		Identification de l'échantiflon	Date	Date de prélèvement	Matrice	Nombre de pots	כני כח	oyind	-	dAH		ell-			
-	F07-22-CF-1		,,	2022-05-06	S	-			H			-	-		
7	F07-22-CF-1B			2022-05-06	S	1					-				-
m	F07-22-CF-2			2022-05-06	တ	1	×		×	×					
4 '	F07-22-CF-3			2022-05-06	S	-	×		×						
0	F07-22-CF-4			2022-05-06	S	-									
1 0	F08-22-CF-1A			2022-05-07	S	-									
- 0	FOR 22 CE 2			2022-05-07	S	-	×		×	×					
0	F08-22-CF-4			2022-05-07	s u	- -					-				1
9	F08-22-CF-6			2022-05-07	o v	- -					+			-	1
						-					ł				1
											-		-	-	1
U											+				1
															1
			7												
														-	
								1			+				
											-				-
														-	
															H
Echant Date:	Echantillons remis par: Date: 2022-05-08	Mohamed Dioumessy			Échantillon Date:	Échantillons reçus par: Date:							Page:	-	de 3

	dsw			Bordereau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	Bordereau s: 350 rue Fr	de dema anquet Que	Bordereau de demande d'analyses s : 350 rue Franquet Quebec City, Quebec (ec Canada,	G1P 4P3							
WSP 1135 Duéb Tèlep	WSP Canada inc. 1135, boul Lebourgneuf Guébec (Guébec) G2K 0M5 Télephone: 418-623-7066	Térécopieur 418-623-2434	Délai d'analyse requis P∫ 5 jours T72 hres	L L.	48 hres 24 hres	Е	6-12 hres Date requise:				L L		Bon de commande: No de soumission:			1
Nume Bon c	Numéro du projet: Bon de commande; Lieu de prélèvement:	201-11330-29 Windfall Lake					Critities à respecter	specter RMD (mat lixiviable) RDS (mat lixiviable) REIMR	viable) riable)		T T T	A	ltion 7	L		
Prélevé pa Chargé de Courriel:	ar. a projet:	Mohamed Dioumessy Steve St-Cyr steve st cyr@wsp com / sirine boussorra@wsp com	boussoпа@wsp com				a, Cd, Co, Mo, Na, Ni,		090-020			0				1
Matrice: S S S	ol olide édiment	B Boue EU Eau usée ST Eau souterraine	ES Eau de surface EF Effluent AF Affluent				(Al, Ag, As, Ba, Be, C e, Hg, K, Ll, Mg, Mn, Se, Sn, V et Zn)	enisinemèiqque noi	rbures pétrollers C10							
ь	can boran	identification de l'échantillon	Dat	Date de prélèvement	Matrice	Nombre de pots	_	purilicat	Нудгоса	чАн						
-	DUP01220507			2022-05-07	S	-	_		×	×		İ	ŀ	-		7
7				2022-05-07	S	-										
ω ·	4			2022-05-07	S	-										
4 4	DUP04220507			2022-05-07	S	-				-						
0 6	1			2022-05-06	y u		>		>	>			1	+	+	
_	1			2022-02-00	2 0	-	<>		<>	< >	ļ	1	1	-	+	
- 00	F03-22-CF-4			2022-03-00	n un		<		<	<	1	Ī	1	+	+	_
0	F62-22-CF-1A			2022-05-08	S	-					l	I	ļ	+	1	
10	F62-22-CF-1B			2022-05-08	S	-	×		×	×				H	H	1
															-	
														H	1	7
															H	
										-		Ţ			-	-
														H		
												1		1	-	
														+	+	\neg
												L	I	t	-	
													F		-	
									-	-						
Echar Date:	Echantillons remis par: Date: 2022-05-08	Mohamed Dioumessy			Échantillons reçus par: Date:	ns reçus pa	ii.						Page:	2 4	g e	
											l			l	l	7

	Ush.		AGA	VT Laboratoire	Bordereau es : 350 rue Fr	de dema	Bordereau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	S c Canada,	31P 4P3						
WSP (1135, I	WSP Canada Inc. 1135, bou! Lebourgneuf Quebec (Quebec) GZK DM5		Délai d'analyse requis	LI	48 hres	E	6-12 hres					L. L	Bon de commande:	<u>ai</u>	
Teleph	Talaphone: 418-623-7066	Telecopieur 418-623-2434		1									No de soumission.	_	
Numér	Numéro du projet	201-11330-29					Critères à respecter	pecter RMD (mat lixiviable)	riable)				A B F	U	0
Lieu de	ц	Windfall Lake					L L	RDS (mat lixiviable) REIMR	iable)			Eau consommat	ommation		
Prélevé par.		Mohamed Dioumessy					'Ir		-		ŀ		2	-	-
Charge	Projet	Steve St-Cyr					Co.		Ī						
Courriel:		sleve st cyr@wsp.com / sirine boussorra@wsp.com	ooussorra@wsp com				a, Cd,		-C20						
							'uM 'BW	entaire	lers C10						
Matrice:	100	a a	ES For de surface				נ'ודו' ו	əməjo	lontèc						
요유립	Solide Sediment Eau potable	EU Eau usée ST Eau souterraine	EF Effluent AF Affluent				(Al, Ag, K Fe, Hg, K Se, Sn, /	ldns uoj	itpures b						
		Identification de l'échantillon	Date de	Date de prélèvement	Matrice	Nombre de pots	'no 'uo	eolifica	hydrocs	d∀ŀ					
-	F61-22-CF-1		202	2022-05-08	S	-			4 ×	1	ŀ	-	-		-
2	F15-22-CF-1		202	2022-05-08	S	-				-		ŀ			1
ო	F15-22-CF-2		202	2022-05-08	S	-	×		×		ŀ	-	-	-	-
4	F15-22-CF-4		202	2022-05-08	v	-							-	l	-
വ	F10-22-CF-1A		202:	2022-05-08	S	٢					F	ŀ			-
ω	F10-22-CF-1B		202	2022-05-08	s	-	×		×	×	F				-
7	F10-22-CF-3		202	2022-05-08	S	1	×		×					İ	
ω	F10-22-CF-4		202	2022-05-08	s	1									-
თ	F10-22-CF-5		202	2022-05-08	S	1							-		
														L	-
													-		
											-				-
									1				-		-
										1	1			1	
									ľ		-	-			1
								T	t				1	1	-
								T				İ			-
											Ļ		ŀ	1	-
											-				
															H
Echant	Échantillons remis par:	Mohamed Dioumessy			Échantillons reçus par:	s reçus par							Page:	6	e e
Date.	40/2-v-v-u			1	Date:									_ //	- 1

NOM DU CLIENT: WSP CANADA INC.

1135 BOULEVARD LEBOURGNEUF

QUEBEC, QC G2K 0M5

(418) 623-7066

À L'ATTENTION DE: Sirine Boussorra

N° DE PROJET: 201-11330-29 N° BON DE TRAVAIL: 220895436

ANALYSE DES SOLS VÉRIFIÉ PAR: Hasti Kamalimoghadam, Chimiste, AGAT Montréal

ORGANIQUE DE TRACE VÉRIFIÉ PAR: Robert Roch, Chimiste, AGAT Montréal

DATE DU RAPPORT: 10 juin 2022

NOMBRE DE PAGES: 20 VERSION*: 1

Pour tout complément d'information concernant cette analyse, veuillez contacter votre chargé(e) de projet client au (418) 266-5511.

Avia de non responsabilité:	

*Notes

- L'ensemble des travaux réalisés dans le présent document ont été effectués en utilisant des protocoles normalisés reconnus, ainsi que des pratiques et des méthodes généralement acceptées. En vue d'améliorer la performance, les méthodes analytiques d'AGAT pourraient comprendre des modifications issues des méthodes de référence spécifiées.
- Tous les échantillons seront éliminés trente (30) jours après réception au laboratoire à moins qu'une Entente d'entreposage à long terme ne soit signée et retournée. Certaines analyses spécialisées peuvent être exemptées. Veuillez communiquer avec votre chargé de projets à la clientèle pour plus d'informations.
- La responsabilité d'AGAT en ce qui concerne tout retard, exécution ou non-exécution de ces services s'applique uniquement envers le client et ne s'étend à aucune autre tierce partie. À moins qu'il n'en soit par ailleurs convenu expressément par écrit, la responsabilité d'AGAT se limite au coût réel de l'analyse ou des analyses spécifiques incluses dans les services.
- Sauf accord écrit préalable d'AGAT Laboratoires, ce certificat ne doit être reproduit que dans sa totalité.
- Les résultats d'analyse communiqués ci-joint ne concernent que les échantillons reçus par le laboratoire.
- L'application des lignes directrices est fournie « en l'état » sans garantie de quelque nature que ce soit, ni expresse ni tacite, y compris, mais sans s'y limiter, les garanties de qualité marchande, d'aptitude à un usage particulier ou de non-contrefaçon. AGAT n'assume aucune responsabilité à l'égard de toute erreur ou omission dans les directives que contient ce document.
- Toutes les informations rapportables sont disponibles sur demande auprès d'AGAT Laboratoires, conformément aux normes ISO/IEC 17025:2017, DR-12-PALA et/ou NELAP.

AGAT Laboratoires (V1) Page 1 de 20

N° BON DE TRAVAIL: 22O895436 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022	-05-13							С	ATE DU RAPP	ORT: 2022-06-	10
				IDENTIF	FICATION DE L'ÉC	CHANTILLON:	F48-22-CF-1	F46-22-CF-2	F49-22-CF-2	F49-22-CF-3	F72-22-CF-1B
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHANT	ILLONNAGE:	2022-05-10	2022-05-09	2022-05-10	2022-05-10	2022-05-10
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3922462	3922526	3922528	3922529	3922723
Aluminium	mg/kg					30	4840	6100	3660	5910	13000
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	<1	<1	<1	<1
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	30[<a]< td=""><td><20</td></a]<>	<20
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	1390	951	1260	1720	711
Chrome	mg/kg	100	250	800	4000	2	11[<a]< td=""><td>14[<a]< td=""><td>10[<a]< td=""><td>16[<a]< td=""><td>18[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	14[<a]< td=""><td>10[<a]< td=""><td>16[<a]< td=""><td>18[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	10[<a]< td=""><td>16[<a]< td=""><td>18[<a]< td=""></a]<></td></a]<></td></a]<>	16[<a]< td=""><td>18[<a]< td=""></a]<></td></a]<>	18[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	4[<a]< td=""><td>5[<a]< td=""><td>5[<a]< td=""><td>6[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	5[<a]< td=""><td>5[<a]< td=""><td>6[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	5[<a]< td=""><td>6[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<>	3[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	9[<a]< td=""><td>6[<a]< td=""><td>7[<a]< td=""><td>14[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>7[<a]< td=""><td>14[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>14[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<>	14[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<>	7[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	7290	7960	6100	9690	10400
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	<20
Magnésium	mg/kg					100	3170	3070	2040	3510	2110
Manganèse	mg/kg	1000	1000	2200	11000	10	106[<a]< td=""><td>102[<a]< td=""><td>123[<a]< td=""><td>155[<a]< td=""><td>65[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	102[<a]< td=""><td>123[<a]< td=""><td>155[<a]< td=""><td>65[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	123[<a]< td=""><td>155[<a]< td=""><td>65[<a]< td=""></a]<></td></a]<></td></a]<>	155[<a]< td=""><td>65[<a]< td=""></a]<></td></a]<>	65[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	8[<a]< td=""><td>11[<a]< td=""><td>8[<a]< td=""><td>11[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>8[<a]< td=""><td>11[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>11[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<>	9[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	288	144	195	871	<100
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	<100	<100	<100	<100
Vanadium	mg/kg					15	<15	<15	<15	17	16
Zinc	mg/kg	140	500	1500	7500	5	22[<a]< td=""><td>20[<a]< td=""><td>17[<a]< td=""><td>25[<a]< td=""><td>17[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	20[<a]< td=""><td>17[<a]< td=""><td>25[<a]< td=""><td>17[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	17[<a]< td=""><td>25[<a]< td=""><td>17[<a]< td=""></a]<></td></a]<></td></a]<>	25[<a]< td=""><td>17[<a]< td=""></a]<></td></a]<>	17[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 22O895436 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022	-05-13							D	ATE DU RAPP	ORT: 2022-06-1	0
				IDENTIF	ICATION DE L'ÉC	CHANTILLON:	F74-22-CF-3A	F75-22-CF-1B	F75-22-CF-2	F86-22-CF-1	F87-22-CF-1
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHANT	TLLONNAGE:	2022-05-10	2022-05-10	2022-05-10	2022-05-10	2022-05-09
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3922726	3922729	3922730	3922731	3922732
Aluminium	mg/kg					30	3970	15700	6980	8970	7650
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	<1	<1	<1	<1
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	<20	<20
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	1540	807	821	413	928
Chrome	mg/kg	100	250	800	4000	2	12[<a]< td=""><td>19[<a]< td=""><td>12[<a]< td=""><td>10[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	19[<a]< td=""><td>12[<a]< td=""><td>10[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>10[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<>	10[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<>	12[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	3[<a]< td=""><td>3[<a]< td=""><td>3[<a]< td=""><td><2</td><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>3[<a]< td=""><td><2</td><td>4[<a]< td=""></a]<></td></a]<></td></a]<>	3[<a]< td=""><td><2</td><td>4[<a]< td=""></a]<></td></a]<>	<2	4[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	12[<a]< td=""><td>4[<a]< td=""><td>4[<a]< td=""><td>2[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>4[<a]< td=""><td>2[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>2[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<>	2[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<>	7[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	6530	12800	7490	10200	7950
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	<20
Magnésium	mg/kg					100	2110	1990	1580	578	2840
Manganèse	mg/kg	1000	1000	2200	11000	10	105[<a]< td=""><td>66[<a]< td=""><td>60[<a]< td=""><td>22[<a]< td=""><td>105[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	66[<a]< td=""><td>60[<a]< td=""><td>22[<a]< td=""><td>105[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	60[<a]< td=""><td>22[<a]< td=""><td>105[<a]< td=""></a]<></td></a]<></td></a]<>	22[<a]< td=""><td>105[<a]< td=""></a]<></td></a]<>	105[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	7[<a]< td=""><td>7[<a]< td=""><td>6[<a]< td=""><td>2[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>6[<a]< td=""><td>2[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>2[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<>	2[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<>	9[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	191	<100	<100	<100	189
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	<100	<100	<100	<100
Vanadium	mg/kg					15	<15	17	18	28	<15
Zinc	mg/kg	140	500	1500	7500	5	15[<a]< td=""><td>16[<a]< td=""><td>14[<a]< td=""><td>8[<a]< td=""><td>24[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	16[<a]< td=""><td>14[<a]< td=""><td>8[<a]< td=""><td>24[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	14[<a]< td=""><td>8[<a]< td=""><td>24[<a]< td=""></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>24[<a]< td=""></a]<></td></a]<>	24[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 22O895436 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

\= 40								
05-13								DATE DU RAPPORT: 2022-06-10
			IDENTIFIC	CATION DE L'ÉC	CHANTILLON:	F88-22-CF-1	F88-22-CF-2	
					MATRICE:	Sol	Sol	
			Γ	DATE D'ÉCHANT	TILLONNAGE:	2022-05-09	2022-05-09	
Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3922736	3922737	
mg/kg					30	5780	3730	
mg/kg	-	-	-		20	<20	<20	
mg/kg	2	20	40	200	0.5	<0.5	<0.5	
mg/kg	6	30	50	250	1	<1	<1	
mg/kg	340	500	2000	10000	20	<20	<20	
mg/kg					1	<1	<1	
mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	
mg/kg					100	1050	1220	
mg/kg	100	250	800	4000	2	14[<a]< td=""><td>10[<a]< td=""><td></td></a]<></td></a]<>	10[<a]< td=""><td></td></a]<>	
mg/kg	25	50	300	1500	2	6[<a]< td=""><td>4[<a]< td=""><td></td></a]<></td></a]<>	4[<a]< td=""><td></td></a]<>	
mg/kg	50	100	500	2500	1	7[<a]< td=""><td>10[<a]< td=""><td></td></a]<></td></a]<>	10[<a]< td=""><td></td></a]<>	
mg/kg	5	50	300	1500	5	<5	<5	
mg/kg					500	8370	7350	
mg/kg	-	-	-	-	20	<20	<20	
mg/kg					100	2930	3050	
mg/kg	1000	1000	2200	11000	10	118[<a]< td=""><td>111[<a]< td=""><td></td></a]<></td></a]<>	111[<a]< td=""><td></td></a]<>	
mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	
mg/kg	2	10	40	200	1	<1	<1	
mg/kg	50	100	500	2500	2	11[<a]< td=""><td>8[<a]< td=""><td></td></a]<></td></a]<>	8[<a]< td=""><td></td></a]<>	
mg/kg	50	500	1000	5000	5	<5	<5	
mg/kg					100	187	230	
mg/kg	1	3	10	50	0.5	<0.5	<0.5	
mg/kg					100	<100	<100	
mg/kg					15	<15	<15	
mg/kg	140	500	1500	7500	5	22[<a]< td=""><td>20[<a]< td=""><td></td></a]<></td></a]<>	20[<a]< td=""><td></td></a]<>	
	Unités mg/kg	Unités C / N: A mg/kg mg/kg - mg/kg 2 mg/kg 6 mg/kg 340 mg/kg mg/kg 1.5 mg/kg mg/kg 100 mg/kg 25 mg/kg 50 mg/kg 50 mg/kg 0.2 mg/kg 0.2 mg/kg 0.2 mg/kg 0.2 mg/kg 0.2 mg/kg 50 mg/kg 1000 mg/kg 0.5 mg/kg 1000 mg/kg 0.2 mg/kg 1000 mg/kg 0.2 mg/kg 1000 mg/kg 0.2 mg/kg 1000 mg/kg 0.2 mg/kg 1000 mg/kg 0.2 mg/kg 1000 mg/kg 1000 mg/kg 0.2 mg/kg 1000 mg/kg 0.2 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000 mg/kg 1000	Unités C / N: A C / N: B mg/kg mg/kg mg/kg 2 20 mg/kg 6 30 mg/kg 340 500 mg/kg mg/kg 1.5 5 mg/kg mg/kg 100 250 mg/kg 25 50 mg/kg 50 100 mg/kg 5 50 mg/kg 0 mg/kg 0 1000 mg/kg 0 250 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 1000 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50 mg/kg 5 50	Unités C/N: A C/N: B C/N: C mg/kg mg/kg mg/kg 2 20 40 mg/kg 6 30 50 mg/kg 340 500 2000 mg/kg mg/kg 1.5 5 20 mg/kg mg/kg 100 250 800 mg/kg 25 50 300 mg/kg 50 100 500 mg/kg 5 50 300 mg/kg 7 mg/kg 7 1000 250 mg/kg 5 50 300	DENTIFICATION DE L'ÉC	IDENTIFICATION DE L'ÉCHANTILLON: MATRICE: DATE D'ÉCHANTILLONNAGE:	DENTIFICATION DE L'ÉCHANTILLON: Sol 2022-05-09 2014 2022-05-09 2022-05-05-05-05-05-05-05-05-05-05-05-05-05-	DENTIFICATION DE L'ÉCHANTILLON: F88-22-CF-1 Sol Sol Sol DATE D'ÉCHANTILLONNAGE: Sol Sol 2022-05-09 2022-05-09 2022-05-09 2022-05-09 2022-05-09 2022-05-09 2022-05-09 2022-05-09 2022-05-09 2022-05-09 2022-05-09 2022-05-09 392273737 3922737 3922737 392273727 392273727 392273727 392273727 392273727 392273727 392273727 392273727 392273

Certifié par:

N° BON DE TRAVAIL: 220895436

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-05-13 DATE DU RAPPORT: 2022-06-10

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3922462-3922737 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 22O895436 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Hydrocarbures aromatiques polycycliques (HAP) (SoI)

DATE DE RÉCEPTION: 2022-05-1	13							[DATE DU RAPP	ORT: 2022-06-	10
				IDENTIFIC	CATION DE L'ÉC	CHANTILLON:	F48-22-CF-1	F72-22-CF-1B	F75-22-CF-1B	F86-22-CF-1	F87-22-CF-1
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					ATE D'ÉCHAN	TILLONNAGE:	2022-05-10	2022-05-10	2022-05-10	2022-05-10	2022-05-09
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3922462	3922723	3922729	3922731	3922732
Acénaphtène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acénaphtylène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (a) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (b) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (j) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (k) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (b+j+k) fluoranthène	mg/kg	-	-	-	136	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (c) phénanthrène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo (g,h,i) pérylène	mg/kg	0.1	1	10	18	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo (a,h) anthracène	mg/kg	0.1	1	10	82	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo (a,i) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo (a,h) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo (a,l) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Diméthyl-7,12 benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indéno (1,2,3-cd) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Méthyl-3 cholanthrène	mg/kg	0.1	1	10	150	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Naphtalène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phénanthrène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Méthyl-1 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Méthyl-2 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Diméthyl-1,3 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Triméthyl-2,3,5 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Certifié par:

N° BON DE TRAVAIL: 22O895436 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

	Hydrocarbures	aromatiques	polycyclia	ues (HAP) (Sol)
--	---------------	-------------	------------	-----------------

DATE DE RÉCEPTION: 2022-0	5-13							Ι	DATE DU RAPP	ORT: 2022-06-	10
				IDENTIF	ICATION DE L'É	CHANTILLON:	F48-22-CF-1	F72-22-CF-1B	F75-22-CF-1B	F86-22-CF-1	F87-22-CF-1
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2022-05-10	2022-05-10	2022-05-10	2022-05-10	2022-05-09
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3922462	3922723	3922729	3922731	3922732
% Humidité	%					0.2	2.3	22.6	20.9	28.2	4.4
Étalon de recouvrement	Unités			Limites							
Rec. Naphtalène-d8	%			50-140			82	83	80	83	79
Rec. Pyrène-d10	%			50-140			108	107	103	105	99
Rec. p-Terphényl-d14	%			50-140			103	104	99	102	95

Anter the source Robert Ro

Certifié par:

N° BON DE TRAVAIL: 22O895436 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

			yarodarbo		atiquee pe	1,0,011440	,5 (11/11) (001)	
DATE DE RÉCEPTION: 2022-05-7	13							DATE DU RAPPORT: 2022-06-10
				IDENTIFIC	CATION DE L'É	CHANTILLON:	F88-22-CF-2	
						MATRICE:	Sol	
				D	ATE D'ÉCHAN	TILLONNAGE:	2022-05-09	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3922737	
Acénaphtène	mg/kg	0.1	10	100	100	0.1	<0.1	
Acénaphtylène	mg/kg	0.1	10	100	100	0.1	<0.1	
Anthracène	mg/kg	0.1	10	100	100	0.1	<0.1	
Benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	
Benzo (a) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	
Benzo (b) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	
Benzo (j) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	
Benzo (k) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	
Benzo (b+j+k) fluoranthène	mg/kg	-	-	-	136	0.1	<0.1	
Benzo (c) phénanthrène	mg/kg	0.1	1	10	56	0.1	<0.1	
Benzo (g,h,i) pérylène	mg/kg	0.1	1	10	18	0.1	<0.1	
Chrysène	mg/kg	0.1	1	10	34	0.1	<0.1	
Dibenzo (a,h) anthracène	mg/kg	0.1	1	10	82	0.1	<0.1	
Dibenzo (a,i) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	
Dibenzo (a,h) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	
Dibenzo (a,l) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	
Diméthyl-7,12 benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	
Fluoranthène	mg/kg	0.1	10	100	100	0.1	<0.1	
Fluorène	mg/kg	0.1	10	100	100	0.1	<0.1	
Indéno (1,2,3-cd) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	
Méthyl-3 cholanthrène	mg/kg	0.1	1	10	150	0.1	<0.1	
Naphtalène	mg/kg	0.1	5	50	56	0.1	<0.1	
Phénanthrène	mg/kg	0.1	5	50	56	0.1	<0.1	
Pyrène	mg/kg	0.1	10	100	100	0.1	<0.1	
Méthyl-1 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	
Méthyl-2 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	
Diméthyl-1,3 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	
Triméthyl-2,3,5 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	

Certifié par:

N° BON DE TRAVAIL: 220895436

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

		H	ydrocarbu	res arom	atiques po	lycyclique	es (HAP) (SoI)	
DATE DE RÉCEPTION: 2022-0	5-13							DATE DU RAPPORT: 2022-06-10
				IDENTIFIC	CATION DE L'É	CHANTILLON:	F88-22-CF-2	
						MATRICE:	Sol	
				Г	DATE D'ÉCHAN	TILLONNAGE:	2022-05-09	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3922737	
% Humidité	%					0.2	2.8	
Étalon de recouvrement	Unités			Limites				
Rec. Naphtalène-d8	%			50-140			87	
Rec. Pyrène-d10	%			50-140			110	
Rec. p-Terphényl-d14	%			50-140			107	

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable pour l'interprétation réglementaire.

3922462-3922737 Le délai de conservation de l'échantillon était dépassé lors de l'analyse, l'intégrité de l'échantillon peut être altérée.

Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 22O895436 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: Mohamed Dioumessy À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

PRELEVE PAR:Monamed Dio	umessy						LIEU DE	PRELEVEMEN	NI:Windfall La	ike	
			Hyd	rocarbur	es pétrolie	rs C10-C50) (Sol)				
DATE DE RÉCEPTION: 2022-05-	13							Γ	DATE DU RAPP	ORT: 2022-06-	10
				IDENTIF	ICATION DE L'É	CHANTILLON:	F48-22-CF-1	F46-22-CF-2	F49-22-CF-2	F49-22-CF-3	F72-22-CF-1B
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	ITILLONNAGE:	2022-05-10	2022-05-09	2022-05-10	2022-05-10	2022-05-10
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3922462	3922526	3922528	3922529	3922723
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100
% Humidité	%					0.2	2.3	8.3	11.1	7.9	22.6
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			73	81	77	80	83
				IDENTIF	ICATION DE L'É	CHANTILLON:	F74-22-CF-3A	F75-22-CF-1B	F75-22-CF-2	F86-22-CF-1	F87-22-CF-1
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	ITILLONNAGE:	2022-05-10	2022-05-10	2022-05-10	2022-05-10	2022-05-09
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3922726	3922729	3922730	3922731	3922732
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100
% Humidité	%					0.2	16.6	20.9	21.9	28.2	4.4
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			70	66	67	73	67
				IDENTIF	ICATION DE L'É	CHANTILLON:	F88-22-CF-1 Sol	F88-22-CF-2 Sol			
					DATE D'ÉCHAN	_	2022-05-09	2022-05-09			
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C/N: D	LDR	3922736	3922737			
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100			
% Humidité	%					0.2	5.15	2.8			
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			116	74			

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se réfèrer directement à la norme applicable pour l'interprétation réglementaire.

3922462-3922737 Le délai de conservation de l'échantillon était dépassé lors de l'analyse, l'intégrité de l'échantillon peut être altérée.

Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Mohamed Dioumessy N° BON DE TRAVAIL: 220895436 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

	-		1	Analy	/se d	es So	ols								
Date du rapport: 2022-06-10				DUPLICAT	A	MATÉ	RIAU DE R	ÉFÉRENCE BLANC			FORT	IFIÉ	ÉCH.	FORTI	-IÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.	Lin	nites	% Récup.	Lin	nites
TANAMETINE	Lot	IN COII.	Бир #1	Dup #2	70 d coart	méthode	70 Nocup.	Inf.	Sup.	70 Nocup.	Inf.	Sup.	, 70 Nocup.	Inf.	Sup.
Analyses inorganiques - WSP (Balayage mé	taux + me	ercure)	•	•			•	•			•			
Aluminium	3939929		3640	3800	4.4	< 30	55%	70%	130%	88%	80%	120%	99%	70%	130%
Antimoine	3939929		<20	<20	NA	< 20	127%	70%	130%	87%	80%	120%	82%	70%	130%
Argent	3939929		<0.5	<0.5	NA	< 0.5	97%	70%	130%	92%	80%	120%	89%	70%	130%
Arsenic	3939929		3	2	NA	< 1	87%	70%	130%	86%	80%	120%	83%	70%	130%
Baryum	3939929		60	68	NA	< 20	95%	70%	130%	95%	80%	120%	106%	70%	130%
Béryllium	3939929		<1	<1	NA	< 1	80%	70%	130%	83%	80%	120%	81%	70%	130%
Cadmium	3939929		<0.5	< 0.5	NA	< 0.5	93%	70%	130%	91%	80%	120%	87%	70%	130%
Calcium	3939929		190000	207000	8.7	< 100	85%	70%	130%	92%	80%	120%	NA	70%	130%
Chrome	3939929		7	8	NA	< 2	93%	70%	130%	91%	80%	120%	89%	70%	130%
Cobalt	3939929		4	4	NA	< 2	91%	70%	130%	93%	80%	120%	86%	70%	130%
Cuivre	3939929		11	10	10.8	< 1	89%	70%	130%	89%	80%	120%	80%	70%	130%
Étain	3939929		<5	<5	NA	< 5	94%	70%	130%	93%	80%	120%	89%	70%	130%
Fer	3939929		8510	8580	0.7	< 500	93%	70%	130%	95%	80%	120%	NA	70%	130%
Lithium	3939929		<20	<20	NA	< 20	81%	70%	130%	81%	80%	120%	82%	70%	130%
Magnésium	3939929		10300	10400	1.3	< 100	91%	70%	130%	93%	80%	120%	NA	70%	130%
Manganèse	3939929		222	234	5.1	< 10	95%	70%	130%	92%	80%	120%	87%	70%	130%
Mercure	3939929		<0.2	<0.2	NA	< 0.2	91%	70%	130%	104%	80%	120%	90%	70%	130%
Molybdène	3939929		1	<1	NA	< 1	100%	70%	130%	95%	80%	120%	95%	70%	130%
Nickel	3939929		11	10	8.7	< 2	91%	70%	130%	87%	80%	120%	79%	70%	130%
Plomb	3939929		<5	<5	NA	< 5	96%	70%	130%	96%	80%	120%	90%	70%	130%
Potassium	3939929		957	973	1.7	< 100	87%	70%	130%	92%	80%	120%	91%	70%	130%
Sélénium	3939929		<0.5	<0.5	NA	< 0.5	87%	70%	130%	88%	80%	120%	87%	70%	130%
Sodium	3939929		221	230	NA	< 100	82%	70%	130%	94%	80%	120%	91%	70%	130%
Vanadium	3939929		<15	<15	NA	< 15	96%	70%	130%	95%	80%	120%	91%	70%	130%
Zinc	3939929		29	25	13.9	< 5	90%	70%	130%	89%	80%	120%	81%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA : Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR: Mohamed Dioumessy

N° BON DE TRAVAIL: 220895436 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyse organique de trace														
Date du rapport: 2022-06-10			DUPLICAT	A	MATÉRIAU DE RÉFÉRENCE			BLAN	C FORT	IFIÉ	ÉCH.	FORTIF	FIÉ	
PARAMÈTRE	Lot N° éc	h. Dup #1	Dup #2	% d'écart	Blanc de	Limites % Récup.		nites	% Récup.	Lin	nites	% Récup.	Lin	nites
TAKAWETKE	Eot N cc	П. Бар #1	Dup #2	70 d ccart	méthode	70 Necup.	Inf.	Sup.	70 Necup.	Inf.	Sup.	70 Recup.	Inf.	Sup.
Hydrocarbures aromatiques pol	ycycliques (HAP) (Sol)												
Acénaphtène	3918266	<0.1	<0.1	NA	< 0.1	79%	50%	140%	109%	50%	140%	103%	50%	140%
Acénaphtylène	3918266	<0.1	<0.1	NA	< 0.1	69%	50%	140%	102%	50%	140%	97%	50%	140%
Anthracène	3918266	<0.1	<0.1	NA	< 0.1	83%	50%	140%	112%	50%	140%	108%	50%	140%
Benzo (a) anthracène	3918266	<0.1	<0.1	NA	< 0.1	85%	50%	140%	107%	50%	140%	105%	50%	140%
Benzo (a) pyrène	3918266	<0.1	<0.1	NA	< 0.1	81%	50%	140%	108%	50%	140%	104%	50%	140%
Benzo (b) fluoranthène	3918266	<0.1	<0.1	NA	< 0.1	80%	50%	140%	106%	50%	140%	106%	50%	140%
Benzo (j) fluoranthène	3918266	<0.1	<0.1	NA	< 0.1	84%	50%	140%	103%	50%	140%	105%	50%	140%
Benzo (k) fluoranthène	3918266	<0.1	<0.1	NA	< 0.1	83%	50%	140%	98%	50%	140%	98%	50%	140%
Benzo (c) phénanthrène	3918266	<0.1	<0.1	NA	< 0.1	86%	50%	140%	110%	50%	140%	108%	50%	140%
Benzo (g,h,i) pérylène	3918266	<0.1	<0.1	NA	< 0.1	82%	50%	140%	109%	50%	140%	105%	50%	140%
Chrysène	3918266	<0.1	<0.1	NA	< 0.1	85%	50%	140%	106%	50%	140%	101%	50%	140%
Dibenzo (a,h) anthracène	3918266	<0.1	<0.1	NA	< 0.1	88%	50%	140%	111%	50%	140%	106%	50%	140%
Dibenzo (a,i) pyrène	3918266	<0.1	<0.1	NA	< 0.1	83%	50%	140%	104%	50%	140%	97%	50%	140%
Dibenzo (a,h) pyrène	3918266	<0.1	<0.1	NA	< 0.1	84%	50%	140%	106%	50%	140%	104%	50%	140%
Dibenzo (a,l) pyrène	3918266	<0.1	<0.1	NA	< 0.1	96%	50%	140%	111%	50%	140%	122%	50%	140%
Diméthyl-7,12 benzo (a) anthracène	3918266	<0.1	<0.1	NA	< 0.1	109%	50%	140%	NA	50%	140%	133%	50%	140%
Fluoranthène	3918266	<0.1	<0.1	NA	< 0.1	94%	50%	140%	108%	50%	140%	117%	50%	140%
Fluorène	3918266	<0.1	<0.1	NA	< 0.1	91%	50%	140%	106%	50%	140%	102%	50%	140%
Indéno (1,2,3-cd) pyrène	3918266	<0.1	<0.1	NA	< 0.1	82%	50%	140%	106%	50%	140%	101%	50%	140%
Méthyl-3 cholanthrène	3918266	<0.1	<0.1	NA	< 0.1	70%	50%	140%	106%	50%	140%	101%	50%	140%
Naphtalène	3918266	<0.1	<0.1	NA	< 0.1	77%	50%	140%	105%	50%	140%	98%	50%	140%
Phénanthrène	3918266	<0.1	<0.1	NA	< 0.1	86%	50%	140%	114%	50%	140%	106%	50%	140%
Pyrène	3918266	<0.1	<0.1	NA	< 0.1	94%	50%	140%	113%	50%	140%	115%	50%	140%
Méthyl-1 naphtalène	3918266	<0.1	<0.1	NA	< 0.1	79%	50%	140%	105%	50%	140%	104%	50%	140%
Méthyl-2 naphtalène	3918266	<0.1	<0.1	NA	< 0.1	90%	50%	140%	111%	50%	140%	117%	50%	140%
Diméthyl-1,3 naphtalène	3918266	<0.1	<0.1	NA	< 0.1	77%	50%	140%	103%	50%	140%	102%	50%	140%
Triméthyl-2,3,5 naphtalène	3918266	<0.1	<0.1	NA	< 0.1	82%	50%	140%	111%	50%	140%	110%	50%	140%
Rec. Naphtalène-d8	3918266	84	87	3.1	85	94%	50%	140%	95%	50%	140%	92%	50%	140%
Rec. Pyrène-d10	3918266	105	106	1.4	107	103%	50%	140%	100%	50%	140%	95%	50%	140%
Rec. p-Terphényl-d14	3918266	106	106	0.1	107	101%	50%	140%	100%	50%	140%	95%	50%	140%
% Humidité	3922731 392273	1 28.2	27.0	4.2	< 0.2	100%	80%	120%	NA			NA		

Commentaires: Le pourcentage de récupération de l'étalon contrôle en diméthyl-7,12 benzo(a)anthracène est élevé. Les résultats des échantillons sont acceptables car ils sont inférieurs à la limite de détection rapportée.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Hydrocarbures pétroliers C10-C50 (Sol)

3922462 3922462 Hydrocarbures pétroliers C10 à <100 <100 NA < 100 85% 60% 140% 93% 60% 140% 81% 60% 140% C50 3922462 3922462 Rec. Nonane 79% 84% 60% 140% 73 80 9.2 74 60% 140% 60% 140% 73%

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Mohamed Dioumessy N° BON DE TRAVAIL: 220895436 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyse organique de trace (Suite)															
Date du rapport: 2022-06-10 DUPLICATA						MATÉ	RIAU DE R	ÉFÉREN	ICE	BLANG	FORT	FIÉ	ÉCH.	FORTIF	ΊÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	c de ode % Récup.		% Récup.		nites	% Récup.		nites	
						methode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.
% Humidité 3922731 3922731 28.2 27.0 4.2 < 0.2 100% 80% 120% NA NA															

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Hydrocarbures pétroliers C10-C50 (Sol)

Hydrocarbures pétroliers C10 à C50	3946059	<100	<100	NA	< 100	111%	60%	140%	109%	60%	140%	98%	60%	140%
Rec. Nonane	3946059	113	112	0.9	115	116%	60%	140%	112%	60%	140%	103%	60%	140%

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 220895436

N° DE PROJET: 201-11330-29

À L'ATTENTION DE: Sirine Boussorra

Date du rapport: 10 juin 2022		MATÉRIAU D	E RÉFÉI	RENCE	BLAN	C FORT	IFIÉ	ÉCH.	FORTII	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lim		% Récup.		nites	% Récup.		nites
			Inf.	Sup.		Inf.	Sup.		Inf.	Sup.

Analyses inorganiques - WSP (Balayage métaux + mercure)

Aluminium 55% 70% 130% 88% 80% 120% 99% 70% 130%

Commentaires: Le pourcentage de récupération du MRC concernant le Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR: Mohamed Dioumessy N° BON DE TRAVAIL: 220895436
À L'ATTENTION DE: Sirine Boussorra
LIEU DE PRÉLÈVEMENT:Windfall Lake

PRELEVE PAR: Monamed Dioun	iessy		L	LIEU DE PRELEVEMENT:	windian Lake
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse des Sols	•	•	•		•
Aluminium	2022-06-08	2022-06-08	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Antimoine	2022-06-08	2022-06-08	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Argent	2022-06-08	2022-06-08	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Arsenic	2022-06-08	2022-06-08	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Baryum	2022-06-08	2022-06-08	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Béryllium	2022-06-08	2022-06-08	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Cadmium	2022-06-08	2022-06-08	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Calcium	2022-06-08	2022-06-08	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Chrome	2022-06-08	2022-06-08	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cobalt	2022-06-08	2022-06-08	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cuivre	2022-06-08	2022-06-08	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Étain	2022-06-08	2022-06-08	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Fer	2022-06-08	2022-06-08	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Lithium	2022-06-08	2022-06-08	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Magnésium	2022-06-08	2022-06-08	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Manganèse	2022-06-08	2022-06-08	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Mercure	2022-06-08	2022-06-08	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Molybdène	2022-06-08	2022-06-08	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Nickel	2022-06-08	2022-06-08	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Plomb	2022-06-08	2022-06-08	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Potassium	2022-06-08	2022-06-08	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sélénium	2022-06-08	2022-06-08	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sodium	2022-06-08	2022-06-08	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Vanadium	2022-06-08	2022-06-08	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Zinc	2022-06-08	2022-06-08	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Mohamed Dioumessy N° BON DE TRAVAIL: 220895436 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

PRELEVE PAR.IVIOITAITIEU DIOUTITES	ъу			LIEU DE PRELEVEIVIEINT.	Willurali Lake
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse organique de trace	•	•			
Acénaphtène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Acénaphtylène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Anthracène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (a) anthracène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (a) pyrène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (b) fluoranthène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (j) fluoranthène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (k) fluoranthène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (b+j+k) fluoranthène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (c) phénanthrène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (g,h,i) pérylène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Chrysène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,h) anthracène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,i) pyrène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,h) pyrène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,l) pyrène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Diméthyl-7,12 benzo (a) anthracène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Fluoranthène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Fluorène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
ndéno (1,2,3-cd) pyrène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Méthyl-3 cholanthrène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Naphtalène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Phénanthrène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Pyrène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Méthyl-1 naphtalène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Méthyl-2 naphtalène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Diméthyl-1,3 naphtalène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Triméthyl-2,3,5 naphtalène	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. Naphtalène-d8	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. Pyrène-d10	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. p-Terphényl-d14	2022-06-07	2022-06-07	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
% Humidité	2022-06-06	2022-06-06	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE
Hydrocarbures pétroliers C10 à C50	2022-06-06	2022-06-09	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2022-06-06	2022-06-09	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2022-06-06	2022-06-06	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE

Control Pure Control Pure Co			AG	Dorum eau de Denianne u drangses AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	s : 350 rue Fra	andnet Quebe	e d'analys c City, Quebe	es ec Canada, G	1P 4P3						
Command Comm	WSP Canada inc. 1135, boul Lebourgneuf Guébec, G2K 0M5 Téléphone, 418-623-7066	1 1		LIE	48 hres 24 hres		12 hres ite requise:					l., l.,	Bon de comma	ande:	
15 15 15 15 15 15 15 15	ojet: iande: vement:	201-11330-29 Windfall Lake				0	itères à resp	ecter MD (mat lixivi DS (mat, lixivi: EIMR	able)				F B consommation rèsurgence	III. 8	L.
Solution Declaration Dec	ojet:	Mohamed Dioumessy Steve St-Cyr steve st cyr@wsp com / sirine	: boussorra@wsp com				'IN 'eN 'oW 'uW '6W	enletre	ers C10-C50						
F49-22-CF-1	Matrice: S Sol SI Solide SE Sediment EP Eau potable						1' E6' Hđ' K' FI' I	əməlqqus nolis:	carbures pétrol						
F46-22-CF-1 F68-22-CF-2 F68-22-CF-3 F68-22-CF-3 F68-22-CF-3 F68-22-CF-3 F68-22-CF-3 F68-22-CF-1 F68-22-CF-1 F68-22-CF-1 F68-22-CF-1 F68-22-CF-1 F68-22-CF-1 F68-22-CF-3 F68-22	Identi	ification de l'échantillon	Date de	з prélèvement	Matrice	_	Cr, Cu	purific	Hydro	ЧАН					
F48-22-CF-3 2022-05-00 S 1 1			20:	22-05-10	S	-	×		×	×					
F46-22-CF-1 F46-22-CF-2 F46-22-CF-3 F46-22			20.	22-05-10	S	- ,									
F46-22-CF-2 F49-22-CF-18 F49-22-CF-3 F49-2	-		200	22-05-09	0 00	-	1							1	1
F49-22-CF-1B F49-22-CF-3 F49-22-CF-3 F49-22-CF-3 F49-22-CF-3 F49-22-CF-3 F49-22-CF-3 F49-22-CF-3 F49-22-CF-3 F49-22-CF-3 F49-22-CF-1B F49-22-CF-3 F49-22-CF-1B F49-22-CF-3 F49-22-CF-1B F49			200	22-05-09	S	-	×		×		-	L		F	T
F49-22-CF-3 F49-2	Ц	Œ.	20:	22-05-10	S	-					-				T
F49-22-CF-3	_		20.	22-05-10	()	-	×		×						
Illiors remis part: Mohamed Diouncissy Echantilions regus part: Page: 1			20.	22-05-10	S	-	×		×						
Illions remis par: Worksmed Droumessy Echantilons regus par:														H	
Millors remis par: Mohamed Dioumessy Echantillors regus par: Page: 1															
tillors remis per: Wohamed Diounessy (Echantillors regus par: Page: 1														H	
tillors remis par: Mohamed Diounessy (Echantillors regus par: Page: 1															
tillors remis per: Wohamed Dloumessy (Echantillors regus par: Page: 1												-			Ħ
billors remis par: Mohamed Diounessy (Echantillors regus par: Page: 1															
tillors remis par: Mohamed Diounessy (Echantillors regus par: Page: 1															
tillons remis par: Mohamed Diounessy Échantillons reçus par:															
billors remis par: Mohamed Dioumessy (Echantillors regus par: Page: 1															T
tillons remis par: Mohamed Diounessy Échantillons reçus par:															
tillors remis par: Mohamed Dioumessy Echantillors regus par: February Page: 1															
tillons remis par: Mohamed Dioumessy Échantillons reçus par: Fage: 1						1						1		1	+
	tillons	Mohamed Dioumessy			Échantillon	s reçus par:							Page	1	9

Page 18 de 20

\subseteq	11511			TAGA	ω.	ordereau	de demai	Bordereau de demande d'analyses	ses						1	1	1
900	With Considering		-	1 494	aboratoires	. 350 rue Fra	and net One	Avan Laboratoires : 350 fue Franquet Quebec City, Quebec Canada, G1P 4P3	bec Canada,	G1P 4P3							
1135, Quebe Teléph	wer Canada Inc. 1135, boul Lebourgneuf Quebec (Québec) G2K 0M5 Telephone 418-523-7066	Télécopieur. 418-623-2434	Delai d'a	nalyse requis [편] 5 jours [편 72 hres	I_ I	48 hres 24 hres	Ξ,	6-12 hres Date requise:					L. L		Bon de commande: No de soumission		
Numér Bon de Lieu de	Numéro du projet: Bon de commande: Lieu de prélèvement	201-11330-29 Windfall Lake						Critères à respecter	specter RMD (mat lixivable) RDS (mat lixivable) REIMR	viable)				A F B Eau consommation	B from	U	o L
Prélevé par:	é par:	Mohamed Dioumessy				1		1	VIIIIN .		-	1		Eau résurgence	Ce		
Chargé	Chargé de projet:	Steve St-Cyr						Co,				H			-		
Courriel:	(1)	steve st.cyr@wsp.com / sirine boussorra@wsp.com	e boussorra@w	sp com				, Cd, W		090							
								1 'uM '6M	ənlistre	ers C10-							
Matrice:	ie:							ı 'ın '	emele	llortè							
o & A 대	Solide Sédiment Eau potable	ST Eau souterraine	ES Eau de s EF Effluent AF Affluent	Edu de surface Effluent Affluent				(Al, Ag, K Fe, Hg, K Se, Sn, V	ddns uoli	irbures p							
	Identif	Identification de l'échantillon		Date de prélèvement	vement	Matrice	Nombre de pots	'no 'uo	solihuo	Αλαιοοε	qA⊦						
-	F86-22-CF-1			2022-05-10	-10	S	-) ×	4	4 >	4 >	l		-		1	-
2	F87-22-CF-1			2022-05-09	60-	S	-	×		< ×	< ×	t	þ	-		1	1
က	F87-22-CF-2			2022-05-09	60-	S	-					-	ļ	I			-
4	F87-22-CF-3			2022-05-09	60-	S	-			I		1		F			-
S	F87-22-CF-4			2022-05-09	60-	S	-					1	ļ	-	l		-
9	F88-22-CF-1			2022-05-09	60-	S	-						ŀ	F	-		-
7	F88-22-CF-2			2022-05-09	60-	s	-	×		×	×			I			-
00	F88-22-CF-3			2022-05-09	60-	S	-	×		×							
on				2022-05-09	60-	S	+					-					-
									1								
												1					
							Ī				Ī	+	1		1	1	1
													1	1			
												H				-	-
															H		
							1					+					
											1	1		1		1	
									ı	Ī	1	+	1	1	I	1	-
											F	ł	1			+	
														L		+	1
							1				F	-			ŀ	-	
1	100																
Echant Date:	Echantillons remis par: Date: 2022-05-12	Mohamed Dioumessy				Échantillons reçus par: Date:	reçus par:								Page:	6	de 3
										1		1		1		1	1

			Bordere	Bordereau de demande d'analyses	de d'analys	es	- in						
11511		AGAT La	AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	Franquet Que	bec City, Queb	ec Canada, G	1P 4P3						
WSP Canada inc. 1135, boul Lebourghauf Quebec (Quebac) G2K 0M5		Detal d'analyse requis 더 5 jours ™ 72 hres	48 hres	2	6-12 hres Date requise:						Bon de	Bon de commande No de soumission:	
Numéro du projet:	201-11330-29			1	Criteres à respecter	specter RMD (mat lixiviable)	able)				7	, ,	7 0
Lieu de prélèvement:	Windfall Lake					REIMR	apric)			7 -	Eau résurgence	e	
	Mohamed Dioumessy				o, Ni,								
Chargé de projet:	Steve St-Cyr				I, C Na,								
Courriel:	steve st cyr@wsp.com / sirine boussorra@wsp.com	ьоцесопа@wsp.com		l)	a, Cd Mo, I		D-C50						
					a, Be, C Mg, Mn, n)	entalre	iers C1						
Matrice:					, LI,	lém	étro						
S Sol		ES Eau de surface			g, K	upp	es p						
SE Sédiment EP Eau potable	ST Eau souterraine	AF Affluent			(AI, A Fe, H , Se, S	ation s	arbur						
	Identification de l'échantillon	Date de prélèvement	evement Matrice	Nombre de pots	Cr, Cu	ourific	lydro	AP					
1 F72-22-CF-1A		2022-05-10	+		- 19	-	ľ	-					
2 F72-22-CF-1B		2022-05-10	5-10 S	1	×		×	×					
3 F74-22-CF-1		2022-05-10		1									
4 F74-22-CF-2		2022-05-10	5-10 S	-1									
5 F74-22-CF-3A		2022-05-10		_	×		×						
6 F74-22-CF-4		2022-05-10	5-10 S	1									
7 F75-22-CF-1A		2022-05-10	5-10 S	1									
8 F75-22-CF-1B	3	2022-05-10	5-10 S	1	×		×	×					
9 F75-22-CF-2		2022-05-10	5-10 S	1	×		×						
												ŀ	
								-		-			
							I	+	t		L	ļ	
								-					
								-					
										1			
Échantillons remis par:	Mohamed Dioumessy	v	Échan	Échantillons reçus par:	37.			-				1	- 1
Date: 2022-05-12			Date:									Page: 2	de
١													

NOM DU CLIENT: WSP CANADA INC.

1135 BOULEVARD LEBOURGNEUF

QUEBEC, QC G2K 0M5

(418) 623-7066

À L'ATTENTION DE: Sirine Boussorra

N° DE PROJET: 201-11330-29 N° BON DE TRAVAIL: 220898874

ANALYSE DES SOLS VÉRIFIÉ PAR: Amar Bellahsene, Chimiste, AGAT Montréal ORGANIQUE DE TRACE VÉRIFIÉ PAR: EmmanuelBrousseau, Chimiste, AGAT Québec

DATE DU RAPPORT: 03 juin 2022

NOMBRE DE PAGES: 31 VERSION*: 1

Pour tout complément d'information concernant cette analyse, veuillez contacter votre chargé(e) de projet client au (418) 266-5511.

Avis de non-responsabilité:	

*Notes

- L'ensemble des travaux réalisés dans le présent document ont été effectués en utilisant des protocoles normalisés reconnus, ainsi que des pratiques et des méthodes généralement acceptées. En vue d'améliorer la performance, les méthodes analytiques d'AGAT pourraient comprendre des modifications issues des méthodes de référence spécifiées.
- Tous les échantillons seront éliminés trente (30) jours après réception au laboratoire à moins qu'une Entente d'entreposage à long terme ne soit signée et retournée. Certaines analyses spécialisées peuvent être exemptées. Veuillez communiquer avec votre chargé de projets à la clientèle pour plus d'informations.
- La responsabilité d'AGAT en ce qui concerne tout retard, exécution ou non-exécution de ces services s'applique uniquement envers le client et ne s'étend à aucune autre tierce partie. À moins qu'il n'en soit par ailleurs convenu expressément par écrit, la responsabilité d'AGAT se limite au coût réel de l'analyse ou des analyses spécifiques incluses dans les services.
- Sauf accord écrit préalable d'AGAT Laboratoires, ce certificat ne doit être reproduit que dans sa totalité.
- Les résultats d'analyse communiqués ci-joint ne concernent que les échantillons reçus par le laboratoire.
- L'application des lignes directrices est fournie « en l'état » sans garantie de quelque nature que ce soit, ni expresse ni tacite, y compris, mais sans s'y limiter, les garanties de qualité marchande, d'aptitude à un usage particulier ou de non-contrefaçon. AGAT n'assume aucune responsabilité à l'égard de toute erreur ou omission dans les directives que contient ce document.
- Toutes les informations rapportables sont disponibles sur demande auprès d'AGAT Laboratoires, conformément aux normes ISO/IEC 17025:2017, DR-12-PALA et/ou NELAP.

AGAT Laboratoires (V1) Page 1 de 31

N° BON DE TRAVAIL: 22O898874 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Al Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022	2-05-24							Ι	DATE DU RAPP	ORT: 2022-06-0	03
				IDENTIFI	CATION DE L'É	CHANTILLON:	F68-22-CF-1B	F95-22-CF-1B	F96-22-CF-1B	F69-22-CF-2	F69-22-CF-3
						MATRICE:	Sol	Sol	Sol	Sol	Sol
				[DATE D'ÉCHAN	TILLONNAGE:	2022-05-22	2022-05-22	2022-05-22	2022-05-21	2022-05-21
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909959	3909963	3909966	3909971	3909972
Aluminium	mg/kg					30	1470	6180	6420	4760	4610
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	4[<a]< td=""><td><1</td><td><1</td><td><1</td></a]<>	<1	<1	<1
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	<20	<20
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	1110	1730	713	1600	1960
Chrome	mg/kg	100	250	800	4000	2	8[<a]< td=""><td>15[<a]< td=""><td>13[<a]< td=""><td>13[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	15[<a]< td=""><td>13[<a]< td=""><td>13[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>13[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<>	14[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	<2	8[<a]< td=""><td><2</td><td>4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<>	<2	4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<>	4[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	1[<a]< td=""><td>8[<a]< td=""><td>2[<a]< td=""><td>6[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>2[<a]< td=""><td>6[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	2[<a]< td=""><td>6[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<>	9[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	3580	11100	10800	7700	8200
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	<20
Magnésium	mg/kg					100	431	2360	1120	3250	3790
Manganèse	mg/kg	1000	1000	2200	11000	10	24[<a]< td=""><td>188[<a]< td=""><td>36[<a]< td=""><td>121[<a]< td=""><td>135[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	188[<a]< td=""><td>36[<a]< td=""><td>121[<a]< td=""><td>135[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	36[<a]< td=""><td>121[<a]< td=""><td>135[<a]< td=""></a]<></td></a]<></td></a]<>	121[<a]< td=""><td>135[<a]< td=""></a]<></td></a]<>	135[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	<2	13[<a]< td=""><td>4[<a]< td=""><td>10[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>10[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<>	10[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<>	10[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	<100	173	<100	254	266
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	<100	<100	<100	<100
Vanadium	mg/kg					15	20	17	<15	<15	<15
Zinc	mg/kg	140	500	1500	7500	5	6[<a]< td=""><td>16[<a]< td=""><td>10[<a]< td=""><td>20[<a]< td=""><td>24[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	16[<a]< td=""><td>10[<a]< td=""><td>20[<a]< td=""><td>24[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	10[<a]< td=""><td>20[<a]< td=""><td>24[<a]< td=""></a]<></td></a]<></td></a]<>	20[<a]< td=""><td>24[<a]< td=""></a]<></td></a]<>	24[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 22O898874 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Al Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022	2-05-24							[DATE DU RAPF	PORT: 2022-06-0	3
				IDENTIFI	CATION DE L'É	CHANTILLON:	F70-22-CF-2	DUP220220521	F79-22-CF-1B	DUP220220520	F71-22-CF-2
						MATRICE:	Sol	Sol	Sol	Sol	Sol
				[DATE D'ÉCHAN	TILLONNAGE:	2022-05-21	2022-05-21	2022-05-20	2022-05-20	2022-05-19
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909974	3909977	3909980	3909983	3909986
Aluminium	mg/kg					30	2420	2210	6640	7890	5000
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	<1	<1	<1	<1
Baryum	mg/kg	340	500	2000	10000	20	133[<a]< td=""><td>133[<a]< td=""><td><20</td><td><20</td><td><20</td></a]<></td></a]<>	133[<a]< td=""><td><20</td><td><20</td><td><20</td></a]<>	<20	<20	<20
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	35000	32300	1340	1280	1950
Chrome	mg/kg	100	250	800	4000	2	4[<a]< td=""><td>4[<a]< td=""><td>18[<a]< td=""><td>18[<a]< td=""><td>19[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>18[<a]< td=""><td>18[<a]< td=""><td>19[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	18[<a]< td=""><td>18[<a]< td=""><td>19[<a]< td=""></a]<></td></a]<></td></a]<>	18[<a]< td=""><td>19[<a]< td=""></a]<></td></a]<>	19[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	<2	<2	3[<a]< td=""><td>3[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<>	5[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	8[<a]< td=""><td>7[<a]< td=""><td>3[<a]< td=""><td>3[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>3[<a]< td=""><td>3[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>3[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<>	9[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	2920	3880	13000	15100	9300
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	<20
Magnésium	mg/kg					100	953	948	3400	3020	3640
Manganèse	mg/kg	1000	1000	2200	11000	10	128[<a]< td=""><td>263[<a]< td=""><td>97[<a]< td=""><td>89[<a]< td=""><td>127[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	263[<a]< td=""><td>97[<a]< td=""><td>89[<a]< td=""><td>127[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	97[<a]< td=""><td>89[<a]< td=""><td>127[<a]< td=""></a]<></td></a]<></td></a]<>	89[<a]< td=""><td>127[<a]< td=""></a]<></td></a]<>	127[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	1[<a]< td=""><td><1</td><td><1</td><td><1</td></a]<>	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	3[<a]< td=""><td>4[<a]< td=""><td>9[<a]< td=""><td>8[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>9[<a]< td=""><td>8[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	9[<a]< td=""><td>8[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<>	12[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	<100	<100	115	119	255
Sélénium	mg/kg	1	3	10	50	0.5	1.6[A-B]	1.4[A-B]	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	<100	<100	<100	<100
Vanadium	mg/kg					15	<15	<15	24	31	17
Zinc	mg/kg	140	500	1500	7500	5	13[<a]< td=""><td>18[<a]< td=""><td>20[<a]< td=""><td>18[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	18[<a]< td=""><td>20[<a]< td=""><td>18[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	20[<a]< td=""><td>18[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<></td></a]<>	18[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<>	23[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 22O898874 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Al Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022	2-05-24							I	DATE DU RAPP	ORT: 2022-06-0)3
				IDENTIFI	CATION DE L'É	CHANTILLON:	F71-22-CF-4	F84-22-CF-1	F78-22-CF-1B	F73-22-CF-1A	F80-22-CF-2
						MATRICE:	Sol	Sol	Sol	Sol	Sol
				Г	DATE D'ÉCHAN	TILLONNAGE:	2022-05-19	2022-05-19	2022-05-19	2022-05-17	2022-05-17
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909987	3909989	3909990	3909992	3909995
Aluminium	mg/kg					30	13100	9180	11800	702	20300
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	2[<a]< td=""><td>1[<a]< td=""><td><1</td><td>1[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	1[<a]< td=""><td><1</td><td>1[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<></td></a]<>	<1	1[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<>	5[<a]< td=""></a]<>
Baryum	mg/kg	340	500	2000	10000	20	27[<a]< td=""><td>26[<a]< td=""><td><20</td><td>52[<a]< td=""><td>82[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	26[<a]< td=""><td><20</td><td>52[<a]< td=""><td>82[<a]< td=""></a]<></td></a]<></td></a]<>	<20	52[<a]< td=""><td>82[<a]< td=""></a]<></td></a]<>	82[<a]< td=""></a]<>
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	0.7[<a]< td=""><td><0.5</td></a]<>	<0.5
Calcium	mg/kg					100	2590	8830	1530	3610	1600
Chrome	mg/kg	100	250	800	4000	2	13[<a]< td=""><td>17[<a]< td=""><td>17[<a]< td=""><td>4[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	17[<a]< td=""><td>17[<a]< td=""><td>4[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	17[<a]< td=""><td>4[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<>	7[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	11[<a]< td=""><td>6[<a]< td=""><td>5[<a]< td=""><td><2</td><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>5[<a]< td=""><td><2</td><td>10[<a]< td=""></a]<></td></a]<></td></a]<>	5[<a]< td=""><td><2</td><td>10[<a]< td=""></a]<></td></a]<>	<2	10[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	43[<a]< td=""><td>13[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""><td>17[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""><td>17[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>8[<a]< td=""><td>17[<a]< td=""></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>17[<a]< td=""></a]<></td></a]<>	17[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	25700	9550	12100	952	24300
Lithium	mg/kg	-	-	-	-	20	31	<20	<20	<20	67
Magnésium	mg/kg					100	5700	2410	3800	517	6170
Manganèse	mg/kg	1000	1000	2200	11000	10	590[<a]< td=""><td>713[<a]< td=""><td>142[<a]< td=""><td>34[<a]< td=""><td>7550[C-D]</td></a]<></td></a]<></td></a]<></td></a]<>	713[<a]< td=""><td>142[<a]< td=""><td>34[<a]< td=""><td>7550[C-D]</td></a]<></td></a]<></td></a]<>	142[<a]< td=""><td>34[<a]< td=""><td>7550[C-D]</td></a]<></td></a]<>	34[<a]< td=""><td>7550[C-D]</td></a]<>	7550[C-D]
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	2[A]
Nickel	mg/kg	50	100	500	2500	2	13[<a]< td=""><td>8[<a]< td=""><td>12[<a]< td=""><td>5[<a]< td=""><td>16[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>12[<a]< td=""><td>5[<a]< td=""><td>16[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>5[<a]< td=""><td>16[<a]< td=""></a]<></td></a]<></td></a]<>	5[<a]< td=""><td>16[<a]< td=""></a]<></td></a]<>	16[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	7[<a]< td=""><td><5</td><td>21[<a]< td=""><td><5</td></a]<></td></a]<>	<5	21[<a]< td=""><td><5</td></a]<>	<5
Potassium	mg/kg					100	254	312	159	919	475
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	1.0[A]	<0.5	0.9[<a]< td=""><td><0.5</td></a]<>	<0.5
Sodium	mg/kg					100	<100	<100	<100	<100	112
Vanadium	mg/kg					15	20	<15	20	<15	<15
Zinc	mg/kg	140	500	1500	7500	5	48[<a]< td=""><td>27[<a]< td=""><td>27[<a]< td=""><td>40[<a]< td=""><td>55[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	27[<a]< td=""><td>27[<a]< td=""><td>40[<a]< td=""><td>55[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	27[<a]< td=""><td>40[<a]< td=""><td>55[<a]< td=""></a]<></td></a]<></td></a]<>	40[<a]< td=""><td>55[<a]< td=""></a]<></td></a]<>	55[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 22O898874 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Al Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022	-05-24								ATE DU RAPP	ORT: 2022-06-	03
				IDENTIFI	CATION DE L'É	CHANTILLON:	F53-22-CF-2B	F77-22-CF-3B	F76-22-CF-1	F82-22-CF-1	F83-22-CF-3A
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2022-05-18	2022-05-18	2022-05-18	2022-05-18	2022-05-18
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909996	3909998	3910000	3910001	3910002
Aluminium	mg/kg					30	7640	4160	3950	3750	4580
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	<1	<1	<1	<1
Baryum	mg/kg	340	500	2000	10000	20	38[<a]< td=""><td><20</td><td>31[<a]< td=""><td><20</td><td><20</td></a]<></td></a]<>	<20	31[<a]< td=""><td><20</td><td><20</td></a]<>	<20	<20
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	3370	2360	2800	2030	2310
Chrome	mg/kg	100	250	800	4000	2	20[<a]< td=""><td>12[<a]< td=""><td>9[<a]< td=""><td>11[<a]< td=""><td>18[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>9[<a]< td=""><td>11[<a]< td=""><td>18[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	9[<a]< td=""><td>11[<a]< td=""><td>18[<a]< td=""></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>18[<a]< td=""></a]<></td></a]<>	18[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	6[<a]< td=""><td>4[<a]< td=""><td><2</td><td>4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td><2</td><td>4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<>	<2	4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<>	4[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	14[<a]< td=""><td>10[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	10[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>8[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<>	5[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	13800	8660	5750	8270	8960
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	<20
Magnésium	mg/kg					100	3520	2180	1720	1870	3340
Manganèse	mg/kg	1000	1000	2200	11000	10	181[<a]< td=""><td>79[<a]< td=""><td>267[<a]< td=""><td>144[<a]< td=""><td>117[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	79[<a]< td=""><td>267[<a]< td=""><td>144[<a]< td=""><td>117[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	267[<a]< td=""><td>144[<a]< td=""><td>117[<a]< td=""></a]<></td></a]<></td></a]<>	144[<a]< td=""><td>117[<a]< td=""></a]<></td></a]<>	117[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	13[<a]< td=""><td>9[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	9[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>8[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<>	10[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	420	151	419	152	183
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	139	<100	<100	<100	<100
Vanadium	mg/kg					15	20	<15	<15	<15	17
Zinc	mg/kg	140	500	1500	7500	5	25[<a]< td=""><td>19[<a]< td=""><td>88[<a]< td=""><td>18[<a]< td=""><td>22[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	19[<a]< td=""><td>88[<a]< td=""><td>18[<a]< td=""><td>22[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	88[<a]< td=""><td>18[<a]< td=""><td>22[<a]< td=""></a]<></td></a]<></td></a]<>	18[<a]< td=""><td>22[<a]< td=""></a]<></td></a]<>	22[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 22O898874 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:AI Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-05-24 DATE DU RAPPORT: 2022-06-03

				IDENTIFIC	CATION DE L'ÉG	CHANTILLON:	F81-22-CF-1B
						MATRICE:	Sol
					DATE D'ÉCHAN		2022-05-19
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3910003
Aluminium	mg/kg					30	4540
Antimoine	mg/kg	-	-	-		20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	1[<a]< td=""></a]<>
Baryum	mg/kg	340	500	2000	10000	20	<20
Béryllium	mg/kg					1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5
Calcium	mg/kg					100	2460
Chrome	mg/kg	100	250	800	4000	2	15[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	4[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	10[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5
Fer	mg/kg					500	7950
Lithium	mg/kg	-	-	-	-	20	<20
Magnésium	mg/kg					100	3260
Manganèse	mg/kg	1000	1000	2200	11000	10	102[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1
Nickel	mg/kg	50	100	500	2500	2	10[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5
Potassium	mg/kg					100	159
Sélénium	mg/kg	1	3	10	50	0.5	<0.5
Sodium	mg/kg					100	<100
Vanadium	mg/kg					15	<15
Zinc	mg/kg	140	500	1500	7500	5	20[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 220898874

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:AI Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-05-24 DATE DU RAPPORT: 2022-06-03

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se réfèrer directement à la norme applicable

pour l'interprétation réglementaire.

3909959-3910003 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Amar Bellahsene 2011-214

Certifié par:

N° BON DE TRAVAIL: 22O898874 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Al Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Hydrocarbures aromatiques polycycliques (HAP) (Sol)

DATE DE RÉCEPTION: 2022-05-2	24							С	OATE DU RAPPO	RT: 2022-06	6-03
				IDENTIF	ICATION DE L'É	CHANTILLON:	F95-22-CF-1B	F96-22-CF-1B	F69-22-CF-2		F73-22-CF-1A
						MATRICE:	Sol	Sol	Sol		Sol
					DATE D'ÉCHAN ⁻	ΓILLONNAGE:	2022-05-22	2022-05-22	2022-05-21		2022-05-17
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909963	3909966	3909971	LDR	3909992
Acénaphtène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Acénaphtylène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Anthracène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Benzo (a) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Benzo (b) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Benzo (j) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Benzo (k) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Benzo (b+j+k) fluoranthène	mg/kg	-	-	-	136	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Benzo (c) phénanthrène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Benzo (g,h,i) pérylène	mg/kg	0.1	1	10	18	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Chrysène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Dibenzo (a,h) anthracène	mg/kg	0.1	1	10	82	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Dibenzo (a,i) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Dibenzo (a,h) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Dibenzo (a,l) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Diméthyl-7,12 benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Fluoranthène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Fluorène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Indéno (1,2,3-cd) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Méthyl-3 cholanthrène	mg/kg	0.1	1	10	150	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Naphtalène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Phénanthrène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Pyrène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Méthyl-1 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Méthyl-2 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Diméthyl-1,3 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Triméthyl-2,3,5 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	0.5	<0.5

Certifié par:

manuel Browsen (Emman Browsen 2021-099)
QUEBES

N° BON DE TRAVAIL: 22O898874 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:AI Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Hydrocarbures aromatiques polycycliques (HAP	²) (S0I)	
--	----------------------	--

DATE DE RÉCEPTION: 2022-0	5-24							[DATE DU RAPPO	ORT: 2022-06	j-03
				IDENTIF	ICATION DE L'É	CHANTILLON:	F95-22-CF-1B	F96-22-CF-1B	F69-22-CF-2		F73-22-CF-1A
						MATRICE:	Sol	Sol	Sol		Sol
					DATE D'ÉCHAN	TILLONNAGE:	2022-05-22	2022-05-22	2022-05-21		2022-05-17
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909963	3909966	3909971	LDR	3909992
% Humidité	%					0.2	8.1	30.1	4.8	0.2	80.4
Étalon de recouvrement	Unités			Limites							
Rec. Naphtalène-d8	%			50-140			99	97	98	1	71
Rec. Pyrène-d10	%			50-140			113	114	112	1	70
Rec. p-Terphényl-d14	%			50-140			132	132	131	1	71

Certifié par:

N° BON DE TRAVAIL: 220898874 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Al Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Hydrocarbures aromatiques polycycliques (HAP) (Sol)

DATE DE RÉCEPTION: 2022-05-2	24							[DATE DU RAPPORT: 2022-06-03
				IDENTIFI	CATION DE L'ÉC	CHANTILLON:	F80-22-CF-2	F53-22-CF-2B	
						MATRICE:	Sol	Sol	
]	DATE D'ÉCHAN	TILLONNAGE:	2022-05-17	2022-05-18	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909995	3909996	
Acénaphtène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Acénaphtylène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Anthracène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Benzo (a) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Benzo (b) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	
Benzo (j) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	
Benzo (k) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	
Benzo (b+j+k) fluoranthène	mg/kg	-	-	-	136	0.1	<0.1	<0.1	
Benzo (c) phénanthrène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Benzo (g,h,i) pérylène	mg/kg	0.1	1	10	18	0.1	<0.1	<0.1	
Chrysène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Dibenzo (a,h) anthracène	mg/kg	0.1	1	10	82	0.1	<0.1	<0.1	
Dibenzo (a,i) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Dibenzo (a,h) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Dibenzo (a,l) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Diméthyl-7,12 benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Fluoranthène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Fluorène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Indéno (1,2,3-cd) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Méthyl-3 cholanthrène	mg/kg	0.1	1	10	150	0.1	<0.1	<0.1	
Naphtalène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	
Phénanthrène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	
Pyrène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Méthyl-1 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Méthyl-2 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Diméthyl-1,3 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Triméthyl-2,3,5 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	

Certifié par:

N° BON DE TRAVAIL: 220898874

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:AI Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

		H	ydrocarbu	ıres arom	atiques po	lycyclique	es (HAP) (S	Sol)	
DATE DE RÉCEPTION: 2022-09	5-24								DATE DU RAPPORT: 2022-06-03
				IDENTIFI	CATION DE L'É	CHANTILLON:	F80-22-CF-2	F53-22-CF-2B	
						MATRICE:	Sol	Sol	
				1	DATE D'ÉCHAN	TILLONNAGE:	2022-05-17	2022-05-18	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909995	3909996	
% Humidité	%					0.2	10.3	12.4	
Étalon de recouvrement	Unités			Limites					
Rec. Naphtalène-d8	%			50-140			72	96	
Rec. Pyrène-d10	%			50-140			71	111	
Rec n-Ternhényl-d14	0/2			50-140			75	134	

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3909963-3909971 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

3909992 La LDR a été ajustée en raison de la faible matière sèche de l'échantillon.

Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

3909995-3909996 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 22O898874 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Al Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

PRELEVE PAR.AI Ousseyilou	Sali						LIEU DE	PRELEVEINE	NI.VVIIIUIAII LA	ike	
			Hyd	rocarbur	es pétrolie	rs C10-C50) (Sol)				
DATE DE RÉCEPTION: 2022-05-2	24							[DATE DU RAPP	ORT: 2022-06-0	03
				IDENTI	FICATION DE L'É	CHANTILLON:	F68-22-CF-1B	F95-22-CF-1B	F96-22-CF-1B	F69-22-CF-2	F69-22-CF-3
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2022-05-22	2022-05-22	2022-05-22	2022-05-21	2022-05-21
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909959	3909963	3909966	3909971	3909972
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100
% Humidité	%					0.2	21.9	8.1	30.1	4.8	4.9
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			72	84	64	88	70
				IDENTII	FICATION DE L'É	CHANTILLON:	F79-22-CF-1B	DUP220220520	F71-22-CF-2	F71-22-CF-4	F78-22-CF-1
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2022-05-20	2022-05-20	2022-05-19	2022-05-19	2022-05-19
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909980	3909983	3909986	3909987	3909990
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100
% Humidité	%					0.2	23.1	24.0	4.6	9.1	8.2
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			83	64	70	65	72
				IDENTII	FICATION DE L'É	CHANTILLON:	F73-22-CF-1A	F80-22-CF-2	F53-22-CF-2B	F77-22-CF-3B	F82-22-CF-1
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2022-05-17	2022-05-17	2022-05-18	2022-05-18	2022-05-18
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909992	3909995	3909996	3909998	3910001
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	233[A-B]	<100	<100	<100	<100
% Humidité	%					0.2	80.4	10.3	12.4	11.6	13.9
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			112	97	64	80	86

Certifié par:

N° BON DE TRAVAIL: 220898874

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:AI Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

			Hyd	rocarbu	res pétrolie	rs C10-C5	0 (Sol)		
DATE DE RÉCEPTION: 2022-05-2	24								DATE DU RAPPORT: 2022-06-03
				IDENTI	FICATION DE L'É	CHANTILLON:	F83-22-CF-3A	F81-22-CF-1B	
						MATRICE:	Sol	Sol	
					DATE D'ÉCHAN	TILLONNAGE:	2022-05-18	2022-05-19	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3910002	3910003	
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	
% Humidité	%					0.2	17.2	15.4	
Étalon de recouvrement	Unités			Limites					
Rec. Nonane	%			60-140			71	71	

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3909959-3910003 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Enmanuel Browsen

Certifié par:

N° BON DE TRAVAIL: 220898874

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: Al Ousseynou Sarr

À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

		Hyd	Irocarbure	es pétrolie	ers C10-C	50 (SoI) - A	vec purific	ation			
DATE DE RÉCEPTION: 2022-05-2	24							С	ATE DU RAPP	ORT: 2022-06-03	
				IDENTIFIC	CATION DE L'E	ÉCHANTILLON:	F70-22-CF-2	DUP220220521	F84-22-CF-1	F76-22-CF-1	
						MATRICE:	Sol	Sol	Sol	Sol	
					DATE D'ÉCHAN	NTILLONNAGE:	2022-05-21	2022-05-21	2022-05-19	2022-05-18	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909974	3909977	3909989	3910000	
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	
% Humidité	%					0.2	79.7	80.2	74.2	37.2	
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			84	98	84	87	

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable pour l'interprétation réglementaire.

3909974-3910000 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Méthode d'analyse effectuée avec traitements supplémentaires pour éliminer la présence de matières organiques.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR: Al Ousseynou Sarr N° BON DE TRAVAIL: 220898874 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

			-	Analy	/se d	es So	ols								
Date du rapport: 2022-06-03				DUPLICAT	A	MATÉ	RIAU DE R	ÉFÉREN	NCE	BLANG	FORT	IFIÉ	ÉCH.	FORTIF	-IÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.	Lin	nites	% Récup.	Lin	nites
FANAMETIC	Lot	IN ECII.	Dup #1	Dup #2	76 u ecart	méthode	76 Necup.	Inf.	Sup.	76 Necup.	Inf.	Sup.	76 Necup.	Inf.	Sup.
Analyses inorganiques - WSF	P (Balayage mé	taux + me	ercure)												
Aluminium	3902580		7030	6500	7.7	< 30	76%	70%	130%	104%	80%	120%	NA	70%	130%
Antimoine	3902580		<20	<20	NA	< 20	142%	70%	130%	89%	80%	120%	86%	70%	130%
Argent	3902580		<0.5	< 0.5	NA	< 0.5	109%	70%	130%	101%	80%	120%	99%	70%	130%
Arsenic	3902580		<1	1	NA	< 1	102%	70%	130%	97%	80%	120%	94%	70%	130%
Baryum	3902580		154	117	27.4	< 20	99%	70%	130%	104%	80%	120%	NA	70%	130%
Béryllium	3902580		<1	<1	NA	< 1	95%	70%	130%	100%	80%	120%	96%	70%	130%
Cadmium	3902580		<0.5	< 0.5	NA	< 0.5	106%	70%	130%	102%	80%	120%	98%	70%	130%
Calcium	3902580		2820	2880	2.2	< 100	104%	70%	130%	104%	80%	120%	98%	70%	130%
Chrome	3902580		49	46	7.0	< 2	120%	70%	130%	102%	80%	120%	106%	70%	130%
Cobalt	3902580		13	12	1.2	< 2	112%	70%	130%	100%	80%	120%	99%	70%	130%
Cuivre	3902580		191	179	6.4	< 1	100%	70%	130%	94%	80%	120%	NA	70%	130%
Étain	3902580		<5	<5	NA	< 5	106%	70%	130%	101%	80%	120%	97%	70%	130%
Fer	3902580		14400	15700	8.5	< 500	109%	70%	130%	104%	80%	120%	NA	70%	130%
Lithium	3902580		<20	<20	NA	< 20	101%	70%	130%	99%	80%	120%	97%	70%	130%
Magnésium	3902580		6130	6630	7.7	< 100	104%	70%	130%	104%	80%	120%	NA	70%	130%
Manganèse	3902580		188	173	8.3	< 10	116%	70%	130%	109%	80%	120%	107%	70%	130%
Mercure	3902580		<0.2	<0.2	NA	< 0.2	97%	70%	130%	95%	80%	120%	68%	70%	130%
Molybdène	3902580		2	2	NA	< 1	114%	70%	130%	105%	80%	120%	101%	70%	130%
Nickel	3902580		29	27	6.8	< 2	114%	70%	130%	100%	80%	120%	97%	70%	130%
Plomb	3902580		11	12	NA	< 5	107%	70%	130%	101%	80%	120%	95%	70%	130%
Potassium	3902580		1430	1380	2.9	< 100	98%	70%	130%	105%	80%	120%	104%	70%	130%
Sélénium	3902580		<0.5	<0.5	NA	< 0.5	101%	70%	130%	100%	80%	120%	98%	70%	130%
Sodium	3902580		125	132	NA	< 100	99%	70%	130%	101%	80%	120%	98%	70%	130%
Vanadium	3902580		23	25	NA	< 15	109%	70%	130%	102%	80%	120%	99%	70%	130%
Zinc	3902580		36	39	6.1	< 5	108%	70%	130%	101%	80%	120%	97%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Analyses inorga	aniques - WSP (Bala	ayage métaux -	+ mercure)
Aluminium	:	3921341	4930

,	(=)g	,													
Aluminium	3921341	4930	4720	4.5	< 30	68%	70%	130%	103%	80%	120%	125%	70%	130%	
Antimoine	3921341	<20	<20	NA	< 20	139%	70%	130%	91%	80%	120%	92%	70%	130%	
Argent	3921341	< 0.5	<0.5	NA	< 0.5	101%	70%	130%	99%	80%	120%	96%	70%	130%	
Arsenic	3921341	2	2	NA	< 1	99%	70%	130%	99%	80%	120%	95%	70%	130%	
Baryum	3921341	56	56	NA	< 20	99%	70%	130%	105%	80%	120%	110%	70%	130%	
Béryllium	3921341	<1	<1	NA	< 1	96%	70%	130%	105%	80%	120%	101%	70%	130%	
Cadmium	3921341	< 0.5	<0.5	NA	< 0.5	102%	70%	130%	105%	80%	120%	97%	70%	130%	
Calcium	3921341	43200	44100	1.9	< 100	103%	70%	130%	108%	80%	120%	NA	70%	130%	
Chrome	3921341	10	9	NA	< 2	109%	70%	130%	104%	80%	120%	98%	70%	130%	
Cobalt	3921341	5	4	NA	< 2	108%	70%	130%	103%	80%	120%	99%	70%	130%	

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Al Ousseynou Sarr N° BON DE TRAVAIL: 220898874 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

													=		
			Ana	lyse	des	Sols (Suite	e)							
Date du rapport: 2022-06-03				DUPLICAT	A	MATÉ	RIAU DE RI	ÉFÉREN	NCE	BLANG	C FORT	IFIÉ	ÉCH.	FORTI	FIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de méthode	% Récup.		nites	% Récup.	Lin	nites	% Récup.		nites
						methode	-	Inf.	Sup.		Inf.	Sup.		Inf.	Sup.
Cuivre	3921341		11	10	5.8	< 1	96%	70%	130%	99%	80%	120%	93%	70%	130%
Étain	3921341		<5	<5	NA	< 5	102%	70%	130%	103%	80%	120%	102%	70%	130%
Fer	3921341		15100	14200	6.5	< 500	103%	70%	130%	103%	80%	120%	NA	70%	130%
Lithium	3921341		<20	<20	NA	< 20	98%	70%	130%	103%	80%	120%	98%	70%	130%
Magnésium	3921341		4560	4370	4.3	< 100	100%	70%	130%	104%	80%	120%	104%	70%	130%
Manganèse	3921341		285	241	16.7	< 10	126%	70%	130%	107%	80%	120%	103%	70%	130%
Mercure	3921341		<0.2	< 0.2	NA	< 0.2	91%	70%	130%	119%	80%	120%	91%	70%	130%
Molybdène	3921341		<1	<1	NA	< 1	111%	70%	130%	107%	80%	120%	112%	70%	130%
Nickel	3921341		11	9	NA	< 2	106%	70%	130%	103%	80%	120%	97%	70%	130%
Plomb	3921341		6	5	NA	< 5	100%	70%	130%	101%	80%	120%	92%	70%	130%
Potassium	3921341		850	838	1.3	< 100	97%	70%	130%	105%	80%	120%	109%	70%	130%
Sélénium	3921341		<0.5	< 0.5	NA	< 0.5	99%	70%	130%	102%	80%	120%	96%	70%	130%
Sodium	3921341		101	101	NA	< 100	82%	70%	130%	103%	80%	120%	105%	70%	130%
Vanadium	3921341		21	21	NA	< 15	105%	70%	130%	105%	80%	120%	104%	70%	130%
Zinc	3921341		42	41	3.6	< 5	106%	70%	130%	103%	80%	120%	97%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb et Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Certifié par:

Amar Bellahsene 2011-214

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:AI Ousseynou Sarr N° BON DE TRAVAIL: 220898874 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

		P	naly	se oi	rgani	que d	de tra	ace							
Date du rapport: 2022-06-03				DUPLICATA	4	MATÉ	RIAU DE RI	ÉFÉREN	ICE	BLANG	FORT	IFIÉ	ÉCH.	FORTIF	-IÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lim	nites	% Récup.	Lin	nites	% Récup.	Lin	nites
			- 44	- 4,4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	méthode	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.		Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.
Hydrocarbures pétroliers C10-C	50 (SoI)														
Hydrocarbures pétroliers C10 à C50	3909963	3909963	<100	<100	NA	< 100	88%	60%	140%	87%	60%	140%	106%	60%	140%
Rec. Nonane	3909963	3909963	84	80	4.9	78	69%	60%	140%	75%	60%	140%	92%	60%	140%
% Humidité	3909999	3909999	10.0	9.8	2.2	< 0.2	101%	80%	120%	NA			NA		

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Hydrocarbures pétroliers C10-C50 (Sol)

Hydrocarbures pétroliers C10 à	3909995 3909995	<100	<100	NA	< 100	80%	60%	140%	125%	60%	140%	88%	60%	140%
C50														
Rec. Nonane	3909995 3909995	97	112	14.4	103	96%	60%	140%	127%	60%	140%	111%	60%	140%

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Hydrocarbures aromatiques	polycycliques	(HAP) (Sol)
---------------------------	---------------	-------------

Acénaphtène	3909963 3909963	<0.1	<0.1	NA	< 0.1	113%	50%	140%	105%	50%	140%	109%	50%	140%
Acénaphtylène	3909963 3909963	<0.1	<0.1	NA	< 0.1	93%	50%	140%	95%	50%	140%	94%	50%	140%
Anthracène	3909963 3909963	<0.1	<0.1	NA	< 0.1	114%	50%	140%	110%	50%	140%	107%	50%	140%
Benzo (a) anthracène	3909963 3909963	<0.1	<0.1	NA	< 0.1	111%	50%	140%	100%	50%	140%	104%	50%	140%
Benzo (a) pyrène	3909963 3909963	<0.1	<0.1	NA	< 0.1	98%	50%	140%	92%	50%	140%	92%	50%	140%
Belizo (a) pyrelie	0000000 3909903	<0.1	<0.1	INA	< 0.1	90%	30%	140%	9276	30%	140%	9276	30%	14076
Benzo (b) fluoranthène	3909963 3909963	<0.1	<0.1	NA	< 0.1	90%	50%	140%	84%	50%	140%	83%	50%	140%
Benzo (j) fluoranthène	3909963 3909963	<0.1	<0.1	NA	< 0.1	94%	50%	140%	92%	50%	140%	96%	50%	140%
Benzo (k) fluoranthène	3909963 3909963	<0.1	<0.1	NA	< 0.1	95%	50%	140%	88%	50%	140%	90%	50%	140%
Benzo (c) phénanthrène	3909963 3909963	<0.1	<0.1	NA	< 0.1	116%	50%	140%	105%	50%	140%	110%	50%	140%
Benzo (g,h,i) pérylène	3909963 3909963	<0.1	<0.1	NA	< 0.1	84%	50%	140%	83%	50%	140%	78%	50%	140%
Chrysène	3909963 3909963	<0.1	<0.1	NA	< 0.1	107%	50%	140%	99%	50%	140%	102%	50%	140%
Dibenzo (a,h) anthracène	3909963 3909963	<0.1	<0.1	NA	< 0.1	88%	50%	140%	84%	50%	140%	82%	50%	140%
Dibenzo (a,i) pyrène	3909963 3909963	<0.1	<0.1	NA	< 0.1	87%	50%	140%	94%	50%	140%	74%	50%	140%
Dibenzo (a,h) pyrène	3909963 3909963	<0.1	<0.1	NA	< 0.1	77%	50%	140%	94%	50%	140%	80%	50%	140%
Dibenzo (a,l) pyrène	3909963 3909963	<0.1	<0.1	NA	< 0.1	76%	50%	140%	79%	50%	140%	67%	50%	140%
Diméthyl-7,12 benzo (a)	3909963 3909963	<0.1	<0.1	NA	< 0.1	124%	50%	140%	142%	50%	140%	112%	50%	140%
anthracène	3909963 3909963	.0.4	.0.4	NIA	. 0.4	4040/	F00/	4.400/	4400/	F00/	4.400/	4400/	F00/	4.400/
Fluoranthène		<0.1	<0.1	NA	< 0.1	124%	50%	140%	112%	50%	140%	118%	50%	140%
Fluorène	3909963 3909963	<0.1	<0.1	NA	< 0.1	124%	50%	140%	115%	50%	140%	113%	50%	140%
Indéno (1,2,3-cd) pyrène	3909963 3909963	<0.1	<0.1	NA	< 0.1	82%	50%	140%	79%	50%	140%	74%	50%	140%
Méthyl-3 cholanthrène	3909963 3909963	<0.1	<0.1	NA	< 0.1	69%	50%	140%	100%	50%	140%	86%	50%	140%
Naphtalène	3909963 3909963	<0.1	<0.1	NA	< 0.1	100%	50%	140%	96%	50%	140%	96%	50%	140%
Phénanthrène	3909963 3909963	<0.1	<0.1	NA	< 0.1	117%	50%	140%	105%	50%	140%	112%	50%	140%
Pyrène	3909963 3909963	<0.1	<0.1	NA	< 0.1	127%	50%	140%	115%	50%	140%	120%	50%	140%
Méthyl-1 naphtalène	3909963 3909963	<0.1	<0.1	NA	< 0.1	113%	50%	140%	104%	50%	140%	108%	50%	140%
, ,														
Méthyl-2 naphtalène	3909963 3909963	<0.1	<0.1	NA	< 0.1	128%	50%	140%	116%	50%	140%	122%	50%	140%

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 N° BON DE TRAVAIL: 220898874 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

PRÉLEVÉ PAR:Al Ousseyr	nou Sarr						L	IEU [E PRI	ÉLÈVEM	ENT:\	Vindfa	all Lake		
		Anal	yse	orgar	nique	de t	race	(Su	ite)						
Date du rapport: 2022-06-03			l	DUPLICAT	A	MATÉ	RIAU DE R	ÉFÉREN	ICE	BLAN	C FORT	IFIÉ	ÉCH.	. FORTIF	-IÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.		nites	% Récup.		nites
			.,	.,		méthode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.
Diméthyl-1,3 naphtalène	3909963	3909963	<0.1	<0.1	NA	< 0.1	110%	50%	140%	100%	50%	140%	104%	50%	140%
Triméthyl-2,3,5 naphtalène	3909963	3909963	<0.1	<0.1	NA	< 0.1	120%	50%	140%	109%	50%	140%	114%	50%	140%
Rec. Naphtalène-d8	3909963	3909963	99	101	2.3	92	112%	50%	140%	104%	50%	140%	110%	50%	140%
Rec. Pyrène-d10	3909963	3909963	113	117	3.7	101	108%	50%	140%	98%	50%	140%	108%	50%	140%
Rec. p-Terphényl-d14	3909963	3909963	132	138	4.2	117	117%	50%	140%	102%	50%	140%	119%	50%	140%
% Humidité	3909999	3909999	10.0	9.8	2.2	< 0.2	101%	80%	120%	NA			NA		

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Hydrocarbures aromatiques pol	lycycliques (HAP) (So	I)												
Acénaphtène	3909995 3909995	<0.1	<0.1	NA	< 0.1	75%	50%	140%	99%	50%	140%	72%	50%	140%
Acénaphtylène	3909995 3909995	<0.1	<0.1	NA	< 0.1	71%	50%	140%	97%	50%	140%	64%	50%	140%
Anthracène	3909995 3909995	<0.1	<0.1	NA	< 0.1	78%	50%	140%	102%	50%	140%	72%	50%	140%
Benzo (a) anthracène	3909995 3909995	<0.1	<0.1	NA	< 0.1	72%	50%	140%	99%	50%	140%	65%	50%	140%
Benzo (a) pyrène	3909995 3909995	<0.1	<0.1	NA	< 0.1	65%	50%	140%	93%	50%	140%	57%	50%	140%
Benzo (b) fluoranthène	3909995 3909995	<0.1	<0.1	NA	< 0.1	77%	50%	140%	107%	50%	140%	65%	50%	140%
Benzo (j) fluoranthène	3909995 3909995	<0.1	<0.1	NA	< 0.1	69%	50%	140%	96%	50%	140%	63%	50%	140%
Benzo (k) fluoranthène	3909995 3909995	<0.1	<0.1	NA	< 0.1	71%	50%	140%	100%	50%	140%	64%	50%	140%
Benzo (c) phénanthrène	3909995 3909995	<0.1	<0.1	NA	< 0.1	75%	50%	140%	102%	50%	140%	70%	50%	140%
Benzo (g,h,i) pérylène	3909995 3909995	<0.1	<0.1	NA	< 0.1	66%	50%	140%	96%	50%	140%	56%	50%	140%
Chrysène	3909995 3909995	<0.1	<0.1	NA	< 0.1	70%	50%	140%	94%	50%	140%	66%	50%	140%
Dibenzo (a,h) anthracène	3909995 3909995	<0.1	<0.1	NA	< 0.1	66%	50%	140%	96%	50%	140%	57%	50%	140%
Dibenzo (a,i) pyrène	3909995 3909995	<0.1	<0.1	NA	< 0.1	76%	50%	140%	115%	50%	140%	44%	50%	140%
Dibenzo (a,h) pyrène	3909995 3909995	<0.1	<0.1	NA	< 0.1	81%	50%	140%	122%	50%	140%	48%	50%	140%
Dibenzo (a,l) pyrène	3909995 3909995	<0.1	<0.1	NA	< 0.1	80%	50%	140%	115%	50%	140%	53%	50%	140%
Diméthyl-7,12 benzo (a) anthracène	3909995 3909995	<0.1	<0.1	NA	< 0.1	106%	50%	140%	153%	50%	140%	83%	50%	140%
Fluoranthène	3909995 3909995	<0.1	<0.1	NA	< 0.1	80%	50%	140%	106%	50%	140%	76%	50%	140%
Fluorène	3909995 3909995	<0.1	<0.1	NA	< 0.1	76%	50%	140%	100%	50%	140%	70%	50%	140%
Indéno (1,2,3-cd) pyrène	3909995 3909995	<0.1	<0.1	NA	< 0.1	66%	50%	140%	99%	50%	140%	56%	50%	140%
Méthyl-3 cholanthrène	3909995 3909995	<0.1	<0.1	NA	< 0.1	93%	50%	140%	132%	50%	140%	67%	50%	140%
Naphtalène	3909995 3909995	<0.1	<0.1	NA	< 0.1	75%	50%	140%	100%	50%	140%	72%	50%	140%
Phénanthrène	3909995 3909995	<0.1	<0.1	NA	< 0.1	75%	50%	140%	99%	50%	140%	72%	50%	140%
Pyrène	3909995 3909995	<0.1	<0.1	NA	< 0.1	80%	50%	140%	105%	50%	140%	77%	50%	140%
Méthyl-1 naphtalène	3909995 3909995	<0.1	<0.1	NA	< 0.1	75%	50%	140%	94%	50%	140%	69%	50%	140%
Méthyl-2 naphtalène	3909995 3909995	<0.1	<0.1	NA	< 0.1	82%	50%	140%	103%	50%	140%	79%	50%	140%
Diméthyl-1,3 naphtalène	3909995 3909995	<0.1	<0.1	NA	< 0.1	76%	50%	140%	98%	50%	140%	73%	50%	140%
Triméthyl-2,3,5 naphtalène	3909995 3909995	<0.1	<0.1	NA	< 0.1	77%	50%	140%	101%	50%	140%	72%	50%	140%
Rec. Naphtalène-d8	3909995 3909995	72	80	10.8	72	78%	50%	140%	101%	50%	140%	79%	50%	140%
Rec. Pyrène-d10	3909995 3909995	71	81	13.7	73	78%	50%	140%	103%	50%	140%	76%	50%	140%
Rec. p-Terphényl-d14	3909995 3909995	75	85	12.2	75	78%	50%	140%	101%	50%	140%	79%	50%	140%

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:AI Ousseynou Sarr N° BON DE TRAVAIL: 220898874 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

		Anal	yse	orgar	nique	de t	race	(Su	ite)						
Date du rapport: 2022-06-03				DUPLICATA	Ą	MATÉ	RIAU DE RI	ÉFÉREN	CE	BLANG	C FORTI	FIÉ	ÉCH.	FORTIF	ΙÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.		ites	% Récup.		nites	% Récup.		nites
						méthode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.

Commentaires: Le pourcentage de récupération de l'étalon contrôle en dimethyl-7,12 benzo(a)anthracène est élevé. Les résultats des échantillons sont acceptables car ils sont inférieurs à la limite de détection rapportée.

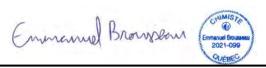
NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Hydrocarbures pétroliers C10-C50 (Sol) - Avec purification


Hydrocarbures pétroliers C10 à C50	3909963 3909963	<100	<100	NA	< 100	88%	60%	140%	87%	60%	140%	106%	60%	140%
Rec. Nonane	3909963 3909963	84	80	4.9	78	69%	60%	140%	75%	60%	140%	92%	60%	140%
% Humidité	3909999 3909999	10.0	9.8	2.2	< 0.2	101%	80%	120%	NA			NA		

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 220898874

N° DE PROJET: 201-11330-29

À L'ATTENTION DE: Sirine Boussorra

Date du rapport: 03 juin 2022	_	MATÉRIAU D	E RÉFÉI	RENCE	BLAN	C FORT	IFIÉ	ÉCH.	. FORTI	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lim		% Récup.		nites	% Récup.		nites
		555/	Inf.	Sup.		Inf.	Sup.		Inf.	Sup.

Analyses inorganiques - WSP (Balayage métaux + mercure)

Antimoine 142% 70% 130% 89% 80% 120% 86% 70% 130% Mercure 97% 70% 130% 95% 80% 120% 68% 70% 130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Analyses inorganiques - WSP (Balayage métaux + mercure)

68% Aluminium 70% 130% 103% 80% 120% 125% 70% 130% 139% Antimoine 70% 130% 91% 80% 120% 92% 70% 130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb et Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 220898874

N° DE PROJET: 201-11330-29

À L'ATTENTION DE: Sirine Boussorra

Date du rapport: 03 juin 2022		MATÉRIAU D	E RÉFÉI	RENCE	BLAN	C FORT	IFIÉ	ÉCH.	FORTI	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lim		% Récup.		nites	% Récup.		nites
			Inf.	Sup.		Inf.	Sup.		Inf.	Sup.

Hydrocarbures aromatiques polycycliques (HAP) (Sol)

Diméthyl-7,12 benzo (a) anthracène 3909963 124% 50% 140% 142% 50% 140% 112% 50% 140%

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Hydrocarbures aromatiques polycycliques (HAP) (Sol)

Dibenzo (a,i) pyrène	3909995	76%	50% 140%	115%	50% 140%	44%	50% 140%
Dibenzo (a,h) pyrène	3909995	81%	50% 140%	122%	50% 140%	48%	50% 140%
Diméthyl-7,12 benzo (a) anthracène	3909995	106%	50% 140%	153%	50% 140%	83%	50% 140%

Commentaires: Le pourcentage de récupération de l'étalon contrôle en dimethyl-7,12 benzo(a)anthracène est élevé. Les résultats des échantillons sont acceptables car ils sont inférieurs à la limite de détection rapportée.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Al Ousseynou Sarr N° BON DE TRAVAIL: 220898874
À L'ATTENTION DE: Sirine Boussorra
LIEU DE PRÉLÈVEMENT: Windfall Lake

PRELEVE PAR: Al Ousseyhou Sa	all		L	LIEU DE PRELEVEMENT:	windian Lake
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse des Sols		•	1		
Aluminium	2022-06-02	2022-06-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Antimoine	2022-06-02	2022-06-03	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Argent	2022-06-02	2022-06-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Arsenic	2022-06-02	2022-06-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Baryum	2022-06-02	2022-06-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Béryllium	2022-06-02	2022-06-03	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Cadmium	2022-06-02	2022-06-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Calcium	2022-06-02	2022-06-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Chrome	2022-06-02	2022-06-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cobalt	2022-06-02	2022-06-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cuivre	2022-06-02	2022-06-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Étain	2022-06-02	2022-06-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Fer	2022-06-02	2022-06-03	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Lithium	2022-06-02	2022-06-03	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Magnésium	2022-06-02	2022-06-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Manganèse	2022-06-02	2022-06-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Mercure	2022-06-02	2022-06-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Molybdène	2022-06-02	2022-06-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Nickel	2022-06-02	2022-06-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Plomb	2022-06-02	2022-06-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Potassium	2022-06-02	2022-06-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sélénium	2022-06-02	2022-06-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sodium	2022-06-02	2022-06-03	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Vanadium	2022-06-02	2022-06-03	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Zinc	2022-06-02	2022-06-03	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

N° DE PROJET: 201-11330-29
PRÉLEVÉ PAR:AI Ousseynou Sarr

N° BON DE TRAVAIL: 220898874 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse organique de trace		<u> </u>	1		1
Acénaphtène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Acénaphtylène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Anthracène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (a) anthracène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (a) pyrène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (b) fluoranthène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (j) fluoranthène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (k) fluoranthène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (b+j+k) fluoranthène	2022-05-31	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (c) phénanthrène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (g,h,i) pérylène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Chrysène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,h) anthracène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,i) pyrène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,h) pyrène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,l) pyrène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Diméthyl-7,12 benzo (a) anthracène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
luoranthène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
luorène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
ndéno (1,2,3-cd) pyrène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
léthyl-3 cholanthrène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
laphtalène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Phénanthrène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Pyrène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
/léthyl-1 naphtalène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
/léthyl-2 naphtalène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Diméthyl-1,3 naphtalène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
riméthyl-2,3,5 naphtalène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. Naphtalène-d8	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. Pyrène-d10	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. p-Terphényl-d14	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
6 Humidité	2022-05-30	2022-06-01	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE
lydrocarbures pétroliers C10 à C50	2022-05-30	2022-06-01	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
ec. Nonane	2022-05-30	2022-06-01	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
6 Humidité	2022-05-30	2022-06-01	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE
Hydrocarbures pétroliers C10 à C50	2022-06-01	2022-06-01	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2022-06-01	2022-06-01	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2022-06-01	2022-06-01	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE

	dsn			AGATL	aboratoires	350 rue Fr	de dema	Bordereau de demande d'analyses AGAT Laboratoires : 380 rue Franquet Quebec City, Quebec Canada, GIP 4P3	Ses bec Canada	, G1P 4P3						1		
WSP 1135, Québ Telápi	WSP Canada inc. 1135, boul. Lebourgneuf Guebec, G2K 0MS Telaphone, 418-623-7066	Telécopleur. 418-623-2434	Detail d'analyse requis	se requis 5 jours 72 hres	UL	48 hres 24 hres	Ē	6-12 hres Date requise:						L L	Bon de No de	Bon de commande: No de soumission:		
Nume Bon d	Numéro du projet: Bon de commande: Lieu de prèlèvement:	201-11330-29 Windfall Lake						Critères à respecter	pecter RMD (mat lixiviable) RDS (mat lixiviable) REIMR	xiviable) kiviable)				A Fau o	A [*** B Eau consommation	上	0	
Prélevé pa Chargé de Courriel:	ır. projet:	Al Ousseynou Sarr Steve St-Cyr steve st cyr@wsp com / sirine boussorra@wsp com	boussorra@ws	шоо ф				IN .8N .01		090		-			cau resurgence			/
								Mg, Mn, N	entaire	ers C10-								
SE SS SS SS SS SS SS SS SS SS SS SS SS S	Matrice: S Sol SI Solide SE Sediment	B Boue EU Eau usée ST Eau souterraine	ES Eau de s EF Effuent AF Affluent	Eau de surface Effluent Affluent				/I. Ag, As, El, P. Hg, K, Ll, Sn, V et Z	owąjddns ud	oures pétrol								
h	Identif	Identification de l'échantillon		Date de prélèvement	Svement	Matrice	Nombre	L' Cu' F	กเมือยให	ydrocar	dV							
-	F68-22-CF-1A			2022-05-22	5-22	co	1	0	d	н	н	-	I	-			1	+
7	F68-22-CF-1B			2022-05-22	5-22	s	-	×		×		+	1			1	1	+
e	F68-22-CF-2A			2022-05-22	5-22	S	-					-	1	-		1	1	-
4	F68-22-CF-2B			2022-05-22	5-22	S	-					-		-		F	1	-
ın ı	F95-22-CF-1A			2022-05-22	5-22	S	-					H				I	+	+
ω Ι	F95-22-CF-1B			2022-05-22	5-22	S	1	×		×	×	-		H			ŀ	-
-	F95-22-CF-2			2022-05-22	-22	S	-					H		H			H	-
																		H
														-				4
											İ	+	1		t		-	+
													İ	-	1		+	4
												F					H	1
																		-
												-					H	
												-	1	-			+	
											T					ļ	+	1
												-			-		t	-
																F	H	-
					1										Ì		1	
I																	H	
																	-	
											İ	7	1	1	1	1	1	
												+	1	1		1	1	1
											-	-		L	t	-	+	1
Échant Date:	Echantillons remis par: Date: 2022-05-23	Al Ousseynou Sarr				Échantillons reçus par:	reçus par									Page:	- de	10
	l					Date.	1		ĺ	7								

	usp			AGAT Lal	B	ordereau 350 rue Fr	de dema	Bordereau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	yses lebec Canad	a, G1P 4P3								
1136 Quek Telén	WSP canada inc. 1135, boul Lebourgneuf Guebec (Quebec) G2K 0M5 Telfophone 418-623-7066	Teleoopieur 418-523-2434	Delai d'	Fol 5 jours	LC	48 hres 24 hres	Ε	6-12 hres Date requise:						LL	Bon de commande: No de soumission:	nde:		
Bon	ojet: ande: ement:	201-11330-29 Windfall Lake						Critéres à respecter RMD (RDS (specter RMD (mat lixiviable) RDS (mat lixiviable) REIMR	ikiviable) ixiviable)			<u> </u>	ITIA F B	loi	o L	L.	
Prélavé p Charge de Courriel:	ar. s projet;	Al Ousseynou Sarr Steve St-Cyr steve st cyr@wsp com / sirine boussorra@wsp.com	е boussorra@wsp	шоо с				a, Cd, Co, Mo, Na, Ni,		-020								
								Ba, Be, Ca Mg, Mn, Zn)	entaire	ollers C10								
N N N O	ol blide ëdiment au potable	B Boue EU Eau usée ST Eau souterraine	ES Eau de s EF Effluent AF Affluent	Eau de surface Effluent Affluent				r (Al, Ag, As, I Fe, Hg, K, Ll, Se, Sn, V et	məlddus nolit	arbures pétro								
	Identifica	Identification de l'échantillon		Date de prélèvement	етеп	Matrice	Nombre de pots	Métaus Sr. Cu,	เอนิกมด	γλαιος	dVI	_						
-				2022-05-22	22	T	-		d	4	н	-		1	ľ		1	
~ 1				2022-05-22	22	S	1	×		×	×				ŀ		t	T
m -	DUP120220522			2022-05-22	22	S	-											
4 10				2022-05-18	18	S	4-											
												1		İ				
																	1	
												-						
												-		1			+	1
																I		T
												-						П
Ц													1	İ		I	+	1
									ij								+	1
																		T
																I	+	T
																П	Н	
											İ				1			
															1		+	T
																	Н	T
														l		1	+	
1 3	Manual Company of the	N O			ľ													
Date:	nullons remis par: 2022-05-23	A Cusseynou Sart				Échantillons reçus par: Date:	s reçus pa	u u							Page:	7	de 2	
												l	l				I	7

	usp	AGAT Lab	Bo oratoires :	rdereau d	e demar	Borderoau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	ses oec Canada	G1P 4P3						V	
MSP 1135, Duébe Telept	WSP Canada Inc. 1135, boul Lebourgneuf Duèbee (Dublach (EXP 0M5 Télephone 418-623-7085 Télepopeur 418-623-2434	Délai d'analyse requis FT 5 jours FT 72 hres	L. L.	48 hres 24 hres	π.	6-12 hres Date requise					L. 1.	Bon de commande: No de soumission	ande:		
Nume Bon d	ojet ande: rement;					Criteres & respecter	specter RMD (mat lixiviable) RDS (mat lixiviable) REIMR	riviable) Iviable)			T Eau	A [7] B Eau consommation Eau estumence	0 L_	<u> </u>	1
Chargé d Courriel:	Prefere par. A Dusseynou Sarr Chargé de projet: Steve St.Cyr Courriel: steve St.Cyr@wsp.com / sinne boussona@wsp.com	boussorra@wsp.com				a, Cd, Co, Mo, Na, NI,		-020							1
Matrice						'uM '6M 'I7	entaire	Oto Stellers							
o Ω Ω ⊞	S Sol B Boue SI Solide EU Eu usée SE Sédiment ST Eu souferaire EP Eau polable ST Eu souferaire	ES Eau de surface EF Effluent AF Affluent				((Al, Ag, As , Fe, Hg, K, I , Se, Sn, V e	olddus nolls	ièq sandis							
	Identification de l'échantillon	Date de prélèvement		Matrice	Nombre de pots	Cr, Cu,	nitie	Aydroc	ЧAН						
-	F69-22-CF-1A	2022-05-21	71	S	-		4	4	1	-					_
2	F69-22-CF-1B	2022-05-21	21	S	-					H			-	Ì	
m .	F69-22-CF-2	2022-05-21	17	S	-	×		×	×					1	1
4 4	F09-22-CF-3	2022-05-21	17	S	-	×		×							T
n (F70-22-CF-1	2022-05-21	13	S	-										T
1 0	L/U-ZZ-CF-Z	2022-05-21	12	S	-	×	×	×							1
	7.0-22-Cr-3	2022-05-21		S	-										
													H		
									1	+			4		Т
										-	ŀ		I	1	1
										Н			H		
						Ī				+			-		
				П											
			T												П
			П	Ħ									I		-
			T										H		1
										+					-
													Н	Н	1
			Ī							-				+	
												H		Н	1
Échant	Échantillons remis par:		4		1					-					_
Date:			2 2	Echantillons reçus par: Date:	reçus par:							Page:	. 5	de 2	

WSP Canada inc. Défail d'analyse req Duébec (Cubec) COX OMS Télécopieur 418-523-2434 PT 72 fin Téléphiure 418-523-2434 Télécopieur 418-523-2434 PT 72 fin Numéro du projet de projet prévenent: 201-11330-29 PR 7 72 fin Pré levé par. Windfall Lake Préve par. Orbrage de projet: Sieve Si-Cyr Sieve Si-Cyr S Solde EU Eau usée EF Efflient S Solde EU Eau usée EF Efflient S Solde EU Eau souterraine AF Affluent 2 DuP2 20220521 DuP3 20220521 Da	5						
1dentii (02205 (02205)		48 hres [7]	6-12 hres Date requise:		L. L.	Bon de commande: No de soumission:	
Identi 202205 202205		111	Gritières à respecter F1 RMD (mat lixiviable) F RDS (mat lixiviable) F REIMR	lxiviable) ixiviable)	FI A T" B Fau consommation Fau Faurgence	B T C	1
B B B B B B B B B B	ധാ ർടക്തുല			092-01			
Identification DUP1 20220521 DUP2 20220521 DUP3 20220521	Eau de surface Effluent Affluent		r (Al, Ag, As, Ba, Be, Fe, Hg, K, Ll, Mg, Mi Se, Sn, V et Zn) atlon supplémentaire	Strollors petrollers			
	Date de prélèvement	Matrice de pots	Metaus Cr, Cu, Pb, Sb,	4ydroc			
	2022-05-21			+			-
	2022-05-21	+	×	×			
	17-50-7707	n					+
							-
							41
							\mathbb{H}
							-
							-
							\mathbb{H}
Echantillons remis par: Al Ousseynou Sarr	104	Echantillons recus par					
6	Date:	dilunona reyua pu				Page:	2 de

	usp	AGAT Laboratoi	Bordereau es : 350 rue Fr	de dema	Bordereau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	nada, G1P 4P3					
WSP 1135, Queb Telép	WSP Canada inc. 1135, boul Lebourgneuf Québre (Québec) G2K 0M5 Télécopieur 418-622-2434	Délai d'analyse requis	48 hres 24 hres	<u></u>	6-12 hres Date requise:			8 2 L. L.	Bon de commande: No de soumission:		
Nume Bond Lieud	Numeira du projet. 201-11330-29 Bon de commande: Windfall Lake Montaire prélèvement: Montaire Lake				22	ipocter RMD (mat lixiviable) RDS (mat lixiviable) REIMR		F" A F B	A F B F Eau consommation	, U	۵
Charge de	ar. b projet:	e boussorra@wsp com								-	
Matrice:	B ;	ES Eau de surface			Pplémentaire , V et Zn) , V et Zn)	Pėtroliers C'					
교 유 교	Solide EU Eau usée Sédiment ST Eau souterraine Eau porable	EF Effluent AF Affluent									
	Identification de l'échantillon	Date de préjèvement	Matrice	Nombre de pots							
-	F79-22-CF-1A	2022-05-20	S	-		1				-	
0 0	F/9-22-CF-1B	2022-05-20	S	-	×	×				-	
D 4	DUP1 20220520	2022-05-20	w d	-							
ro.	DUP2 20220520	2022-05-20	w u		,						
9	DUP3 20220520	2022-03-20	0 0		×	×					
_	DUP4 20220520	2022-02-20	0	-						1	
		040	2	-							1
										H	
										1	
			L							+	
										-	
										H	
										-	
										H	
				10-1						H	1
							-				
Échant Date:	Échantillons remis par: Al Ousseynou Sarr		Échantillons reçus par:	s reçus par					Page:	- de	2
			Date:	1							- 0

dsn	AC	AT Laboratoire	Sordereau s:350 rue Fra	de demar	Bordereau de demande d'analyses ASAT Laboratoires ; 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	anada, G1P	4P3					
WSP Canada inc. 1135, boul Lebourgneuf Quebeig (Québeig) GZK OM5 Téléphone 418-623-7066 Téléphone 418-623-7066	Délat d'analyse requis F7 5 jours 72434	LL	48 hres 24 hres	<u></u>	6-12 hres Date requise:			Kur Ku	Bon de commande:	mmande: umission:		
rojet: nande: vement:					Criteres à respecter T RMD (m RDS (m:	spector RMD (mat. lixiviable) RDS (mat. lixiviable) REIMR	e)	ELL -	A F B Eau consommation Eau resurgence	L E	I	Q
Prélève par: A Ousseynou Sarr Charge de projet: Steve St-Cyr Steve st cyr@wsp com / si	A Ousseynou Sarr Steve St-Cyr steve st cyr@wsp com / sirine boussorra@wsp com				a, Cd, Co, Mo, Na, Ni,	035	000					
Matrice							010 81310					
S Solide B Boue SI Solide EU Eau usée SE Sédiment ST Eau souterraine EP Eau potable	ES Eau de surface EF Effluent AF Affluent				((Al, Ag, As, Fe, Hg, K, Ll , Se, Sn, V et	uəiddus nolit	nîêq zenudis.					
	Date do	Date de prélèvement	Matrice	Nombre de pots			dVF					
	20	2022-05-19	S	-		-	+					
	20.	2022-05-19	S	-	×	r	×					
3 DUP20220519	20:	2022-05-19	s	-			-					T
4 F84-ZZ-CF-1 F E78 22 CE 1D	20.	2022-05-19	v	-		×	×					
1	200	2022-05-19	S	-	×	^	×					
6 F/8-22-CF-3	203	2022-05-19	S	-								
						-	-					
										1		
												T
						+						П
						+					İ	T
											L	
		1										
						-					I	
						H					L	
						+	-					
									ŀ			
												П
			Ī	1		+	-	1		1	1	1
						+		I				T
Echantillons remis par: Al Ousseynou Sarr Date: 2022-05-20			Échantillons reçus par:	reçus par:					a.	Page: 2	99	N
l			Date.								1	

	115/1			AGAT Laboratoir	Bordereau es: 350 rue Fi	de dema	Bordereau de demande d'analyses AGAT Laboratoires : 380 rue Franquet Quebec City, Quebec Canada, G1P 4P3	anada, G1	P 4P3						
WSP (135) Cuebe Teléph	WSP Canada inc. 1135 boul Lebourgneuf Guebec (Guebec) G2K 0M5 Tellaphone 418-623-7066	5 Telecopieur 418-523-2434	Déini d'analys	e requis 5 jours 72 hres	48 hres 24 hres	C	6-12 hres Date requise:				L. L.,	Bon de commande: No de soumission:	de		
Nume Bon de Leu de	Numêra du projet: Ban de commande: Lieu de prélèvement:	201-11330-29 Windfall Lake					Critéres à respecter [7] RMD (m	Ppecter RMD (mat lixiviable) RDS (mat lixiviable) REIMR	ble)	ELL	Eau consommat	A T B m Eau consommation Eau resurbence	U	۵ ا_	
Charge	Préteve par. Charge de projet:	Al Ousseynou Sarr Steve St-Cyr					, Co, la, Ni,		-						
Соите	10	steve st cyr@wsp com / sirine boussorra@wsp.com	e boussorra@wsp co	EG .				aii	C10-C20						
Matrice S So SI So SE SE	Sol Solide Sediment	B Boue EU Eau usée ST Eau souterraine	ES Eau de surface EF Effluent AF Affluent	rface			I, Ag, As, Ba, B Hg, K, Ll, Mg, Sn, V et Zn)	sinəməlqque n	ares pétrollers						
a iii		catio		Date de prélèvement	Matrice	Nombre de pots		ON BOUND	4уdгосагb Адгосагb						
-	F73-22-CF-1A			2022-05-17	S	-			-		1	ŀ	1	-	_
0 0	F73-22-CF-1B	m		2022-05-17	S	-						ŀ			1
2 4	F80-22-CF-1			2022-05-17	S	-			1						
r vo	F53-22-CF-2B			2022-05-17	so u		×		-					-	
ω	F77-22-CF-1			2022-05-18	o		<	t	×	1		1			-
7	F77-22-CF-3B			2022-05-18	o v	-	>	1	>		1		1	1	-
								H					П		77
															-
								+							
								H						-	-
									-					H	1
									+						
															-
								+							
						100		H					t	+	-
								-							1
									1				1	-	-
								H							_
									+	1					-
								+				t			-
Échanti Date:	Échantillons remis par: Date: 2022-05-20	Al Ousseynou Sarr			Échantillon	Échantillons reçus par:						Page:	-	de 2	_
					Date:			1					- 1	- 1	_

dsn	AGAT Laboratoire	Bordereau c s : 350 rue Fra	e deman	Bordereau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	anada, G1P 4P3					
WSP Canada inc. 1135. boul Lebourgneuf Dakher (Quebec) GZK 0M5 Talkehone. 418-622-2434	Délai d'analyse requis F 5 jours 7 72 hres	48 hres 24 hres		6-12 hres Date requise:			L. Bor	Bon de commande No de soumission:		
Numbro du projet: 201-11330-29 Bon de commande: Vindfall Lake Phaliavé par: Al Ousseynou Sarr Chargé de projet: Sleve sit oyr@wsp com / sirne boussorra@wsp com	uoo dew@euroesnoo		0	2 , IN , SN , c	mat lixivial nat lixivial		FIA T B	mmation C	L.	٥
Matrice: S Sol B Boue SI Solide EU Eau usee SE Sediment ST Eau souterraine	ES Esu de surface EF Effluent AF Affluent			((Al, Ag, As, Ba, Be, Ca, (Fe, Hg, K, Ll, Mg, Mn, Mo , Se, Sn, V et Zn) stlon supplémentaire	C-010 erallorise pétrollers					
-	Date de prélèvement	Matrice	Nombre de pots	er, sb.		а∀н				
1 DUP1 20220518	2022-05-18	S	-	-	Н					
1	2022-05-18	s o		×	1					
	2022-05-18	0 00		< ×	< ×				1	
5 F81-22-CF-1B	2022-05-19	v.	-	×	< >				1	1
									H	
			Ħ						H	
			T							
									H	
			H							
			\Box							
			1							П
									П	11
Echantillona remis par: Al Ousseynou Sarr Date: 2022-05-20		Échantillons reçus par: Date:	reçus par:					Page:	2 de	1 0

NOM DU CLIENT: WSP CANADA INC.

1135 BOULEVARD LEBOURGNEUF

QUEBEC, QC G2K 0M5

(418) 623-7066

À L'ATTENTION DE: Sirine Boussorra

N° DE PROJET: 201-11330-29

N° BON DE TRAVAIL: 220898874

ANALYSE DES SOLS VÉRIFIÉ PAR: Hasti Kamalimoghadam, Chimiste, AGAT Montréal ORGANIQUE DE TRACE VÉRIFIÉ PAR: EmmanuelBrousseau, Chimiste, AGAT Québec

DATE DU RAPPORT: 22 juin 2022

NOMBRE DE PAGES: 32 VERSION*: 2

Pour tout complément d'information concernant cette analyse, veuillez contacter votre chargé(e) de projet client au (418) 266-5511.

*Notes	7
VERSION 2:Ajout des métaux pour l'échantillon F80-22-CF-1.	
	╝

Avis de non-responsabilité:

- L'ensemble des travaux réalisés dans le présent document ont été effectués en utilisant des protocoles normalisés reconnus, ainsi que des pratiques et des méthodes généralement acceptées. En vue d'améliorer la performance, les méthodes analytiques d'AGAT pourraient comprendre des modifications issues des méthodes de référence spécifiées.
- Tous les échantillons seront éliminés trente (30) jours après réception au laboratoire à moins qu'une Entente d'entreposage à long terme ne soit signée et retournée. Certaines analyses spécialisées peuvent être exemptées. Veuillez communiquer avec votre chargé de projets à la clientèle pour plus d'informations.
- La responsabilité d'AGAT en ce qui concerne tout retard, exécution ou non-exécution de ces services s'applique uniquement envers le client et ne s'étend à aucune autre tierce partie. À moins qu'il n'en soit par ailleurs convenu expressément par écrit, la responsabilité d'AGAT se limite au coût réel de l'analyse ou des analyses spécifiques incluses dans les services.
- Sauf accord écrit préalable d'AGAT Laboratoires, ce certificat ne doit être reproduit que dans sa totalité.
- Les résultats d'analyse communiqués ci-joint ne concernent que les échantillons reçus par le laboratoire.
- L'application des lignes directrices est fournie « en l'état » sans garantie de quelque nature que ce soit, ni expresse ni tacite, y compris, mais sans s'y
 limiter, les garanties de qualité marchande, d'aptitude à un usage particulier ou de non-contrefaçon. AGAT n'assume aucune responsabilité à l'égard de
 toute erreur ou omission dans les directives que contient ce document.
- Toutes les informations rapportables sont disponibles sur demande auprès d'AGAT Laboratoires, conformément aux normes ISO/IEC 17025:2017, DR-12-PALA et/ou NELAP.

AGAT Laboratoires (V2)
Page 1 de 32

N° BON DE TRAVAIL: 22O898874 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Al Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-	05-24							Ι	DATE DU RAPP	ORT: 2022-06-2	22
				IDENTIFIC	CATION DE L'É	CHANTILLON:	F68-22-CF-1B	F95-22-CF-1B	F96-22-CF-1B	F69-22-CF-2	F69-22-CF-3
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2022-05-22	2022-05-22	2022-05-22	2022-05-21	2022-05-21
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909959	3909963	3909966	3909971	3909972
Aluminium	mg/kg					30	1470	6180	6420	4760	4610
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	4[<a]< td=""><td><1</td><td><1</td><td><1</td></a]<>	<1	<1	<1
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	<20	<20
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	1110	1730	713	1600	1960
Chrome	mg/kg	100	250	800	4000	2	8[<a]< td=""><td>15[<a]< td=""><td>13[<a]< td=""><td>13[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	15[<a]< td=""><td>13[<a]< td=""><td>13[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>13[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<>	14[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	<2	8[<a]< td=""><td><2</td><td>4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<>	<2	4[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<>	4[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	1[<a]< td=""><td>8[<a]< td=""><td>2[<a]< td=""><td>6[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>2[<a]< td=""><td>6[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	2[<a]< td=""><td>6[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<>	9[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	3580	11100	10800	7700	8200
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	<20
Magnésium	mg/kg					100	431	2360	1120	3250	3790
Manganèse	mg/kg	1000	1000	2200	11000	10	24[<a]< td=""><td>188[<a]< td=""><td>36[<a]< td=""><td>121[<a]< td=""><td>135[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	188[<a]< td=""><td>36[<a]< td=""><td>121[<a]< td=""><td>135[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	36[<a]< td=""><td>121[<a]< td=""><td>135[<a]< td=""></a]<></td></a]<></td></a]<>	121[<a]< td=""><td>135[<a]< td=""></a]<></td></a]<>	135[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	<2	13[<a]< td=""><td>4[<a]< td=""><td>10[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>10[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<></td></a]<>	10[<a]< td=""><td>10[<a]< td=""></a]<></td></a]<>	10[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	<100	173	<100	254	266
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	<100	<100	<100	<100
Vanadium	mg/kg					15	20	17	<15	<15	<15
Zinc	mg/kg	140	500	1500	7500	5	6[<a]< td=""><td>16[<a]< td=""><td>10[<a]< td=""><td>20[<a]< td=""><td>24[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	16[<a]< td=""><td>10[<a]< td=""><td>20[<a]< td=""><td>24[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	10[<a]< td=""><td>20[<a]< td=""><td>24[<a]< td=""></a]<></td></a]<></td></a]<>	20[<a]< td=""><td>24[<a]< td=""></a]<></td></a]<>	24[<a]< td=""></a]<>

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 22O898874 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Al Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-	-05-24							Γ	DATE DU RAPP	ORT: 2022-06-2	2
				IDENTIFIC	CATION DE L'ÉC	CHANTILLON:	F70-22-CF-2	DUP220220521	F79-22-CF-1B	DUP220220520	F71-22-CF-2
						MATRICE:	Sol	Sol	Sol	Sol	Sol
				D	ATE D'ÉCHAN	TLLONNAGE:	2022-05-21	2022-05-21	2022-05-20	2022-05-20	2022-05-19
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909974	3909977	3909980	3909983	3909986
Aluminium	mg/kg					30	2420	2210	6640	7890	5000
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	<1	<1	<1	<1
Baryum	mg/kg	340	500	2000	10000	20	133[<a]< td=""><td>133[<a]< td=""><td><20</td><td><20</td><td><20</td></a]<></td></a]<>	133[<a]< td=""><td><20</td><td><20</td><td><20</td></a]<>	<20	<20	<20
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	35000	32300	1340	1280	1950
Chrome	mg/kg	100	250	800	4000	2	4[<a]< td=""><td>4[<a]< td=""><td>18[<a]< td=""><td>18[<a]< td=""><td>19[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>18[<a]< td=""><td>18[<a]< td=""><td>19[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	18[<a]< td=""><td>18[<a]< td=""><td>19[<a]< td=""></a]<></td></a]<></td></a]<>	18[<a]< td=""><td>19[<a]< td=""></a]<></td></a]<>	19[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	<2	<2	3[<a]< td=""><td>3[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<>	5[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	8[<a]< td=""><td>7[<a]< td=""><td>3[<a]< td=""><td>3[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>3[<a]< td=""><td>3[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>3[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>9[<a]< td=""></a]<></td></a]<>	9[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	2920	3880	13000	15100	9300
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	<20
Magnésium	mg/kg					100	953	948	3400	3020	3640
Manganèse	mg/kg	1000	1000	2200	11000	10	128[<a]< td=""><td>263[<a]< td=""><td>97[<a]< td=""><td>89[<a]< td=""><td>127[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	263[<a]< td=""><td>97[<a]< td=""><td>89[<a]< td=""><td>127[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	97[<a]< td=""><td>89[<a]< td=""><td>127[<a]< td=""></a]<></td></a]<></td></a]<>	89[<a]< td=""><td>127[<a]< td=""></a]<></td></a]<>	127[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	1[<a]< td=""><td><1</td><td><1</td><td><1</td></a]<>	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	3[<a]< td=""><td>4[<a]< td=""><td>9[<a]< td=""><td>8[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>9[<a]< td=""><td>8[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	9[<a]< td=""><td>8[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<>	12[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	<100	<100	115	119	255
Sélénium	mg/kg	1	3	10	50	0.5	1.6[A-B]	1.4[A-B]	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	<100	<100	<100	<100
Vanadium	mg/kg					15	<15	<15	24	31	17
Zinc	mg/kg	140	500	1500	7500	5	13[<a]< td=""><td>18[<a]< td=""><td>20[<a]< td=""><td>18[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	18[<a]< td=""><td>20[<a]< td=""><td>18[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	20[<a]< td=""><td>18[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<></td></a]<>	18[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<>	23[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 22O898874 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Al Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022	-05-24							1	DATE DU RAPP	ORT: 2022-06-2	22
				IDENTIFIC	CATION DE L'É	CHANTILLON:	F71-22-CF-4	F84-22-CF-1	F78-22-CF-1B	F73-22-CF-1A	F80-22-CF-1
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					ATE D'ÉCHAN	TILLONNAGE:	2022-05-19	2022-05-19	2022-05-19	2022-05-17	2022-05-17
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909987	3909989	3909990	3909992	3909994
Aluminium	mg/kg					30	13100	9180	11800	702	1620
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	2[<a]< td=""><td>1[<a]< td=""><td><1</td><td>1[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	1[<a]< td=""><td><1</td><td>1[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<></td></a]<>	<1	1[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<>	3[<a]< td=""></a]<>
Baryum	mg/kg	340	500	2000	10000	20	27[<a]< td=""><td>26[<a]< td=""><td><20</td><td>52[<a]< td=""><td>55[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	26[<a]< td=""><td><20</td><td>52[<a]< td=""><td>55[<a]< td=""></a]<></td></a]<></td></a]<>	<20	52[<a]< td=""><td>55[<a]< td=""></a]<></td></a]<>	55[<a]< td=""></a]<>
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	0.7[<a]< td=""><td>0.7[<a]< td=""></a]<></td></a]<>	0.7[<a]< td=""></a]<>
Calcium	mg/kg					100	2590	8830	1530	3610	8570
Chrome	mg/kg	100	250	800	4000	2	13[<a]< td=""><td>17[<a]< td=""><td>17[<a]< td=""><td>4[<a]< td=""><td><2</td></a]<></td></a]<></td></a]<></td></a]<>	17[<a]< td=""><td>17[<a]< td=""><td>4[<a]< td=""><td><2</td></a]<></td></a]<></td></a]<>	17[<a]< td=""><td>4[<a]< td=""><td><2</td></a]<></td></a]<>	4[<a]< td=""><td><2</td></a]<>	<2
Cobalt	mg/kg	25	50	300	1500	2	11[<a]< td=""><td>6[<a]< td=""><td>5[<a]< td=""><td><2</td><td><2</td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>5[<a]< td=""><td><2</td><td><2</td></a]<></td></a]<>	5[<a]< td=""><td><2</td><td><2</td></a]<>	<2	<2
Cuivre	mg/kg	50	100	500	2500	1	43[<a]< td=""><td>13[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>8[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<>	11[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	25700	9550	12100	952	1610
Lithium	mg/kg	-	-	-	-	20	31	<20	<20	<20	<20
Magnésium	mg/kg					100	5700	2410	3800	517	899
Manganèse	mg/kg	1000	1000	2200	11000	10	590[<a]< td=""><td>713[<a]< td=""><td>142[<a]< td=""><td>34[<a]< td=""><td>724[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	713[<a]< td=""><td>142[<a]< td=""><td>34[<a]< td=""><td>724[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	142[<a]< td=""><td>34[<a]< td=""><td>724[<a]< td=""></a]<></td></a]<></td></a]<>	34[<a]< td=""><td>724[<a]< td=""></a]<></td></a]<>	724[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	13[<a]< td=""><td>8[<a]< td=""><td>12[<a]< td=""><td>5[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>12[<a]< td=""><td>5[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>5[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<></td></a]<>	5[<a]< td=""><td>4[<a]< td=""></a]<></td></a]<>	4[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	7[<a]< td=""><td><5</td><td>21[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<></td></a]<>	<5	21[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<>	23[<a]< td=""></a]<>
Potassium	mg/kg					100	254	312	159	919	817
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	1.0[A]	<0.5	0.9[<a]< td=""><td>0.6[<a]< td=""></a]<></td></a]<>	0.6[<a]< td=""></a]<>
Sodium	mg/kg					100	<100	<100	<100	<100	<100
Vanadium	mg/kg					15	20	<15	20	<15	<15
Zinc	mg/kg	140	500	1500	7500	5	48[<a]< td=""><td>27[<a]< td=""><td>27[<a]< td=""><td>40[<a]< td=""><td>25[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	27[<a]< td=""><td>27[<a]< td=""><td>40[<a]< td=""><td>25[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	27[<a]< td=""><td>40[<a]< td=""><td>25[<a]< td=""></a]<></td></a]<></td></a]<>	40[<a]< td=""><td>25[<a]< td=""></a]<></td></a]<>	25[<a]< td=""></a]<>

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 22O898874 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Al Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022	2-05-24							[DATE DU RAPP	ORT: 2022-06-2	22
				IDENTIFI	CATION DE L'É	CHANTILLON:	F80-22-CF-2	F53-22-CF-2B	F77-22-CF-3B	F76-22-CF-1	F82-22-CF-1
						MATRICE:	Sol	Sol	Sol	Sol	Sol
				Г	DATE D'ÉCHAN	ΓILLONNAGE:	2022-05-17	2022-05-18	2022-05-18	2022-05-18	2022-05-18
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909995	3909996	3909998	3910000	3910001
Aluminium	mg/kg					30	20300	7640	4160	3950	3750
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	5[<a]< td=""><td><1</td><td><1</td><td><1</td><td><1</td></a]<>	<1	<1	<1	<1
Baryum	mg/kg	340	500	2000	10000	20	82[<a]< td=""><td>38[<a]< td=""><td><20</td><td>31[<a]< td=""><td><20</td></a]<></td></a]<></td></a]<>	38[<a]< td=""><td><20</td><td>31[<a]< td=""><td><20</td></a]<></td></a]<>	<20	31[<a]< td=""><td><20</td></a]<>	<20
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	1600	3370	2360	2800	2030
Chrome	mg/kg	100	250	800	4000	2	7[<a]< td=""><td>20[<a]< td=""><td>12[<a]< td=""><td>9[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	20[<a]< td=""><td>12[<a]< td=""><td>9[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>9[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<></td></a]<>	9[<a]< td=""><td>11[<a]< td=""></a]<></td></a]<>	11[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	10[<a]< td=""><td>6[<a]< td=""><td>4[<a]< td=""><td><2</td><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>4[<a]< td=""><td><2</td><td>4[<a]< td=""></a]<></td></a]<></td></a]<>	4[<a]< td=""><td><2</td><td>4[<a]< td=""></a]<></td></a]<>	<2	4[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	17[<a]< td=""><td>14[<a]< td=""><td>10[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	14[<a]< td=""><td>10[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	10[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>8[<a]< td=""></a]<></td></a]<>	8[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	24300	13800	8660	5750	8270
Lithium	mg/kg	-	-	-	-	20	67	<20	<20	<20	<20
Magnésium	mg/kg					100	6170	3520	2180	1720	1870
Manganèse	mg/kg	1000	1000	2200	11000	10	7550[C-D]	181[<a]< td=""><td>79[<a]< td=""><td>267[<a]< td=""><td>144[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	79[<a]< td=""><td>267[<a]< td=""><td>144[<a]< td=""></a]<></td></a]<></td></a]<>	267[<a]< td=""><td>144[<a]< td=""></a]<></td></a]<>	144[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	2[A]	<1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	16[<a]< td=""><td>13[<a]< td=""><td>9[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	13[<a]< td=""><td>9[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	9[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>8[<a]< td=""></a]<></td></a]<>	8[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	475	420	151	419	152
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	112	139	<100	<100	<100
Vanadium	mg/kg					15	<15	20	<15	<15	<15
Zinc	mg/kg	140	500	1500	7500	5	55[<a]< td=""><td>25[<a]< td=""><td>19[<a]< td=""><td>88[<a]< td=""><td>18[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	25[<a]< td=""><td>19[<a]< td=""><td>88[<a]< td=""><td>18[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	19[<a]< td=""><td>88[<a]< td=""><td>18[<a]< td=""></a]<></td></a]<></td></a]<>	88[<a]< td=""><td>18[<a]< td=""></a]<></td></a]<>	18[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 22O898874 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:AI Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercur

DATE DE RÉCEPTION: 2022	-05-24								DATE DU RAPPORT: 2022-06-22
				IDENTIFIC	CATION DE L'ÉC	CHANTILLON:	F83-22-CF-3A	F81-22-CF-1B	
						MATRICE:	Sol	Sol	
					ATE D'ÉCHANT	ILLONNAGE:	2022-05-18	2022-05-19	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3910002	3910003	
Aluminium	mg/kg					30	4580	4540	
Antimoine	mg/kg	-	-	-		20	<20	<20	
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	
Arsenic	mg/kg	6	30	50	250	1	<1	1[<a]< td=""><td></td></a]<>	
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	
Béryllium	mg/kg					1	<1	<1	
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	
Calcium	mg/kg					100	2310	2460	
Chrome	mg/kg	100	250	800	4000	2	18[<a]< td=""><td>15[<a]< td=""><td></td></a]<></td></a]<>	15[<a]< td=""><td></td></a]<>	
Cobalt	mg/kg	25	50	300	1500	2	4[<a]< td=""><td>4[<a]< td=""><td></td></a]<></td></a]<>	4[<a]< td=""><td></td></a]<>	
Cuivre	mg/kg	50	100	500	2500	1	5[<a]< td=""><td>10[<a]< td=""><td></td></a]<></td></a]<>	10[<a]< td=""><td></td></a]<>	
Étain	mg/kg	5	50	300	1500	5	<5	<5	
Fer	mg/kg					500	8960	7950	
Lithium	mg/kg	-	-	-	-	20	<20	<20	
Magnésium	mg/kg					100	3340	3260	
Manganèse	mg/kg	1000	1000	2200	11000	10	117[<a]< td=""><td>102[<a]< td=""><td></td></a]<></td></a]<>	102[<a]< td=""><td></td></a]<>	
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	
Molybdène	mg/kg	2	10	40	200	1	<1	<1	
Nickel	mg/kg	50	100	500	2500	2	10[<a]< td=""><td>10[<a]< td=""><td></td></a]<></td></a]<>	10[<a]< td=""><td></td></a]<>	
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	
Potassium	mg/kg					100	183	159	
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	
Sodium	mg/kg					100	<100	<100	
Vanadium	mg/kg					15	17	<15	
Zinc	mg/kg	140	500	1500	7500	5	22[<a]< td=""><td>20[<a]< td=""><td></td></a]<></td></a]<>	20[<a]< td=""><td></td></a]<>	

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 220898874

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:AI Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-05-24 DATE DU RAPPORT: 2022-06-22

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se réfèrer directement à la norme applicable

pour l'interprétation réglementaire.

3909959-3910003 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 220898874 N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: Al Ousseynou Sarr

À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

Hydrocarbures aromatiques polycycliques (HAP) (Sol)

DATE DE RÉCEPTION: 2022-05-2	24							С	ATE DU RAPPO	RT: 2022-06	6-22
				IDENTIF	CATION DE L'É	CHANTILLON:	F95-22-CF-1B	F96-22-CF-1B	F69-22-CF-2		F73-22-CF-1A
						MATRICE:	Sol	Sol	Sol		Sol
				I	DATE D'ÉCHAN ⁻	TILLONNAGE:	2022-05-22	2022-05-22	2022-05-21		2022-05-17
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909963	3909966	3909971	LDR	3909992
Acénaphtène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Acénaphtylène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Anthracène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Benzo (a) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Benzo (b) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Benzo (j) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Benzo (k) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Benzo (b+j+k) fluoranthène	mg/kg	-	-	-	136	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Benzo (c) phénanthrène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Benzo (g,h,i) pérylène	mg/kg	0.1	1	10	18	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Chrysène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Dibenzo (a,h) anthracène	mg/kg	0.1	1	10	82	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Dibenzo (a,i) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Dibenzo (a,h) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Dibenzo (a,l) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Diméthyl-7,12 benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Fluoranthène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Fluorène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Indéno (1,2,3-cd) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Méthyl-3 cholanthrène	mg/kg	0.1	1	10	150	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Naphtalène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Phénanthrène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Pyrène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Méthyl-1 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Méthyl-2 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Diméthyl-1,3 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	0.5	<0.5
Triméthyl-2,3,5 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	<0.1	0.5	<0.5

Certifié par:

N° BON DE TRAVAIL: 22O898874 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Al Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Hydrocarbures aromatiques polycyc	cliques	(HAP) ((Sol)
-----------------------------------	---------	---------	-------

DATE DE RÉCEPTION: 2022-0	5-24								DATE DU RAPP	ORT: 2022-06	3-22
				IDENTIF	FICATION DE L'É	CHANTILLON:	F95-22-CF-1B	F96-22-CF-1B	F69-22-CF-2		F73-22-CF-1A
						MATRICE:	Sol	Sol	Sol		Sol
					DATE D'ÉCHAN	TILLONNAGE:	2022-05-22	2022-05-22	2022-05-21		2022-05-17
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909963	3909966	3909971	LDR	3909992
% Humidité	%					0.2	8.1	30.1	4.8	0.2	80.4
Étalon de recouvrement	Unités			Limites							
Rec. Naphtalène-d8	%			50-140			99	97	98	1	71
Rec. Pyrène-d10	%			50-140			113	114	112	1	70
Rec. p-Terphényl-d14	%			50-140			132	132	131	1	71

Certifié par:

N° BON DE TRAVAIL: 22O898874 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:AI Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Hydrocarbures aromatiques polycycliques (HAP) (Sol)

DATE DE RÉCEPTION: 2022-05-2	24							[DATE DU RAPPORT: 2022-06-22
				IDENTIFI	CATION DE L'É	CHANTILLON:	F80-22-CF-2	F53-22-CF-2B	
						MATRICE:	Sol	Sol	
					DATE D'ÉCHAN	ΓILLONNAGE:	2022-05-17	2022-05-18	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909995	3909996	
Acénaphtène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Acénaphtylène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Anthracène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Benzo (a) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Benzo (b) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	
Benzo (j) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	
Benzo (k) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	
Benzo (b+j+k) fluoranthène	mg/kg	-	-	-	136	0.1	<0.1	<0.1	
Benzo (c) phénanthrène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Benzo (g,h,i) pérylène	mg/kg	0.1	1	10	18	0.1	<0.1	<0.1	
Chrysène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Dibenzo (a,h) anthracène	mg/kg	0.1	1	10	82	0.1	<0.1	<0.1	
Dibenzo (a,i) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Dibenzo (a,h) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Dibenzo (a,l) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Diméthyl-7,12 benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Fluoranthène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Fluorène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Indéno (1,2,3-cd) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Méthyl-3 cholanthrène	mg/kg	0.1	1	10	150	0.1	<0.1	<0.1	
Naphtalène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	
Phénanthrène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	
Pyrène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Méthyl-1 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Méthyl-2 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Diméthyl-1,3 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Triméthyl-2,3,5 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	

Certifié par:

manuel Browslaw (Emmund Boursel

N° BON DE TRAVAIL: 220898874

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Al Ousseynou Sarr

Rec. Pyrène-d10

Rec. p-Terphényl-d14

À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

111

134

75

Hydrocarbures aromatiques polycycliques (HAP) (Sol)												
DATE DE RÉCEPTION: 2022-05-	-24								DATE DU RAPPORT: 2022-06-22			
				IDENTIF	ICATION DE L'É	CHANTILLON:	F80-22-CF-2	F53-22-CF-2B				
						MATRICE:	Sol	Sol				
				I	DATE D'ÉCHAN ⁻	TILLONNAGE:	2022-05-17	2022-05-18				
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909995	3909996				
% Humidité	%					0.2	10.3	12.4				
Étalon de recouvrement	Unités			Limites								
Rec. Naphtalène-d8	%			50-140			72	96				

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3909963-3909971 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

3909992 La LDR a été ajustée en raison de la faible matière sèche de l'échantillon.

%

Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

50-140

50-140

3909995-3909996 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 22O898874 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Al Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

PRELEVE PAR.AI Ousseynou	San		LIEU DE PRELEVEIMENT. WINDIAN LAKE										
			Hyd	rocarbur	es pétrolie	rs C10-C50) (Sol)						
DATE DE RÉCEPTION: 2022-05-2	24							[DATE DU RAPP	ORT: 2022-06-2	22		
				IDENTIF	FICATION DE L'É	CHANTILLON:	F68-22-CF-1B	F95-22-CF-1B	F96-22-CF-1B	F69-22-CF-2	F69-22-CF-3		
						MATRICE:	Sol	Sol	Sol	Sol	Sol		
					DATE D'ÉCHAN	ITILLONNAGE:	2022-05-22	2022-05-22	2022-05-22	2022-05-21	2022-05-21		
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909959	3909963	3909966	3909971	3909972		
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100		
% Humidité	%					0.2	21.9	8.1	30.1	4.8	4.9		
Étalon de recouvrement	Unités			Limites									
Rec. Nonane	%			60-140			72	84	64	88	70		
				IDENTIF	FICATION DE L'É	CHANTILLON:	F79-22-CF-1B	DUP220220520	F71-22-CF-2	F71-22-CF-4	F78-22-CF-1B		
						MATRICE:	Sol	Sol	Sol	Sol	Sol		
					DATE D'ÉCHAN	ITILLONNAGE:	2022-05-20	2022-05-20	2022-05-19	2022-05-19	2022-05-19		
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909980	3909983	3909986	3909987	3909990		
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100		
% Humidité	%					0.2	23.1	24.0	4.6	9.1	8.2		
Étalon de recouvrement	Unités			Limites									
Rec. Nonane	%			60-140			83	64	70	65	72		
				IDENTIF	FICATION DE L'É	CHANTILLON:	F73-22-CF-1A	F80-22-CF-2	F53-22-CF-2B	F77-22-CF-3B	F82-22-CF-1		
						MATRICE:	Sol	Sol	Sol	Sol	Sol		
					DATE D'ÉCHAN	ITILLONNAGE:	2022-05-17	2022-05-17	2022-05-18	2022-05-18	2022-05-18		
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909992	3909995	3909996	3909998	3910001		
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	233[A-B]	<100	<100	<100	<100		
% Humidité	%					0.2	80.4	10.3	12.4	11.6	13.9		
Étalon de recouvrement	Unités			Limites									
Rec. Nonane	%			60-140				97	64	80	86		

Certifié par:

N° BON DE TRAVAIL: 220898874 N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: Al Ousseynou Sarr

À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

	Hydrocarbures pétroliers C10-C50 (Sol)												
DATE DE RÉCEPTION: 2022-05-2	24								DATE DU RAPPORT: 2022-06-22				
				IDENTI	FICATION DE L'É	CHANTILLON:	F83-22-CF-3A	F81-22-CF-1B					
						MATRICE:	Sol	Sol					
					DATE D'ÉCHAN	ITILLONNAGE:	2022-05-18	2022-05-19					
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3910002	3910003					
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100					
% Humidité	%					0.2	17.2	15.4					
Étalon de recouvrement	Unités			Limites									
Rec. Nonane	%			60-140			71	71					

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3909959-3910003 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 220898874

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: Al Ousseynou Sarr

À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

		Hyd	Irocarbure	es pétroli	ers C10-C5	50 (Sol) - A	vec purific	ation			
DATE DE RÉCEPTION: 2022-05-2	24							Г	DATE DU RAPP	PORT: 2022-06-22	2
				IDENTIF	ICATION DE L'É	CHANTILLON:	F70-22-CF-2	DUP220220521	F84-22-CF-1	F76-22-CF-1	
						MATRICE:	Sol	Sol	Sol	Sol	
					DATE D'ÉCHAN	ITILLONNAGE:	2022-05-21	2022-05-21	2022-05-19	2022-05-18	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3909974	3909977	3909989	3910000	
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	
% Humidité	%					0.2	79.7	80.2	74.2	37.2	
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			84	98	84	87	

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3909974-3910000 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Méthode d'analyse effectuée avec traitements supplémentaires pour éliminer la présence de matières organiques.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:AI Ousseynou Sarr N° BON DE TRAVAIL: 220898874 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

			/	Analy	/se d	es So	ols								
Date du rapport: 2022-06-22				DUPLICAT	A	MATÉ	RIAU DE RI	ÉFÉREN	NCE	BLANG	FORT	IFIÉ	ÉCH.	FORTIF	-IÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.	Lin	nites	% Récup.	Lin	nites
TANAMETICE	Lot	IN COII.	Dup #1	Dup #2	70 d coart	méthode	70 Nocup.	Inf.	Sup.	70 Nocup.	Inf.	Sup.	, 70 Recup.	Inf.	Sup.
Analyses inorganiques - WSP (Ba	alayage mé	taux + me	ercure)		•			•	•			•			
Aluminium	3902580		7030	6500	7.7	< 30	76%	70%	130%	104%	80%	120%	NA	70%	130%
Antimoine	3902580		<20	<20	NA	< 20	142%	70%	130%	89%	80%	120%	86%	70%	130%
Argent	3902580		<0.5	< 0.5	NA	< 0.5	109%	70%	130%	101%	80%	120%	99%	70%	130%
Arsenic	3902580		<1	1	NA	< 1	102%	70%	130%	97%	80%	120%	94%	70%	130%
Baryum	3902580		154	117	27.4	< 20	99%	70%	130%	104%	80%	120%	NA	70%	130%
Béryllium	3902580		<1	<1	NA	< 1	95%	70%	130%	100%	80%	120%	96%	70%	130%
Cadmium	3902580		<0.5	<0.5	NA	< 0.5	106%	70%	130%	102%	80%	120%	98%	70%	130%
Calcium	3902580		2820	2880	2.2	< 100	104%	70%	130%	104%	80%	120%	98%	70%	130%
Chrome	3902580		49	46	7.0	< 2	120%	70%	130%	102%	80%	120%	106%	70%	130%
Cobalt	3902580		13	12	1.2	< 2	112%	70%	130%	100%	80%	120%	99%	70%	130%
Cuivre	3902580		191	179	6.4	< 1	100%	70%	130%	94%	80%	120%	NA	70%	130%
Étain	3902580		<5	<5	NA	< 5	106%	70%	130%	101%	80%	120%	97%	70%	130%
Fer	3902580		14400	15700	8.5	< 500	109%	70%	130%	104%	80%	120%	NA	70%	130%
Lithium	3902580		<20	<20	NA	< 20	101%	70%	130%	99%	80%	120%	97%	70%	130%
Magnésium	3902580		6130	6630	7.7	< 100	104%	70%	130%	104%	80%	120%	NA	70%	130%
Manganèse	3902580		188	173	8.3	< 10	116%	70%	130%	109%	80%	120%	107%	70%	130%
Mercure	3902580		<0.2	<0.2	NA	< 0.2	97%	70%	130%	95%	80%	120%	68%	70%	130%
Molybdène	3902580		2	2	NA	< 1	114%	70%	130%	105%	80%	120%	101%	70%	130%
Nickel	3902580		29	27	6.8	< 2	114%	70%	130%	100%	80%	120%	97%	70%	130%
Plomb	3902580		11	12	NA	< 5	107%	70%	130%	101%	80%	120%	95%	70%	130%
Potassium	3902580		1430	1380	2.9	< 100	98%	70%	130%	105%	80%	120%	104%	70%	130%
Sélénium	3902580		<0.5	<0.5	NA	< 0.5	101%	70%	130%	100%	80%	120%	98%	70%	130%
Sodium	3902580		125	132	NA	< 100	99%	70%	130%	101%	80%	120%	98%	70%	130%
Vanadium	3902580		23	25	NA	< 15	109%	70%	130%	102%	80%	120%	99%	70%	130%
Zinc	3902580		36	39	6.1	< 5	108%	70%	130%	101%	80%	120%	97%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA : Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Analyses inorganiques - WSP	(Balayage métaux + mercure)
-----------------------------	-----------------------------

Aluminium	3921341	4930	4720	4.5	< 30	68%	70%	130%	103%	80%	120%	125%	70%	130%
Antimoine	3921341	<20	<20	NA	< 20	139%	70%	130%	91%	80%	120%	92%	70%	130%
Argent	3921341	<0.5	<0.5	NA	< 0.5	101%	70%	130%	99%	80%	120%	96%	70%	130%
Arsenic	3921341	2	2	NA	< 1	99%	70%	130%	99%	80%	120%	95%	70%	130%
Baryum	3921341	56	56	NA	< 20	99%	70%	130%	105%	80%	120%	110%	70%	130%
Béryllium	3921341	<1	<1	NA	< 1	96%	70%	130%	105%	80%	120%	101%	70%	130%
Cadmium	3921341	<0.5	<0.5	NA	< 0.5	102%	70%	130%	105%	80%	120%	97%	70%	130%
Calcium	3921341	43200	44100	1.9	< 100	103%	70%	130%	108%	80%	120%	NA	70%	130%
Chrome	3921341	10	9	NA	< 2	109%	70%	130%	104%	80%	120%	98%	70%	130%
Cobalt	3921341	5	4	NA	< 2	108%	70%	130%	103%	80%	120%	99%	70%	130%

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR:Al Ousseynou Sarr

N° BON DE TRAVAIL: 220898874 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

													=		
			Ana	lyse	des	Sols (Suite	∋)							
Date du rapport: 2022-06-22				DUPLICATA	A	MATÉ	RIAU DE RI	ÉFÉREN	NCE	BLANG	C FORT	IFIÉ	ÉCH.	FORTI	FIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de méthode	% Récup.		nites	% Récup.	Lin	nites	% Récup.		nites
						methode	-	Inf.	Sup.		Inf.	Sup.		Inf.	Sup.
Cuivre	3921341		11	10	5.8	< 1	96%	70%	130%	99%	80%	120%	93%	70%	130%
Étain	3921341		<5	<5	NA	< 5	102%	70%	130%	103%	80%	120%	102%	70%	130%
Fer	3921341		15100	14200	6.5	< 500	103%	70%	130%	103%	80%	120%	NA	70%	130%
Lithium	3921341		<20	<20	NA	< 20	98%	70%	130%	103%	80%	120%	98%	70%	130%
Magnésium	3921341		4560	4370	4.3	< 100	100%	70%	130%	104%	80%	120%	104%	70%	130%
Manganèse	3921341		285	241	16.7	< 10	126%	70%	130%	107%	80%	120%	103%	70%	130%
Mercure	3921341		<0.2	< 0.2	NA	< 0.2	91%	70%	130%	119%	80%	120%	91%	70%	130%
Molybdène	3921341		<1	<1	NA	< 1	111%	70%	130%	107%	80%	120%	112%	70%	130%
Nickel	3921341		11	9	NA	< 2	106%	70%	130%	103%	80%	120%	97%	70%	130%
Plomb	3921341		6	5	NA	< 5	100%	70%	130%	101%	80%	120%	92%	70%	130%
Potassium	3921341		850	838	1.3	< 100	97%	70%	130%	105%	80%	120%	109%	70%	130%
Sélénium	3921341		<0.5	< 0.5	NA	< 0.5	99%	70%	130%	102%	80%	120%	96%	70%	130%
Sodium	3921341		101	101	NA	< 100	82%	70%	130%	103%	80%	120%	105%	70%	130%
Vanadium	3921341		21	21	NA	< 15	105%	70%	130%	105%	80%	120%	104%	70%	130%
Zinc	3921341		42	41	3.6	< 5	106%	70%	130%	103%	80%	120%	97%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb et Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Analyses inorganiques - Wor (Dalayage inclaux + increure)	Analyses	inorganiques -	- WSP	(Balayage métaux + mercure)
---	----------	----------------	-------	-----------------------------

Aluminium	3972586	18500	18800	1.7	< 30	69%	70%	130%	96%	80%	120%	NA	70%	130%
Antimoine	3972586	<20	<20	NA	< 20	136%	70%	130%	89%	80%	120%	84%	70%	130%
Argent	3972586	<0.5	<0.5	NA	< 0.5	105%	70%	130%	100%	80%	120%	93%	70%	130%
Arsenic	3972586	3	2	NA	< 1	95%	70%	130%	96%	80%	120%	91%	70%	130%
Baryum	3972586	174	182	4.5	< 20	101%	70%	130%	99%	80%	120%	NA	70%	130%
D.f. m. Illi	3972586			N 14		070/	700/	4000/	050/	000/	4000/	000/	700/	4000/
Béryllium		<1	<1	NA	< 1	87%	70%	130%	95%	80%	120%	92%	70%	130%
Cadmium	3972586	<0.5	<0.5	NA	< 0.5	97%	70%	130%	98%	80%	120%	94%	70%	130%
Calcium	3972586	20200	27000	28.8	< 100	93%	70%	130%	99%	80%	120%	NA	70%	130%
Chrome	3972586	33	34	1.9	< 2	101%	70%	130%	96%	80%	120%	101%	70%	130%
Cobalt	3972586	10	10	4.3	< 2	103%	70%	130%	96%	80%	120%	91%	70%	130%
Cuivre	3972586	21	22	6.2	< 1	100%	70%	130%	97%	80%	120%	98%	70%	130%
Étain	3972586	<5	<5	NA	< 5	98%	70%	130%	95%	80%	120%	92%	70%	130%
	3972586													
Fer		23300	23700	1.9	< 500	100%	70%	130%	98%	80%	120%	NA	70%	130%
Lithium	3972586	<20	<20	NA	< 20	88%	70%	130%	90%	80%	120%	88%	70%	130%
Magnésium	3972586	7980	8080	1.3	< 100	100%	70%	130%	101%	80%	120%	NA	70%	130%
Manganèse	3972586	414	443	6.8	< 10	95%	70%	130%	97%	80%	120%	92%	70%	130%
Mercure	3972586	<0.2	<0.2	NA	< 0.2	93%	70%	130%	101%	80%	120%	86%	70%	130%
Molybdène	3972586	1	<1	NA	< 1	105%	70%	130%	100%	80%	120%	94%	70%	130%
Nickel	3972586	24	23	2.2	< 2	99%	70%	130%	96%	80%	120%	95%	70%	130%
Plomb	3972586	66	82	21.0	< 5	103%	70%	130%	102%	80%	120%	102%	70%	130%
Potassium	3972586	4110	4330	5.3	< 100	98%	70%	130%	101%	80%	120%	99%	70%	130%

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR: Al Oussevnou Sarr

N° BON DE TRAVAIL: 220898874 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

TREEE TETTALITA GAGGGYIIG	u Ouii						-						an Lano		
			Ana	lyse	des S	Sols (Suite	e)							
Date du rapport: 2022-06-22				DUPLICATA	A	MATÉ	RIAU DE R	ÉFÉREN	NCE	BLAN	CFORT	IFIÉ	ÉCH.	FORTIF	ΞIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.		nites	% Récup.		nites	% Récup.		nites
						méthode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.
Sélénium	3972586		0.6	<0.5	NA	< 0.5	93%	70%	130%	97%	80%	120%	92%	70%	130%
Sodium	3972586		1960	2010	2.2	< 100	84%	70%	130%	99%	80%	120%	96%	70%	130%
Vanadium	3972586		39	40	NA	< 15	97%	70%	130%	97%	80%	120%	99%	70%	130%
Zinc	3972586		124	122	2.2	< 5	104%	70%	130%	100%	80%	120%	95%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb et Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA : Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR:Al Ousseynou Sarr

N° BON DE TRAVAIL: 220898874 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

		P	analy	se o	rgani	que	de tra	ace							
Date du rapport: 2022-06-22				DUPLICAT	A	MATÉ	RIAU DE RI	ÉFÉREN	ICE	BLANG	FORT	IFIÉ	ÉCH.	FORTI	ΞΙÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.	Lin	nites	% Récup.		nites
. /					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	méthode	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.	70.11000	Inf.	Sup.
Hydrocarbures pétroliers C10-C	50 (SoI)														
Hydrocarbures pétroliers C10 à C50	3909963	3909963	<100	<100	NA	< 100	88%	60%	140%	87%	60%	140%	106%	60%	140%
Rec. Nonane	3909963	3909963	84	80	4.9	78	69%	60%	140%	75%	60%	140%	92%	60%	140%
% Humidité	3909999	3909999	10.0	9.8	2.2	< 0.2	101%	80%	120%	NA			NA		

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Hydrocarbures pétroliers C10-C50 (Sol)

Hydrocarbures pétroliers C10 à	3909995 3909995	<100	<100	NA	< 100	80%	60%	140%	125%	60%	140%	88%	60%	140%
C50														
Rec. Nonane	3909995 3909995	97	112	14.4	103	96%	60%	140%	127%	60%	140%	111%	60%	140%

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Hydrocarbures aromatiques poly	cycliques (HAP) (Sol)												
Acénaphtène	3909963 3909963	<0.1	<0.1	NA	< 0.1	113%	50%	140%	105%	50%	140%	109%	50%	140%
Acénaphtylène	3909963 3909963	<0.1	<0.1	NA	< 0.1	93%	50%	140%	95%	50%	140%	94%	50%	140%
Anthracène	3909963 3909963	<0.1	<0.1	NA	< 0.1	114%	50%	140%	110%	50%	140%	107%	50%	140%
Benzo (a) anthracène	3909963 3909963	<0.1	<0.1	NA	< 0.1	111%	50%	140%	100%	50%	140%	104%	50%	140%
Benzo (a) pyrène	3909963 3909963	<0.1	<0.1	NA	< 0.1	98%	50%	140%	92%	50%	140%	92%	50%	140%
Benzo (b) fluoranthène	3909963 3909963	<0.1	<0.1	NA	< 0.1	90%	50%	140%	84%	50%	140%	83%	50%	140%
Benzo (j) fluoranthène	3909963 3909963	<0.1	<0.1	NA	< 0.1	94%	50%	140%	92%	50%	140%	96%	50%	140%
Benzo (k) fluoranthène	3909963 3909963	<0.1	<0.1	NA	< 0.1	95%	50%	140%	88%	50%	140%	90%	50%	140%
Benzo (c) phénanthrène	3909963 3909963	<0.1	<0.1	NA	< 0.1	116%	50%	140%	105%	50%	140%	110%	50%	140%
Benzo (g,h,i) pérylène	3909963 3909963	<0.1	<0.1	NA	< 0.1	84%	50%	140%	83%	50%	140%	78%	50%	140%
Chrysène	3909963 3909963	<0.1	<0.1	NA	< 0.1	107%	50%	140%	99%	50%	140%	102%	50%	140%
Dibenzo (a,h) anthracène	3909963 3909963	<0.1	<0.1	NA	< 0.1	88%	50%	140%	84%	50%	140%	82%	50%	140%
Dibenzo (a,i) pyrène	3909963 3909963	<0.1	<0.1	NA	< 0.1	87%	50%	140%	94%	50%	140%	74%	50%	140%
Dibenzo (a,h) pyrène	3909963 3909963	<0.1	<0.1	NA	< 0.1	77%	50%	140%	94%	50%	140%	80%	50%	140%
Dibenzo (a,l) pyrène	3909963 3909963	<0.1	<0.1	NA	< 0.1	76%	50%	140%	79%	50%	140%	67%	50%	140%
Diméthyl-7,12 benzo (a) anthracène	3909963 3909963	<0.1	<0.1	NA	< 0.1	124%	50%	140%	142%	50%	140%	112%	50%	140%
Fluoranthène	3909963 3909963	<0.1	<0.1	NA	< 0.1	124%	50%	140%	112%	50%	140%	118%	50%	140%
Fluorène	3909963 3909963	<0.1	<0.1	NA	< 0.1	124%	50%	140%	115%	50%	140%	113%	50%	140%
Indéno (1,2,3-cd) pyrène	3909963 3909963	<0.1	<0.1	NA	< 0.1	82%	50%	140%	79%	50%	140%	74%	50%	140%
Méthyl-3 cholanthrène	3909963 3909963	<0.1	<0.1	NA	< 0.1	69%	50%	140%	100%	50%	140%	86%	50%	140%

3909963 3909963

3909963 3909963

3909963 3909963

3909963 3909963

3909963 3909963

< 0.1

<0.1

< 0.1

< 0.1

< 0.1

< 0.1

<0.1

< 0.1

<0.1

<0.1

Naphtalène

Pyrène

Phénanthrène

Méthyl-1 naphtalène

Méthyl-2 naphtalène

50% 140%

50% 140%

140%

140%

140%

NA

NA

NA

NA

NA

< 0.1

< 0.1

< 0.1

< 0.1

< 0.1

100%

117%

127%

113%

128%

50% 140%

50% 140%

50% 140%

140%

140%

96%

105%

115%

104%

116%

50% 140%

50% 140%

50% 140%

140%

96%

122%

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:AI Ousseynou Sarr N° BON DE TRAVAIL: 220898874 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

		Anal	yse	orgar	nique	de ti	race	(Su	ite)						
Date du rapport: 2022-06-22			ı	DUPLICATA	A	MATÉ	RIAU DE RI	ÉFÉREN	ICE	BLAN	C FORT	IFIÉ	ÉCH.	FORTIF	ΊÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.		nites	% Récup.		nites
				,		méthode	,	Inf.	Sup.		Inf.	Sup.		Inf.	Sup.
Diméthyl-1,3 naphtalène	3909963 3	3909963	<0.1	<0.1	NA	< 0.1	110%	50%	140%	100%	50%	140%	104%	50%	140%
Triméthyl-2,3,5 naphtalène	3909963	3909963	<0.1	<0.1	NA	< 0.1	120%	50%	140%	109%	50%	140%	114%	50%	140%
Rec. Naphtalène-d8	3909963	3909963	99	101	2.3	92	112%	50%	140%	104%	50%	140%	110%	50%	140%
Rec. Pyrène-d10	3909963	3909963	113	117	3.7	101	108%	50%	140%	98%	50%	140%	108%	50%	140%
Rec. p-Terphényl-d14	3909963	3909963	132	138	4.2	117	117%	50%	140%	102%	50%	140%	119%	50%	140%
% Humidité	3909999 3	3909999	10.0	9.8	2.2	< 0.2	101%	80%	120%	NA			NA		

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Hydrocarbures aromatiques poly	ycycliques (HAP) (Sol)												
Acénaphtène	3909995 3909995	<0.1	<0.1	NA	< 0.1	75%	50%	140%	99%	50%	140%	72%	50%	140%
Acénaphtylène	3909995 3909995	<0.1	<0.1	NA	< 0.1	71%	50%	140%	97%	50%	140%	64%	50%	140%
Anthracène	3909995 3909995	<0.1	<0.1	NA	< 0.1	78%	50%	140%	102%	50%	140%	72%	50%	140%
Benzo (a) anthracène	3909995 3909995	<0.1	<0.1	NA	< 0.1	72%	50%	140%	99%	50%	140%	65%	50%	140%
Benzo (a) pyrène	3909995 3909995	<0.1	<0.1	NA	< 0.1	65%	50%	140%	93%	50%	140%	57%	50%	140%
Benzo (b) fluoranthène	3909995 3909995	<0.1	<0.1	NA	< 0.1	77%	50%	140%	107%	50%	140%	65%	50%	140%
Benzo (j) fluoranthène	3909995 3909995	<0.1	<0.1	NA	< 0.1	69%	50%	140%	96%	50%	140%	63%	50%	140%
Benzo (k) fluoranthène	3909995 3909995	<0.1	<0.1	NA	< 0.1	71%	50%	140%	100%	50%	140%	64%	50%	140%
Benzo (c) phénanthrène	3909995 3909995	<0.1	<0.1	NA	< 0.1	75%	50%	140%	102%	50%	140%	70%	50%	140%
Benzo (g,h,i) pérylène	3909995 3909995	<0.1	<0.1	NA	< 0.1	66%	50%	140%	96%	50%	140%	56%	50%	140%
Chrysène	3909995 3909995	<0.1	<0.1	NA	< 0.1	70%	50%	140%	94%	50%	140%	66%	50%	140%
Dibenzo (a,h) anthracène	3909995 3909995	<0.1	<0.1	NA	< 0.1	66%	50%	140%	96%	50%	140%	57%	50%	140%
Dibenzo (a,i) pyrène	3909995 3909995	<0.1	<0.1	NA	< 0.1	76%	50%	140%	115%	50%	140%	44%	50%	140%
Dibenzo (a,h) pyrène	3909995 3909995	<0.1	<0.1	NA	< 0.1	81%	50%	140%	122%	50%	140%	48%	50%	140%
Dibenzo (a,l) pyrène	3909995 3909995	<0.1	<0.1	NA	< 0.1	80%	50%	140%	115%	50%	140%	53%	50%	140%
Diméthyl-7,12 benzo (a) anthracène	3909995 3909995	<0.1	<0.1	NA	< 0.1	106%	50%	140%	153%	50%	140%	83%	50%	140%
Fluoranthène	3909995 3909995	<0.1	<0.1	NA	< 0.1	80%	50%	140%	106%	50%	140%	76%	50%	140%
Fluorène	3909995 3909995	<0.1	<0.1	NA	< 0.1	76%	50%	140%	100%	50%	140%	70%	50%	140%
Indéno (1,2,3-cd) pyrène	3909995 3909995	<0.1	<0.1	NA	< 0.1	66%	50%	140%	99%	50%	140%	56%	50%	140%
Méthyl-3 cholanthrène	3909995 3909995	<0.1	<0.1	NA	< 0.1	93%	50%	140%	132%	50%	140%	67%	50%	140%
Naphtalène	3909995 3909995	<0.1	<0.1	NA	< 0.1	75%	50%	140%	100%	50%	140%	72%	50%	140%
Phénanthrène	3909995 3909995	<0.1	<0.1	NA	< 0.1	75%	50%	140%	99%	50%	140%	72%	50%	140%
Pyrène	3909995 3909995	<0.1	<0.1	NA	< 0.1	80%	50%	140%	105%	50%	140%	77%	50%	140%
Méthyl-1 naphtalène	3909995 3909995	<0.1	<0.1	NA	< 0.1	75%	50%	140%	94%	50%	140%	69%	50%	140%
Méthyl-2 naphtalène	3909995 3909995	<0.1	<0.1	NA	< 0.1	82%	50%	140%	103%	50%	140%	79%	50%	140%
Diméthyl-1,3 naphtalène	3909995 3909995	<0.1	<0.1	NA	< 0.1	76%	50%	140%	98%	50%	140%	73%	50%	140%
Triméthyl-2,3,5 naphtalène	3909995 3909995	<0.1	<0.1	NA	< 0.1	77%	50%	140%	101%	50%	140%	72%	50%	140%
Rec. Naphtalène-d8	3909995 3909995	72	80	10.8	72	78%	50%	140%	101%	50%	140%	79%	50%	140%
Rec. Pyrène-d10	3909995 3909995	71	81	13.7	73	78%	50%	140%	103%	50%	140%	76%	50%	140%
Rec. p-Terphényl-d14	3909995 3909995	75	85	12.2	75	78%	50%	140%	101%	50%	140%	79%	50%	140%

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:AI Ousseynou Sarr N° BON DE TRAVAIL: 220898874 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

		Anal	yse	orgar	nique	de t	race	(Su	ite)						
Date du rapport: 2022-06-22				DUPLICATA	4	MATÉ	RIAU DE R	ÉFÉREN	CE	BLANG	C FORTI	FIÉ	ÉCH.	FORTIF	ΊÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de méthode	% Récup.	Lim	ites	% Récup.		nites	% Récup.		nites
						methode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.

Commentaires: Le pourcentage de récupération de l'étalon contrôle en dimethyl-7,12 benzo(a)anthracène est élevé. Les résultats des échantillons sont acceptables car ils sont inférieurs à la limite de détection rapportée.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Hydrocarbures pétroliers C10-C50 (Sol) - Avec purification


Hydrocarbures pétroliers C10 à C50	3909963 3909963	<100	<100	NA	< 100	88%	60%	140%	87%	60%	140%	106%	60%	140%
Rec. Nonane	3909963 3909963	84	80	4.9	78	69%	60%	140%	75%	60%	140%	92%	60%	140%
% Humidité	3909999 3909999	10.0	9.8	2.2	< 0.2	101%	80%	120%	NA			NA		

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 220898874

N° DE PROJET: 201-11330-29

À L'ATTENTION DE: Sirine Boussorra

Date du rapport: 22 juin 2022		MATÉRIAU D	E RÉFÉI	RENCE	BLAN	C FORT	IFIÉ	ÉCH.	FORTI	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lim		% Récup.		iites	% Récup.		nites
, , , , , , , , , , , , , , , , , , ,		,	Inf.	Sup.		Inf.	Sup.		Inf.	Sup.

Analyses inorganiques - WSP (Balayage métaux + mercure)

Antimoine 142% 70% 130% 89% 80% 120% 86% 70% 130% Mercure 97% 70% 130% 95% 80% 120% 68% 70% 130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Analyses inorganiques - WSP (Balayage métaux + mercure)

68% Aluminium 70% 130% 103% 80% 120% 125% 70% 130% 139% Antimoine 70% 130% 91% 80% 120% 92% 70% 130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb et Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Analyses inorganiques - WSP (Balayage métaux + mercure)

Aluminium 69% 70% 130% 96% 80% 120% NA 70% 130% Antimoine 136% 70% 130% 89% 80% 120% 84% 70% 130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb et Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA : Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

AGAT RAPPORT DE CONTRÔLE DE QUALITÉ (V2)

Page 21 de 32

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 220898874

N° DE PROJET: 201-11330-29

À L'ATTENTION DE: Sirine Boussorra

Date du rapport: 22 juin 2022		MATÉRIAU D	E RÉFÉI	RENCE	BLAN	C FORT	IFIÉ	ÉCH.	FORTII	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lim	ites	% Récup.		nites	% Récup.		nites
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.		Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.

Hydrocarbures aromatiques polycycliques (HAP) (Sol)

Diméthyl-7,12 benzo (a) anthracène 3909963 124% 50% 140% 142% 50% 140% 112% 50% 140%

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Hydrocarbures aromatiques polycycliques (HAP) (Sol)

Dibenzo (a,i) pyrène	3909995	76%	50% 140%	115%	50% 140%	44%	50% 140%
Dibenzo (a,h) pyrène	3909995	81%	50% 140%	122%	50% 140%	48%	50% 140%
Diméthyl-7,12 benzo (a) anthracène	3909995	106%	50% 140%	153%	50% 140%	83%	50% 140%

Commentaires: Le pourcentage de récupération de l'étalon contrôle en dimethyl-7,12 benzo(a)anthracène est élevé. Les résultats des échantillons sont acceptables car ils sont inférieurs à la limite de détection rapportée.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'aiout.

L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:AI Ousseynou Sarr N° BON DE TRAVAIL: 220898874 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

PRELEVE PAR: Al Ousseyhou Sar	I		L	IEU DE PRELEVEMENT:	windian Lake
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse des Sols	•	•	•	•	•
Aluminium	2022-06-02	2022-06-20	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Antimoine	2022-06-02	2022-06-20	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Argent	2022-06-02	2022-06-20	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Arsenic	2022-06-02	2022-06-20	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Baryum	2022-06-02	2022-06-20	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Béryllium	2022-06-02	2022-06-20	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Cadmium	2022-06-02	2022-06-20	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Calcium	2022-06-02	2022-06-20	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Chrome	2022-06-02	2022-06-20	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cobalt	2022-06-02	2022-06-20	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cuivre	2022-06-02	2022-06-20	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Étain	2022-06-02	2022-06-20	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Fer	2022-06-02	2022-06-20	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Lithium	2022-06-02	2022-06-20	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Magnésium	2022-06-02	2022-06-20	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Manganèse	2022-06-02	2022-06-20	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Mercure	2022-06-02	2022-06-20	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Molybdène	2022-06-02	2022-06-20	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Nickel	2022-06-02	2022-06-20	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Plomb	2022-06-02	2022-06-20	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Potassium	2022-06-02	2022-06-20	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sélénium	2022-06-02	2022-06-20	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sodium	2022-06-02	2022-06-20	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Vanadium	2022-06-02	2022-06-20	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Zinc	2022-06-02	2022-06-20	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR: Al Ousseynou Sarr

N° BON DE TRAVAIL: 220898874 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

I NEEL VE I AN.AI Ousseymou oui				LILO DE I NELEVENIEIVI.	William Lake
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse organique de trace	'	•		•	
Acénaphtène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Acénaphtylène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Anthracène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (a) anthracène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (a) pyrène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (b) fluoranthène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (j) fluoranthène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (k) fluoranthène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (b+j+k) fluoranthène	2022-05-31	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (c) phénanthrène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (g,h,i) pérylène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Chrysène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,h) anthracène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,i) pyrène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,h) pyrène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,l) pyrène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Diméthyl-7,12 benzo (a) anthracène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Fluoranthène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Fluorène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
ndéno (1,2,3-cd) pyrène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
/léthyl-3 cholanthrène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Naphtalène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Phénanthrène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Pyrène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Méthyl-1 naphtalène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Méthyl-2 naphtalène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Diméthyl-1,3 naphtalène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Friméthyl-2,3,5 naphtalène	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. Naphtalène-d8	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. Pyrène-d10	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. p-Terphényl-d14	2022-05-30	2022-06-01	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
% Humidité	2022-05-30	2022-06-01	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE
lydrocarbures pétroliers C10 à C50	2022-05-30	2022-06-01	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2022-05-30	2022-06-01	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2022-05-30	2022-06-01	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE
Hydrocarbures pétroliers C10 à C50	2022-06-01	2022-06-01	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2022-06-01	2022-06-01	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2022-06-01	2022-06-01	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE

115/1		AG/	\T Laboratoire	S:350 rue Fr	de dema	Borderau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec Cify, Quebec Canada, G1P 4P3	ec Canada,	G1P 4P3						
WSP Canada inc. 1135, boul Lebourgneuf Guebec (Québec) G2K 0MS Teléphone, 418-623-7066	MS Telécopleur 419-923-2434	Delai d'analyse requis 7 5 jours 7 72 hres	UL	48 hres 24 hres	ī.	6-12 hres Date requise:					L. L	Bon de commande: No de soumission;	.e. ::	
Numéro du projet: Bon de commande: Lieu de prélèvement:	201-11330-29 Windfall Lake					Critères à respecter [RMD (r RDS (n	specter RMD (mat lixiviable) RDS (mat lixiviable) REIMR	viable) viable)			T Eau or	A [" B T Eau consommation Eau résurgence	U	L
rreleve par. Chargé de projet: Courriel:	Newseytron Safr Steve St-Cyr Steve St Cyr@wsp com / sithe boussorra@wsp com	boussorra@wsp com				Be, Ca, Cd, Co, 9, Mn, Mo, Na, NI,	ealre	rs C10-C50						
Matrice: S Sol SI Solide SE Sediment EP Eau potable	B Boue EU Eau usee ST Eau souterraine	ES Eau de surface EF Effluent AF Affluent				((Al. Ag, As, Ba, Fe, Hg, K, Ll, M , Se, Sn, V et Zn)	namėląque noite	erbures pétrolle						
Ider	Identification de l'échantillon	Date de I	Date de prélèvement	Matrice	Nombre de pots	'no lis	รวนูเกต	Ιλαιος	dVi					
-	IA	202.	2022-05-22	s	-		d	4	н				1	-
2 F68-22-CF-1B	B <	202.	2022-05-22	S	-	×		×						-
1	S D	202:	2022-05-22	s c										\vdash
5 F95-22-CF-1A	A	2022	2022-05-22	o v										+
6 F95-22-CF-1B	8	2022	2022-05-22	S	-	×		×	>	-				+
7 F95-22-CF-2		202,	2022-05-22	ω	-								П	++
													Н	1
														-1-
														1
														-
														-
														-
														-
														\perp
														-
														1
														-
							1		1					1
tillors	Al Ousseynou Sarr			Échantillons reçus par:	s reçus par						-			
Date: 2022-05-23				Date:								Page:	1 de	7
														۱

	usp			AGAT Lal	Boratoires	ordereau 350 rue Fr	de dema	Bordereau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	yses lebec Canad	a, G1P 4P3								
1136 Quek Telén	WSP canada inc. 1135, boul Lebourgneuf Guebec (Quebec) G2K 0M5 Telfophone 418-623-7066	Teleoopieur 418-523-2434	Delai d'	Fol 5 jours	LC	48 hres 24 hres	Ε	6-12 hres Date requise:						LL	Bon de commande: No de soumission:	nde:		
Bon	ojet: ande: ement:	201-11330-29 Windfall Lake						Critéres à respecter RMD (RDS (specter RMD (mat lixiviable) RDS (mat lixiviable) REIMR	ikiviable) ixiviable)			<u> </u>	ITIA F B	loi	o L	L.	
Prélavé p Charge de Courriel	ar. s projet;	Al Ousseynou Sarr Steve St-Cyr steve st cyr@wsp com / sirine boussorra@wsp.com	е boussoma@wsp	шоо с				a, Cd, Co, Mo, Na, Ni,		-020								
								Ba, Be, Ca Mg, Mn, Zn)	entaire	ollers C10								
N N N O	ol blide ëdiment au potable	B Boue EU Eau usée ST Eau souterraine	ES Eau de s EF Effluent AF Affluent	Eau de surface Effluent Affluent				r (Al, Ag, As, I Fe, Hg, K, Ll, Se, Sn, V et	məlddus nolit	arbures pétro								
	Identifica	Identification de l'échantillon		Date de prélèvement	етеп	Matrice	Nombre de pots	Métaus Sr. Cu,	เอนิกมด	ήλαιος	dVI	_						
-				2022-05-22	22	T	-		d	4	н	-		1	ľ		1	
~ 1				2022-05-22	22	S	1	×		×	×				ŀ		t	T
m -	DUP120220522			2022-05-22	22	S	-											
4 10				2022-05-18	18	S	4-											
												1		İ				
																	1	
												-						
												-		1			+	1
																		T
												-						П
Ц													1			I	+	1
									ij								+	1
																		T
																I	+	T
																П	Н	
											İ				1			
															1		+	T
																	H	T
														l		1	+	
1 3	Manual Company of the	N O			ľ													
Date:	nullons remis par: 2022-05-23	A Cusseynou Sart				Échantillons reçus par: Date:	s reçus pa	u u							Page:	7	de 2	
												l	l				I	7

	usp	AGAT Lab	Bo oratoires :	rdereau d	e demar	Borderoau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	ses oec Canada	G1P 4P3						V	
MSP 1135, Duébe Telept	WSP Canada Inc. 1135, boul Lebourgneuf Duèbee (Dublach (EXP 0M5 Télephone 418-623-7085 Télepopeur 418-623-2434	Délai d'analyse requis FT 5 jours FT 72 hres	L. L.	48 hres 24 hres	π.	6-12 hres Date requise					L. 1.	Bon de commande: No de soumission	ande:		
Nume Bon d	ojet ande: rement;					Criteres & respecter	specter RMD (mat lixiviable) RDS (mat lixiviable) REIMR	riviable) Iviable)			T Eau	A [7] B Eau consommation Eau estumence	0 L_	<u> </u>	1
Chargé d Courriel:	Prefere par. A Dusseynou Sarr Chargé de projet: Steve St.Cyr Courriel: steve St.Cyr@wsp.com / sinne boussona@wsp.com	boussorra@wsp.com				a, Cd, Co, Mo, Na, NI,		-020							1
Matrice						'uM '6M 'I7	entaire	Oto Stellers							
o Ω Ω ⊞	S Sol B Boue SI Solide EU Eu usée SE Sédiment ST Eu souferaire EP Eau polable ST Eu souferaire	ES Eau de surface EF Effluent AF Affluent				((Al, Ag, As , Fe, Hg, K, I , Se, Sn, V e	olddus nolls	ièq sandis							
	Identification de l'échantillon	Date de prélèvement		Matrice	Nombre de pots	Cr, Cu,	nitic	Aydroc	ЧAН						
-	F69-22-CF-1A	2022-05-21	71	S	-		4	4	1	-					_
2	F69-22-CF-1B	2022-05-21	21	S	-					H			-	Ì	
m -	F69-22-CF-2	2022-05-21	17	S	-	×		×	×					1	1
4 n	F09-22-CF-3	2022-05-21	17	S	-	×		×							T
n (F70-22-CF-1	2022-05-21	13	S	-										T
1 0	L/U-ZZ-CF-Z	2022-05-21	12	S	-	×	×	×							1
	7.0-22-Cr-3	2022-05-21		S	-										
													H		
									1	+			4		Т
										-	ŀ		I	1	1
										Н			H		
						Ī				+			-		
				П											
			T												П
			П	Ħ									I		-
			T										H		1
										+					-
													Н	Н	1
			T							-				+	
												H		Н	1
Échant	Échantillons remis par:		4		1										_
Date:			2 2	Echantillons reçus par: Date:	reçus par:							Page:	. 5	de 2	

dsn	AGAT Laborato	Bordereau ires: 350 rue Fr	de dema	Bordereau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec Cin, Quebec Canada, G1P 4P3	anada, G1P 4	P3				
WSP Canada inc. 1135, bour Lebourgneuf Québec (Québec) GZK OM5 Teléphûne: 418-523-2434	Délai d'analyse requis F1 5 jours F1 2 hres F1	48 hres 24 hres	ū.	6-12 hres Date requise:			L., L.,	Bon de commande: No de soumission;	ınde; sion:	
Numéro du projet: 201-11330-29 Bon de commande. Lieu de prejèvement: Windfall Lake Prélevé par. Al Ousseynou Sarr Chargé de projet: Sleve St-Cyr Steve St-Cyr Steve St-Cyr@wsp com / skinre boussorra@wsp com	e boussorra@wsp.com			2 IN , 6V , OV	mat lixiviat nat lixiviat		F Eau	A	o L	۵ ا
Matricer 8 Souce 8 Souce 5 Solde EU Eau usée SE Sédiment ST Eau souterraine EP Eau potable.	ES Eau de surface EF Effluent AF Affluent Date de prélèbrement	t Matrice	Nombre	étnux (A1, Ag, As, Be, Be, Ge r, Cu, Fe, Hg, K, Ll, Mg, Mn, I b, Sb, Se, Sn, V et Zn) rtflestion sunalémentaire	rrification supplémentaire varocarbures pétrollers C10-	dV				
	2022-05-21	w w	- t	d S	+	++				
3 DUP3 20220521	2022-05-21	Ø	-							
Échanillons remis par: Al Ousseynou Sarr Date: 2022-05-23		Échantillons regus par: Date:	s reçus par					Page:	2 9	de 2

	dsii	AGAT Laborat	Bordereau oires: 350 rue Fr	de dema	Bordereau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	Canada, G	1P 4P3						1	
WSP 1135 Cuet Telep	WSP Canada inc. 1135, boul Lebourgneuf Québre (Québec) G2K OMS Féléphone 418-623-7068 Télécopieur 418-623-2434	Détat d'analyse requis	48 hres 24 hres	Ī.	6-12 hres Date requise:					L. L.	Bon de commande: No de soumission:	ande; sion:		
Num Ben Lieu	rojet: nande: vement:				Critéres à respecter RMD (m	pecter RMD (mat lixiviable) RDS (mat lixiviable) REIMR	iable) able)			T Eau o	A F B Eau consommation Eau résurgence	U L	0	
Charge Cournel	Prejeve par A Ousseynou Sarr Change de projet Sleve St-Cyr Countie st cyr@wsp com / sime boussona@wsp com	oussorra@wsp com			Mo, Ma, Mi,		020							
					(uz	entaire	liers C10							
8 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Sol B Boue Solide EU Eau usée Sédiment ST Eau souterraine Eau potable	ES Eau de surface EF Effluent AF Affluent			; (Al, Ag, As, E Fe, Hg, K, Ll, Se, Sn, V et z	məlddus noli	arbures pétro							
-	Identification de l'échantillon	Date de prélèvement	nt Matrice	Nombre de pots	as 'a	onthe		d∀ŀ						_
-	F79-22-CF-1A	2022-05-20	S	-		,	-		-		1	F	+	1
7	F79-22-CF-1B	2022-05-20	S	-	×		×		-					T
m -	F/9-22-CF-2	2022-05-20	S	1				1				H		-
4 rc	DUP 1 20220320	2022-05-20	S	-		7								
0 0	DUP3 2022050	2022-05-20	S	-	×	1	×		-				H	
7	DI IDA 2022050	2022-05-20	S	-										
	DOF4 20220320	2022-05-20	v	-										1
												F	+	
									Н					
							T	ļ	-			-	+	-
									F	-			+	-
								late					H	
								-	-					
						1				1		-	+	-
												ŀ	H	-
														1
						1			4					-
									I	-			+	-
														-
						1	1							
						t	1		1				1	_
						H	t	-	-			-	+	_
Échan	Échantillons remis par: Al Ousseynou Sarr		Échantillons reçus par:	s reçus par							G G		90	1
i contra	02-50-2202		Date:					ĺ			?	-1	- 1	-

-	dsii			Bordereau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	Bordereau ss : 350 rue Fr	de demar	Bordereau de demande d'analyses is : 350 rue Franquet Quebec (ity, Quebec	S Canada, (31P 4P3					1	
WSP C: 1135, b	WSP Canada inc. 1135, boul Lebourgneuf		Detail d'analyse requis	44	48 hres		6-12 hres					All			
Québec	Quebea (Quebea) G2K 0M5 Telephone 418-623-7066	Telécopieur, 418-523-2434			24 hres		Date requise:					N N	No de soumission:		
Numéro Ron de	Numéro du projet: Ron de commande:	201-11330-29					Critéres a respecter	specter RMD (mat. lixiviable)	riable)				L.	L	۵
Lieu de	Lieu de prélèvement:	Windfall Loke	Ē				d	RDS (mat lixiviable) REIMR	iabfe)		L I	Eau con			
Prélevé par. Chargé de p	Prélevé par: Chamé de projet:	Al Ousseynou Sarr					'IN '			F					
Courriel:		steve st cyr@wsp com / sirine boussorra@wsp com	e boussorra@wsp com				, Cd, C		C20						
) g, Mn, M	entaire	ers C10-						
	.e.		4				/s, Ba , Ll, N et Zn	iemei	eltollè						
o & A 점	Sqlide Sédiment Eau potable	EU Eau usée ST Eau souterraine	ES Eau de surace EF Effluent AF Affluent				(AI, Ag, K Fe, Hg, K Se, Sn, V	ddns uojji	d sandhe						
	ident	dentification de l'échantillon	Date	Date de prélèvement	Matrice	Nombre de pots	Métaux Cr. Cu, Pb, Sb,	politica		dVI					
-	F71-22-CF-2		8	2022-05-19	S	-	×								I
7	F71-22-CF-4		2	2022-05-19	S	-	×	T	×						
m	DUP20220519	a	2	2022-05-19	S	1			-						
4	F84-22-CF-1		2	2022-05-19	S	-	×	×	×						
2	F78-22-CF-1B		2	2022-05-19	S	1	×		×			-			
9	F78-22-CF-3		2	2022-05-19	S	1									
_															
								1							
						I		1							
								T							
								Ì						-	I
											L			-	1
						10								-	I
1															
1															
								1		-					
								1	1						
						1		t	1						
								T	t		l			-	T
										-	l		-	-	T
											L			ali	I
Date	Date: 2022-05-20	Al Ousseynou Sarr			Échantillons reçus par:	s reçus par:							Page:	2 de	2
				1	Date:									- 1	

Main Content	115/1		AGAT Laborato	Bordereau res : 350 rue Fra	de deman	Bordereau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	nada, G1P	4P3						
Part Part	WSP Canada inc. 1135 bout Lebourgneuf Curbec (Québec) G2K G	IMS		48 hres	1	5-12 hres				-	130	de command	.i.	
Control of the cont	Talaphone 418-623-706					Jake requise.						de soumissio	2	
A Conception Section Section Sectio	Numera du projet:	201-11330-29				Critéres à respecter	nat lixiviabl	6					1	
## Special Control of the Production of March 1978 (Approximation of Appro	Leu de prélèvement:	Windfall Lake					nat fixiviable	÷		L L		mmation		
## Project State of	Preieve par.	Al Ousseynou Sarr				'IN		-						ŀ
Fig. 22-CF-14 Fig. 12	Charge de projet:	Steve St-Cyr				, ce								
Second Decompose E.S. Ellucountries Second Decompose E.S. Ellucountries Second	сопшен	Steve St cytigwsp com / sinne	e boussorra@wsp com			Mo, I	050 (
Solid Eliginate Eliginat						(u 'u _M ' '6 _M								
Engineering St. En unusers St. En	Matrice S Sol		ES Eau de surface			I, II, I,								
Figure 2015 Figure 2015	SI Solide SE Sédiment EP Eau polable		EF Effluent AF Affluent			6, Hg, I								
F70.22.CF-1A		entification de l'échantillon	Date de prélèvement	Matrice	Nombre de pots	p' ap'	-	-						
F13.22.CF-1B 2022.05.17 S 1		-1A	2022-05-17		-	×	-	1			-	ł		1
F0022-CF-1 F0022-CF-2B F0022-CF-3B F0022-C		-18	2022-05-17	S	-		-	+			l	ł	1	1
FROZZ-CF-2 FROZZ-CF-2 FROZZ-CF-2B FT77-2Z-CF-3B FT77-2Z-CF		4	2022-05-17	S	-					1			1	+
F77.22.CF-3B		-2	2022-05-17	S	-	×	Î	H				ŀ		
F77.22.CF-38 F77.2		-2B	2022-05-18	S	-	×	Î	0-				L		+
Fring 2002 of 18 X X X X X X X X X		-	2022-05-18	S	1									H
		3B	2022-05-18	S	-	×	Î						I	+
Illone remis par: Al Ousseymou Sarr Chandilons reçus par: Page: 1 de Page							H							Н
Illons ramis par: A Ousseynou Sart A Cla								-						+
Illors remis par: A Ousseynou Sarr Echantillors requis par: Page: 1 de Page						1	-	-	-		1			+
A DUSSEYFOU Sarr CENTRALINOS FICE SERVICE							-					1		+
											-			1
										-				t
														F
Illustranis par: A Ousseynou Sairt Chandillons regus par: Page: 1 de Page:					1									
A Clusseynou Sair Chantillons regus par:						1	+			-				
tillors remis par: A Ousseynou Sair Echantillors regus par: A Date: 1 de Page: 1 de Page: 1 de							+	1						-
tillons remis par: A Ousseynou Sairr Echantillons reçus par: Rehantillons reçus par: Rege: 1 de Page: 1 de							+	-				1		+
tillons remis par: A Ousseynou Sair Échantillons reçus par: 2022-05-20 Bates: 1 de							-					ł	İ	+
tillons remis par: All Ousseynou Sair Échantillons reçus par: 2022-05-20 Bates: 1 de										-				H
tillons remis par: Al Ousseynou Sarr Échantillons reçus par: Date:														H
tillons remis par: Al Ousseynou Sarr Échantillons reçus par: 2022-05-20 Date:														
tillons remis par: Al Ousseynou Sarr Échantillons reçus par: 2022-05-20 Date:					1		4							
tillons remis par: Al Ousseynou Sair Échantillons reçus par: Page: 1 de 2022-05-20 Date: 1 de				Ì	1		+	1						
2022-05-20 Date: 1 de	Échantillons remis par:			Échantillone	Tocale nor									-
		0			leyus par.							Page:		

dsw		Bordersau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec Cfty, Quebec Canada, G1P 4P3	Bordereau res : 350 rue Fr	de dema anquet Qu	Bordereau de demande d'analyses ss : 350 rue Franquet Quebec City, Quebec	ses sec Canada,	G1P 4P3							
WSP Canada inc. 1135, boul Lebourgneuf Duébec (Québec) G2K 0M5 Taliéphone 418-623-7066 Taliéphone	Deli Telécopieur, 418-623-2434	Défiti d'analyse requis FI 5 jours FT 72 hres	48 hres 24 hres	Ī.	6-12 hres Date requise:					L. L.	Bon de commande No de soumission:	nande Ission:		
Numero du projet 201-11330-29 Bon de commande: Vindfall Lake Prélève par A Ousseynou San Charge de projet Stev St.Cyr Courrell steve et cyr@wsp.C	201-11330-29 Windfall Lake Al Ousseynou Sarr Sleve Sk.Cyr steve st oyr@wsp com / sinne boussorra@wsp com	inalestical	1111	7,11,1	10	Proctor RMD (mat lixiviable) RDS (mat lixiviable) REIMR CGC	C20 (viable)		l —	Eau o	A (7 B Eau consommation Eau résurgence	L.	£	۵
Matrice: S Sol S Sol S Soldo EU Eau usée SE Sédiment ST Eau soureraine EP Eau polabble Identification de l'échantillon	ES erraine AF antillon	Eau de surface Effluent Affluent Date de prélèvement	Matrice	Nombre de pots	Métaux (Al, Ag, As, Ba, Be, Ca Cr, Cu, Fe, Hg, K, Ll, Mg, Mn, N Pb, Sb, Se, Sn, V et Zn)	ourification supplémentaire	-010 erallorse pétrollera C10-	qVI						
1 DUP1 20220518		2022-05-18	S	-	×		×							
		2022-05-18	o u		××	×	××						П	T
		2022-05-18	ာ ဟ		< ×		< ×	-	1	-		1	1	
5 F81-22-CF-1B		2022-05-19	S	-	×		< ×		1		I	+		1
Erhantiline conte sor	# O 7 1 7 00													
	700		Échantillons reçus par: Date:	s reçus par							Page:	2	e e	2

NOM DU CLIENT: WSP CANADA INC.

1135 BOULEVARD LEBOURGNEUF

QUEBEC, QC G2K 0M5

(418) 623-7066

À L'ATTENTION DE: Sirine Boussorra N° DE PROJET: 201-113330-29

N° BON DE TRAVAIL: 220900576

ANALYSE DES SOLS VÉRIFIÉ PAR: Hasti Kamalimoghadam, Chimiste, AGAT Montréal

ORGANIQUE DE TRACE VÉRIFIÉ PAR: Robert Roch, Chimiste, AGAT Montréal

DATE DU RAPPORT: 09 juin 2022

NOMBRE DE PAGES: 11 VERSION*: 1

Pour tout complément d'information concernant cette analyse, veuillez contacter votre chargé(e) de projet client au (418) 266-5511.

Avis de non-responsabilité-		
A. d. d		
A. d. d. a. a. a. a. a. a. b. 1946.		
A. de de man acceptable for		
	A 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	

Avis de non-responsabilité

- L'ensemble des travaux réalisés dans le présent document ont été effectués en utilisant des protocoles normalisés reconnus, ainsi que des pratiques et des méthodes généralement acceptées. En vue d'améliorer la performance, les méthodes analytiques d'AGAT pourraient comprendre des modifications issues des méthodes de référence spécifiées.
- Tous les échantillons seront éliminés trente (30) jours après réception au laboratoire à moins qu'une Entente d'entreposage à long terme ne soit signée et retournée. Certaines analyses spécialisées peuvent être exemptées. Veuillez communiquer avec votre chargé de projets à la clientèle pour plus d'informations.
- La responsabilité d'AGAT en ce qui concerne tout retard, exécution ou non-exécution de ces services s'applique uniquement envers le client et ne s'étend à aucune autre tierce partie. À moins qu'il n'en soit par ailleurs convenu expressément par écrit, la responsabilité d'AGAT se limite au coût réel de l'analyse ou des analyses spécifiques incluses dans les services.
- Sauf accord écrit préalable d'AGAT Laboratoires, ce certificat ne doit être reproduit que dans sa totalité.
- Les résultats d'analyse communiqués ci-joint ne concernent que les échantillons reçus par le laboratoire.
- L'application des lignes directrices est fournie « en l'état » sans garantie de quelque nature que ce soit, ni expresse ni tacite, y compris, mais sans s'y
 limiter, les garanties de qualité marchande, d'aptitude à un usage particulier ou de non-contrefaçon. AGAT n'assume aucune responsabilité à l'égard de
 toute erreur ou omission dans les directives que contient ce document.
- Toutes les informations rapportables sont disponibles sur demande auprès d'AGAT Laboratoires, conformément aux normes ISO/IEC 17025:2017, DR-12-PALA et/ou NELAP.

AGAT Laboratoires (V1) Page 1 de 11

N° BON DE TRAVAIL: 220900576 N° DE PROJET: 201-113330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: Al Ousseynou Sarr

À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-05-27

				IDENTIFI	CATION DE L'É	CHANTILLON: E	3H-22-28-CF-1B	DUP2-20220524	BH-22-26-CF-2	BH-22-27-CF-2	BH-22-25-CF-1
						MATRICE:	Sol	Sol	Sol	Sol	Sol
				1	DATE D'ÉCHAN	TILLONNAGE:	2022-05-24	2022-05-24	2022-05-24	2022-05-24	2022-05-25
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3940287	3940290	3940292	3940294	3940295
Aluminium	mg/kg					30	17200	20000	4580	19300	7940
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	2[<a]< td=""><td>2[<a]< td=""><td><1</td><td><1</td><td>1[<a]< td=""></a]<></td></a]<></td></a]<>	2[<a]< td=""><td><1</td><td><1</td><td>1[<a]< td=""></a]<></td></a]<>	<1	<1	1[<a]< td=""></a]<>
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	<20	22[<a]< td=""></a]<>
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	2260	1790	1850	1190	2640
Chrome	mg/kg	100	250	800	4000	2	79[<a]< td=""><td>101[A-B]</td><td>9[<a]< td=""><td>17[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	101[A-B]	9[<a]< td=""><td>17[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<></td></a]<>	17[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<>	23[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	26[A-B]	32[A-B]	2[<a]< td=""><td>3[<a]< td=""><td>6[<a]< td=""></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>6[<a]< td=""></a]<></td></a]<>	6[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	39[<a]< td=""><td>41[<a]< td=""><td>4[<a]< td=""><td>5[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	41[<a]< td=""><td>4[<a]< td=""><td>5[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>5[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<></td></a]<>	5[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<>	23[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	45200	51700	5010	11100	12500
Lithium	mg/kg	-	-	-	-	20	54	70	<20	<20	<20
Magnésium	mg/kg					100	6060	7560	1430	1480	4260
Manganèse	mg/kg	1000	1000	2200	11000	10	613[<a]< td=""><td>774[<a]< td=""><td>54[<a]< td=""><td>56[<a]< td=""><td>168[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	774[<a]< td=""><td>54[<a]< td=""><td>56[<a]< td=""><td>168[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	54[<a]< td=""><td>56[<a]< td=""><td>168[<a]< td=""></a]<></td></a]<></td></a]<>	56[<a]< td=""><td>168[<a]< td=""></a]<></td></a]<>	168[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	93[A-B]	126[B-C]	6[<a]< td=""><td>7[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<>	14[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	137	100	<100	116	360
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	<100	<100	<100	<100
Vanadium	mg/kg					15	54	62	<15	18	23
Zinc	mg/kg	140	500	1500	7500	5	57[<a]< td=""><td>68[<a]< td=""><td>11[<a]< td=""><td>12[<a]< td=""><td>25[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	68[<a]< td=""><td>11[<a]< td=""><td>12[<a]< td=""><td>25[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>12[<a]< td=""><td>25[<a]< td=""></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>25[<a]< td=""></a]<></td></a]<>	25[<a]< td=""></a]<>

Certifié par:

DATE DU RAPPORT: 2022-06-09

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 22O900576 N° DE PROJET: 201-113330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:AI Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-05-27 DATE DU RAPPORT: 2022-06-09

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se réfèrer directement à la norme applicable

pour l'interprétation réglementaire.
3940287-3940295 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 220900576 N° DE PROJET: 201-113330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: Al Ousseynou Sarr

À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

				i iy u	TOCALDAI	co petrone	13 010 000	(001)				
DATE D	DE RÉCEPTION: 2022-05-2	27								DATE DU RAPP	ORT: 2022-06-09	
					IDENTIF	ICATION DE L'É	CHANTILLON: I	3H-22-28-CF-1B	DUP2-20220524	BH-22-27-CF-2		
							MATRICE:	Sol	Sol	Sol		
						DATE D'ÉCHAN	ITILLONNAGE:	2022-05-24	2022-05-24	2022-05-24		
	Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3940287	3940290	3940294		

Hydrocarbures nétroliers C10-C50 (Sol)

				I	DATE D'ÉCHAN	ΓILLONNAGE:	2022-05-24	2022-05-24	2022-05-24
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3940287	3940290	3940294
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100
% Humidité	%					0.2	15.9	14.2	24.7
Étalon de recouvrement	Unités			Limites					
Rec. Nonane	%			60-140	·		83	83	84

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable pour l'interprétation réglementaire.

3940287-3940294 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 220900576 N° DE PROJET: 201-113330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: Al Ousseynou Sarr

À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

		Hyd	rocarbure	es pétrol	iers C10-C5	50 (SoI) - A	vec purific	ation	
DATE DE RÉCEPTION: 2022-05-2	27								DATE DU RAPPORT: 2022-06-09
				IDENTI	FICATION DE L'É	CHANTILLON:	BH-22-26-CF-2	BH-22-25-CF-	1
						MATRICE:	Sol	Sol	
					DATE D'ÉCHAN	ITILLONNAGE:	2022-05-24	2022-05-25	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3940292	3940295	
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	
% Humidité	%					0.2	18.6	7.9	
Étalon de recouvrement	Unités			Limites					
Rec. Nonane	%			60-140			109	71	

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3940292-3940295 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Méthode d'analyse effectuée avec traitements supplémentaires pour éliminer la présence de matières organiques.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-113330-29 PRÉLEVÉ PAR:AI Ousseynou Sarr N° BON DE TRAVAIL: 220900576 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

TREEZVETYRRING GGGGG/HGG				٩nal	/se d	es So	ols								
Date du rapport: 2022-06-09				DUPLICAT			RIAU DE RI	ÉFÉREN	ICE	BLANG	C FORT	IFIÉ	ÉCH.	FORTIF	FIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.	Lin	nites	% Récup.	Lin	nites
PARAMETRE	Lot	IN ECII.	Dup #1	Dup #2	% u ecan	méthode	% Recup.	Inf.	Sup.	% Necup.	Inf.	Sup.	. % Necup.	Inf.	Sup.
Analyses inorganiques - WSP (Ba	alayage mé	taux + me	ercure)												
Aluminium	3940507		12100	12600	3.9	< 30	66%	70%	130%	100%	80%	120%	NA	70%	130%
Antimoine	3940507		<20	<20	NA	< 20	141%	70%	130%	92%	80%	120%	92%	70%	130%
Argent	3940507		<0.5	<0.5	NA	< 0.5	102%	70%	130%	106%	80%	120%	101%	70%	130%
Arsenic	3940507		7	6	4.8	< 1	97%	70%	130%	99%	80%	120%	99%	70%	130%
Baryum	3940507		376	426	12.6	< 20	100%	70%	130%	105%	80%	120%	NA	70%	130%
Béryllium	3940507		<1	<1	NA	< 1	91%	70%	130%	101%	80%	120%	103%	70%	130%
Cadmium	3940507		<0.5	< 0.5	NA	< 0.5	99%	70%	130%	101%	80%	120%	102%	70%	130%
Calcium	3940507		49300	53100	7.4	< 100	96%	70%	130%	105%	80%	120%	NA	70%	130%
Chrome	3940507		22	24	8.3	< 2	105%	70%	130%	103%	80%	120%	106%	70%	130%
Cobalt	3940507		13	13	0.1	< 2	104%	70%	130%	103%	80%	120%	99%	70%	130%
Cuivre	3940507		32	37	14.0	< 1	95%	70%	130%	99%	80%	120%	99%	70%	130%
Étain	3940507		<5	<5	NA	< 5	99%	70%	130%	101%	80%	120%	101%	70%	130%
Fer	3940507		24500	24700	0.9	< 500	99%	70%	130%	102%	80%	120%	NA	70%	130%
Lithium	3940507		25	26	NA	< 20	89%	70%	130%	94%	80%	120%	101%	70%	130%
Magnésium	3940507		9160	10000	9.0	< 100	100%	70%	130%	100%	80%	120%	NA	70%	130%
Manganèse	3940507		513	529	3.1	< 10	118%	70%	130%	106%	80%	120%	114%	70%	130%
Mercure	3940507		<0.2	< 0.2	NA	< 0.2	90%	70%	130%	100%	80%	120%	110%	70%	130%
Molybdène	3940507		2	2	NA	< 1	110%	70%	130%	108%	80%	120%	108%	70%	130%
Nickel	3940507		32	32	0.2	< 2	103%	70%	130%	102%	80%	120%	104%	70%	130%
Plomb	3940507		11	12	NA	< 5	99%	70%	130%	99%	80%	120%	100%	70%	130%
Potassium	3940507		1980	1960	0.7	< 100	93%	70%	130%	104%	80%	120%	104%	70%	130%
Sélénium	3940507		<0.5	0.5	NA	< 0.5	93%	70%	130%	99%	80%	120%	102%	70%	130%
Sodium	3940507		135	145	NA	< 100	90%	70%	130%	99%	80%	120%	103%	70%	130%
Vanadium	3940507		26	26	NA	< 15	102%	70%	130%	105%	80%	120%	105%	70%	130%
Zinc	3940507		113	115	2.3	< 5	99%	70%	130%	102%	80%	120%	101%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb et Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA : Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentage de différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-113330-29 PRÉLEVÉ PAR:AI Ousseynou Sarr N° BON DE TRAVAIL: 22O900576 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

		P	naly	se oi	rgani	que	de tra	ace							
Date du rapport: 2022-06-09				DUPLICATA	4	MATÉ	RIAU DE R	ÉFÉREN	ICE	BLANG	FORT	IFIÉ	ÉCH.	FORTIF	ΞΙÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.		nites	% Récup.		nites
			.,			méthode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.
Hydrocarbures pétroliers C10-C5	50 (SoI)														
Hydrocarbures pétroliers C10 à C50	3941667		<100	<100	NA	< 100	115%	60%	140%	110%	60%	140%	104%	60%	140%
Rec. Nonane	3941667		80	70	13.3	85	87%	60%	140%	99%	60%	140%	79%	60%	140%
% Humidité	3938595		10.9	10.4	4.2	< 0.2	100%	80%	120%	NA			NA		

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Hydrocarbures pétroliers C10-C50 (Sol) - Avec purification

Hydrocarbures pétroliers C10 à C50	3941667	<100	<100	NA	< 100	115%	60%	140%	110%	60%	140%	104%	60%	140%
Rec. Nonane	3941667	80	70	13.3	85	87%	60%	140%	99%	60%	140%	79%	60%	140%
% Humidité	3938595	10.9	10.4	4.2	< 0.2	100%	80%	120%	NA			NA		

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentage de différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 220900576

N° DE PROJET: 201-113330-29

À L'ATTENTION DE: Sirine Boussorra

Date du rapport: 09 juin 2022		MATÉRIAU D	E RÉFÉI	RENCE	BLAN	C FORT	IFIÉ	ÉCH.	FORTII	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lim	ites	% Récup.		nites	% Récup.		nites
			Inf.	Sup.		Inf.	Sup.		Inf.	Sup.

Analyses inorganiques - WSP (Balayage métaux + mercure)

Aluminium Antimoine 66% 70% 130% 100% 80% 120% NA 70% 130% 141% 70% 130% 80% 120% 92% 70% 130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb et Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-113330-29 PRÉLEVÉ PAR:AI Ousseynou Sarr N° BON DE TRAVAIL: 220900576 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

PRELEVE PAR.AI Ousseyilou Sail				LIEU DE PRELEVEIMENT.	Willulali Lake
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse des Sols	<u>'</u>	•		-	•
Aluminium	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Antimoine	2022-06-09	2022-06-09	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Argent	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Arsenic	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Baryum	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Béryllium	2022-06-09	2022-06-09	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Cadmium	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Calcium	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Chrome	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cobalt	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cuivre	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Étain	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Fer	2022-06-09	2022-06-09	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Lithium	2022-06-09	2022-06-09	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Magnésium	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Manganèse	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Mercure	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Molybdène	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Nickel	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Plomb	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Potassium	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sélénium	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sodium	2022-06-09	2022-06-09	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Vanadium	2022-06-09	2022-06-09	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Zinc	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Analyse organique de trace					
Hydrocarbures pétroliers C10 à C50	2022-06-07	2022-06-08	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2022-06-07	2022-06-08	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2022-06-06	2022-06-06	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE
Hydrocarbures pétroliers C10 à C50	2022-06-08	2022-06-08	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2022-06-08	2022-06-08	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2022-06-06	2022-06-06	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE

	dsn		₹	Bordereau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	Bordereau	de demar	Bordereau de demande d'analyses is : 350 rue Franquet Quebec City, Quebec	es oc Canada, G	31P 4P3						
WSP 1135 Oueb Telép	WSP Canada inc. 1135, boul Lebourgneuf Duebec (Quebec) G2K 0M5 Telephone 418-623-7066	Telecopeur 418-623-2434	Délai d'analyse requis 더 5 jours ୮ 72 hres	ELC	48 hres 24 hres		6-12 hres Date requise:					F. F.	Bon de commande: No de soumission:	26	
Nem Ben	rojet: nande: vement:	201-11330-29 Windfall Lake					Critéres à respecter	specter RMD (mat. lixiviable) RDS (mat. lixiviable) REIMR	riable) iable)			Te A P B m Eau consommation T Eau consommation	B mmation	U	
Préfevé p Chargé d Courriel.	ar. e projet:	Al Ousseynou Sarr Steve St-Cyr steve st cyr@wsp com / sinne boussorra@wsp com	oussofra@wsp com						0-C20						
Matrice: S SS SE SS	Matrice: S Sol SI Solide SE Sédiment	B Boue EU Eau usée ST Eau souterraine	ES Eau de surface EF Effluent AF Affluent				/I, Ag, As, Bs, Be, C e, Hg, K, Ll, Mg, Mn, e, Sn, V et Zn)	ənishnəməlqqua no	Oures pétrollers C10						
П	Eau potable Identification	itio	Date o	Date de prétèvement	Matrice	Nombre de pots	Cr, Cu, Fe	itsolfino	-	ЧVЬ					
~	BH22-28-CF-1B	8	21	2022-05-24	S	-	×			4					
7	BH22-28-CF-1A	V	21	2022-05-24	S	-						-			H
m =	DUP1-20220524	24	21	2022-05-22	S	-									
4 r	4	24	5 5	2022-05-22	s c		×		×		1				
9 6	1		7 6	2022-05-22	n u		,	,	,		1	1			
_	1		21	2022-03-22	0		<	<	×		I	-			-
			'			-					I				1
															H
											1				_
											1		ł		
											ŀ				
															H
											-				-
											-			-	F
														1	
														ŀ	1
]															
Échan Date:	Échantillons remis par: Date: 2022-05-26	Al Ousseynou Sarr			Échantillon Date:	Échantillons reçus par: Date:	Ľ						Page:	1 0	de 2

-			and the result of the second o	and need	andaet de	ener city, cer	oce canada,	GTP 4P3						
WSP Canada Inc. 1135, boul Lebourgneuf Guébec (Guébec) G2K 0M5 Téléphone, 418-623-7066	Téticopieur: 418-623-2438	Délai d'anatyse requis F7 5 jours ff 72 hres	LĒ	48 hres 24 hres		6-12 hres Date requise:					L L		Bon de commande No de soumission	
Numero du projet. Bon de commande: Lieu de prélèvement: Prélevé par	201-11330-29 Whingfall Lake					Criteres à respecter FI RMD (n T RDS (n	specter RMD (mat lixiviable) RDS (mat lixiviable) REIMR	viable) riable)		-		A [** B Eau consommation	L. Eg	l.
jet:	Steve St-Cyr steve st cyr@wsp com / withe boussorra@wsp com	odussorra@wsp.com				,iv ,sv ,om		-C20				cau resugence	-	
Matrice: S Sol SI Solide SE Sediment	B Boue EU Eau usée ST Eav souterraine	ES Eau de surface EF Effluent AF Affluent				, Ag, As, Ba, Be, C Sn, V et Zn)	enteinemėlique i	OtO eralloriág agu						
	cation	. Date de	Date de prélèvement	Matrice	Nombre	, Gu, Fe	ottealth	drocarb	а					
		202	2022-05-24	S	de pots	Ct	nd	ΛΗ	AH	1				-
2 BH-22-27CF-2		202	2022-05-24	S	-	×		×	1	-	1	1	1	-
1		202	2022-05-25	S	1	×	×	×	H	+	1		1	+
		202	2022-05-25	S	-									+
										+				-
									+	-	1		1	+
														H
										H				+
									-		-			+
										H				H
												1		+
														-
								-	-					H
														-
							1	Ť			-			
									H					+
							1				Н		П	Н
Echantillons remis par:	Al Ousseynou Sarr			Échantillons reçus par:	reçus par					7-4		-		4
1												-		

NOM DU CLIENT: WSP CANADA INC.

1135 BOULEVARD LEBOURGNEUF

QUEBEC, QC G2K 0M5

(418) 623-7066

À L'ATTENTION DE: Sirine Boussorra N° DE PROJET: 201-113330-29

N° BON DE TRAVAIL: 220900576

ANALYSE DES SOLS VÉRIFIÉ PAR: Hasti Kamalimoghadam, Chimiste, AGAT Montréal

ORGANIQUE DE TRACE VÉRIFIÉ PAR: Robert Roch, Chimiste, AGAT Montréal

DATE DU RAPPORT: 23 juin 2022

NOMBRE DE PAGES: 15 VERSION*: 2

Pour tout complément d'information concernant cette analyse, veuillez contacter votre chargé(e) de projet client au (418) 266-5511.

VERSION 2:Reprise en duplicata des métaux pour les échantillons BH-22-28-CF-1B et DUP2-20220524. Les résultats sont présentés sous les numéros d'échantillons 3998186 à 3998189 .

Avis de non-responsabilité:

- L'ensemble des travaux réalisés dans le présent document ont été effectués en utilisant des protocoles normalisés reconnus, ainsi que des pratiques et des méthodes généralement acceptées. En vue d'améliorer la performance, les méthodes analytiques d'AGAT pourraient comprendre des modifications issues des méthodes de référence spécifiées.
- Tous les échantillons seront éliminés trente (30) jours après réception au laboratoire à moins qu'une Entente d'entreposage à long terme ne soit signée et retournée. Certaines analyses spécialisées peuvent être exemptées. Veuillez communiquer avec votre chargé de projets à la clientèle pour plus d'informations.
- La responsabilité d'AGAT en ce qui concerne tout retard, exécution ou non-exécution de ces services s'applique uniquement envers le client et ne s'étend à aucune autre tierce partie. À moins qu'il n'en soit par ailleurs convenu expressément par écrit, la responsabilité d'AGAT se limite au coût réel de l'analyse ou des analyses spécifiques incluses dans les services.
- Sauf accord écrit préalable d'AGAT Laboratoires, ce certificat ne doit être reproduit que dans sa totalité.
- Les résultats d'analyse communiqués ci-joint ne concernent que les échantillons reçus par le laboratoire.
- L'application des lignes directrices est fournie « en l'état » sans garantie de quelque nature que ce soit, ni expresse ni tacite, y compris, mais sans s'y
 limiter, les garanties de qualité marchande, d'aptitude à un usage particulier ou de non-contrefaçon. AGAT n'assume aucune responsabilité à l'égard de
 toute erreur ou omission dans les directives que contient ce document.
- Toutes les informations rapportables sont disponibles sur demande auprès d'AGAT Laboratoires, conformément aux normes ISO/IEC 17025:2017, DR-12-PALA et/ou NELAP.

AGAT Laboratoires (V2)
Page 1 de 15

N° BON DE TRAVAIL: 22O900576 N° DE PROJET: 201-113330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:AI Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-05-27

DATE DU RAPPORT: 2022-06-23

IDENTIFICATION DE L'ÉCHANTILLON: BH-22-28-CF-1B DUP2-20220524 BH-22-26-CF-2 BH-22-27-CF-2 BH-22-

				IDENTIF	ICATION DE L'É	CHANTILLON: E	3H-22-28-CF-1B	DUP2-20220524	BH-22-26-CF-2	BH-22-27-CF-2	BH-22-25-CF-1
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2022-05-24	2022-05-24	2022-05-24	2022-05-24	2022-05-25
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3940287	3940290	3940292	3940294	3940295
Aluminium	mg/kg					30	17200	20000	4580	19300	7940
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	2[<a]< td=""><td>2[<a]< td=""><td><1</td><td><1</td><td>1[<a]< td=""></a]<></td></a]<></td></a]<>	2[<a]< td=""><td><1</td><td><1</td><td>1[<a]< td=""></a]<></td></a]<>	<1	<1	1[<a]< td=""></a]<>
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	<20	22[<a]< td=""></a]<>
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	2260	1790	1850	1190	2640
Chrome	mg/kg	100	250	800	4000	2	79[<a]< td=""><td>101[A-B]</td><td>9[<a]< td=""><td>17[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	101[A-B]	9[<a]< td=""><td>17[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<></td></a]<>	17[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<>	23[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	26[A-B]	32[A-B]	2[<a]< td=""><td>3[<a]< td=""><td>6[<a]< td=""></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>6[<a]< td=""></a]<></td></a]<>	6[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	39[<a]< td=""><td>41[<a]< td=""><td>4[<a]< td=""><td>5[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	41[<a]< td=""><td>4[<a]< td=""><td>5[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	4[<a]< td=""><td>5[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<></td></a]<>	5[<a]< td=""><td>23[<a]< td=""></a]<></td></a]<>	23[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	45200	51700	5010	11100	12500
Lithium	mg/kg	-	-	-	-	20	54	70	<20	<20	<20
Magnésium	mg/kg					100	6060	7560	1430	1480	4260
Manganèse	mg/kg	1000	1000	2200	11000	10	613[<a]< td=""><td>774[<a]< td=""><td>54[<a]< td=""><td>56[<a]< td=""><td>168[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	774[<a]< td=""><td>54[<a]< td=""><td>56[<a]< td=""><td>168[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	54[<a]< td=""><td>56[<a]< td=""><td>168[<a]< td=""></a]<></td></a]<></td></a]<>	56[<a]< td=""><td>168[<a]< td=""></a]<></td></a]<>	168[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	93[A-B]	126[B-C]	6[<a]< td=""><td>7[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<>	14[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	137	100	<100	116	360
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	<100	<100	<100	<100
Vanadium	mg/kg					15	54	62	<15	18	23
Zinc	mg/kg	140	500	1500	7500	5	57[<a]< td=""><td>68[<a]< td=""><td>11[<a]< td=""><td>12[<a]< td=""><td>25[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	68[<a]< td=""><td>11[<a]< td=""><td>12[<a]< td=""><td>25[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>12[<a]< td=""><td>25[<a]< td=""></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>25[<a]< td=""></a]<></td></a]<>	25[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 22O900576 N° DE PROJET: 201-113330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:AI Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-05-27 DATE DU RAPPORT: 2022-06-23

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se réfèrer directement à la norme applicable pour l'interprétation réglementaire.

3940287-3940295 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 22O900576 N° DE PROJET: 201-113330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:AI Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure) REPRISE

DATE DE RÉCEPTION: 2022-05-27 DATE DU RAPPORT: 2022-06-23

				IDENTIFI			DL 22 20 CE 4D	DH 22 20 CE 4D	DLID2 20220524	DUD2 20220524	
				IDENTIFIC	SATION DE L'EC			BH-22-28-CF-1B			
				_		MATRICE:	Sol	Sol	Sol	Sol	
					DATE D'ÉCHAN		2022-05-24	2022-05-24	2022-05-24	2022-05-24	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C/N:D	LDR	3998186	3998187	3998188	3998189	
Aluminium	mg/kg					30	15700	16200	15000	15300	
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	
Arsenic	mg/kg	6	30	50	250	1	2[<a]< td=""><td>3[<a]< td=""><td>2[<a]< td=""><td>2[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>2[<a]< td=""><td>2[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	2[<a]< td=""><td>2[<a]< td=""><td></td></a]<></td></a]<>	2[<a]< td=""><td></td></a]<>	
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	<20	
Béryllium	mg/kg					1	<1	<1	<1	<1	
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	
Calcium	mg/kg					100	1930	2000	2280	2320	
Chrome	mg/kg	100	250	800	4000	2	64[<a]< td=""><td>69[<a]< td=""><td>64[<a]< td=""><td>65[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	69[<a]< td=""><td>64[<a]< td=""><td>65[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	64[<a]< td=""><td>65[<a]< td=""><td></td></a]<></td></a]<>	65[<a]< td=""><td></td></a]<>	
Cobalt	mg/kg	25	50	300	1500	2	21[<a]< td=""><td>32[A-B]</td><td>17[<a]< td=""><td>17[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	32[A-B]	17[<a]< td=""><td>17[<a]< td=""><td></td></a]<></td></a]<>	17[<a]< td=""><td></td></a]<>	
Cuivre	mg/kg	50	100	500	2500	1	26[<a]< td=""><td>25[<a]< td=""><td>23[<a]< td=""><td>25[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	25[<a]< td=""><td>23[<a]< td=""><td>25[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	23[<a]< td=""><td>25[<a]< td=""><td></td></a]<></td></a]<>	25[<a]< td=""><td></td></a]<>	
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	
Fer	mg/kg					500	37400	37300	32300	33500	
Lithium	mg/kg	-	-	-	-	20	46	47	41	44	
Magnésium	mg/kg					100	5120	5260	5120	5240	
Manganèse	mg/kg	1000	1000	2200	11000	10	518[<a]< td=""><td>475[<a]< td=""><td>416[<a]< td=""><td>411[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	475[<a]< td=""><td>416[<a]< td=""><td>411[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	416[<a]< td=""><td>411[<a]< td=""><td></td></a]<></td></a]<>	411[<a]< td=""><td></td></a]<>	
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	
Nickel	mg/kg	50	100	500	2500	2	76[A-B]	78[A-B]	70[A-B]	74[A-B]	
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	
Potassium	mg/kg					100	151	159	147	149	
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	
Sodium	mg/kg	•				100	<100	<100	<100	<100	
Vanadium	mg/kg					15	47	47	41	43	
Zinc	mg/kg	140	500	1500	7500	5	50[<a]< td=""><td>49[<a]< td=""><td>41[<a]< td=""><td>44[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	49[<a]< td=""><td>41[<a]< td=""><td>44[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	41[<a]< td=""><td>44[<a]< td=""><td></td></a]<></td></a]<>	44[<a]< td=""><td></td></a]<>	
LIIIO	ilig/kg	140	300	1300	7000	J	00[~A]	40[+1[//	17[×/1]	

Certifié par:

N° BON DE TRAVAIL: 22O900576 N° DE PROJET: 201-113330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:AI Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure) REPRISE

DATE DE RÉCEPTION: 2022-05-27 DATE DU RAPPORT: 2022-06-23

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se réfèrer directement à la norme applicable pour l'interprétation réglementaire.

3998186-3998189 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 22O900576 N° DE PROJET: 201-113330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:AI Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

			riyu	Tocarbure	s petroner	3 0 10-030	(301)			
DATE DE RÉCEPTION: 2022-05	5-27							Ι	DATE DU RAPPO	ORT: 2022-06-23
				IDENTIFI	CATION DE L'É	CHANTILLON: E	3H-22-28-CF-1B	DUP2-20220524	BH-22-27-CF-2	
						MATRICE:	Sol	Sol	Sol	
				[DATE D'ÉCHAN	TILLONNAGE:	2022-05-24	2022-05-24	2022-05-24	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3940287	3940290	3940294	

Hydrocarburge pótroligre C10-C50 (Sol)

				I	DATE D'ÉCHAN	TILLONNAGE:	2022-05-24	2022-05-24	2022-05-24	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3940287	3940290	3940294	
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	
% Humidité	%					0.2	15.9	14.2	24.7	
Étalon de recouvrement	Unités			Limites						
Rec. Nonane	%			60-140			83	83	84	

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable pour l'interprétation réglementaire.

3940287-3940294 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 22O900576 N° DE PROJET: 201-113330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:AI Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

		Hyd	rocarbure	es pétrol	iers C10-C5	50 (SoI) - A	vec purific	ation	
DATE DE RÉCEPTION: 2022-05-2	27								DATE DU RAPPORT: 2022-06-23
				IDENTI	FICATION DE L'É	CHANTILLON:	BH-22-26-CF-2	BH-22-25-CF-	1
						MATRICE:	Sol	Sol	
					DATE D'ÉCHAN	ITILLONNAGE:	2022-05-24	2022-05-25	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3940292	3940295	
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	
% Humidité	%					0.2	18.6	7.9	
Étalon de recouvrement	Unités			Limites					
Rec. Nonane	%			60-140			109	71	

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3940292-3940295 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Méthode d'analyse effectuée avec traitements supplémentaires pour éliminer la présence de matières organiques.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-113330-29 PRÉLEVÉ PAR:AI Ousseynou Sarr N° BON DE TRAVAIL: 22O900576 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

TREEE VETARIA OUSSEY	nou oun							0 L	/L / IXI			vviiidie	an Lake		
				Analy	/se d	es So	ols								
Date du rapport: 2022-06-23				DUPLICAT	A	MATÉ	RIAU DE R	ÉFÉREI	NCE	BLAN	C FORT	IFIÉ	ÉCH.	FORTI	FIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.	Lin	nites	% Récup.	Lin	nites
T / ((/ (WIETTE	201	14 0011.	Bup #1	Bup #2	70 a coart	méthode	70 Rooup.	Inf.	Sup.	, 70 Rooup.	Inf.	Sup.	, 70 recoup.	Inf.	Sup.
Analyses inorganiques - WSP	(Balayage mé	taux + me	ercure)	•	•			•	•		•	•			•
Aluminium	3940507		12100	12600	3.9	< 30	66%	70%	130%	100%	80%	120%	NA	70%	130%
Antimoine	3940507		<20	<20	NA	< 20	141%	70%	130%	92%	80%	120%	92%	70%	130%
Argent	3940507		<0.5	<0.5	NA	< 0.5	102%	70%	130%	106%	80%	120%	101%	70%	130%
Arsenic	3940507		7	6	4.8	< 1	97%	70%	130%	99%	80%	120%	99%	70%	130%
Baryum	3940507		376	426	12.6	< 20	100%	70%	130%	105%	80%	120%	NA	70%	130%
Béryllium	3940507		<1	<1	NA	< 1	91%	70%	130%	101%	80%	120%	103%	70%	130%
Cadmium	3940507		<0.5	< 0.5	NA	< 0.5	99%	70%	130%	101%	80%	120%	102%	70%	130%
Calcium	3940507		49300	53100	7.4	< 100	96%	70%	130%	105%	80%	120%	NA	70%	130%
Chrome	3940507		22	24	8.3	< 2	105%	70%	130%	103%	80%	120%	106%	70%	130%
Cobalt	3940507		13	13	0.1	< 2	104%	70%	130%	103%	80%	120%	99%	70%	130%
Cuivre	3940507		32	37	14.0	< 1	95%	70%	130%	99%	80%	120%	99%	70%	130%
Étain	3940507		<5	<5	NA	< 5	99%	70%	130%	101%	80%	120%	101%	70%	130%
Fer	3940507		24500	24700	0.9	< 500	99%	70%	130%	102%	80%	120%	NA	70%	130%
Lithium	3940507		25	26	NA	< 20	89%	70%	130%	94%	80%	120%	101%	70%	130%
Magnésium	3940507		9160	10000	9.0	< 100	100%	70%	130%	100%	80%	120%	NA	70%	130%
Manganèse	3940507		513	529	3.1	< 10	118%	70%	130%	106%	80%	120%	114%	70%	130%
Mercure	3940507		<0.2	< 0.2	NA	< 0.2	90%	70%	130%	100%	80%	120%	110%	70%	130%
Molybdène	3940507		2	2	NA	< 1	110%	70%	130%	108%	80%	120%	108%	70%	130%
Nickel	3940507		32	32	0.2	< 2	103%	70%	130%	102%	80%	120%	104%	70%	130%
Plomb	3940507		11	12	NA	< 5	99%	70%	130%	99%	80%	120%	100%	70%	130%
Potassium	3940507		1980	1960	0.7	< 100	93%	70%	130%	104%	80%	120%	104%	70%	130%
Sélénium	3940507		<0.5	0.5	NA	< 0.5	93%	70%	130%	99%	80%	120%	102%	70%	130%
Sodium	3940507		135	145	NA	< 100	90%	70%	130%	99%	80%	120%	103%	70%	130%
Vanadium	3940507		26	26	NA	< 15	102%	70%	130%	105%	80%	120%	105%	70%	130%
Zinc	3940507		113	115	2.3	< 5	99%	70%	130%	102%	80%	120%	101%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb et Al est conforme à l'écart du certificat du matériau de référence du fournisseur. NA : Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Analyses inorganiques - WSP (Balayage métaux + mercure) REPRISE

· · · · · · · · · · · · · · · · · · ·														
Aluminium	3989268	14400	15300	5.8	< 30	91%	70%	130%	102%	80%	120%	NA	70%	130%
Antimoine	3989268	<20	<20	NA	< 20	157%	70%	130%	94%	80%	120%	98%	70%	130%
Argent	3989268	<0.5	<0.5	NA	< 0.5	111%	70%	130%	107%	80%	120%	108%	70%	130%
Arsenic	3989268	5	5	NA	< 1	105%	70%	130%	99%	80%	120%	102%	70%	130%
Baryum	3989268	78	76	NA	< 20	129%	70%	130%	103%	80%	120%	108%	70%	130%
Béryllium	3989268	<1	<1	NA	< 1	95%	70%	130%	99%	80%	120%	108%	70%	130%
Cadmium	3989268	<0.5	<0.5	NA	< 0.5	106%	70%	130%	101%	80%	120%	105%	70%	130%
Calcium	3989268	2990	3470	14.8	< 100	102%	70%	130%	102%	80%	120%	120%	70%	130%
Chrome	3989268	20	21	5.4	< 2	118%	70%	130%	101%	80%	120%	113%	70%	130%
Cobalt	3989268	10	10	NA	< 2	117%	70%	130%	101%	80%	120%	103%	70%	130%

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-113330-29 PRÉLEVÉ PAR:AI Ousseynou Sarr N° BON DE TRAVAIL: 220900576 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

11122217111.711 000009	nou oun								/L 1 1			vviiiaic	an Luke		
			Ana	lyse	des S	Sols (Suite	∋)							
Date du rapport: 2022-06-23				DUPLICAT	4	MATÉ	RIAU DE RI	ÉFÉREN	ICE	BLANG	C FORT	IFIÉ	ÉCH.	FORTIF	ΞΙÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de méthode	% Récup.		nites	% Récup.	Lin	nites	% Récup.		nites
						memode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.
Cuivre	3989268		17	18	7.2	< 1	102%	70%	130%	94%	80%	120%	106%	70%	130%
Étain	3989268		<5	<5	NA	< 5	108%	70%	130%	101%	80%	120%	107%	70%	130%
Fer	3989268		26000	28500	9.1	< 500	110%	70%	130%	101%	80%	120%	NA	70%	130%
Lithium	3989268		<20	<20	NA	< 20	96%	70%	130%	97%	80%	120%	101%	70%	130%
Magnésium	3989268		4790	4990	4.0	< 100	108%	70%	130%	101%	80%	120%	106%	70%	130%
Manganèse	3989268		656	522	22.8	< 10	117%	70%	130%	105%	80%	120%	92%	70%	130%
Mercure	3989268		<0.2	< 0.2	NA	< 0.2	99%	70%	130%	101%	80%	120%	97%	70%	130%
Molybdène	3989268		<1	1	NA	< 1	117%	70%	130%	108%	80%	120%	113%	70%	130%
Nickel	3989268		17	17	4.3	< 2	112%	70%	130%	100%	80%	120%	105%	70%	130%
Plomb	3989268		9	10	NA	< 5	103%	70%	130%	100%	80%	120%	99%	70%	130%
Potassium	3989268		1640	1690	2.7	< 100	105%	70%	130%	108%	80%	120%	115%	70%	130%
Sélénium	3989268		<0.5	<0.5	NA	< 0.5	98%	70%	130%	99%	80%	120%	100%	70%	130%
Sodium	3989268		987	1020	3.0	< 100	97%	70%	130%	99%	80%	120%	101%	70%	130%
Vanadium	3989268		34	36	NA	< 15	112%	70%	130%	103%	80%	120%	107%	70%	130%
Zinc	3989268		54	58	6.5	< 5	109%	70%	130%	101%	80%	120%	104%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Certifié par:

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-113330-29 PRÉLEVÉ PAR:AI Ousseynou Sarr N° BON DE TRAVAIL: 220900576 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

		P	Analy	se o	rgani	que	de tra	ace							
Date du rapport: 2022-06-23				DUPLICAT	4	MATÉ	RIAU DE R	ÉFÉREN	ICE	BLANG	FORT	IFIÉ	ÉCH.	FORTIF	ΞIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lim	nites	% Récup.		nites	% Récup.		nites
				.,		méthode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.
Hydrocarbures pétroliers C10-C	50 (SoI)														
Hydrocarbures pétroliers C10 à C50	3941667		<100	<100	NA	< 100	115%	60%	140%	110%	60%	140%	104%	60%	140%
Rec. Nonane	3941667		80	70	13.3	85	87%	60%	140%	99%	60%	140%	79%	60%	140%
% Humidité	3938595		10.9	10.4	4.2	< 0.2	100%	80%	120%	NA			NA		

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Hydrocarbures pétroliers C10-C50 (Sol) - Avec purification

Hydrocarbures pétroliers C10 à C50	3941667	<100	<100	NA	< 100	115%	60%	140%	110%	60%	140%	104%	60%	140%
Rec. Nonane	3941667	80	70	13.3	85	87%	60%	140%	99%	60%	140%	79%	60%	140%
% Humidité	3938595	10.9	10.4	4.2	< 0.2	100%	80%	120%	NA			NA		

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Certifié par:

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 220900576

N° DE PROJET: 201-113330-29

À L'ATTENTION DE: Sirine Boussorra

Date du rapport: 23 juin 2022		MATÉRIAU D	E RÉFÉI	RENCE	BLAN	C FORT	IFIÉ	ÉCH.	FORTI	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lim		% Récup.		nites	% Récup.		nites
77.00.000		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.

Analyses inorganiques - WSP (Balayage métaux + mercure)

Aluminium 66% 70% 130% 100% 80% 120% NA 70% 130% Antimoine 141% 70% 130% 92% 80% 120% 92% 70% 130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb et Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Analyses inorganiques - WSP (Balayage métaux + mercure) REPRISE

Antimoine 157% 70% 130% 94% 80% 120% 98% 70% 130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-113330-29 PRÉLEVÉ PAR:AI Ousseynou Sarr N° BON DE TRAVAIL: 220900576 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

PARAMÈTRE		E ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse des Sols					
Aluminium	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Antimoine	2022-06-09	2022-06-09	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Argent	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Arsenic	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Baryum	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Béryllium	2022-06-09	2022-06-09	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Cadmium	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Calcium	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Chrome	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cobalt	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cuivre	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Étain	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Fer	2022-06-09	2022-06-09	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Lithium	2022-06-09	2022-06-09	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Magnésium	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Manganèse	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Mercure	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Molybdène	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Nickel	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Plomb	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Potassium	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sélénium	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sodium	2022-06-09	2022-06-09	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Vanadium	2022-06-09	2022-06-09	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Zinc	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Aluminium	2022-06-23	2022-06-23	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Antimoine	2022-06-23	2022-06-23	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Argent	2022-06-23	2022-06-23	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Arsenic	2022-06-23	2022-06-23	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Baryum	2022-06-23	2022-06-23	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Béryllium	2022-06-23	2022-06-23	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Cadmium	2022-06-23	2022-06-23	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Calcium	2022-06-23	2022-06-23	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Chrome	2022-06-23	2022-06-23	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cobalt	2022-06-23	2022-06-23	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cuivre	2022-06-23	2022-06-23	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Étain	2022-06-23	2022-06-23	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Fer	2022-06-23	2022-06-23	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Lithium	2022-06-23	2022-06-23	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Magnésium	2022-06-23	2022-06-23	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Manganèse	2022-06-23	2022-06-23	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Mercure	2022-06-23	2022-06-23	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-113330-29 PRÉLEVÉ PAR:AI Ousseynou Sarr N° BON DE TRAVAIL: 220900576 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Molybdène	2022-06-23	2022-06-23	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Nickel	2022-06-23	2022-06-23	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Plomb	2022-06-23	2022-06-23	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Potassium	2022-06-23	2022-06-23	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sélénium	2022-06-23	2022-06-23	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sodium	2022-06-23	2022-06-23	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Vanadium	2022-06-23	2022-06-23	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Zinc	2022-06-23	2022-06-23	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Analyse organique de trace					
Hydrocarbures pétroliers C10 à C50	2022-06-07	2022-06-08	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2022-06-07	2022-06-08	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2022-06-06	2022-06-06	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE
Hydrocarbures pétroliers C10 à C50	2022-06-08	2022-06-08	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2022-06-08	2022-06-08	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2022-06-06	2022-06-06	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE

usp		AG	AT Laboratoires	350 rue Frz	de demai	Bordereau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	Canada, G1	P 4P3						
WSP Canada inc. 1135, boul Lebourgneuf Duébec (Québec) G2K 0M5 Téléphone, 418-623-7066	Tèlécopieur 418-623-2434	Délai d'analyse requis F7 5 jours F‴ 72 hres	LIL	48 hres 24 hres		6-12 hres Date requise:					l L.	Bon de commande: No de soumission;	ande:	
Numera du projet. Bon de commande: Læu de prélévement:	201-11330-29 Windfall Lake					Critères à respecter	pecter RMD (mat. lixiviable) RDS (mat. lixiviable) REIMR	ble)			T Eau co	A T B Eau consommation Eau returnence	o _	L
Preferve par. Charge de projet: Courriel:	Ar Ousseynou sarr Steve St-Cyr steve st cyr@wsp com / sinne boussorra@wsp com	ussofra@wsp.com				8, Cd, Co, Mo, Na, NI,		0-020						
Matrices Sool SI Solide SF Shémen	B Boue EU Eau usée ST Eau condaraine	ES Eau de surface EF Effluent				I, Ag, As, Ba, Be, C Hg, K, Ll, Mg, Mn, , Sn, V et Zn)	anisinemėliqque n	ures pétrollers C16						
			Date de prélèvement	Matrice	Nombre	r, Cu, Fe b, Sb, Se	urificatio	удгосагр						
1 BH22-28-CF-1B	-1B	202	2022-05-24	S	- A	d ×	d					H	-	t
	-1A	200	2022-05-24	w	1								-	
3 DUP1-20220524	1524	202	2022-05-22	S	-									
5 BH22-26-CF-1	-1	202	2022-05-22	y u		×		×				1		
	2	202	2022-05-22	0 00	-	×	>	>	-	1		-		
		202	2022-05-22	S	-	H	<	<	L			-	-	
							-	1						
								-					-	
													-	
												4		
							1						-	d
												-	-	
									Merica Maria					
								-				-	-	1
Échantillons remis par:	Al Ousseynou Sarr			Échantillons reçus par:	s reçus par							-		-
Date: 2022-05-26				Date:								Page:	 -	de 2

						orgy, webec canada, 61P 4P3	and called	244.0						
WSP Canada Inc. 1135, boul Lebourgneuf Cuébec (Ouébec) G2K 0MS Téléphone, 418-623-7066	Tétécopeur. 418.623-2434	Délai d'analyse requis F1 5 jours F7 72 hres	ιŧ	48 hres 24 hres		6-12 hres Date requise:					-	Bon de	Bon de commande No de soumission	
Numero du projet. Bon de commande: Litu de prélèvement: Preleve par	201-11330-29 Whightel Lake					Critères à respecter RMD (n	specter RMD (mat lixiviable) RDS (mat lixiviable) REIMR	riviable) iiviable)			ELL	A (** B Eau consommation	L	l.
jet.	Steve St.cyr Steve st.cyr@vsp.com / eithe bolussorra@vsp.com	olessona@vsp.com		-		Ca, Cd, Co, , Mo, Na, Ni,		0-C20			-	Eau resurgence	Φ.	
Matrice: S Soli SI Solide SE Sédiment EP Eau potable	B Boue EU Eau usée ST Eau souterraine	ES Eau de surface EF Effluent AF Affluent				(Al, Ag, As, Ba, Be, (Fe, Hg, K, Ll, Mg, Mn Se, Sn, V et Zn)	anteinementaire	to erallorise earudi						
	Identification de l'échantillon	Date de prélèvement	élèvement	Matrice	Nombre	Lino u	nifica	coosp/	дł					
-	_	2022-05-24	05-24	S	- Police	2	ıd	(H	7H		1	1		-
2 BH-22-2/CF-2		2022~	2022-05-24	S	-	×		×	1		1			
1	-	2022-	2022-05-25	S	-	×	×	×		ľ	1	-	1	1
		2022-05-25	05-25	S	-								F	
										t				1
														-
									1		1	-	1	+
											I		F	+
							1		ŀ			-	1	H
												F	1	+
					1									-
														-1
												-	1	+
													1	-
		anen.					1			1				-
													1	-
						1	Ī		1					
Erhantillene romie sees									1.	+		ŀ		-
Date: 2022-05-26	Al Ousseyhou sarr			Échantillons reçus par:	reçus par:							-		-

NOM DU CLIENT: WSP CANADA INC.

1135 BOULEVARD LEBOURGNEUF

QUEBEC, QC G2K 0M5

(418) 623-7066

À L'ATTENTION DE: Sirine Boussorra

N° DE PROJET: 201-11330-29 N° BON DE TRAVAIL: 220901038

ANALYSE DES SOLS VÉRIFIÉ PAR: Hasti Kamalimoghadam, Chimiste, AGAT Montréal

ORGANIQUE DE TRACE VÉRIFIÉ PAR: Robert Roch, Chimiste, AGAT Montréal

DATE DU RAPPORT: 09 juin 2022

NOMBRE DE PAGES: 10 VERSION*: 1

Pour tout complément d'information concernant cette analyse, veuillez contacter votre chargé(e) de projet client au (418) 266-5511.

Avis de non-responsabilité:	

*Notes

- L'ensemble des travaux réalisés dans le présent document ont été effectués en utilisant des protocoles normalisés reconnus, ainsi que des pratiques et des méthodes généralement acceptées. En vue d'améliorer la performance, les méthodes analytiques d'AGAT pourraient comprendre des modifications issues des méthodes de référence spécifiées.
- Tous les échantillons seront éliminés trente (30) jours après réception au laboratoire à moins qu'une Entente d'entreposage à long terme ne soit signée et retournée. Certaines analyses spécialisées peuvent être exemptées. Veuillez communiquer avec votre chargé de projets à la clientèle pour plus d'informations.
- La responsabilité d'AGAT en ce qui concerne tout retard, exécution ou non-exécution de ces services s'applique uniquement envers le client et ne s'étend à aucune autre tierce partie. À moins qu'il n'en soit par ailleurs convenu expressément par écrit, la responsabilité d'AGAT se limite au coût réel de l'analyse ou des analyses spécifiques incluses dans les services.
- Sauf accord écrit préalable d'AGAT Laboratoires, ce certificat ne doit être reproduit que dans sa totalité.
- Les résultats d'analyse communiqués ci-joint ne concernent que les échantillons reçus par le laboratoire.
- L'application des lignes directrices est fournie « en l'état » sans garantie de quelque nature que ce soit, ni expresse ni tacite, y compris, mais sans s'y limiter, les garanties de qualité marchande, d'aptitude à un usage particulier ou de non-contrefaçon. AGAT n'assume aucune responsabilité à l'égard de toute erreur ou omission dans les directives que contient ce document.
- Toutes les informations rapportables sont disponibles sur demande auprès d'AGAT Laboratoires, conformément aux normes ISO/IEC 17025:2017, DR-12-PALA et/ou NELAP.

AGAT Laboratoires (V1) Page 1 de 10

N° BON DE TRAVAIL: 22O901038 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Al Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022	2-05-27							l	DATE DU RAPF	PORT: 2022-06-0	9
				IDENTIFIC	CATION DE L'É	CHANTILLON:	F92-22-CF-1A	F92-22-CF-4	F94-22-CF-1B	DUP2-20220523	F93-22-CF-1B
						MATRICE:	Sol	Sol	Sol	Sol	Sol
				Г	DATE D'ÉCHAN	TILLONNAGE:	2022-05-23	2022-05-23	2022-05-23	2022-05-23	2022-05-23
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3939671	3939708	3939710	3939712	3939714
Aluminium	mg/kg					30	4770	16100	4020	4100	4750
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	3[<a]< td=""><td><1</td><td><1</td><td><1</td></a]<>	<1	<1	<1
Baryum	mg/kg	340	500	2000	10000	20	<20	30[<a]< td=""><td><20</td><td><20</td><td><20</td></a]<>	<20	<20	<20
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	454	1400	2760	2820	1060
Chrome	mg/kg	100	250	800	4000	2	7[<a]< td=""><td>78[<a]< td=""><td>12[<a]< td=""><td>14[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	78[<a]< td=""><td>12[<a]< td=""><td>14[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>14[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<></td></a]<>	14[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<>	13[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	<2	46[A-B]	2[<a]< td=""><td>2[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<></td></a]<>	2[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<>	3[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	1[<a]< td=""><td>56[A-B]</td><td>2[<a]< td=""><td>2[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	56[A-B]	2[<a]< td=""><td>2[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<></td></a]<>	2[<a]< td=""><td>3[<a]< td=""></a]<></td></a]<>	3[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	6380	61500	6350	6610	5720
Lithium	mg/kg	-	-	-	-	20	<20	51	<20	<20	<20
Magnésium	mg/kg					100	347	5070	2020	2100	1560
Manganèse	mg/kg	1000	1000	2200	11000	10	18[<a]< td=""><td>1570[B-C]</td><td>63[<a]< td=""><td>64[<a]< td=""><td>59[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	1570[B-C]	63[<a]< td=""><td>64[<a]< td=""><td>59[<a]< td=""></a]<></td></a]<></td></a]<>	64[<a]< td=""><td>59[<a]< td=""></a]<></td></a]<>	59[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	<2	231[B-C]	6[<a]< td=""><td>7[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<>	7[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	<100	222	118	124	<100
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	<100	<100	<100	<100
Vanadium	mg/kg					15	25	36	<15	<15	<15
Zinc	mg/kg	140	500	1500	7500	5	8[<a]< td=""><td>68[<a]< td=""><td>14[<a]< td=""><td>12[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	68[<a]< td=""><td>14[<a]< td=""><td>12[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	14[<a]< td=""><td>12[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<>	12[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 220901038

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:AI Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-05-27 DATE DU RAPPORT: 2022-06-09

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3939671-3939714 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 220901038 N° DE PROJET: 201-11330-29

Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

350, rue Franquet

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: Al Ousseynou Sarr

À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

			Hyd	rocarbu	res pétrolie	rs C10-C5	0 (SoI)				
DATE DE RÉCEPTION: 2022-05-2	27								DATE DU RAPF	PORT: 2022-06-0	9
				IDENTI	FICATION DE L'É	CHANTILLON:	F92-22-CF-1A	F92-22-CF-4	F94-22-CF-1B	DUP2-20220523	F93-22-CF-1B
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	ITILLONNAGE:	2022-05-23	2022-05-23	2022-05-23	2022-05-23	2022-05-23
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3939671	3939708	3939710	3939712	3939714
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100
% Humidité	%					0.2	20.7	13.8	17.8	18.7	19.9
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			101	74	93	78	89

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3939671-3939714 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:AI Ousseynou Sarr N° BON DE TRAVAIL: 220901038 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

			-	Analy	/se d	es So	ols								
Date du rapport: 2022-06-09				DUPLICAT	A	MATÉ	RIAU DE RI	ÉFÉREN	NCE	BLANG	FORT	IFIÉ	ÉCH.	FORTIF	-IÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.	Lin	nites	% Récup.	Lin	nites
TAKAWETKE	201	IN COII.	Бир #1	Dup #2	70 d coart	méthode	70 Nocup.	Inf.	Sup.	70 Nocup.	Inf.	Sup.	, 70 Recup.	Inf.	Sup.
Analyses inorganiques - WSP	(Balayage mé	taux + me	ercure)												
Aluminium	3940507		12100	12600	3.9	< 30	66%	70%	130%	100%	80%	120%	NA	70%	130%
Antimoine	3940507		<20	<20	NA	< 20	141%	70%	130%	92%	80%	120%	92%	70%	130%
Argent	3940507		< 0.5	<0.5	NA	< 0.5	102%	70%	130%	106%	80%	120%	101%	70%	130%
Arsenic	3940507		7	6	4.8	< 1	97%	70%	130%	99%	80%	120%	99%	70%	130%
Baryum	3940507		376	426	12.6	< 20	100%	70%	130%	105%	80%	120%	NA	70%	130%
Béryllium	3940507		<1	<1	NA	< 1	91%	70%	130%	101%	80%	120%	103%	70%	130%
Cadmium	3940507		<0.5	< 0.5	NA	< 0.5	99%	70%	130%	101%	80%	120%	102%	70%	130%
Calcium	3940507		49300	53100	7.4	< 100	96%	70%	130%	105%	80%	120%	NA	70%	130%
Chrome	3940507		22	24	8.3	< 2	105%	70%	130%	103%	80%	120%	106%	70%	130%
Cobalt	3940507		13	13	0.1	< 2	104%	70%	130%	103%	80%	120%	99%	70%	130%
Cuivre	3940507		32	37	14.0	< 1	95%	70%	130%	99%	80%	120%	99%	70%	130%
Étain	3940507		<5	<5	NA	< 5	99%	70%	130%	101%	80%	120%	101%	70%	130%
Fer	3940507		24500	24700	0.9	< 500	99%	70%	130%	102%	80%	120%	NA	70%	130%
Lithium	3940507		25	26	NA	< 20	89%	70%	130%	94%	80%	120%	101%	70%	130%
Magnésium	3940507		9160	10000	9.0	< 100	100%	70%	130%	100%	80%	120%	NA	70%	130%
Manganèse	3940507		513	529	3.1	< 10	118%	70%	130%	106%	80%	120%	114%	70%	130%
Mercure	3940507		<0.2	<0.2	NA	< 0.2	90%	70%	130%	100%	80%	120%	110%	70%	130%
Molybdène	3940507		2	2	NA	< 1	110%	70%	130%	108%	80%	120%	108%	70%	130%
Nickel	3940507		32	32	0.2	< 2	103%	70%	130%	102%	80%	120%	104%	70%	130%
Plomb	3940507		11	12	NA	< 5	99%	70%	130%	99%	80%	120%	100%	70%	130%
Potassium	3940507		1980	1960	0.7	< 100	93%	70%	130%	104%	80%	120%	104%	70%	130%
Sélénium	3940507		<0.5	0.5	NA	< 0.5	93%	70%	130%	99%	80%	120%	102%	70%	130%
Sodium	3940507		135	145	NA	< 100	90%	70%	130%	99%	80%	120%	103%	70%	130%
Vanadium	3940507		26	26	NA	< 15	102%	70%	130%	105%	80%	120%	105%	70%	130%
Zinc	3940507		113	115	2.3	< 5	99%	70%	130%	102%	80%	120%	101%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb et Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA : Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Certifié par:

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR: Al Ousseynou Sarr

N° BON DE TRAVAIL: 220901038 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

							_								
		P	Analy	se o	rgani	que	de tra	асе							
Date du rapport: 2022-06-09				DUPLICAT	A	MATÉ	RIAU DE R	ÉFÉREN	ICE	BLAN	C FORT	IFIÉ	ÉCH.	FORTIF	ΞIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lim	nites	% Récup.		nites	% Récup.	Lin	nites
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	méthode	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.		Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.
Hydrocarbures pétroliers C10-C5	50 (SoI)														
Hydrocarbures pétroliers C10 à C50	3934063		<100	<100	NA	< 100	111%	60%	140%	96%	60%	140%	101%	60%	140%
Rec. Nonane	3934063		115	100	14.0	110	113%	60%	140%	87%	60%	140%	104%	60%	140%
% Humidité	3944090		13.5	14.8	9.2	< 0.2	100%	80%	120%	NA			NA		

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Certifié par:

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 220901038

N° DE PROJET: 201-11330-29

À L'ATTENTION DE: Sirine Boussorra

Date du rapport: 09 juin 2022		MATÉRIAU D	E RÉFÉI	RENCE	BLAN	C FORT	IFIÉ	ÉCH.	FORTI	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lim	ites	% Récup.		nites	% Récup.		nites
			Inf.	Sup.		Inf.	Sup.		Inf.	Sup.

Analyses inorganiques - WSP (Balayage métaux + mercure)

Aluminium 66% 70% 130% 100% 80% 120% NA 70% 130% Antimoine 141% 70% 130% 92% 80% 120% 92% 70% 130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb et Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Al Ousseynou Sarr N° BON DE TRAVAIL: 220901038 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

PRELEVE PAR: Al Ousseynou Sarr			L	IEU DE PRELEVEMENT:	windfall Lake
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse des Sols					
Aluminium	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Antimoine	2022-06-09	2022-06-09	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Argent	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Arsenic	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Baryum	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Béryllium	2022-06-09	2022-06-09	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Cadmium	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Calcium	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Chrome	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cobalt	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cuivre	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Étain	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
- er	2022-06-09	2022-06-09	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Lithium	2022-06-09	2022-06-09	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Magnésium	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Manganèse	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Mercure	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Molybdène	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Nickel	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Plomb	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Potassium	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sélénium	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sodium	2022-06-09	2022-06-09	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Vanadium	2022-06-09	2022-06-09	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Zinc	2022-06-09	2022-06-09	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Analyse organique de trace					
Hydrocarbures pétroliers C10 à C50	2022-06-07	2022-06-07	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2022-06-07	2022-06-07	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2022-06-07	2022-06-07	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE

Sp Canada in													
WSF Canada Inc.		Delai d'analyse requis								I	1		
Cuébec (Québec) G2K 0MS Térephone: 418-623-7066	Télécopieur, 418-623-2434	FI 5 jours F7 72 hres	5 jours 72 hres	48 hres 24 hres	<u>L.</u>	6-12 hres Date requise:					l. l	Bon de commande: No de soumission:	de: on:
Numeto du projet: Bon de commande:	201-11330-29					ares & res	pecter RMD (mat lixiviable)	viable)		-	4	£ .	ì.
ı,	Windfall Lake					LL	RDS (mat lixiviable) REIMR	riable)		, for the	Eaurer	Eau consommation	د
	Al Ousseyhou sarr					'11'				-		South	1
Charge de projet: Courriel	Sieve Si-Cyr steve st cyr@wsp.com / sinne boussorra@wsp.com	po daw.即essono	ŧ			1, Cd, Co, No, Na, N		C20		munoje	-110.11		
						a, Be, Ca Ng, Mn, n)	enistn:	lers C10		- IIIIII	aliii.—iiii.		
						s, B; Li, N	эmè	llost					
S Solide SE Sédiment EP Eau potable	B Boue EU Eau usée ST Eau souterraine	ES Eau de surface EF Effluent AF Affluent	ace			(Al, Ag, As Fe, Hg, K, Se, Sn, V	olddus noli	upmee be		11			
	Identification de l'échantillon	mit	Date de prélèvement	Matrice	Nombre	trank ' Cu'	riNca	quocs	ď			_	
1 F92-22-CF-1A			20 20 0000	1	de pots	DP CU W	nd	ΛH	ΑН				- /
-			2022-05-23	so.		×		×					
1			2022-05-23	S									
1			2022-05-23	co	-								
1			2022-05-23	S	-								
			2022-05-23	S	1	×		×					
-			2022-05-23	S	*								
1			2022-05-23	S		×		×				F	
				-									
												-	-
													-
		- o diam											
									nic-				
		-		1					1				
												-	
				-					1				
							1	1		1	1		
										1			
		1					,	i					
								1		1		1	
									-				
									-		1	1	
								Ì	-			-	
												-	
									-	-			ŀ
tillons	Al Ousseynou Sarr			Échantillo	Échantillons reçus par:	 							
H. 184													

1					ACAT LABORATORES - 550 rue Franquet Quebec City, Quebec Canada, G1P 4P3	callada, c	244							
WSP Canada inc.		Dělai d'analyse requis												
1135, boul Lebourgneuf Québec) G2K 0M5 Télephone 418-522-7086	5 Telecopieur: 418-823-2434		48 hres 24 hres	Ε.	6-12 hres Date requise:					L., f	Bon de commande: No de soumission:	imande: nission:		
Numero du projet. Bon de commande: Lieu de prélèvement:	201-11330-29 Windfall Lake				Criteres a respecter	pecter RMD (mat lixiviable) RDS (mat lixiviable)	able)			F Eau	A [" B Eau consommation	L		0
	Al Olissaupou Com				REIMR	AR.				Fau.	Eau résurgence			
Charge de projet	Steve St-Cyr				'IN '					-			-	
Courriet	steve st cyr@wsp com / sitine boussorra@wsp com	в boussorra@wsp com			oo' Na		C20							
					(1	ntaire	ers C10-							
Matrice: S Sol					uz jə	ıeməli	étrollé							
SI Solide SE Sédiment EP Eau pomble	EU Eau souterraine	ES cau de surface EF Effluent AF Affluent			(Al, Ag, K Fe, Hg, K Ge, Sn, V	ddns uoi	tpures p							
	Identífication de l'échantillon	Date de prélèvement	Matrice	Nombre	'qs 'q	Jeoffin Jeoffin	удгося							
1 DUP1-20220523	523	20 2000	1	de pots	ld	nd	1						-	
	523	2022-05-23	on a						1				-	
3 F93-22-CF-1A	4	2022-05-23	n u		×		×	-	1	1			+	
4 F93-22-CF-1B	8	2022020	0		,				1	1		1	+	
		07-00-7707	0	-	×	1	×	1	1	+			-	
										-				
														1
													-	
						1				+				
						1	1			-			-	
						-				1			+	
									1	1			1	
									1	-			-	
										-			-	
												H	-	
						+							4	
				1		-				-				
									1	-				
			-	1		-							-	
				1		+	-		1			1		
									I	-			4	
						-	-						+	
						+			1	-		+	1	1
						+							+	
tillons	Al Ousseynou Sarr		Échantillons reçus par:	reçus par							-	1	1	
Date: 2022-05-23			Date:								Page:	Je: 2	de	7

NOM DU CLIENT: WSP CANADA INC.

1135 BOULEVARD LEBOURGNEUF

QUEBEC, QC G2K 0M5

(418) 623-7066

À L'ATTENTION DE: Sirine Boussorra

N° DE PROJET: 201-11330-29 N° BON DE TRAVAIL: 220901038

ANALYSE DES SOLS VÉRIFIÉ PAR: Hasti Kamalimoghadam, Chimiste, AGAT Montréal

ORGANIQUE DE TRACE VÉRIFIÉ PAR: Robert Roch, Chimiste, AGAT Montréal

DATE DU RAPPORT: 22 juin 2022

NOMBRE DE PAGES: 12 VERSION*: 2

Pour tout complément d'information concernant cette analyse, veuillez contacter votre chargé(e) de projet client au (418) 266-5511.

VERSION 2:Ajout des métaux pour l'échantillon 3939706.

Avis de non-responsabilité:

- L'ensemble des travaux réalisés dans le présent document ont été effectués en utilisant des protocoles normalisés reconnus, ainsi que des pratiques et des méthodes généralement acceptées. En vue d'améliorer la performance, les méthodes analytiques d'AGAT pourraient comprendre des modifications issues des méthodes de référence spécifiées.
- Tous les échantillons seront éliminés trente (30) jours après réception au laboratoire à moins qu'une Entente d'entreposage à long terme ne soit signée et retournée. Certaines analyses spécialisées peuvent être exemptées. Veuillez communiquer avec votre chargé de projets à la clientèle pour plus d'informations.
- La responsabilité d'AGAT en ce qui concerne tout retard, exécution ou non-exécution de ces services s'applique uniquement envers le client et ne s'étend à aucune autre tierce partie. À moins qu'il n'en soit par ailleurs convenu expressément par écrit, la responsabilité d'AGAT se limite au coût réel de l'analyse ou des analyses spécifiques incluses dans les services.
- Sauf accord écrit préalable d'AGAT Laboratoires, ce certificat ne doit être reproduit que dans sa totalité.
- Les résultats d'analyse communiqués ci-joint ne concernent que les échantillons reçus par le laboratoire.
- L'application des lignes directrices est fournie « en l'état » sans garantie de quelque nature que ce soit, ni expresse ni tacite, y compris, mais sans s'y
 limiter, les garanties de qualité marchande, d'aptitude à un usage particulier ou de non-contrefaçon. AGAT n'assume aucune responsabilité à l'égard de
 toute erreur ou omission dans les directives que contient ce document.
- Toutes les informations rapportables sont disponibles sur demande auprès d'AGAT Laboratoires, conformément aux normes ISO/IEC 17025:2017, DR-12-PALA et/ou NELAP.

AGAT Laboratoires (V2)
Page 1 de 12

N° BON DE TRAVAIL: 22O901038 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Al Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022	2-05-27							Γ	DATE DU RAPF	ORT: 2022-06-	22
				IDENTIFI	CATION DE L'ÉC	CHANTILLON:	F92-22-CF-1A	F92-22-CF-2	F92-22-CF-4	F94-22-CF-1B	DUP2-20220523
						MATRICE:	Sol	Sol	Sol	Sol	Sol
				[DATE D'ÉCHANT	ΓILLONNAGE:	2022-05-23	2022-05-23	2022-05-23	2022-05-23	2022-05-23
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3939671	3939706	3939708	3939710	3939712
Aluminium	mg/kg					30	4770	5120	16100	4020	4100
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic	mg/kg	6	30	50	250	1	<1	<1	3[<a]< td=""><td><1</td><td><1</td></a]<>	<1	<1
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	30[<a]< td=""><td><20</td><td><20</td></a]<>	<20	<20
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	454	1300	1400	2760	2820
Chrome	mg/kg	100	250	800	4000	2	7[<a]< td=""><td>11[<a]< td=""><td>78[<a]< td=""><td>12[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>78[<a]< td=""><td>12[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	78[<a]< td=""><td>12[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<>	14[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	<2	4[<a]< td=""><td>46[A-B]</td><td>2[<a]< td=""><td>2[<a]< td=""></a]<></td></a]<></td></a]<>	46[A-B]	2[<a]< td=""><td>2[<a]< td=""></a]<></td></a]<>	2[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	1[<a]< td=""><td>3[<a]< td=""><td>56[A-B]</td><td>2[<a]< td=""><td>2[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>56[A-B]</td><td>2[<a]< td=""><td>2[<a]< td=""></a]<></td></a]<></td></a]<>	56[A-B]	2[<a]< td=""><td>2[<a]< td=""></a]<></td></a]<>	2[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	6380	5950	61500	6350	6610
Lithium	mg/kg	-	-	-	-	20	<20	<20	51	<20	<20
Magnésium	mg/kg					100	347	1930	5070	2020	2100
Manganèse	mg/kg	1000	1000	2200	11000	10	18[<a]< td=""><td>94[<a]< td=""><td>1570[B-C]</td><td>63[<a]< td=""><td>64[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	94[<a]< td=""><td>1570[B-C]</td><td>63[<a]< td=""><td>64[<a]< td=""></a]<></td></a]<></td></a]<>	1570[B-C]	63[<a]< td=""><td>64[<a]< td=""></a]<></td></a]<>	64[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	<1
Nickel	mg/kg	50	100	500	2500	2	<2	8[<a]< td=""><td>231[B-C]</td><td>6[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<></td></a]<>	231[B-C]	6[<a]< td=""><td>7[<a]< td=""></a]<></td></a]<>	7[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	<100	162	222	118	124
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	mg/kg					100	<100	<100	<100	<100	<100
Vanadium	mg/kg					15	25	<15	36	<15	<15
Zinc	mg/kg	140	500	1500	7500	5	8[<a]< td=""><td>15[<a]< td=""><td>68[<a]< td=""><td>14[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	15[<a]< td=""><td>68[<a]< td=""><td>14[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	68[<a]< td=""><td>14[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<>	14[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<>	12[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 22O901038 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:AI Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorg	ianiques - WSP	(Balayage métaux -	+ mercure)
7		()	/

DATE DE RÉCEPTION: 2022	2-05-27							DATE DU RAPPORT: 2022-06-22
				IDENTIFIC	CATION DE L'ÉC	CHANTILLON:	F93-22-CF-1B	
						MATRICE:	Sol	
				D	ATE D'ÉCHANT	ILLONNAGE:	2022-05-23	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3939714	
Numinium	mg/kg					30	4750	
Antimoine	mg/kg	-	-	-		20	<20	
Argent	mg/kg	2	20	40	200	0.5	<0.5	
rsenic	mg/kg	6	30	50	250	1	<1	
Baryum	mg/kg	340	500	2000	10000	20	<20	
Béryllium	mg/kg					1	<1	
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	
Calcium	mg/kg					100	1060	
Chrome	mg/kg	100	250	800	4000	2	13[<a]< td=""><td></td></a]<>	
Cobalt	mg/kg	25	50	300	1500	2	3[<a]< td=""><td></td></a]<>	
Cuivre	mg/kg	50	100	500	2500	1	3[<a]< td=""><td></td></a]<>	
tain	mg/kg	5	50	300	1500	5	<5	
er	mg/kg					500	5720	
ithium	mg/kg	-	-	-	-	20	<20	
/lagnésium	mg/kg					100	1560	
Manganèse	mg/kg	1000	1000	2200	11000	10	59[<a]< td=""><td></td></a]<>	
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	
Nolybdène	mg/kg	2	10	40	200	1	<1	
Nickel	mg/kg	50	100	500	2500	2	7[<a]< td=""><td></td></a]<>	
Plomb	mg/kg	50	500	1000	5000	5	<5	
otassium	mg/kg					100	<100	
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	
Sodium	mg/kg					100	<100	
Vanadium	mg/kg					15	<15	
Zinc	mg/kg	140	500	1500	7500	5	12[<a]< td=""><td></td></a]<>	

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 220901038

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:AI Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-05-27 DATE DU RAPPORT: 2022-06-22

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3939671-3939714 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 22O901038 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:AI Ousseynou Sarr À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT: Windfall Lake

			Hyd	rocarbu	res pétrolie	rs C10-C5	O (Sol)							
DATE DE RÉCEPTION: 2022-05-2	27							ļ	DATE DU RAPF	PORT: 2022-06-2	2			
				IDENTI	FICATION DE L'É	CHANTILLON:	F92-22-CF-1A	F92-22-CF-4	F94-22-CF-1B	DUP2-20220523	F93-22-CF-1B			
						MATRICE:	Sol	Sol	Sol	Sol	Sol			
	DATE D'ÉCHANTILLONNAGE: 2022-05-23 2022-05-23 2022-05-23 2022-05-23 2022-05-23													
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3939671	3939708	3939710	3939712	3939714			
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	<100	<100			
% Humidité	%					0.2	20.7	13.8	17.8	18.7	19.9			
Étalon de recouvrement	Unités			Limites										
Rec. Nonane	%			60-140			101	74	93	78	89			

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable pour l'interprétation réglementaire.

3939671-3939714 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR:Al Ousseynou Sarr

N° BON DE TRAVAIL: 220901038 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

			,	Analy	/se d	es So	ols								
Date du rapport: 2022-06-22				DUPLICAT	A	MATÉ	RIAU DE RI	ÉFÉREN	NCE	BLAN	C FORT	IFIÉ	ÉCH.	FORTI	-IÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.	Lin	nites	% Récup.	Lin	nites
TANAMETRE	Lot	IN COII.	Бир #1	Dup #2	70 d coart	méthode	70 Nocup.	Inf.	Sup.	, 70 Nocup.	Inf.	Sup.	, 70 Recup.	Inf.	Sup.
Analyses inorganiques - WSP (E	Balayage mé	taux + me	ercure)		•			•	•	•		•			
Aluminium	3940507		12100	12600	3.9	< 30	66%	70%	130%	100%	80%	120%	NA	70%	130%
Antimoine	3940507		<20	<20	NA	< 20	141%	70%	130%	92%	80%	120%	92%	70%	130%
Argent	3940507		<0.5	<0.5	NA	< 0.5	102%	70%	130%	106%	80%	120%	101%	70%	130%
Arsenic	3940507		7	6	4.8	< 1	97%	70%	130%	99%	80%	120%	99%	70%	130%
Baryum	3940507		376	426	12.6	< 20	100%	70%	130%	105%	80%	120%	NA	70%	130%
Béryllium				<1	NA	< 1	91%	70%	130%	101%	80%	120%	103%	70%	130%
Cadmium	ium 3940507			< 0.5	NA	< 0.5	99%	70%	130%	101%	80%	120%	102%	70%	130%
Calcium	3940507		49300	53100	7.4	< 100	96%	70%	130%	105%	80%	120%	NA	70%	130%
Chrome	3940507		22	24	8.3	< 2	105%	70%	130%	103%	80%	120%	106%	70%	130%
Cobalt	3940507		13	13	0.1	< 2	104%	70%	130%	103%	80%	120%	99%	70%	130%
Cuivre	3940507		32	37	14.0	< 1	95%	70%	130%	99%	80%	120%	99%	70%	130%
Étain	3940507		<5	<5	NA	< 5	99%	70%	130%	101%	80%	120%	101%	70%	130%
Fer	3940507		24500	24700	0.9	< 500	99%	70%	130%	102%	80%	120%	NA	70%	130%
Lithium	3940507		25	26	NA	< 20	89%	70%	130%	94%	80%	120%	101%	70%	130%
Magnésium	3940507		9160	10000	9.0	< 100	100%	70%	130%	100%	80%	120%	NA	70%	130%
Manganèse	3940507		513	529	3.1	< 10	118%	70%	130%	106%	80%	120%	114%	70%	130%
Mercure	3940507		<0.2	<0.2	NA	< 0.2	90%	70%	130%	100%	80%	120%	110%	70%	130%
Molybdène	3940507		2	2	NA	< 1	110%	70%	130%	108%	80%	120%	108%	70%	130%
Nickel	3940507		32	32	0.2	< 2	103%	70%	130%	102%	80%	120%	104%	70%	130%
Plomb	3940507		11	12	NA	< 5	99%	70%	130%	99%	80%	120%	100%	70%	130%
Potassium	3940507		1980	1960	0.7	< 100	93%	70%	130%	104%	80%	120%	104%	70%	130%
Sélénium	3940507		<0.5	0.5	NA	< 0.5	93%	70%	130%	99%	80%	120%	102%	70%	130%
Sodium	3940507		135	145	NA	< 100	90%	70%	130%	99%	80%	120%	103%	70%	130%
Vanadium	3940507		26	26	NA	< 15	102%	70%	130%	105%	80%	120%	105%	70%	130%
Zinc	3940507		113	115	2.3	< 5	99%	70%	130%	102%	80%	120%	101%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb et Al est conforme à l'écart du certificat du matériau de référence du fournisseur. NA : Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Anal	lyses	inorgani	ques -	WSP	(Balayag	e métaux	+ mercure)
------	-------	----------	--------	-----	----------	----------	------------

Aluminium	3993059	17500	18100	2.9	< 30	71%	70%	130%	94%	80%	120%	NA	70%	130%
Antimoine	3993059	<20	<20	NA	< 20	138%	70%	130%	86%	80%	120%	87%	70%	130%
Argent	3993059	<0.5	<0.5	NA	< 0.5	104%	70%	130%	98%	80%	120%	96%	70%	130%
Arsenic	3993059	15	14	3.7	< 1	93%	70%	130%	92%	80%	120%	95%	70%	130%
Baryum	3993059	<20	<20	NA	< 20	97%	70%	130%	97%	80%	120%	97%	70%	130%
Béryllium	3993059	<1	<1	NA	< 1	85%	70%	130%	90%	80%	120%	92%	70%	130%
Cadmium	3993059	<0.5	<0.5	NA	< 0.5	97%	70%	130%	95%	80%	120%	95%	70%	130%
Calcium	3993059	4060	3180	24.4	< 100	93%	70%	130%	98%	80%	120%	102%	70%	130%
Chrome	3993059	22	23	3.0	< 2	99%	70%	130%	94%	80%	120%	96%	70%	130%
Cobalt	3993059	20	18	9.7	< 2	101%	70%	130%	94%	80%	120%	94%	70%	130%

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Al Ousseynou Sarr N° BON DE TRAVAIL: 220901038 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

TREEE VETTING OUGGOOD	ilou oull								- 1 1			••••	an Lake		
			Ana	lyse	des	Sols (Suite	∋)							
Date du rapport: 2022-06-22				DUPLICAT	A	MATÉ	RIAU DE RI	ÉFÉREN	NCE	BLANG	CFORT	IFIÉ	ÉCH.	FORTI	ΞIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de méthode	% Récup.		nites	% Récup.	Lin	nites	% Récup.		nites
			-			methode	-	Inf.	Sup.		Inf.	Sup.		Inf.	Sup.
Cuivre	3993059		58	57	2.0	< 1	99%	70%	130%	95%	80%	120%	106%	70%	130%
Étain	3993059		<5	<5	NA	< 5	98%	70%	130%	91%	80%	120%	95%	70%	130%
Fer	3993059		35100	34800	1.0	< 500	99%	70%	130%	97%	80%	120%	NA	70%	130%
Lithium	3993059		<20	<20	NA	< 20	85%	70%	130%	85%	80%	120%	89%	70%	130%
Magnésium	3993059		17800	18500	4.0	< 100	97%	70%	130%	99%	80%	120%	NA	70%	130%
Manganèse	3993059		1190	1150	4.2	< 10	93%	70%	130%	95%	80%	120%	NA	70%	130%
Mercure	3993059		< 0.2	< 0.2	NA	< 0.2	91%	70%	130%	95%	80%	120%	102%	70%	130%
Molybdène	3993059		3	3	NA	< 1	103%	70%	130%	95%	80%	120%	99%	70%	130%
Nickel	3993059		46	44	2.8	< 2	97%	70%	130%	93%	80%	120%	101%	70%	130%
Plomb	3993059		19	18	NA	< 5	106%	70%	130%	98%	80%	120%	97%	70%	130%
Potassium	3993059		254	258	NA	< 100	94%	70%	130%	99%	80%	120%	95%	70%	130%
Sélénium	3993059		<0.5	<0.5	NA	< 0.5	93%	70%	130%	95%	80%	120%	96%	70%	130%
Sodium	3993059		<100	<100	NA	< 100	82%	70%	130%	97%	80%	120%	96%	70%	130%
Vanadium	3993059		18	18	NA	< 15	95%	70%	130%	96%	80%	120%	95%	70%	130%
Zinc	3993059		82	83	0.6	< 5	99%	70%	130%	97%	80%	120%	96%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Certifié par:

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:AI Ousseynou Sarr N° BON DE TRAVAIL: 220901038 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

PARAMÈTRE Lot N° éch. Dup #1 Dup #2 % d'écart Blanc de méthode % Récup. Limites % Récup. Limites % Récup. Inf. Sup. Limites % Récup. Inf. Sup. MRécup. Inf. Sup. MRécup. Inf. Sup. MRécup. Inf. Sup. MRécup. Inf. Sup. MRécup. Inf. Sup. MRécup. Inf. Sup. MRécup. Inf. Sup. MRécup. Inf. Sup. MRécup. Inf. Sup. MRécup. Inf. Sup. MRécup. Inf. Sup. MRécup. Inf. Sup. MRécup. Inf. Sup. MRécup. Inf. Sup. MRécup. Inf. Sup. MRécup. Inf. Sup. MRécup. Inf. Sup. MRécup. Inf. Sup. MRécup. MRécup. Inf. Sup. MRécup. MRécup. Inf. Sup. MRécup. MRécup. Inf. Sup. MRécup. Inf. Sup		III Lake	villala				IILO L	_						Ouri	TREELVET / IR./ II Oddooynoo					
PARAMÈTRE Lot N° éch. Dup #1 Dup #2 % d'écart méthode Blanc de méthode % Récup. Limites % Récup. Limites % Récup. Inf. Sup. Limites % Récup. Inf. Sup. M Récup. Inf. Sup. M Récup. Inf. Sup. M Récup. Inf. Sup. M Récup. Inf. Sup. M Récup. Inf. Sup. M Récup. Inf. Sup. M Récup. Inf. Sup. M Récup. Inf. Sup. M Récup. Inf. Sup. M Récup. Inf. Sup. M Récup. Inf. Sup. M Récup. Inf. Sup. M Récup. M Récup. Inf. Sup. M Récup. M Récup. Inf. Sup. M Récup. M Récup. Inf. Sup. M Récup. M Récup. M Récup. M Récup. M Récup. M Récup. M Récup. M Récup. M Récup. M Récup. M Récup. M Récup. M Récup. M Récup. M Récup. M Récup. M Récup.							ace	de tra	que d	gani	se oi	naly	A							
PARAMÈTRE Lot N° éch. Dup #1 Dup #2 % d'écart méthode M° éch. Inf. Sup. % Récup. 100 NA 110 NA 110	FORTIFIÉ	ÉCH.	IFIÉ	C FORT	BLANG	NCE	ÉFÉREN	RIAU DE RI	MATÉ	١	DUPLICATA	ı			Date du rapport: 2022-06-22					
Hydrocarbures pétroliers C10-C50 (Sol) Hydrocarbures pétroliers C10 à 3934063 <100 <100 NA <100 111% 60% 140% 96% 60% 140% 101% C50 Rec. Nonane 3934063 115 100 14.0 110 113% 60% 140% 87% 60% 140% 104%	Limites	% Récup.			% Récup.	nites	Lim	% Récup.	Blanc de	% d'écart	Dup #2	Dup #1	N° éch.	Lot	PARAMÈTRE					
Hydrocarbures pétroliers C10 à C50 3934063 <100	Inf. Sup		Sup.	Inf.		Sup.			methode					TATO WILLIAM						
C50 Rec. Nonane 3934063 115 100 14.0 110 113% 60% 140% 87% 60% 140% 104%														O (Sol)	Hydrocarbures pétroliers C10-C50					
	60% 1409	101%	140%	60%	96%	140%	60%	111%	< 100	NA	<100	<100		3934063	, ,					
% Humidité 3944090 13.5 14.8 9.2 < 0.2 100% 80% 120% NA NA	60% 1409	104%	140%	60%	87%	140%	60%	113%	110	14.0	100	115		3934063	Rec. Nonane					
		NA			NA	120%	80%	100%	< 0.2	9.2	14.8	13.5		3944090	% Humidité					

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Certifié par:

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 220901038

N° DE PROJET: 201-11330-29

À L'ATTENTION DE: Sirine Boussorra

Date du rapport: 22 juin 2022		MATÉRIAU D	E RÉFÉI	RENCE	BLAN	C FORT	IFIÉ	ÉCH.	FORTI	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lim	ites	% Récup.		nites	% Récup.		nites
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.		Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.

Analyses inorganiques - WSP (Balayage métaux + mercure)

Aluminium 66% 70% 130% 100% 80% 120% NA 70% 130% Antimoine 141% 70% 130% 92% 80% 120% 92% 70% 130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb et Al est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Analyses inorganiques - WSP (Balayage métaux + mercure)

Antimoine 138% 70% 130% 86% 80% 120% 87% 70% 130%

Commentaires: Le pourcentage de récupération du MRC concernant le Sb est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Al Ousseynou Sarr N° BON DE TRAVAIL: 220901038 À L'ATTENTION DE: Sirine Boussorra LIEU DE PRÉLÈVEMENT:Windfall Lake

PRELEVE PAR: Al Ousseynoù Sarr			L	IEU DE PRELEVEMENT:	windfall Lake
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse des Sols	'		•		
Aluminium	2022-06-09	2022-06-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Antimoine	2022-06-09	2022-06-21	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Argent	2022-06-09	2022-06-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Arsenic	2022-06-09	2022-06-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Baryum	2022-06-09	2022-06-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Béryllium	2022-06-09	2022-06-21	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Cadmium	2022-06-09	2022-06-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Calcium	2022-06-09	2022-06-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Chrome	2022-06-09	2022-06-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cobalt	2022-06-09	2022-06-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cuivre	2022-06-09	2022-06-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Étain	2022-06-09	2022-06-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Fer	2022-06-09	2022-06-21	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Lithium	2022-06-09	2022-06-21	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Magnésium	2022-06-09	2022-06-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Manganèse	2022-06-09	2022-06-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Mercure	2022-06-09	2022-06-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Molybdène	2022-06-09	2022-06-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Nickel	2022-06-09	2022-06-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Plomb	2022-06-09	2022-06-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Potassium	2022-06-09	2022-06-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sélénium	2022-06-09	2022-06-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sodium	2022-06-09	2022-06-21	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Vanadium	2022-06-09	2022-06-21	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Zinc	2022-06-09	2022-06-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Analyse organique de trace					
Hydrocarbures pétroliers C10 à C50	2022-06-07	2022-06-07	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2022-06-07	2022-06-07	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2022-06-07	2022-06-07	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE

The proof of the control of the co	WSP Canada inc		18.7													
1 1 1 1 1 1 1 1 1 1	1135, boul 1 ebournount		Dėlai d'analyse									-				
Comparison of Profession Comparison Compar	Outber (Québec) G2K OM: Tétephone: 418-623-7066				48 hres 24 hres		6-12 hres Date requise.					l l		commande soumission:		
## Special Montanger Company Com		201-11330-29					Crithres & re	specter RMD (mat lix	iviable)				1	L		0
Second Second Secon	ement	Windfall Lake				1.1	- L	RDS (mat lix	iviable)			T T Ear	u consomr			2
See Bright State & State State &		Al Ousseyhou sarr					'ar				-		Taking I		-	1
Solution 1 Source 1 S	Cournel	Sleve SI-Cyr strive at cyrighisp com / since o	oussorra@wsp.cc	E		1.1.1	a, Cd, Co Mo, Na, I		-C20			Monoto	-iiiiiiii			
B Bouck ES Es ude surface							,nM ,gM	entaire	lers C10				liiiii	***		
Section E. D. Boucket E. B. Briston E. Briston E. B. Briston E. B. Briston E. B. Briston E. B. Briston E. B. Briston E. B. Briston E. B. Briston E. B. Briston E. B. Briston E. B. Briston E. B. Briston E. B. Briston E. B. Briston E	Matrice:						רו' ו	эmэ	llost							
1	SI Solide SE Sédiment EP Eau potable		ES Eaudesu EF Effluent AF Affluent	rface			'A '6H 'e	Iddns uo	pores be							
F92.25.CF-1A		ification de l'échantillon		Date de prélèvemer			tauxi 1, uO ,	tsoNir	esosp	d					-	
F92.22.CF-18	L				+	_	We	nd	Αн	∀Н						
F92.22.Gr.4 2022.05.23 S 1 X	1			2022-05-23	co	-	×		×							
F92.20.CG-3 F92.20.CG-4 F92.20.CG-4 F92.20.CG-4 F92.20.CG-4 F92.20.CG-1A F93.20.CG-1A F93.20.	1			2022-05-23	S										-	
F92-22-CF-1A F92-22-CF-1A F94-2	1			2022-05-23	(S)											-
F94-22-CF-14 F94-2	1			2022-05-23	S	1									-	
F94-2X-CF-1-b F94-2X				2022-05-23	S	4	×		×			-				
TSST-26-1-10	1			2022-05-23	S										-	1
	1			2022-05-23	S		×		×							
													-			
Millots rents par: A Dusseynou Sart Echantillons regus par: Echantillons regus par: Page: 7 de Page:																
Milona remis par: Al Ousseynou Sart Ethantillons regus par: Page: 2 de Page			1													
					-											
	- Julia				-					nic						
					-		1									
										1						
									ľ	1			1			
Milloris remis par: Al Ousseynou Sarr Échantillors reçus par:											-			1		
Illions remis par: Al Ousseynou Sarr Échantillons reçus par:											1	-	-	1		
Alloha semis par: Al Ousseynou Sarr Échantillons reçus par:												-		-		
Allots remis par: Al Ousseynou Sarr Échantillons reçus par:										-						
Allons remis par: Al Ousseynou Sarr Échantillons reçus par:											-					
Alloins remis par: Al Ousseynou Sarr Échantillons reçus par:			-inner								0					
All Ousseynou Sarr Échantillons reçus par:					-											
Illions remis par: Al Ousseynou Sarr Échantillons reçus par: Echantillons reçus par: Pane: 2 de			Ī													
2022.05-26 Echantillons regus par:	Chantillons remis par-	Al Onecaviori Care			-											
		LIPO DOLLARSOO IV			Échantill	ons reçus pa	ar:									·

1					ACAT LABORATORES - 550 rue Franquet Quebec City, Quebec Canada, G1P 4P3	callada, c	244							
WSP Canada inc.		Dělai d'analyse requis												
1135, boul Lebourgneuf Québec) G2K 0M5 Télephone 418-522-7086	5 Telecopieur: 418-823-2434		48 hres 24 hres	Ε.	6-12 hres Date requise:					L., f	Bon de commande: No de soumission:	imande: nission:		
Numero du projet. Bon de commande: Lieu de prélèvement:	201-11330-29 Windfall Lake				Criteres a respecter	pecter RMD (mat lixiviable) RDS (mat lixiviable)	able)			F Eau	A [" B Eau consommation	L		0
	Al Olissaupou Com				REIMR	AR.				Fau.	Eau résurgence			
Charge de projet	Steve St-Cyr				'IN '					-			-	
Courriet	steve st cyr@wsp com / sitine boussorra@wsp com	в boussorra@wsp com			oo' Na		C20							
					(1	ntaire	ers C10-							
Matrice: S Sol					uz jə	ıeməli	étrollé							
SI Solide SE Sédiment EP Eau pomble	EU Eau souterraine	ES cau de surface EF Effluent AF Affluent			(Al, Ag, K Fe, Hg, K Ge, Sn, V	ddns uoi	tpures p							
	Identífication de l'échantillon	Date de prélèvement	Matrice	Nombre	'qs 'q	Jeoffin Jeoffin	удгося							
1 DUP1-20220523	523	20 2000	1	de pots	ld	nd	1						-	
	523	2022-05-23	on a						1				-	
3 F93-22-CF-1A	4	2022-05-23	n u		×		×	-	1	1			+	
4 F93-22-CF-1B	8	2022020	0	- -	,				1	1		1	+	
		07-00-7707	0	-	×	1	×	1	1	+			-	
										-				
														1
													-	
						1				+				
						1	1			1			-	
						-				1			+	
									1	1			1	
									1	-			-	
										-			-	
												H	-	
						1							4	
				1		1				-				
									1	-				
			-	1		-							-	
				1		+	-		1			1		
									I	-			4	
						-	-						+	
						+			1	-		+	1	1
						+							+	
tillons	Al Ousseynou Sarr		Échantillons reçus par:	reçus par							-	1	1	
Date: 2022-05-23			Date:								Page:	Je: 2	de	7

NOM DU CLIENT: WSP CANADA INC.

1135 BOULEVARD LEBOURGNEUF

QUEBEC, QC G2K 0M5

(418) 623-7066

À L'ATTENTION DE: Steve St-Cyr

N° DE PROJET: 201-11330-29

ANALYSE DES SOLS VÉRIFIÉ PAR: Hasti Kamalimoghadam, Chimiste, AGAT Montréal ORGANIQUE DE TRACE VÉRIFIÉ PAR: EmmanuelBrousseau. Chimiste. AGAT Québec

DATE DU RAPPORT: 25 avr. 2022

N° BON DE TRAVAIL: 22Q885297

NOMBRE DE PAGES: 13 VERSION*: 1

Pour tout complément d'information concernant cette analyse, veuillez contacter votre chargé(e) de projet client au (418) 266-5511.

Avis de non-responsabilité:	

*Notes

- L'ensemble des travaux réalisés dans le présent document ont été effectués en utilisant des protocoles normalisés reconnus, ainsi que des pratiques et des méthodes généralement acceptées. En vue d'améliorer la performance, les méthodes analytiques d'AGAT pourraient comprendre des modifications issues des méthodes de référence spécifiées.
- Tous les échantillons seront éliminés trente (30) jours après réception au laboratoire à moins qu'une Entente d'entreposage à long terme ne soit signée et retournée. Certaines analyses spécialisées peuvent être exemptées. Veuillez communiquer avec votre chargé de projets à la clientèle pour plus d'informations.
- La responsabilité d'AGAT en ce qui concerne tout retard, exécution ou non-exécution de ces services s'applique uniquement envers le client et ne s'étend à aucune autre tierce partie. À moins qu'il n'en soit par ailleurs convenu expressément par écrit, la responsabilité d'AGAT se limite au coût réel de l'analyse ou des analyses spécifiques incluses dans les services.
- Sauf accord écrit préalable d'AGAT Laboratoires, ce certificat ne doit être reproduit que dans sa totalité.
- Les résultats d'analyse communiqués ci-joint ne concernent que les échantillons reçus par le laboratoire.
- L'application des lignes directrices est fournie « en l'état » sans garantie de quelque nature que ce soit, ni expresse ni tacite, y compris, mais sans s'y limiter, les garanties de qualité marchande, d'aptitude à un usage particulier ou de non-contrefaçon. AGAT n'assume aucune responsabilité à l'égard de toute erreur ou omission dans les directives que contient ce document.
- Toutes les informations rapportables sont disponibles sur demande auprès d'AGAT Laboratoires, conformément aux normes ISO/IEC 17025:2017, DR-12-PALA et/ou NELAP.

AGAT Laboratoires (V1) Page 1 de 13

N° BON DE TRAVAIL: 22Q885297 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Patrick Therrien À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022	2-04-18								ATE DU RAPF	PORT: 2022-04-2	5
				IDENTIF	ICATION DE L'ÉC	CHANTILLON:	F65-22-CF-2B	DUP1-F65-22	F66-22-CF-3	F67-22-CF-1B	F67-22-CF-3
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHANT	ΓILLONNAGE:	2022-04-11	2022-04-11	2022-04-12	2022-04-12	2022-04-12
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3758437	3758440	3758442	3758444	3758445
Aluminium	mg/kg					30	4200	4410	3140	7670	4440
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	<20
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	0.8[<a]< td=""><td><0.5</td></a]<>	<0.5
Arsenic	mg/kg	6	30	50	250	1	5[<a]< td=""><td>5[<a]< td=""><td>2[<a]< td=""><td>7[A-B]</td><td>4[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	5[<a]< td=""><td>2[<a]< td=""><td>7[A-B]</td><td>4[<a]< td=""></a]<></td></a]<></td></a]<>	2[<a]< td=""><td>7[A-B]</td><td>4[<a]< td=""></a]<></td></a]<>	7[A-B]	4[<a]< td=""></a]<>
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	70[<a]< td=""><td><20</td></a]<>	<20
Béryllium	mg/kg					1	<1	<1	<1	<1	<1
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Calcium	mg/kg					100	2460	2500	2410	10100	2890
Chrome	mg/kg	100	250	800	4000	2	10[<a]< td=""><td>11[<a]< td=""><td>12[<a]< td=""><td>38[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	11[<a]< td=""><td>12[<a]< td=""><td>38[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>38[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<></td></a]<>	38[<a]< td=""><td>14[<a]< td=""></a]<></td></a]<>	14[<a]< td=""></a]<>
Cobalt	mg/kg	25	50	300	1500	2	<2	<2	2[<a]< td=""><td>7[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>5[<a]< td=""></a]<></td></a]<>	5[<a]< td=""></a]<>
Cuivre	mg/kg	50	100	500	2500	1	8[<a]< td=""><td>8[<a]< td=""><td>12[<a]< td=""><td>47[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>12[<a]< td=""><td>47[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>47[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<></td></a]<>	47[<a]< td=""><td>13[<a]< td=""></a]<></td></a]<>	13[<a]< td=""></a]<>
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	<5
Fer	mg/kg					500	5830	6180	6080	9750	9550
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	<20
Magnésium	mg/kg					100	1510	1620	2060	2740	3460
Manganèse	mg/kg	1000	1000	2200	11000	10	47[<a]< td=""><td>47[<a]< td=""><td>71[<a]< td=""><td>512[<a]< td=""><td>172[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	47[<a]< td=""><td>71[<a]< td=""><td>512[<a]< td=""><td>172[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	71[<a]< td=""><td>512[<a]< td=""><td>172[<a]< td=""></a]<></td></a]<></td></a]<>	512[<a]< td=""><td>172[<a]< td=""></a]<></td></a]<>	172[<a]< td=""></a]<>
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	2[A]	<1
Nickel	mg/kg	50	100	500	2500	2	6[<a]< td=""><td>6[<a]< td=""><td>8[<a]< td=""><td>18[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>8[<a]< td=""><td>18[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	8[<a]< td=""><td>18[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<></td></a]<>	18[<a]< td=""><td>12[<a]< td=""></a]<></td></a]<>	12[<a]< td=""></a]<>
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	<5
Potassium	mg/kg					100	108	108	195	234	238
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	0.9[<a]< td=""><td><0.5</td></a]<>	<0.5
Sodium	mg/kg					100	<100	<100	<100	171	<100
Titane	mg/kg					1	445	420	572	251	553
Vanadium	mg/kg					15	<15	<15	<15	16	<15
Zinc	mg/kg	140	500	1500	7500	5	14[<a]< td=""><td>19[<a]< td=""><td>14[<a]< td=""><td>41[<a]< td=""><td>22[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<></td></a]<>	19[<a]< td=""><td>14[<a]< td=""><td>41[<a]< td=""><td>22[<a]< td=""></a]<></td></a]<></td></a]<></td></a]<>	14[<a]< td=""><td>41[<a]< td=""><td>22[<a]< td=""></a]<></td></a]<></td></a]<>	41[<a]< td=""><td>22[<a]< td=""></a]<></td></a]<>	22[<a]< td=""></a]<>

Certifié par:

N° BON DE TRAVAIL: 22Q885297

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: Patrick Therrien À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:Windfall Lake

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-04-18 DATE DU RAPPORT: 2022-04-25

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se réfèrer directement à la norme applicable pour l'interprétation réglementaire.

3758437-3758445 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 22Q885297 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Patrick Therrien À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:Windfall Lake

Hydrocarbures aromatiques polycycliques (HAP) (Sol)

DATE DE RÉCEPTION: 2022-04-1	8								DATE DU RAPPORT: 2022-04-25
	IDENTIFICATION DE L'ÉCHANTILLO				CHANTILLON:	F65-22-CF-2B	DUP1-F65-22		
						MATRICE:	Sol	Sol	
					DATE D'ÉCHANT		2022-04-11	2022-04-11	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3758437	3758440	
Acénaphtène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Acénaphtylène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Anthracène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Benzo (a) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Benzo (b) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	
Benzo (j) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	
Benzo (k) fluoranthène	mg/kg	0.1	1	10	-	0.1	<0.1	<0.1	
Benzo (b+j+k) fluoranthène	mg/kg	-	-	-	136	0.1	<0.1	<0.1	
Benzo (c) phénanthrène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Benzo (g,h,i) pérylène	mg/kg	0.1	1	10	18	0.1	<0.1	<0.1	
Chrysène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Dibenzo (a,h) anthracène	mg/kg	0.1	1	10	82	0.1	<0.1	<0.1	
Dibenzo (a,i) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Dibenzo (a,h) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Dibenzo (a,l) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Diméthyl-7,12 benzo (a) anthracène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Fluoranthène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Fluorène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Indéno (1,2,3-cd) pyrène	mg/kg	0.1	1	10	34	0.1	<0.1	<0.1	
Méthyl-3 cholanthrène	mg/kg	0.1	1	10	150	0.1	<0.1	<0.1	
Naphtalène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	
Phénanthrène	mg/kg	0.1	5	50	56	0.1	<0.1	<0.1	
Pyrène	mg/kg	0.1	10	100	100	0.1	<0.1	<0.1	
Méthyl-1 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Méthyl-2 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Diméthyl-1,3 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	
Triméthyl-2,3,5 naphtalène	mg/kg	0.1	1	10	56	0.1	<0.1	<0.1	

Certifié par:

N° BON DE TRAVAIL: 22Q885297 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Patrick Therrien À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:Windfall Lake

Hydrocarbures aromatiques polycycliques (HAP) (Sol)											
DATE DE RÉCEPTION: 2022-04						DATE DU RAPPORT: 2022-04-25					
				IDENTI	FICATION DE L'É	CHANTILLON:	F65-22-CF-2B	DUP1-F65-22			
						MATRICE:	Sol	Sol			
				DATE D'ÉCHANTILLONNAGE:			2022-04-11	2022-04-11			
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3758437	3758440			
% Humidité	%					0.2	28.2	26.1			
Étalon de recouvrement	Unités			Limites							
Rec. Naphtalène-d8	%			50-140			78	86			
Rec. Pyrène-d10	%			50-140			87	87			
Rec. p-Terphényl-d14	%			50-140			98	89			

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable pour l'interprétation réglementaire.

3758437-3758440 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

N° BON DE TRAVAIL: 22Q885297 N° DE PROJET: 201-11330-29 350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

78

88

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR:Patrick Therrien

Étalon de recouvrement

Rec. Nonane

À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:Windfall Lake

			нуа	rocarbure	es petronei	rs C10-C50	(201)				
DATE DE RÉCEPTION: 2022-04-	18							С	ATE DU RAPF	PORT: 2022-04-2	25
				IDENTIF	ICATION DE L'É	CHANTILLON:	F65-22-CF-2B	DUP1-F65-22	F66-22-CF-3	F67-22-CF-1B	F67-22-CF-3
						MATRICE:	Sol	Sol	Sol	Sol	Sol
					DATE D'ÉCHAN	TILLONNAGE:	2022-04-11	2022-04-11	2022-04-12	2022-04-12	2022-04-12
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3758437	3758440	3758442	3758444	3758445
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100	630[A-B]	<100
0/ 11:4!44	0/					0.0	20.2	26.4	40.0	FF 6	00.0

Lludra aarburaa mátraliara C10 CE0 (Cal)

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Limites

60-140


Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable pour l'interprétation réglementaire.

3758437-3758445 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Unités

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Patrick Therrien N° BON DE TRAVAIL: 22Q885297 À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:Windfall Lake

			/	Analy	/se d	es So	ols								
Date du rapport: 2022-04-25				DUPLICATA	A	MATÉ	RIAU DE RI	ÉFÉREN	NCE	BLANG	C FORT	IFIÉ	ÉCH.	FORTI	-IÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.	Lin	nites	% Récup.	Lin	nites
TANAMETIC	201	IV CCII.	Бир #1	Dup #2	70 d coart	méthode	70 Nocup.	Inf.	Sup.	, 70 Nocup.	Inf.	Sup.	, 70 Recup.	Inf.	Sup.
Analyses inorganiques - WSF	P (Balayage mé	étaux + me	ercure)		•			•	•			•			
Aluminium	3758437	3758437	4200	4180	0.5	< 30	63%	70%	130%	87%	80%	120%	94%	70%	130%
Antimoine	3758437	3758437	<20	<20	NA	< 20	145%	70%	130%	89%	80%	120%	90%	70%	130%
Argent	3758437	3758437	<0.5	< 0.5	NA	< 0.5	108%	70%	130%	94%	80%	120%	97%	70%	130%
Arsenic	3758437	3758437	5	5	NA	< 1	97%	70%	130%	89%	80%	120%	90%	70%	130%
Baryum	3758437	3758437	<20	<20	NA	< 20	100%	70%	130%	89%	80%	120%	92%	70%	130%
Béryllium	3758437	3758437	<1	<1	NA	< 1	93%	70%	130%	93%	80%	120%	92%	70%	130%
Cadmium	3758437	3758437	<0.5	< 0.5	NA	< 0.5	102%	70%	130%	94%	80%	120%	96%	70%	130%
Calcium	3758437	3758437	2460	2480	0.7	< 100	106%	70%	130%	92%	80%	120%	93%	70%	130%
Chrome	3758437	3758437	10	10	1.7	< 2	105%	70%	130%	92%	80%	120%	93%	70%	130%
Cobalt	3758437	3758437	<2	<2	NA	< 2	104%	70%	130%	90%	80%	120%	95%	70%	130%
Cuivre	3758437	3758437	8	8	3.4	< 1	103%	70%	130%	93%	80%	120%	95%	70%	130%
Étain	3758437	3758437	<5	<5	NA	< 5	102%	70%	130%	93%	80%	120%	94%	70%	130%
Fer	3758437	3758437	5830	5640	3.2	< 500	104%	70%	130%	96%	80%	120%	NA	70%	130%
Lithium	3758437	3758437	<20	<20	NA	< 20	97%	70%	130%	92%	80%	120%	90%	70%	130%
Magnésium	3758437	3758437	1510	1490	1.2	< 100	108%	70%	130%	99%	80%	120%	101%	70%	130%
Manganèse	3758437	3758437	47	46	NA	< 10	103%	70%	130%	95%	80%	120%	95%	70%	130%
Mercure	3758437	3758437	<0.2	< 0.2	NA	< 0.2	92%	70%	130%	94%	80%	120%	90%	70%	130%
Molybdène	3758437	3758437	<1	<1	NA	< 1	110%	70%	130%	96%	80%	120%	97%	70%	130%
Nickel	3758437	3758437	6	6	NA	< 2	102%	70%	130%	91%	80%	120%	93%	70%	130%
Plomb	3758437	3758437	<5	<5	NA	< 5	105%	70%	130%	93%	80%	120%	93%	70%	130%
Potassium	3758437	3758437	108	113	NA	< 100	98%	70%	130%	97%	80%	120%	99%	70%	130%
Sélénium	3758437	3758437	<0.5	< 0.5	NA	< 0.5	98%	70%	130%	92%	80%	120%	93%	70%	130%
Sodium	3758437	3758437	<100	<100	NA	< 100	87%	70%	130%	98%	80%	120%	97%	70%	130%
Titane	3758437	3758437	445	464	4.3	< 1	121%	70%	130%	91%	80%	120%	NA	70%	130%
Vanadium	3758437		<15	<15	NA	< 15	100%	70%	130%	92%	80%	120%	94%	70%	130%
Zinc	3758437	3758437	14	12	NA	< 5	102%	70%	130%	94%	80%	120%	93%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Al et Sb est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Has Namadinophadam 2017-000 Crises

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR: Patrick Therrien

N° BON DE TRAVAIL: 22Q885297 À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT: Windfall Lake

		F	naly	se o	rgani	que	de tra	ace							
Date du rapport: 2022-04-25				DUPLICAT	A	MATÉ	RIAU DE R	ÉFÉREN	NCE	BLAN	C FORT	IFIÉ	ÉCH.	FORTIF	ΊÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.		nites	% Récup.		nites
. ,					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	méthode	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.		Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.
Hydrocarbures pétroliers C10-C	50 (SoI)														
Hydrocarbures pétroliers C10 à C50	3757573		<100	<100	NA	< 100	89%	60%	140%	95%	60%	140%	93%	60%	140%
Rec. Nonane	3757573		87	84	3.5	90	87%	60%	140%	97%	60%	140%	89%	60%	140%
% Humidité	3758437	3758437	28.2	28.7	1.9	< 0.2	101%	80%	120%	NA			NA		

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

élevée par rapport à l'ajout.														
Hydrocarbures aromatiques po	lycycliques (HAP) (So	1)												
Acénaphtène	3758440 3758440	, <0.1	<0.1	NA	< 0.1	97%	50%	140%	85%	50%	140%	87%	50%	140%
Acénaphtylène	3758440 3758440	<0.1	<0.1	NA	< 0.1	79%	50%	140%	74%	50%	140%	80%	50%	140%
Anthracène	3758440 3758440	<0.1	<0.1	NA	< 0.1	96%	50%	140%	104%	50%	140%	88%	50%	140%
Benzo (a) anthracène	3758440 3758440	<0.1	<0.1	NA	< 0.1	91%	50%	140%	99%	50%	140%	86%	50%	140%
Benzo (a) pyrène	3758440 3758440	<0.1	<0.1	NA	< 0.1	79%	50%	140%	90%	50%	140%	75%	50%	140%
Benzo (b) fluoranthène	3758440 3758440	<0.1	<0.1	NA	< 0.1	83%	50%	140%	96%	50%	140%	81%	50%	140%
Benzo (j) fluoranthène	3758440 3758440	<0.1	<0.1	NA	< 0.1	94%	50%	140%	106%	50%	140%	89%	50%	140%
Benzo (k) fluoranthène	3758440 3758440	<0.1	<0.1	NA	< 0.1	88%	50%	140%	104%	50%	140%	88%	50%	140%
Benzo (c) phénanthrène	3758440 3758440	<0.1	<0.1	NA	< 0.1	100%	50%	140%	108%	50%	140%	93%	50%	140%
Benzo (g,h,i) pérylène	3758440 3758440	<0.1	<0.1	NA	< 0.1	83%	50%	140%	79%	50%	140%	67%	50%	140%
Chrysène	3758440 3758440	<0.1	<0.1	NA	< 0.1	91%	50%	140%	101%	50%	140%	84%	50%	140%
Dibenzo (a,h) anthracène	3758440 3758440	<0.1	<0.1	NA	< 0.1	80%	50%	140%	77%	50%	140%	62%	50%	140%
Dibenzo (a,i) pyrène	3758440 3758440	<0.1	<0.1	NA	< 0.1	65%	50%	140%	80%	50%	140%	54%	50%	140%
Dibenzo (a,h) pyrène	3758440 3758440	<0.1	<0.1	NA	< 0.1	63%	50%	140%	83%	50%	140%	58%	50%	140%
Dibenzo (a,l) pyrène	3758440 3758440	<0.1	<0.1	NA	< 0.1	87%	50%	140%	101%	50%	140%	72%	50%	140%
Diméthyl-7,12 benzo (a) anthracène	3758440 3758440	<0.1	<0.1	NA	< 0.1	107%	50%	140%	129%	50%	140%	106%	50%	140%
Fluoranthène	3758440 3758440	<0.1	<0.1	NA	< 0.1	106%	50%	140%	114%	50%	140%	100%	50%	140%
Fluorène	3758440 3758440	<0.1	<0.1	NA	< 0.1	66%	50%	140%	79%	50%	140%	87%	50%	140%
Indéno (1,2,3-cd) pyrène	3758440 3758440	<0.1	<0.1	NA	< 0.1	81%	50%	140%	76%	50%	140%	66%	50%	140%
Méthyl-3 cholanthrène	3758440 3758440	<0.1	<0.1	NA	< 0.1	68%	50%	140%	81%	50%	140%	68%	50%	140%
Naphtalène	3758440 3758440	<0.1	<0.1	NA	< 0.1	106%	50%	140%	122%	50%	140%	89%	50%	140%
Phénanthrène	3758440 3758440	<0.1	<0.1	NA	< 0.1	97%	50%	140%	105%	50%	140%	89%	50%	140%
Pyrène	3758440 3758440	<0.1	<0.1	NA	< 0.1	113%	50%	140%	119%	50%	140%	104%	50%	140%
Méthyl-1 naphtalène	3758440 3758440	<0.1	<0.1	NA	< 0.1	98%	50%	140%	106%	50%	140%	87%	50%	140%
Méthyl-2 naphtalène	3758440 3758440	<0.1	<0.1	NA	< 0.1	103%	50%	140%	114%	50%	140%	99%	50%	140%
Diméthyl-1,3 naphtalène	3758440 3758440	<0.1	<0.1	NA	< 0.1	96%	50%	140%	97%	50%	140%	96%	50%	140%
Triméthyl-2,3,5 naphtalène	3758440 3758440	<0.1	<0.1	NA	< 0.1	100%	50%	140%	84%	50%	140%	114%	50%	140%
Rec. Naphtalène-d8	3758440 3758440	86	90	4.4	87	87%	50%	140%	114%	50%	140%	78%	50%	140%
Rec. Pyrène-d10	3758440 3758440	87	118	29.8	103	87%	50%	140%	109%	50%	140%	95%	50%	140%
Rec. p-Terphényl-d14	3758440 3758440	89	96	7.8	82	86%	50%	140%	104%	50%	140%	93%	50%	140%
% Humidité	3758437 3758437	28.2	28.7	1.9	< 0.2	101%	80%	120%	NA			NA		

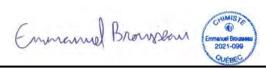
Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR: Patrick Therrien

N° BON DE TRAVAIL: 22Q885297 À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:Windfall Lake

		Anal	yse	orgar	nique	de t	race	(Su	ite)						
Date du rapport: 2022-04-25			I	DUPLICATA	4	MATÉ	RIAU DE RI	ÉFÉREN	CE	BLANG	FORTI	FIÉ	ÉCH.	FORTIF	ΙÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de méthode	% Récup.	Lim	ites	% Récup.		nites	% Récup.	Lim	nites
				''		methode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.


Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

L'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentage de différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC. N° BON DE TRAVAIL: 22Q885297 N° DE PROJET: 201-11330-29 À L'ATTENTION DE: Steve St-Cyr

Date du rapport: 25 avr. 2022		MATÉRIAU D	E RÉFÉ	RENCE	BLAN	C FORT	IFIÉ	ÉCH.	. FORTI	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lim	nites	% Récup.	Lim	nites	% Récup.	Limites	
.,		75.1322	Inf.	Sup.		Inf.	Sup.]	Inf.	Sup.
Analyses inorganiques - WSP (Balayage métaux + mercure)	,							,		

Aluminium 3758437 63% 70% 130% 70% 130% 3758437 145% 70% 130% Antimoine 89% 120% 90% 70% 130%

Commentaires: Le pourcentage de récupération du MRC concernant le AI et Sb est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR: Patrick Therrien N° BON DE TRAVAIL: 22Q885297
À L'ATTENTION DE: Steve St-Cyr
LIEU DE PRÉLÈVEMENT:Windfall Lake

PRELEVE PAR: Patrick Inerrien			L	IEU DE PRELEVEMENT:	Windfall Lake
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse des Sols		•	•		
Aluminium	2022-04-20	2022-04-20	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Antimoine	2022-04-20	2022-04-21	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Argent	2022-04-20	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Arsenic	2022-04-20	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Baryum	2022-04-20	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Béryllium	2022-04-20	2022-04-21	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Cadmium	2022-04-20	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Calcium	2022-04-20	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Chrome	2022-04-20	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cobalt	2022-04-20	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cuivre	2022-04-20	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Étain	2022-04-20	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Fer	2022-04-20	2022-04-21	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Lithium	2022-04-20	2022-04-21	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Magnésium	2022-04-20	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Manganèse	2022-04-20	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Mercure	2022-04-20	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Molybdène	2022-04-20	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Nickel	2022-04-20	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Plomb	2022-04-20	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Potassium	2022-04-20	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sélénium	2022-04-20	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sodium	2022-04-20	2022-04-21	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Titane	2022-04-20	2022-04-21	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Vanadium	2022-04-20	2022-04-21	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Zinc	2022-04-20	2022-04-21	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC. N° DE PROJET: 201-11330-29

PRÉLEVÉ PAR: Patrick Therrien

N° BON DE TRAVAIL: 22Q885297 À L'ATTENTION DE: Steve St-Cyr LIEU DE PRÉLÈVEMENT:Windfall Lake

PRELEVE PAR. Patrick Thernen				LIEU DE PRELEVEIVIENT.	Willurali Lake
PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse organique de trace	•	•		<u>'</u>	
Acénaphtène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Acénaphtylène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Anthracène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (a) anthracène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (a) pyrène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (b) fluoranthène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (j) fluoranthène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (k) fluoranthène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (b+j+k) fluoranthène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (c) phénanthrène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Benzo (g,h,i) pérylène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Chrysène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,h) anthracène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,i) pyrène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,h) pyrène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Dibenzo (a,l) pyrène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Diméthyl-7,12 benzo (a) anthracène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Fluoranthène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Fluorène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Indéno (1,2,3-cd) pyrène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Méthyl-3 cholanthrène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Naphtalène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Phénanthrène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Pyrène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Méthyl-1 naphtalène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Méthyl-2 naphtalène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Diméthyl-1,3 naphtalène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Triméthyl-2,3,5 naphtalène	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. Naphtalène-d8	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. Pyrène-d10	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
Rec. p-Terphényl-d14	2022-04-19	2022-04-19	ORG-160-5102F	MA. 400 - HAP 1.1	GC/MS
% Humidité	2022-04-19	2022-04-19	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE
Hydrocarbures pétroliers C10 à C50	2022-04-19	2022-04-20	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2022-04-19	2022-04-20	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2022-04-19	2022-04-19	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE

2308852977

Comparison Com	WSP Canada inc. 1135, boul Lebourgneuf Québec (Québec) G2K 0M5 Télephone: 418-622-7066													
The contract property The			Detai d'analy:	LIL	48 hres 24 hres		6-12 hres Date requise:				L. L.	Bon de comm No de soumis	nande: ssion:	
Since St. Op. Control Cont	Numéro du projet: Bon de commande: Lieu de prélèvement:	201-11330-29 Windfall Lake					Critères à res	Specter RMD (mat ib RDS (mat ix	kiviable) iviable)		FEau	f" B consommation	L.	
Second 2000	Prélevé par: Chargé de projet: Courriel!	Patrick Therrien Steve St-Cyr steve st cyr@wsp com / sinne I	boussorra@wsp.com			1 10 1	'en 'oi	090			Ear	resurgence		
Substitute B. Donn E. S. Eunet surface Substitute							ง 'นเม '6เห	-012 ensl		-				
Experiment Exp	Matricet						י רו' ע	étroll						
Fig. 22.0 Ct. 28	S Solide SE Sédiment EP Eau potable	B Boue EU Eau usée ST Eau souterraine					и '6н 'а⊣	d saunque						
F65.22.Cf-28 F65.22.Cf-4 DUP1-F65.24 DUP1-F65.24 DUP1-F65.24 DUP1-F65.24 DUP1-F66.24 DUP1-F66.24 DUP1-F66.25 E67.22.Cf-18 E67.22.Cf-2 E67.22.Cf-3 E67.22.Cf-3 E67.22.Cf-3 E67.22.Cf-18 E67.22.Cf-3 E6		ification de l'échantillon	Date de pi	rélèvement	Matrice	Nombre de pots	'ກາ 'ມາ	Hydroc	ЧАН					
DUPL-F66-22 2022-04-11 S 1 X X X X X X X X X	-	m	2022-	-04-11	S	-	×	×	×					
DUP1-165-622 DUP1-165-622 DUP1-165-22 F68-22-C5-13 DUP1-165-23 DU			2022-	-04-11	S	-								-
DUP2-F65-22 2022-04-11 S 1 X X X X X X X X X	-		2022-	-04-11	s	-	×	×	×					
F66.22.CF-3 S. 10 X X X X X X X X X			2022-	-04-11	S	-								-
DUP1-F68-22	-		2022-	-04-12	S	1	×	×						-
F67-22-C5-18 2022-04-12 S 1	4		2022-	-04-12	S	1								-
F67-22-CF-3	-		2022-	-04-12	S	1	×	×						
Company Comp	1		2022-	-04-12	S	-	×	×			Ŕ			-
Falick therien Echantilloss regus par:														3-4
Hillons remis par. Patick therrien Etchantillons regus par.														-
State the time														1
Figure 1 Falick therrien Echantillons regus par: Falick therrien Falick th														1
tillons remis par: 2002-04-13 Pauck therien Echantilions regus par: Pauck therien Echantilions regus par: Page: 1 de														-
														-
tillons remis par: Pathox therrien														
tillons remis par: Pathox therien Echantillons regus par: Pathox therien Echantillons regus par: Page: 1 de												-		
tillons remis par. Patrick therrien 2022-04-13 Page: 1 de														
tillons remis par. Patrick therien Echantillons regus par. Echantillons regus par. Page: 1 de														1
tillons remis par: Patrick therrien Echantillons reçus par: Echantillons reçus par: Page: 1 de										-				
tillons remis par. Patrick therrien Echantillons regus par. Page: 1 de														-
tillons remis par. Patrick therrien Echantillons reçus par.														
tillons remis par. Patrick themien Echantillons regus par. 2022-04-13 Page: 1 de														
Lunous refins par: Echandillons regus par: 2022-04-13 Page: 1 de	forhandillong and and	Date of the contract												
01-04-01	Suom	Faurck themen			Echantillon	s reçus par.						Page		

NOM DU CLIENT: WSP CANADA INC.

1135 BOULEVARD LEBOURGNEUF

QUEBEC, QC G2K 0M5

(418) 623-7066

À L'ATTENTION DE: Sirine Boussorra

N° DE PROJET: 201-11330-29 N° BON DE TRAVAIL: 22Q890850

ANALYSE DES SOLS VÉRIFIÉ PAR: Annie Im, Chimiste, AGAT Montréal

ORGANIQUE DE TRACE VÉRIFIÉ PAR: EmmanuelBrousseau, Chimiste, AGAT Québec

DATE DU RAPPORT: 10 mai 2022

NOMBRE DE PAGES: 11 VERSION*: 1

Pour tout complément d'information concernant cette analyse, veuillez contacter votre chargé(e) de projet client au (418) 266-5511.

Avia de non responsabilité:	

*Notes

- L'ensemble des travaux réalisés dans le présent document ont été effectués en utilisant des protocoles normalisés reconnus, ainsi que des pratiques et des méthodes généralement acceptées. En vue d'améliorer la performance, les méthodes analytiques d'AGAT pourraient comprendre des modifications issues des méthodes de référence spécifiées.
- Tous les échantillons seront éliminés trente (30) jours après réception au laboratoire à moins qu'une Entente d'entreposage à long terme ne soit signée et retournée. Certaines analyses spécialisées peuvent être exemptées. Veuillez communiquer avec votre chargé de projets à la clientèle pour plus d'informations.
- La responsabilité d'AGAT en ce qui concerne tout retard, exécution ou non-exécution de ces services s'applique uniquement envers le client et ne s'étend à aucune autre tierce partie. À moins qu'il n'en soit par ailleurs convenu expressément par écrit, la responsabilité d'AGAT se limite au coût réel de l'analyse ou des analyses spécifiques incluses dans les services.
- Sauf accord écrit préalable d'AGAT Laboratoires, ce certificat ne doit être reproduit que dans sa totalité.
- Les résultats d'analyse communiqués ci-joint ne concernent que les échantillons reçus par le laboratoire.
- L'application des lignes directrices est fournie « en l'état » sans garantie de quelque nature que ce soit, ni expresse ni tacite, y compris, mais sans s'y limiter, les garanties de qualité marchande, d'aptitude à un usage particulier ou de non-contrefaçon. AGAT n'assume aucune responsabilité à l'égard de toute erreur ou omission dans les directives que contient ce document.
- Toutes les informations rapportables sont disponibles sur demande auprès d'AGAT Laboratoires, conformément aux normes ISO/IEC 17025:2017, DR-12-PALA et/ou NELAP.

AGAT Laboratoires (V1) Page 1 de 11

N° BON DE TRAVAIL: 22Q890850 N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC.

PRÉLEVÉ PAR: Steve St-Cyr

À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT:Infrastructure future mine Windfall

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-	05-02							1	DATE DU RAPP	ORT: 2022-05-10	
				IDENTIFIC	CATION DE L'É	CHANTILLON:	F57-22-CF-2B	F57-22-CF-3	F32-22-CF-1B	F32-22-CF-2	
						MATRICE:	Sol	Sol	Sol	Sol	
					DATE D'ÉCHAN	TILLONNAGE:	2022-04-25	2022-04-25	2022-04-25	2022-04-26	
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3808501	3808502	3808505	3808506	
Aluminium	mg/kg					30	3510	3110	6040	3980	
Antimoine	mg/kg	-	-	-		20	<20	<20	<20	<20	
Argent	mg/kg	2	20	40	200	0.5	<0.5	<0.5	<0.5	<0.5	
Arsenic	mg/kg	6	30	50	250	1	<1	<1	<1	<1	
Baryum	mg/kg	340	500	2000	10000	20	<20	<20	<20	<20	
Béryllium	mg/kg					1	<1	<1	<1	<1	
Cadmium	mg/kg	1.5	5	20	100	0.5	<0.5	<0.5	<0.5	<0.5	
Calcium	mg/kg					100	2100	2120	1900	1920	
Chrome	mg/kg	100	250	800	4000	2	11[<a]< td=""><td>10[<a]< td=""><td>15[<a]< td=""><td>11[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	10[<a]< td=""><td>15[<a]< td=""><td>11[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	15[<a]< td=""><td>11[<a]< td=""><td></td></a]<></td></a]<>	11[<a]< td=""><td></td></a]<>	
Cobalt	mg/kg	25	50	300	1500	2	3[<a]< td=""><td>3[<a]< td=""><td>2[<a]< td=""><td>3[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>2[<a]< td=""><td>3[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	2[<a]< td=""><td>3[<a]< td=""><td></td></a]<></td></a]<>	3[<a]< td=""><td></td></a]<>	
Cuivre	mg/kg	50	100	500	2500	1	5[<a]< td=""><td>6[<a]< td=""><td>3[<a]< td=""><td>4[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>3[<a]< td=""><td>4[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	3[<a]< td=""><td>4[<a]< td=""><td></td></a]<></td></a]<>	4[<a]< td=""><td></td></a]<>	
Étain	mg/kg	5	50	300	1500	5	<5	<5	<5	<5	
Fer	mg/kg					500	6380	5650	8710	6920	
Lithium	mg/kg	-	-	-	-	20	<20	<20	<20	<20	
Magnésium	mg/kg					100	1750	1740	2060	2270	
Manganèse	mg/kg	1000	1000	2200	11000	10	76[<a]< td=""><td>81[<a]< td=""><td>69[<a]< td=""><td>93[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	81[<a]< td=""><td>69[<a]< td=""><td>93[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	69[<a]< td=""><td>93[<a]< td=""><td></td></a]<></td></a]<>	93[<a]< td=""><td></td></a]<>	
Mercure	mg/kg	0.2	2	10	50	0.2	<0.2	<0.2	<0.2	<0.2	
Molybdène	mg/kg	2	10	40	200	1	<1	<1	<1	<1	
Nickel	mg/kg	50	100	500	2500	2	7[<a]< td=""><td>7[<a]< td=""><td>6[<a]< td=""><td>7[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	7[<a]< td=""><td>6[<a]< td=""><td>7[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	6[<a]< td=""><td>7[<a]< td=""><td></td></a]<></td></a]<>	7[<a]< td=""><td></td></a]<>	
Plomb	mg/kg	50	500	1000	5000	5	<5	<5	<5	<5	
Potassium	mg/kg					100	168	179	101	153	
Sélénium	mg/kg	1	3	10	50	0.5	<0.5	<0.5	<0.5	<0.5	
Sodium	mg/kg					100	<100	<100	<100	<100	
Titane	mg/kg					1	523	494	550	475	
Vanadium	mg/kg					15	<15	<15	19	<15	
Zinc	mg/kg	140	500	1500	7500	5	12[<a]< td=""><td>12[<a]< td=""><td>12[<a]< td=""><td>14[<a]< td=""><td></td></a]<></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>12[<a]< td=""><td>14[<a]< td=""><td></td></a]<></td></a]<></td></a]<>	12[<a]< td=""><td>14[<a]< td=""><td></td></a]<></td></a]<>	14[<a]< td=""><td></td></a]<>	

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 22Q890850

N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT:Infrastructure future mine Windfall

Analyses inorganiques - WSP (Balayage métaux + mercure)

DATE DE RÉCEPTION: 2022-05-02 DATE DU RAPPORT: 2022-05-10

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se réfèrer directement à la norme applicable

pour l'interprétation réglementaire.

NOM DU CLIENT: WSP CANADA INC.

PRÉLEVÉ PAR: Steve St-Cyr

3808501-3808506 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures et les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signatures rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 22Q890850 N° DE PROJET: 201-11330-29

350, rue Franquet Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

NOM DU CLIENT: WSP CANADA INC.

PRÉLEVÉ PAR: Steve St-Cvr

À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT:Infrastructure future mine Windfall

TREEL VET AIR. OLOVO OL OYI							LILO DE I		VI.IIIII astracto	ire ratare mine vi	maran
			Hyd	rocarbu	res pétrolie	rs C10-C50	(Sol)				
DATE DE RÉCEPTION: 2022-05-0	02							1	DATE DU RAPP	ORT: 2022-05-10	
				IDENTI	FICATION DE L'É	CHANTILLON:	F57-22-CF-2B	F57-22-CF-3	F32-22-CF-2		
						MATRICE:	Sol	Sol	Sol		
					DATE D'ÉCHAN	ITILLONNAGE:	2022-04-25	2022-04-25	2022-04-26		
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3808501	3808502	3808506		
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100	<100	<100		
% Humidité	%					0.2	17.7	18.3	12.5		
Étalon de recouvrement	Unités			Limites							
Rec. Nonane	%			60-140			94	105	127		

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3808501-3808506 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

N° BON DE TRAVAIL: 22Q890850

N° DE PROJET: 201-11330-29

Québec, Québec CANADA G1P 4P3 TEL (418)266-5511 FAX (418)653-2335 http://www.agatlabs.com

350, rue Franquet

NOM DU CLIENT: WSP CANADA INC. PRÉLEVÉ PAR: Steve St-Cyr

À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT:Infrastructure future mine Windfall

		1 1 9 0	nocarbard	o potrone	13 010 00	0 (001) 71	vec parmeanor	
DATE DE RÉCEPTION: 2022-05-0)2							DATE DU RAPPORT: 2022-05-10
				IDENTIFI	CATION DE L'ÉC	CHANTILLON:	F32-22-CF-1B	
						MATRICE:	Sol	
				[DATE D'ÉCHAN	TILLONNAGE:	2022-04-25	
Paramètre	Unités	C. / N· A	C / N· B	C / N· C	C / N· D	I DR	3808505	

Hydrocarbures pétroliers C10-C50 (Sol) - Avec purification

						100 CTTCIOL.	00.
				Г	DATE D'ÉCHAN	TILLONNAGE:	2022-04-25
Paramètre	Unités	C / N: A	C / N: B	C / N: C	C / N: D	LDR	3808505
Hydrocarbures pétroliers C10 à C50	mg/kg	100	700	3500	10000	100	<100
% Humidité	%					0.2	20.2
Étalon de recouvrement	Unités			Limites			
Rec. Nonane	%			60-140			116

Commentaires: LDR - Limite de détection rapportée; C / N - Critères Normes: A se réfère QC PTC 2016 A, B se réfère QC PTC 2016 B, C se réfère QC PTC 2016 C, D se réfère QC RESC (Annexe 1)

Les valeurs des critères sont uniquement fournies comme référence générale. Les critères fournis peuvent être ou ne pas être pertinents pour l'utilisation prévue. Se référer directement à la norme applicable

pour l'interprétation réglementaire.

3808505 Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

Méthode d'analyse effectuée avec traitements supplémentaires pour éliminer la présence de matières organiques.

Les analyses ont été effectuées par AGAT Québec (sauf celles marquées d'un *)

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signatures et les signatures et les signatures se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR: Steve St-Cyr N° BON DE TRAVAIL: 22Q890850 À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT:Infrastructure future mine

THEELY ET THE GROVE OF C	-			Analy	/se d	es So	ols								
Date du rapport: 2022-05-10				DUPLICAT			RIAU DE R	ÉFÉREN	ICE	BLANG	CFORT	IFIÉ	ÉCH.	FORTI	FIÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lin	nites	% Récup.	Lin	nites	% Récup.	Lin	nites
FANAMETIC	Lot	IN ECII.	Dup #1	Dup #2	76 u ecart	méthode	76 Necup.	Inf.	Sup.	, % Necup.	Inf.	Sup.	. 76 Necup.	Inf.	Sup.
Analyses inorganiques - WSF	P (Balayage mé	taux + me	ercure)												
Aluminium	3800483		6870	6760	1.6	< 30	61%	70%	130%	94%	80%	120%	NA	70%	130%
Antimoine	3800483		<20	<20	NA	< 20	138%	70%	130%	88%	80%	120%	86%	70%	130%
Argent	3800483		<0.5	< 0.5	NA	< 0.5	97%	70%	130%	92%	80%	120%	89%	70%	130%
Arsenic	3800483		2	2	NA	< 1	89%	70%	130%	91%	80%	120%	88%	70%	130%
Baryum	3800483		50	51	NA	< 20	99%	70%	130%	95%	80%	120%	93%	70%	130%
Béryllium	3800483		<1	<1	NA	< 1	85%	70%	130%	92%	80%	120%	92%	70%	130%
Cadmium	3800483		<0.5	< 0.5	NA	< 0.5	95%	70%	130%	94%	80%	120%	92%	70%	130%
Calcium	3800483		61000	60200	1.3	< 100	91%	70%	130%	98%	80%	120%	NA	70%	130%
Chrome	3800483		14	15	4.5	< 2	96%	70%	130%	92%	80%	120%	95%	70%	130%
Cobalt	3800483		5	5	NA	< 2	96%	70%	130%	92%	80%	120%	92%	70%	130%
Cuivre	3800483		13	15	8.8	< 1	94%	70%	130%	95%	80%	120%	94%	70%	130%
Étain	3800483		<5	<5	NA	< 5	94%	70%	130%	93%	80%	120%	90%	70%	130%
Fer	3800483		15400	15300	0.7	< 500	97%	70%	130%	96%	80%	120%	NA	70%	130%
Lithium	3800483		<20	<20	NA	< 20	85%	70%	130%	88%	80%	120%	87%	70%	130%
Magnésium	3800483		5510	4760	14.7	< 100	94%	70%	130%	98%	80%	120%	111%	70%	130%
Manganèse	3800483		247	225	9.5	< 10	92%	70%	130%	94%	80%	120%	92%	70%	130%
Mercure	3800483		<0.2	< 0.2	NA	< 0.2	83%	70%	130%	94%	80%	120%	96%	70%	130%
Molybdène	3800483		<1	<1	NA	< 1	100%	70%	130%	97%	80%	120%	95%	70%	130%
Nickel	3800483		13	13	5.2	< 2	93%	70%	130%	92%	80%	120%	90%	70%	130%
Plomb	3800483		22	22	NA	< 5	97%	70%	130%	97%	80%	120%	92%	70%	130%
Potassium	3800483		1200	1170	2.2	< 100	87%	70%	130%	98%	80%	120%	97%	70%	130%
Sélénium	3800483		<0.5	< 0.5	NA	< 0.5	89%	70%	130%	94%	80%	120%	91%	70%	130%
Sodium	3800483		149	146	NA	< 100	84%	70%	130%	95%	80%	120%	95%	70%	130%
Titane	3800483		376	402	6.7	< 1	104%	70%	130%	92%	80%	120%	NA	70%	130%
Vanadium	3800483		21	21	NA	< 15	92%	70%	130%	93%	80%	120%	93%	70%	130%
Zinc	3800483		89	94	5.9	< 5	95%	70%	130%	97%	80%	120%	94%	70%	130%

Commentaires: Le pourcentage de récupération du MRC concernant le Al et Sb est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA : Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Certifié par:

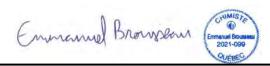
La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Contrôle de qualité

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR: Steve St-Cvr N° BON DE TRAVAIL: 22Q890850 À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT:Infrastructure future mine


TREEE TETTING OF OUT												αστ	. aotaio	a ca. o	
		P	naly	se oi	rgani	que	de tra	ace							
Date du rapport: 2022-05-10				DUPLICATA	A	MATÉ	RIAU DE R	ÉFÉREN	ICE	BLANG	CFORT	IFIÉ	ÉCH.	FORTIF	ΪÉ
PARAMÈTRE	Lot	N° éch.	Dup #1	Dup #2	% d'écart	Blanc de	% Récup.	Lim	nites	% Récup.		nites	% Récup.		nites
			.,	.,		méthode		Inf.	Sup.		Inf.	Sup.		Inf.	Sup.
Hydrocarbures pétroliers C10-C5	50 (SoI)														
Hydrocarbures pétroliers C10 à C50	3808827		204	212	NA	< 100	122%	60%	140%	115%	60%	140%	105%	60%	140%
Rec. Nonane	3808827		96	100	4.1	105	121%	60%	140%	119%	60%	140%	113%	60%	140%
% Humidité	3808501 3	8808501	17.7	17.9	1.3	< 0.2	100%	80%	120%	NA			NA		

Commentaires: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

Certifié par:

La procédure des Laboratoires AGAT concernant les signatures et les signataires se conforme strictement aux exigences d'accréditation ISO 17025:2005 comme le requiert, lorsque applicable, CALA, CCN et MDDELCC. Toutes les signatures sur les certificats d'AGAT sont protégées par des mots de passe et les signataires rencontrent les exigences des domaines d'accréditation ainsi que les exigences régionales approuvées par CALA, CCN et MDDELCC. Les pourcentaged e différence relative sont calculés à partir des données brutes. Il se peut que le pourcentage de différence relative ne reflète pas les valeurs dupliquées rapportées en raison de l'arrondissement des résultats finaux.

Dépassement CQ

NOM DU CLIENT: WSP CANADA INC.

N° BON DE TRAVAIL: 22Q890850

N° DE PROJET: 201-11330-29

À L'ATTENTION DE: Sirine Boussorra

Date du rapport: 10 mai 2022		MATÉRIAU D	E RÉFÉI	RENCE	BLAN	C FORT	TFIÉ	ÉCH.	FORTII	FIÉ
PARAMÈTRE	N° éch.	% Récup.	Lim	ites	% Récup.		nites	% Récup.		nites
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.		Inf.	Sup.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inf.	Sup.

Analyses inorganiques - WSP (Balayage métaux + mercure)

Aluminium 61% 70% 130% 94% 80% 120% NA 70% 130% Antimoine 138% 70% 130% 88% 80% 120% 86% 70% 130%

Commentaires: Le pourcentage de récupération du MRC concernant le Al et Sb est conforme à l'écart du certificat du matériau de référence du fournisseur.

NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Pour les métaux, l'écart acceptable est applicable pour 90% des composés. Pour les 10% des composés restant, un écart de 10% de plus du critère applicable est accepté.

Sommaire de méthode

NOM DU CLIENT: WSP CANADA INC.

N° DE PROJET: 201-11330-29 PRÉLEVÉ PAR:Steve St-Cyr N° BON DE TRAVAIL: 22Q890850 À L'ATTENTION DE: Sirine Boussorra

LIEU DE PRÉLÈVEMENT:Infrastructure future mine

PARAMÈTRE	PRÉPARÉ LE	ANALYSÉ LE	AGAT P.O.N.	RÉFÉRENCE DE LITTÉRATURE	TECHNIQUE ANALYTIQUE
Analyse des Sols	1	•	1	•	•
Aluminium	2022-05-04	2022-05-04	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Antimoine	2022-05-04	2022-05-04	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Argent	2022-05-04	2022-05-04	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Arsenic	2022-05-04	2022-05-04	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Baryum	2022-05-04	2022-05-04	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Béryllium	2022-05-04	2022-05-04	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Cadmium	2022-05-04	2022-05-04	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Calcium	2022-05-04	2022-05-04	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Chrome	2022-05-04	2022-05-04	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cobalt	2022-05-04	2022-05-04	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Cuivre	2022-05-04	2022-05-04	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Étain	2022-05-04	2022-05-04	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Fer	2022-05-04	2022-05-04	MET-161-6106F, 6108F, non accrédité MELCC	MA. 200 - Mét 1.2	ICP/MS
Lithium	2022-05-04	2022-05-04	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Magnésium	2022-05-04	2022-05-04	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Manganèse	2022-05-04	2022-05-04	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Mercure	2022-05-04	2022-05-04	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Molybdène	2022-05-04	2022-05-04	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Nickel	2022-05-04	2022-05-04	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Plomb	2022-05-04	2022-05-04	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Potassium	2022-05-04	2022-05-04	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sélénium	2022-05-04	2022-05-04	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Sodium	2022-05-04	2022-05-04	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Titane	2022-05-04	2022-05-04	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Vanadium	2022-05-04	2022-05-04	MET-161-6106F, 6108F, non accréditable MELCC	MA. 200 - Mét 1.2	ICP/MS
Zinc	2022-05-04	2022-05-04	MET-161-6106F, 6108F	MA. 200 - Mét 1.2	ICP/MS
Analyse organique de trace					
Hydrocarbures pétroliers C10 à C50	2022-05-03	2022-05-03	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2022-05-03	2022-05-03	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2022-05-03	2022-05-03	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE
Hydrocarbures pétroliers C10 à C50	2022-05-03	2022-05-03	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
Rec. Nonane	2022-05-03	2022-05-03	ORG-160-5100F	MA. 400 - HYD. 1.1	GC/FID
% Humidité	2022-05-03	2022-05-03	INOR-161-6006F	MA. 100 - S.T. 1.1	GRAVIMÉTRIE

(1811)				AGAT	Border aboratoires : 350 r	Bordereau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec Cñy, Quebec Canada, G1P 4P3	'analyses ty, Quebec Cana	da, G1P 4P3						
WSP Canada inc 1135, boul Lebourgneuf Guebre (Quebec) G2K 0M5 Telephane: 418-623-7066	Télépopieur 418-623-2434	Delai d'analyse roquis	5 jours 72 hres	48 hres 24 hres		6-12 hres Date requise:			-	Bon de No de s	Bon de commande: No de soumission:		1	
Numéro du projet. Bon de commande:	201-11330-29	± = = = = = = = = = = = = = = = = = = =				Crithres a respecter RMD (RDS ()	cter RMD (mat liciviable) RDS (mat liciviable)			A Tail concentration	m	U	٥	
Lieu de prélèvement. Prélevé par.	Infrastructures future mine Windfall Jonathan Mole				11		REIMR			Eau résurgence				
Chargé de projet: Courriel:	Steve St-Cyr steve st cyr@wsp com / sinne boussorra@wsp com	ssопа@wsp com			111	Cd, Co,	09:	ILES						
						a, Be, Ca, Mg, Mn, Mi t Zn)	D-01D stell	pplémenta						
						י רוי ו	loītè	ns s						
S Sol	B Boue EU Eau usée	S H	Eau de surface Effluent			'Я' '6ŀ	d sau	noite						
SE Sediment EP Eau potable	ST Eau souterraine	AF	ııt			, IA) x 1, Fe, I 3, Se, 3	nques	oilinu						
	Identification de l'échantillon		Date de	Matrice	Nambre de	no U	ostiv) 9A							
	CF-6		2022-04-25		pots	3	-	-						1
	CF-8		2022-04-25					1						
	CF-10		2022-04-25	5	1		-							
	CF-1A		2022-04-2		1									
5 F57-22-CF-2B	CF-2B		2022-04-25			×	×						1	
	GP-3		2022-04-25		1	×	×							1
7 F57-22-CF-5	CF-5		2022-04-25	S										1
-	£ 110		2022-04-2	1	1			13						
10	CF-18		2022-04-2		+	×	×	×					l	
=														
12								1						9,2
13							I							1
14														I
12														
16														T
1/													Ī	
0 5														
20														
21							1							
22										1				
23							-							1
24								-						I
Echantillons remis per; Date: 2022-04-27	Johannan Roy 04-27			Echantillons reçus par:	eçus par:						Dage.		ę	1
				Date.							· sRo ·	-	5	7

Control Fig. Cont					AGATL	Bordere aboratoires : 350 ru	Bordereau de demande d'analyses AGAT Laboratoires : 350 rue Franquet Quebec City, Quebec Canada, G1P 4P3	d'analyses City, Quebec Cana	ada, G1P 4P3						
2007-140-25-25-25-25-25-25-25-25-25-25-25-25-25-	WSP Canada inc. 1135, boul Lebourgneuf		Détai d'analyse requis	5 lours	48 hres		6-12 hrae			E		l			
1911-1912-20 1911	Grebec (Gulbbec) G2K 0M5 Teleptone 418-823-7056	Telecopieur, 418-523-24	700	72 hres	24 hres		Date requise:				Bon de No de	commande: soumission:			
Control Modes Control Mode	Numero du projet: Bon de commande:	201-11330-29					Critères à respector RMC) (mat lixiviable)			4		v		
Size SCO Color	Lieu de prélèvement	infrastructures future mine Wind	dfall				RDS	(mat lixiviable) AR			Eau consommati				
1 1 1 1 1 1 1 1 1 1	Chargé de projet	Steve St-Cyr steve.st.cyr@wsp.com / sine.b	oussorra@wsp.com				Cd, Co,	090	291if						
1 1 1 1 1 1 1 1 1 1							3a, Be, Ca, Mg, Mn, M et Zn)	o-Oto etallo	nbblément.						
Second S	= 111.0		EF EF	ace			(Al, Ag, As, E Fe, Hg, K, Li, Se, Sn, Tl, V e	orièq serudin	us enolfsölfin					111 - 1111	
222.CF-78 222.CF-78	П	Identification de l'échantillo	ē	Date de		Nombre de	taux Cu, Sb,		_						
2.22.CF-6 2.22.CF-6 2.22.CF-78 2.	F	F.2		prelèvement 2000 04 00		pote	Cr.	1							
2.22.CF-FB 2.22.CF-FB		F.4		2022-04-26	L		×	×							
2-22-CF-78		F-6		2022-04-26				-							
2027-04.27 Januarine Ray Left-intitions reque part		F-7B		2022-04-26		-			-						
2027-04-27 Jonathan Ray Echantillions recus part	un ec													İ	
2027-04-27 Junishian Ray Catalantin Cost a part	2								-						
2027-04-27 Condition Ray Explosibilities reque part	80								-						
Jointhine Ray Echantilions reque part	a								1						
2027.04.27 Junishian Roy Gehantillors regus part	10												-		
2027.04.27 Junglian Roy Gehantillors regus part	11														
Jonathan Roy Echantillons rogus part	12														
Jonethan Roy Echantillons rogus part	13														I
Jonathan Roy Echantillons rogus part	15														
Jonathan Roy Echantillons rogus part	16														
Jonathan Roy Échantillons rogus part	- 12								-						
Jonathan Roy Echantillors regus part	18														
Jonathan Roy Echantillons rogus part	19						1								
Jonathan Roy Echantillons rogus part	20														
Jonathan Roy Echantillons rogus part	21								1						
Jonathan Roy Echantillons rogus part	22								-			1			Ĭ
Jonathan Roy Echantillons rogus part	23														1
Jonathan Roy Echantillons regus part	24										1				
	Echanillons remis par:				Echantillons n	yous part									

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

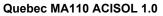
Osisko Mining Inc. Attn: Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau, Montreal

Canada, H3B-2S2

Phone: 514-206-3917, Fax:

05-October-2022


Date Rec.: 15 September 2022 LR Report: CA11009-SEP22

Reference: Windfall - 21489857 - set 1/5

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed Date	4: Analysis Completed Time	OBM-16-655- 600	12: OSK-W-16-30 9-W2-720	20: OSK-W-17-13 69-262.5
Sample Date & Time			24-Jun-22	24-Jun-22	23-Jun-22
Sample weight [g]	28-Sep-22	14:52	2.04	1.99	2.00
Initial pH	28-Sep-22	14:52	9.78	9.81	9.71
Vol H2SO4 [mL]	28-Sep-22	14:52	3.25	3.00	10.15
H2SO4 [Normality]	28-Sep-22	14:52	1.00	1.00	1.00
NP [t CaCO3/1000 t]	28-Sep-22	14:52	80.0	75.0	254
AP [t CaCO3/1000 t]	28-Sep-22	14:53	6.31	1.50	20.8
NNP [kg CaCO3/ tonne]	28-Sep-22	14:53	74	74	233
S [%]	22-Sep-22	10:28	0.202	0.048	0.664
Acid Leachable SO4-S [%]	22-Sep-22	10:28	< 0.04	0.05	< 0.04
Sulphide [%]	22-Sep-22	10:28	0.19	< 0.04	0.69
C [%]	22-Sep-22	09:50	1.02	0.941	2.82
CO3 (HCI) as %CO3 [%]	22-Sep-22	09:50	4.99	4.53	14.0
TOC [%]	19-Sep-22	15:28	0.220	0.189	0.301
C(g) [%]	19-Sep-22	14:27	< 0.05	< 0.05	< 0.05

CA11009-SEP22

LR Report :

SGS Canada Inc.

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

Gross NP (kg CaCO3/tonne) Section 7.3 AP (kg CaCO3/tonne) = Total S x 31.25

ASTM E1918 - S and C speciation

Catharine aunold Catharine Arnold, B.Sc., C.Chem Project Specialist,

Environment, Health & Safety

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Osisko Mining Inc. Attn: Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau Montreal, QC H3B- 2S2, Canada

Phone: 514-206-3917

Fax:

Quebec MA200-Met 1.2 Digest

Project: PO#OSK-619

05-October-2022

Date Rec.: 15 September 2022 LR Report: CA11010-SEP22

Reference: Windfall - 21489857 - set 1/5

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	1:	2:	3:	4:	8:	12:	20:
	Analysis Start Ana		Analysis		M-16-655-60	OSK-W-16-309-	OSK-W-17-136
	Date	Time Co	mpleted DateCon	npleted Time	0	W2-720	9-262.5
Sample Date & Time					24-Jun-22	24-Jun-22	23-Jun-22
F [µg/g]	22-Sep-22	08:28	27-Sep-22	14:05	4	4	2
Br [µg/g]	22-Sep-22	20:39	01-Oct-22	11:44	< 1.5	< 1.5	< 1.5
Hg [ug/g]	23-Sep-22	11:05	23-Sep-22	15:27	< 0.05	< 0.05	< 0.05
Ag [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	< 0.5	< 0.5	< 0.5
Al [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	2900	3100	17000
As [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	2.9	1.7	9.3
B [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	< 1	< 1	< 1
Ba [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	56	57	8.0
Be [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	0.12	0.14	0.04
Bi [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	0.15	0.23	2.0
Ca [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	19000	20000	55000
Cd [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	0.03	0.02	0.17
Co [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	6.2	6.2	33
Cr [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	32	32	94
Cu [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	7.5	12	76
Fe [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	10000	10000	44000
K [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	1400	1400	350
Li [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	3	4	54
Mg [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	5566	5622	29553

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Quebec MA200-Met 1.2 Digest

Project: PO#OSK-619

LR Report : CA11010-SEP22

20:	12:	8:	4:	3:	2:	1:	Analysis
	OSK-W-16-309-	BM-16-655-60		Analysis		Analysis Start	
9-262.5	W2-720	0	mpleted Time	ompleted DateCo	Time C	Date	
1000	291	285	12:45	28-Sep-22	23:31	23-Sep-22	Mn [μg/g]
0.8	2.1	1.9	12:45	28-Sep-22	23:31	23-Sep-22	Mo [μg/g]
190	480	450	12:45	28-Sep-22	23:31	23-Sep-22	Na [µg/g]
75	7.9	7.4	12:45	28-Sep-22	23:31	23-Sep-22	Ni [µg/g]
500	540	510	12:45	28-Sep-22	23:31	23-Sep-22	P [μg/g]
1.6	0.70	0.80	12:45	28-Sep-22	23:31	23-Sep-22	Pb [µg/g]
< 0.8	< 0.8	< 0.8	12:45	28-Sep-22	23:31	23-Sep-22	Sb [µg/g]
< 0.7	< 0.7	< 0.7	12:45	28-Sep-22	23:31	23-Sep-22	Se [µg/g]
3200	520	480	12:45	28-Sep-22	23:31	23-Sep-22	Si [µg/g]
< 5	< 5	< 5	12:45	28-Sep-22	23:31	23-Sep-22	Sn [µg/g]
47	84	85	12:45	28-Sep-22	23:31	23-Sep-22	Sr [µg/g]
< 1	< 1	< 1	12:45	28-Sep-22	23:31	23-Sep-22	Te [µg/g]
15	12	12	12:45	28-Sep-22	23:31	23-Sep-22	Ti [μg/g]
< 0.02	0.03	0.03	12:45	28-Sep-22	23:31	23-Sep-22	TI [μg/g]
0.013	0.51	0.45	12:45	28-Sep-22	23:31	23-Sep-22	U [μg/g]
62	3	3	12:45	28-Sep-22	23:31	23-Sep-22	V [µg/g]
3.5	3.2	3.1	12:45	28-Sep-22	23:31	23-Sep-22	Υ [μg/g]
58	20	25	12:45	28-Sep-22	23:31	23-Sep-22	Zn [µg/g]

Catharine Arnold, B.Sc., C.Chem

Project Specialist,

Environment, Health & Safety

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Osisko Mining Inc.

Attn: Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau

Montreal, QC H3B- 2S2, Canada

Phone: 514-206-3917

Fax:

TCLP1311--(Quebec Modified Version - MA. 100 -Lix.com.1.0)20:1 L/S ratio, 18hr

Project: PO#OSK-619

12-October-2022

Date Rec.: 15 September 2022 LR Report: CA11011-SEP22

Reference: Windfall - 21489857 - set

1/5

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed Date	4: Analysis Completed Time	6-W2-905	9-W2-1000	OSK-W-16-74 3-W1-915		81-W12-1140
Sample Date & Time			24-Jun-22	24-Jun-22		23-Jun-22	24-Jun-22
Sample weight [g]	27-Sep-22	10:24	20	20	20	20	20
Ext Fluid [#1 or #2]	27-Sep-22	10:24	1	1	1	1	1
Ext Volume [mL]	27-Sep-22	10:24	400	400	400	400	400
pH [No unit]	30-Sep-22	13:55	5.48	5.32	5.19	4.90	4.94
Conductivity [uS/cm]	30-Sep-22	13:55	6290	5960	5750	5170	5240
Alkalinity [mg/L as CaCO3]	30-Sep-22	13:55	1740	1600	1350	844	975
HCO3 [mg/L as CaCO3]	30-Sep-22	13:55	1740	1600	1350	844	975
CO3 [mg/L as CaCO3]	30-Sep-22	13:55	< 2	< 2	< 2	< 2	< 2
SO4 [mg/L]	06-Oct-22	09:39	< 20	< 20	< 20	< 20	< 20
CI [mg/L]	06-Oct-22	09:39	< 20	< 20	< 20	< 20	< 20
NO2 [as N mg/L]	06-Oct-22	09:39	< 3	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	06-Oct-22	09:39	< 6	< 6	< 6	< 6	< 6
NO2+NO3 [as N mg/L]	06-Oct-22	09:39	< 6	< 6	< 6	< 6	< 6
Br [mg/L]	06-Oct-22	09:39	< 30	< 30	< 30	< 30	< 30
F [mg/L]	03-Oct-22	09:08	0.11	< 0.06	0.06	< 0.06	< 0.06
Tot.Reactive P [mg/L]	11-Oct-22	16:38	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Hg [mg/L]	04-Oct-22	15:48	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Al [mg/L]	07-Oct-22	14:32	0.13	0.36	0.62	0.87	0.75
As [mg/L]	07-Oct-22	14:32	0.003	0.004	0.034	0.014	0.013
Ag [mg/L]	07-Oct-22	14:32	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Ba [mg/L]	07-Oct-22	14:32	0.07056	0.09507	0.07692	0.06140	0.04339
B [mg/L]	07-Oct-22	14:32	0.18	< 0.02	< 0.02	0.06	0.04
Be [mg/L]	07-Oct-22	14:32	0.00033	0.00031	0.00014	0.00069	0.00020
Bi [mg/L]	07-Oct-22	14:32	0.00002	0.00040	0.00060	0.00038	0.00002
Ca [mg/L]	11-Oct-22	17:14	421	364	281	58.3	72.3
Cd [mg/L]	07-Oct-22	14:33	0.00087	0.00011	0.00038	0.00064	0.00059

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

TCLP1311--(Quebec Modified Version - MA. 100 -Lix.com.1.0)20:1 L/S ratio, 18hr

Project: PO#OSK-619

LR Report : CA11011-SEP22

Analysis	3: Analysis	4:	13:	14:	15:	21: OSK-W-17-13	29:
	Completed	Completed	6-W2-905	9-W2-1000	3-W1-915		81-W12-1140
	Date	Time					
Cr [mg/L]	07-Oct-22	14:33	0.0017	0.0018	0.0032	0.0070	0.0042
Co [mg/L]	07-Oct-22	14:33	0.00073	0.00068	0.00061	0.00082	0.00095
Cu [mg/L]	07-Oct-22	14:33	0.006	0.006	< 0.002	0.027	0.024
Fe [mg/L]	07-Oct-22	14:33	2.00	0.24	0.90	11.6	12.5
K [mg/L]	07-Oct-22	14:33	7.62	3.47	7.19	6.34	5.28
Li [mg/L]	07-Oct-22	14:33	0.005	0.004	0.004	0.003	0.005
Mg [mg/L]	07-Oct-22	14:33	10.3	1.84	2.37	22.0	20.4
Mn [mg/L]	07-Oct-22	14:33	5.60	3.38	5.54	1.39	1.99
Mo [mg/L]	07-Oct-22	14:33	0.0014	< 0.0004	< 0.0004	0.0012	0.0013
Na [mg/L]	07-Oct-22	14:33	1380	1360	1390	1417	1360
Ni [mg/L]	07-Oct-22	14:33	0.003	0.002	0.005	0.002	0.003
P [mg/L]	07-Oct-22	14:33	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Pb [mg/L]	07-Oct-22	14:33	0.00118	0.01292	0.01308	0.01314	0.01717
Sb [mg/L]	07-Oct-22	14:33	< 0.009	< 0.009	< 0.009	< 0.009	< 0.009
Se [mg/L]	07-Oct-22	14:33	0.0024	< 0.0004	< 0.0004	0.0026	0.0011
Si [mg/L]	07-Oct-22	14:33	1.14	1.86	2.76	1.24	1.01
Sn [mg/L]	07-Oct-22	14:33	0.00009	< 0.00006	< 0.00006	0.00009	< 0.00006
Sr [mg/L]	07-Oct-22	14:33	0.501	0.230	0.224	0.187	0.08174
Te [mg/L]	07-Oct-22	14:33	0.0004	< 0.0001	< 0.0001	0.0008	0.0004
Ti [mg/L]	07-Oct-22	14:33	0.0026	< 0.0005	< 0.0005	0.0014	0.0027
TI [mg/L]	07-Oct-22	14:33	0.00036	< 0.00005	< 0.00005	0.00024	0.00016
Th [mg/L]	07-Oct-22	14:33	0.0003	< 0.0001	< 0.0001	0.0038	0.0008
U [mg/L]	07-Oct-22	14:33	0.000230	0.000342	0.000491	0.000830	0.000200
V [mg/L]	07-Oct-22	14:33	0.00015	0.00006	0.00012	0.00037	0.00030
W [mg/L]	07-Oct-22	14:33	0.00243	< 0.00002	< 0.00002	0.00149	0.00093
Zn [mg/L]	07-Oct-22	14:33	< 0.02	< 0.02	< 0.02	0.06	0.05

Extraction Fluid #1 - pH 4.93 \pm 0.05 5.7mLs of acetic acid plus 64.3 mLs of 1.0N NaOH bulked to 1L with deionized water.

Extraction Fluid #2 - pH 2.88 \pm 0.05

5.7 mLs of acetic acid bulked to 1L with deionized water.

Method Descriptions

Parameter	Units	Description	SGS Method Code
Ag	mg/L	Silver by ICP-MS Leachates	ME-CA-[ENV]SPE-LAK-AN-006
Al	mg/L	Aluminum by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006
Alkalinity	mg/L as CaCO3	Alkalinity by Titration	ME-CA-[ENV]EWL-LAK-AN-006
As	mg/L	Arsenic by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006
В	mg/L	Boron by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006
Ва	mg/L	Barium by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006
Be	mg/L	Beryllium by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006
Bi	mg/L	Bismuth by ICP-MS Leach	ME-CA-[ENV]SPE-LAK-AN-006
Br	mg/L	Bromide by Ion Chromatography	ME-CA-[ENV]IC-LAK-AN-001
Ca	mg/L	Calcium by ICP-MS Leachates	ME-CA-[ENV]SPE-LAK-AN-006

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

TCLP1311--(Quebec Modified Version - MA. 100 -Lix.com.1.0)20:1 L/S ratio, 18hr

Project: PO#OSK-619

Parameter	Units	Description	SGS Method Code
Cd	mg/L	Cadmium by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006
CI	mg/L	Chloride by Dionex - solution	ME-CA-[ENV]IC-LAK-AN-001
Co	mg/L	Cobalt by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006
CO3	mg/L as CaCO3	Carbonate by Titration	ME-CA-[ENV]EWL-LAK-AN-006
Conductivity	uS/cm	Conductivity by Conductivity Meter	ME-CA-[ENV]EWL-LAK-AN-006
Cr	mg/L	Chromium by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006
Cu	mg/L	Copper by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006
Ext Fluid	#1 or #2		NA
Ext Volume	mL	Extraction Fluid Volume	NA
F	mg/L	Fluoride by specific ion electrode	ME-CA-[ENV]EWL-LAK-AN-014
Fe	mg/L	Iron by ICP-MS Leachates	ME-CA-[ENV]SPE-LAK-AN-006
HCO3	mg/L as CaCO3	Bicarbonate by Titration	ME-CA-[ENV]EWL-LAK-AN-006
Hg	mg/L	Hg solutions by CVAAS	ME-CA-[ENV]SPE-LAK-AN-004
K	mg/L	Potassium by ICP-MS Leachates	ME-CA-[ENV]SPE-LAK-AN-006
Li	mg/L	Lithium by ICP-MS Leachates	ME-CA-[ENV]SPE-LAK-AN-006
Mg	mg/L	Magnesium by ICP-MS Leachates	ME-CA-[ENV]SPE-LAK-AN-006
Mn	mg/L	Manganese by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006
Мо	mg/L	Molybdenum by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006
Na	mg/L	Sodium by ICP-MS Leachates	ME-CA-[ENV]SPE-LAK-AN-006
Ni	mg/L	Nickel by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006
NO2	mg/L	Nitrite by Dionex - solution	ME-CA-[ENV]IC-LAK-AN-001
NO2+NO3	mg/L	Total Nitrates by Dionex -solution	ME-CA-[ENV]IC-LAK-AN-001
NO3	mg/L	Nitrate by Dionex - solution	ME-CA-[ENV]IC-LAK-AN-001
Р	mg/L	Phosphorus by ICP-MS Leachates	ME-CA-[ENV]SPE-LAK-AN-006
Pb	mg/L	Lead by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006
pН	No unit	pH - solution	ME-CA-[ENV]EWL-LAK-AN-006
Sample weight	g	Weight of Sample used.	NA
Sb	mg/L	Antimony by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006
Se	mg/L	Selenium by ICP-MS Leachates	ME-CA-[ENV]SPE-LAK-AN-006
Si	mg/L	Silicon by ICP-MS Leachates	ME-CA-[ENV]SPE-LAK-AN-006
Sn	mg/L	Tin by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006
SO4	mg/L	Sulphate by Ion Chromatography	ME-CA-[ENV]IC-LAK-AN-001
Sr	mg/L	Strontium by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006
Те	mg/L	Tellerium by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006
Th	mg/L	Thorium by ICP-MS Leachates	ME-CA-[ENV]SPE-LAK-AN-006
Ti	mg/L	Titanium by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006
TI	mg/L	Thallium by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006
Tot.Reactive P	mg/L	Tot. Reactive Phos. by Skalar or Spec no reagents or heat	ME-CA-[ENV]SFA-LAK-AN-004
U	mg/L	Uranium by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006
V	mg/L	Vanadium by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006
W	mg/L	Tungsten by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006
Zn	mg/L	Zinc by ICP-MS Leachates 10x cut	ME-CA-[ENV]SPE-LAK-AN-006

Reference Method Code
SM 3030/EPA 200.8
SM 3030/EPA 200.8
SM 2320
Niosh7300/EPA 200.8
SM 3030/EPA 200.8
SM 3030/EPA 200.8
SM 3030/EPA 200.8
SM 3030/EPA 200.8
EPA300/MA300-lons1.3
SM 3030/EPA 200.8
SM 3030/EPA 200.8
EPA300/MA300-lons1.3
<u> </u>

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

TCLP1311--(Quebec Modified Version - MA. 100 -Lix.com.1.0)20:1 L/S ratio, 18hr

Project: PO#OSK-619

LR Report : CA11011-SEP22

Reference Method Code
SM 3030/EPA 200.8
SM 2320
SM 2510
SM 3030/EPA 200.8
SM 3030/EPA 200.8
OM 4500
SM 4500
SM 3030/EPA 200.8
SM 2320
EPA 7471A/SM 3112B
SM 3030/EPA 200.8
SM 3030/EPA 200.8
SM 3030/EPA 200.8
SM 3030/EPA 200.8
SM 3030/EPA 200.8
SM 3030/EPA 200.8
SM 3030/EPA 200.8
EPA300/MA300-lons1.3
EPA300/MA300-lons1.3
EPA300/MA300-lons1.3
SM 3030/EPA 200.8
SM 3030/EPA 200.8
SM 4500
Sample weight
SM 3030/EPA 200.8
SM 3030/EPA 200.8
SM 3030/EPA 200.8
SM 3030/EPA 200.8
EPA300/MA300-lons1.3
SM 3030/EPA 200.8
SM 3030/EPA 200.8
SM 3030/EPA 200.8
SM 3030/EPA 200.8
SM 3030/EPA 200.8
SM 4500-P F
SM 3030/EPA 200.8
SM 3030/EPA 200.8
SM 3030/EPA 200.8
SM 3030/EPA 200.8
OW 3030/LFA 200.0

Catharine Arnold, B.Sc., C.Chem

Project Specialist,

Environment, Health & Safety

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Osisko Mining Inc. Attn : Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau

Montreal, QC

H3B-2S2, Canada

Phone: 514-206-3917

Fax:

SPLP1312--(Quebec Modified Version - MA. 100 -Lix.com.1.0) 20:1 L/S ratio, 18hr

Project: PO#OSK-619

12-October-2022

Date Rec.: 15 September 2022 LR Report: CA11012-SEP22

Reference: Windfall - 21489857 - set

1/5

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis	4:	6: 3M-15-552-280OBM	8: 1-16-655-6000E	9: 9: 0.16_655_220	10: ORM-16-677-70	13:	14: OSK-W-16-300-
	Completed DateCon		5W-13-332-26UODW	I-10-033-000OE	SIVI- 10-033-330	OBW-10-077-79	W2-905	W2-1000
Sample Date & Time			24-Jun-22	24-Jun-22	24-Jun-22	24-Jun-22	24-Jun-22	24-Jun-22
Sample weight [g]	29-Sep-22	12:48	20	20	20	20	20	20
Ext Fluid [#1 or #2]	29-Sep-22	12:48	1	1	1	1	1	1
Ext Volume [mL]	29-Sep-22	12:48	400	400	400	400	400	400
Final pH [no unit]	29-Sep-22	12:48	9.30	9.25	9.01	9.35	9.20	9.08
F [mg/L]	04-Oct-22	14:03	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Br [mg/L]	04-Oct-22	11:04	< 30	< 30	< 30	< 30	< 30	< 30
SO4 [mg/L]	04-Oct-22	11:04	< 20	< 20	< 20	< 20	< 20	< 20
CI [mg/L]	04-Oct-22	11:04	< 20	< 20	< 20	< 20	< 20	< 20
NO2 [as N mg/L]	04-Oct-22	11:04	< 3	< 3	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	04-Oct-22	11:04	< 6	< 6	< 6	< 6	< 6	< 6
Conductivity [uS/cm]	04-Oct-22	11:13	73	67	82	74	65	75
pH [No unit]	04-Oct-22	11:13	7.90	7.80	7.83	7.88	7.60	7.65
Alkalinity [mg/L as CaCO3]	04-Oct-22	11:13	32	26	33	34	11	22
HCO3 [mg/L as CaCO3]	04-Oct-22	11:13	32	26	33	34	11	22
CO3 [mg/L as CaCO3]	04-Oct-22	11:13	< 2	< 2	< 2	< 2	< 2	< 2
NH3+NH4 [as N mg/L]	30-Sep-22	09:10	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tot.Reactive P [mg/L]	11-Oct-22	11:17	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Hg [mg/L]	04-Oct-22	12:50	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
AI [mg/L]	04-Oct-22	10:36	0.920	0.933	0.767	0.874	0.827	0.733
As [mg/L]	04-Oct-22	10:36	0.0009	0.0012	0.0002	0.0022	0.0015	0.0015
Ag [mg/L]	04-Oct-22	10:36	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Ba [mg/L]	04-Oct-22	10:36	0.0194	0.00271	0.00202	0.0587	0.00049	0.00127
Be [mg/L]	04-Oct-22	10:36	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	04-Oct-22	10:36	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.002
Bi [mg/L]	04-Oct-22	10:36	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	04-Oct-22	10:36	8.51	8.60	11.6	8.47	8.89	10.7
Cd [mg/L]	04-Oct-22	10:36	< 0.000003	< 0.000003	< 0.000003	< 0.000003	< 0.000003	< 0.000003
Co [mg/L]	04-Oct-22	10:36	0.000048	0.000009	0.000010	0.000034	0.000006	0.000011
Cr [mg/L]	04-Oct-22	10:36	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008
Cu [mg/L]	04-Oct-22	10:36	< 0.0002	< 0.0002	0.0004	< 0.0002	0.0005	< 0.0002
Fe [mg/L]	04-Oct-22	10:36	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
K [mg/L]	04-Oct-22	10:36	2.22	2.47	2.61	2.38	2.39	1.76

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

SPLP1312--(Quebec Modified Version - MA. 100 -Lix.com.1.0) 20:1 L/S ratio, 18hr

Project: PO#OSK-619

Analysis	3:	4:	6:	8:	9:	10:	13:	14:
	Analysis Completed DateCon		3M-15-552-280OE	3M-16-655-600OE	3M-16-655-330	OBM-16-677-79	OSK-W-16-706- W2-905	OSK-W-16-309- W2-1000
Li [mg/L]	04-Oct-22	10:36	0.0008	0.0008	0.0009	0.0012	0.0009	0.0012
Mg [mg/L]	04-Oct-22	10:36	1.61	1.23	1.78	1.80	0.589	0.443
Mn [mg/L]	04-Oct-22	10:36	0.00337	0.00158	0.00586	0.00204	0.00085	0.00135
Mo [mg/L]	04-Oct-22	10:36	0.00008	0.00004	0.00026	0.00016	0.00014	0.00036
Na [mg/L]	04-Oct-22	10:36	2.04	1.76	0.66	1.89	1.50	1.64
Ni [mg/L]	04-Oct-22	10:36	0.0004	< 0.0001	0.0001	0.0001	0.0001	0.0001
P [mg/L]	04-Oct-22	10:36	0.010	0.009	0.009	0.011	0.008	0.008
Pb [mg/L]	04-Oct-22	10:36	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	04-Oct-22	10:36	< 0.0009	< 0.0009	0.0023	< 0.0009	0.0021	0.0019
Se [mg/L]	04-Oct-22	10:36	0.00005	0.00006	0.00010	0.00007	0.00018	0.00026
Si [mg/L]	04-Oct-22	10:36	1.28	1.29	0.61	1.35	1.10	1.10
Sn [mg/L]	04-Oct-22	10:36	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	04-Oct-22	10:36	0.113	0.143	0.0347	0.154	0.0143	0.0196
Te [mg/L]	04-Oct-22	10:36	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Ti [mg/L]	04-Oct-22	10:36	0.00015	0.00014	0.00014	0.00008	0.00012	0.00009
Th [mg/L]	04-Oct-22	10:36	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
TI [mg/L]	04-Oct-22	10:36	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	04-Oct-22	10:36	0.000216	0.000192	0.000010	0.000206	0.000005	0.000003
V [mg/L]	04-Oct-22	10:36	0.00122	0.00108	0.00006	0.00105	0.00088	0.00073
W [mg/L]	04-Oct-22	10:36	0.00012	0.00017	0.00038	0.00011	0.00027	0.00015
Zn [mg/L]	04-Oct-22	10:36	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Analysis	16:	17:	18:	19:	21:	23:	24:	25:
	OSK-W-17-1079-O							
	580	665	545	261	219.5	45	W4-885	805
Sample Date & Time	23-Jun-22	23-Jun-22	23-Jun-22	23-Jun-22	23-Jun-22	23-Jun-22	23-Jun-22	24-Jun-22
Sample weight [g]	20	20	20	20	20	20	20	20
Ext Fluid [#1 or #2]	1	1	1	1	1	1	1	1
Ext Volume [mL]	400	400	400	400	400	400	400	400
Final pH [no unit]	9.13	8.86	9.42	9.38	8.85	9.14	9.15	9.20
F [mg/L]	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Br [mg/L]	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30
SO4 [mg/L]	< 20	69	< 20	< 20	< 20	< 20	< 20	< 20
CI [mg/L]	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
NO2 [as N mg/L]	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
Conductivity [uS/cm]	63	164	51	70	48	74	92	81
pH [No unit]	7.62	7.51	7.62	7.76	7.43	7.76	7.88	7.78
Alkalinity [mg/L as CaCO3]	24	21	22	30	17	32	41	38
HCO3 [mg/L as CaCO3]	24	21	22	30	17	32	41	38
CO3 [mg/L as CaCO3]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
NH3+NH4 [as N mg/L]	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tot.Reactive P [mg/L]	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Hg [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Al [mg/L]	1.02	0.634	0.848	0.815	0.501	0.678	0.926	0.842
As [mg/L]	0.0085	0.0008	0.0016	0.0017	0.0173	0.0445	0.0181	0.0048
Ag [mg/L]	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Ba [mg/L]	0.00054	0.00043	0.00085	0.0588	0.00074	0.00025	0.00043	0.00066
Be [mg/L]	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.007	0.006
Bi [mg/L]	0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00002	< 0.00001	< 0.00001

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

SPLP1312--(Quebec Modified Version - MA. 100 -Lix.com.1.0) 20:1 L/S ratio, 18hr

Project: PO#OSK-619

25:	24:	23:	21:	19:	18:	17:	16:	Analysis
-805 K-W-18	K-W-18-1386- OS W4-885	K-W-17-968-1 OS 45	K-W-17-1369-OS 219.5	K-W-17-1305-OS 261	K-W-17-1121-OS 545	K-W-17-1104-OS 665	OSK-W-17-1079-OS 580	
000	114 000		210.0	20.	040	000	000	
9.50	9.83	10.1	4.47	8.89	6.94	22.7	7.76	Ca [mg/L]
< 0.000003	< 0.000003	< 0.000003	0.000006	< 0.000003	< 0.000003	< 0.000003	< 0.000003	Cd [mg/L]
0.000015	0.000029	0.000013	0.000010	0.000008	0.000005	0.000005	0.000006	Co [mg/L]
< 0.00008	0.00010	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008	Cr [mg/L]
< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	Cu [mg/L]
0.008	0.040	< 0.007	0.009	< 0.007	< 0.007	< 0.007	< 0.007	Fe [mg/L]
3.24	2.91	1.45	3.59	2.20	1.40	0.086	3.64	K [mg/L]
0.0013	0.0028	0.0018	0.0010	0.0008	0.0008	0.0017	0.0012	Li [mg/L]
2.23	2.97	2.61	1.45	1.83	0.205	2.75	0.331	Mg [mg/L]
0.00119	0.00567	0.00109	0.00738	0.00248	0.00040	0.00234	0.00168	Mn [mg/L]
0.00006	0.00029	0.00007	0.00040	0.00005	0.00006	0.00009	0.00014	Mo [mg/L]
1.62	2.34	1.30	0.57	1.88	1.70	1.31	1.07	Na [mg/L]
0.0002	0.0003	0.0003	0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	Ni [mg/L]
0.009	0.005	< 0.003	0.004	< 0.003	< 0.003	< 0.003	0.004	P [mg/L]
< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	Pb [mg/L]
0.0087	0.0019	0.0041	0.0013	< 0.0009	< 0.0009	< 0.0009	0.0045	Sb [mg/L]
0.00014	0.00013	0.00015	0.00006	0.00005	< 0.00004	0.00004	0.00005	Se [mg/L]
0.75	0.90	0.71	0.89	1.20	1.36	0.68	1.13	Si [mg/L]
< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	Sn [mg/L]
0.0109	0.0138	0.0232	0.0178	0.201	0.0178	0.121	0.00971	Sr [mg/L]
< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	Te [mg/L]
0.00010	0.00063	< 0.00005	0.00060	0.00006	0.00019	< 0.00005	0.00017	Ti [mg/L]
< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	Th [mg/L]
< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	TI [mg/L]
0.000008	0.000007	< 0.000002	0.000040	0.000167	0.000056	0.000013	0.000007	U [mg/L]
0.00093	0.00172	0.00108	0.00020	0.00115	0.00073	0.00050	0.00126	V [mg/L]
0.00066	0.00101	0.00022	0.00023	0.00017	0.00019	0.00007	0.00017	W [mg/L]
< 0.002	0.004	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	Zn [mg/L]

Analysis	26:	28:	29:	31				37:
		OSK-W-18-1759-0						
	470	190	W12-1140	W5-845	5 W5-970	W3-715	W3-765	W3-765
Sample Date & Time	24-Jun-22	24-Jun-22	24-Jun-22	24-Jun-22	24-Jun-22	24-Jun-22	24-Jun-22	
Sample weight [g]	20	20	20	20) 20	20	20	
Ext Fluid [#1 or #2]	1	1	1	1	1	1	1	
Ext Volume [mL]	400	400	400	400	400	400	400	
Final pH [no unit]	9.28	9.04	9.13	9.36	8.72	9.12	8.91	
F [mg/L]	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Br [mg/L]	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30
SO4 [mg/L]	< 20	< 20	< 20	< 20) 41	< 20	< 20	< 20
CI [mg/L]	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
NO2 [as N mg/L]	< 3	< 3	< 3	< 3	3 < 3	< 3	< 3	< 3
NO3 [as N mg/L]	< 6	< 6	< 6	< 6	S < 6	< 6	< 6	< 6
Conductivity [uS/cm]	59	55	63	63	3 144	. 79	81	80
pH [No unit]	7.73	7.51	7.64	7.77	7.63	7.81	7.80	7.82
Alkalinity [mg/L as CaCO3]	26	23	25	30) 25	37	38	38
HCO3 [mg/L as CaCO3]	26	23	25	30) 25	37	38	38
CO3 [mg/L as CaCO3]	< 2	< 2	< 2	< 2	2 < 2	< 2	< 2	< 2
NH3+NH4 [as N mg/L]	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tot.Reactive P [mg/L]	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Hg [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

SPLP1312--(Quebec Modified Version - MA. 100 -Lix.com.1.0) 20:1 L/S ratio, 18hr

Project: PO#OSK-619

LR Report : CA11012-SEP22

Analysis	26:	28:	29:	31:	34:	35:	36:	37:
	OSK-W-18-1713-OS 470	SK-W-18-1759-OS 190	6K-W-19-1181- OS W12-1140	SK-W-19-1181- O W5-845	OSK-W-19-1181-O W5-970	SK-W-19-1412-OS W3-715	SK-W-19-1412- OS W3-765	SK-W-19-1412- W3-765
	-114	100	1112 1140	110 040	110 070		110 100	110 100
Al [mg/L]	0.916	0.611	0.791	0.982	0.680	0.680	0.786	0.819
As [mg/L]	0.0067	0.0319	0.0068	0.0044	0.0028	0.0037	0.0005	0.0005
Ag [mg/L]	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Ba [mg/L]	0.00047	0.00088	0.00040	0.0512	0.00152	0.00042	0.00058	0.00055
Be [mg/L]	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	0.003	0.007	0.005	0.002	0.004	0.006	0.004	0.004
Bi [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	7.98	5.17	7.54	8.12	18.8	9.21	11.0	11.0
Cd [mg/L]	< 0.000003	< 0.000003	0.000018	< 0.000003	< 0.000003	< 0.000003	< 0.000003	< 0.000003
Co [mg/L]	0.000006	0.000007	0.000025	0.000005	0.000008	0.000029	0.000012	0.000012
Cr [mg/L]	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008
Cu [mg/L]	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Fe [mg/L]	< 0.007	0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
K [mg/L]	2.39	2.73	3.05	1.97	1.05	1.60	0.979	0.896
Li [mg/L]	0.0008	0.0016	0.0023	0.0016	0.0017	0.0016	0.0019	0.0020
Mg [mg/L]	0.800	1.66	0.971	0.901	2.90	2.69	1.91	1.88
Mn [mg/L]	0.00093	0.00889	0.00407	0.00190	0.00181	0.00111	0.00306	0.00293
Mo [mg/L]	0.00005	0.00013	0.00007	0.00007	0.00010	0.00005	0.00006	0.00006
Na [mg/L]	0.98	0.86	1.07	1.95	1.57	1.79	1.45	1.50
Ni [mg/L]	0.0001	< 0.0001	0.0004	< 0.0001	< 0.0001	0.0002	< 0.0001	0.0001
P [mg/L]	0.008	0.007	0.007	< 0.003	0.006	0.005	0.005	0.009
Pb [mg/L]	< 0.00009	< 0.00009	0.00069	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	0.0054	0.0046	0.0051	0.0011	< 0.0009	0.0011	0.0011	0.0011
Se [mg/L]	0.00006	0.00007	0.00010	< 0.00004	0.00008	0.00007	0.00005	0.00009
Si [mg/L]	0.85	0.86	1.08	1.29	0.65	0.80	0.53	0.53
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	0.0160	0.00597	0.00924	0.0773	0.132	0.0224	0.0254	0.0254
Te [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Ti [mg/L]	0.00040	0.00021	0.00014	0.00015	< 0.00005	0.00005	< 0.00005	< 0.00005
Th [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
TI [mg/L]	0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	0.000009	0.000015	0.000011	0.000193	0.000003	< 0.000002	< 0.000002	< 0.000002
V [mg/L]	0.00100	0.00027	0.00045	0.00071	0.00064	0.00107	0.00021	0.00017
W [mg/L]	0.00035	0.00030	0.00039	0.00040	0.00038	0.00046	0.00017	0.00018
Zn [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Catharine Arnold, B.Sc., C.Chem Project Specialist,

Environment, Health & Safety

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Osisko Mining Inc.

Attn: Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau

Montreal, QC H3B- 2S2, Canada

Phone: 514-206-3917

Fax:

CTEU-9--(4:1 L/S ratio, 7 day on 100mesh)

Project: PO#OSK-619

17-October-2022

Date Rec.: 15 September 2022 LR Report: CA11013-SEP22

Reference: Windfall - 21489857 - set

1/5

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed Date Con		6: BM-15-552-280O	8: BM-16-655-600O	9: BM-16-655-330	10: OBM-16-677-79	13: OSK-W-16-706- W2-905
Sample Date & Time			24-Jun-22	24-Jun-22	24-Jun-22	24-Jun-22	24-Jun-22
Sample weight [g]	30-Sep-22	11:20	100	100	100	100	100
Volume D.I. Water [mL]	30-Sep-22	11:20	400	400	400	400	400
Alkalinity [mg/L as CaCO3]	12-Oct-22	09:53	143	140	184	203	110
CO3 [mg/L as CaCO3]	12-Oct-22	09:53	9	4	9	17	< 2
HCO3 [mg/L as CaCO3]	12-Oct-22	09:53	134	136	176	186	110
pH [No unit]	04-Oct-22	11:16	8.62	8.41	8.49	8.73	8.29
Conductivity [uS/cm]	05-Oct-22	14:37	399	364	452	481	448
F [mg/L]	04-Oct-22	14:03	0.95	0.86	0.52	1.14	1.43
Br [mg/L]	13-Oct-22	13:54	< 30	< 30	< 30	< 30	< 30
CI [mg/L]	13-Oct-22	13:54	< 20	< 20	< 20	< 20	< 20
SO4 [mg/L]	13-Oct-22	13:54	31	25	24	23	56
NO2 [as N mg/L]	13-Oct-22	13:54	< 3	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	13-Oct-22	13:54	< 6	< 6	< 6	< 6	< 6
NO2+NO3 [as N mg/L]	13-Oct-22	13:54	< 6	< 6	< 6	< 6	< 6
NH3+NH4 [as N mg/L]	03-Oct-22	11:09	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tot.Reactive P [mg/L]	11-Oct-22	11:17	0.03	< 0.03	< 0.03	< 0.03	< 0.03
Hg [mg/L]	03-Oct-22	13:52	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
AI [mg/L]	03-Oct-22	16:47	1.30	0.659	0.261	0.887	0.680
As [mg/L]	03-Oct-22	16:47	0.0016	0.0025	0.0003	0.0015	0.0018
Ag [mg/L]	03-Oct-22	16:47	< 0.00005	< 0.00005	0.00006	< 0.00005	0.00049
Ba [mg/L]	03-Oct-22	16:47	0.0489	0.00962	0.0120	0.0476	0.00470
Be [mg/L]	03-Oct-22	16:47	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	03-Oct-22	16:47	0.018	0.016	0.012	0.018	0.020
Bi [mg/L]	03-Oct-22	16:47	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	03-Oct-22	16:47	8.91	8.81	23.9	6.59	9.33
Cd [mg/L]	03-Oct-22	16:47	< 0.000003	0.000003	< 0.000003	0.000003	0.000013
Co [mg/L]	03-Oct-22	16:47	0.000042	0.000028	0.000040	0.000028	0.000008
Cr [mg/L]	03-Oct-22	16:47	0.00024	0.00020	< 0.00008	0.00084	0.00065

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: PO#OSK-619

Analysis	3: Analysis	4:	6: 3M-15-552-280 OE	8: 8M-16-655-60001	9: 2M-16-655-220	10: OBM-16-677-70	13:
	Completed Date Con		JW-13-332-2000L	JIWI- 10-033-000 OI	JINI-10-033-330	ODM-10-077-79	W2-905
0.1.41	20.0	10.10	0.0005	0.0000	2.222	2.222	0.0000
Cu [mg/L]	03-Oct-22	16:48	0.0005	0.0002	< 0.0002	< 0.0002	0.0009
Fe [mg/L]	03-Oct-22	16:48	0.009	< 0.007	0.011	< 0.007	0.009
K [mg/L]	03-Oct-22	16:48	39.1	39.3	48.7	59.5	60.7
Li [mg/L]	03-Oct-22	16:48	0.0035	0.0031	0.0064	0.0063	0.0088
Mg [mg/L]	03-Oct-22	16:48	6.60	5.79	14.5	5.68	4.66
Mn [mg/L]	03-Oct-22	16:48	0.0059	0.00347	0.0401	0.00284	0.00271
Mo [mg/L]	03-Oct-22	16:48	0.00290	0.00135	0.00313	0.00158	0.0122
Na [mg/L]	03-Oct-22	16:48	35.3	27.0	10.6	39.1	28.4
Ni [mg/L]	03-Oct-22	16:48	0.0003	0.0001	< 0.0001	0.0001	0.0001
P [mg/L]	03-Oct-22	16:48	0.006	0.005	< 0.003	0.004	< 0.003
Pb [mg/L]	03-Oct-22	16:48	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	03-Oct-22	16:48	0.0010	0.0013	0.0081	0.0029	0.0135
Se [mg/L]	03-Oct-22	16:48	0.00005	0.00010	0.00031	0.00006	0.00095
Si [mg/L]	03-Oct-22	16:48	2.02	2.04	1.80	1.60	1.68
Sn [mg/L]	03-Oct-22	16:48	0.00009	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	03-Oct-22	16:48	0.267	0.225	0.114	0.157	0.0349
Te [mg/L]	03-Oct-22	16:48	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Ti [mg/L]	03-Oct-22	16:48	0.00016	0.00013	0.00013	0.00008	0.00047
Th [mg/L]	03-Oct-22	16:48	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
TI [mg/L]	03-Oct-22	16:48	0.000062	0.000053	0.000039	0.000081	0.000063
U [mg/L]	03-Oct-22	16:48	0.00166	0.00242	0.000144	0.00231	0.000277
V [mg/L]	03-Oct-22	16:48	0.00404	0.00354	0.00014	0.00406	0.00457
W [mg/L]	03-Oct-22	16:48	0.00093	0.00183	0.00118	0.00121	0.00459
Y [mg/L]	03-Oct-22	16:48	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Zn [mg/L]	03-Oct-22	16:48	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Analysis	14:	16:	17:	18:	19:	21:	23:
	OSK-W-16-309-OS W2-1000	K-W-17-1079-OS 580	K-W-17-1104-OS 665	K-W-17-1121-OS 545	K-W-17-1305- O 261	SK-W-17-136OS 9-219.5	K-W-17-968-1 45
Sample Date & Time	24-Jun-22	23-Jun-22	23-Jun-22	23-Jun-22	23-Jun-22	23-Jun-22	23-Jun-22
Sample weight [g]	100	100	100	100	100	100	100
Volume D.I. Water [mL]	400	400	400	400	400	400	400
Alkalinity [mg/L as CaCO3]	90	155	46	89	135	72	194
CO3 [mg/L as CaCO3]	< 2	7	< 2	4	7	< 2	10
HCO3 [mg/L as CaCO3]	90	148	46	85	128	72	184
pH [No unit]	8.11	8.50	7.90	8.53	8.56	8.04	8.54
Conductivity [uS/cm]	548	385	778	219	369	242	562
F [mg/L]	1.10	0.43	< 0.06	0.91	0.79	0.55	0.36
Br [mg/L]	< 30	< 30	< 30	< 30	< 30	< 30	< 30
CI [mg/L]	< 20	< 20	< 20	< 20	< 20	< 20	< 20
SO4 [mg/L]	98	< 20	340	< 20	30	21	45
NO2 [as N mg/L]	< 3	< 3	< 3	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	< 6	< 6	< 6	< 6	< 6	< 6	< 6
NO2+NO3 [as N mg/L]	< 6	< 6	< 6	< 6	< 6	< 6	< 6

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: PO#OSK-619

Analysis	14: OSK-W-16-309-OS	16: K-W-17-1079-OS	17: SK-W-17-1104-OS	18: SK-W-17-1121-OS	19: SK-W-17-1305- O	21: SK-W-17-136OS	23: SK-W-17-968-1
	W2-1000	580	665	545	261	9-219.5	45
NH3+NH4 [as N mg/L]	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tot.Reactive P [mg/L]	< 0.03	0.04	< 0.03	< 0.03	< 0.03	0.03	< 0.03
Hg [mg/L]	0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00002	< 0.00001
Al [mg/L]	0.444	0.408	0.340	1.65	0.688	0.608	0.540
As [mg/L]	0.0025	0.0017	0.0007	0.0065	0.0022	0.0768	0.0829
Ag [mg/L]	0.00073	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.00020	0.00018
Ba [mg/L]	0.00660	0.00254	0.00130	0.00103	0.0918	0.00453	0.00211
Be [mg/L]	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	0.000007	< 0.000007
B [mg/L]	0.023	0.018	0.005	0.020	0.014	0.009	0.016
Bi [mg/L]	0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00003	< 0.00001
Ca [mg/L]	19.2	8.95	61.6	1.97	9.81	8.30	8.93
Cd [mg/L]	0.000027	0.000004	< 0.000003	< 0.000003	< 0.000003	0.000074	< 0.000003
Co [mg/L]	0.000012	0.000036	0.000049	0.000014	0.000030	0.000028	0.000097
Cr [mg/L]	0.00037	0.00164	0.00026	0.00021	0.00021	0.00024	0.00319
Cu [mg/L]	0.0015	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0015	0.0002
Fe [mg/L]	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	0.076	< 0.007
K [mg/L]	51.8	44.6	0.899	16.3	34.3	34.7	48.1
Li [mg/L]	0.0196	0.0035	0.0283	0.0045	0.0044	0.0051	0.0226
Mg [mg/L]	7.17	15.5	45.7	0.287	6.32	3.46	18.4
Mn [mg/L]	0.00545	0.00466	0.0127	0.00050	0.00385	0.00610	0.00580
Mo [mg/L]	0.0336	0.00113	0.00087	0.00039	0.00038	0.00619	0.00121
Na [mg/L]	34.0	13.9	19.8	28.9	29.8	8.70	44.8
Ni [mg/L]	0.0001	0.0002	0.0004	0.0002	0.0002	0.0008	0.0006
P [mg/L]	< 0.003	< 0.003	< 0.003	< 0.003	0.006	0.014	0.003
Pb [mg/L]	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	0.00017	< 0.00009
Sb [mg/L]	0.0201	0.0111	0.0014	0.0031	0.0015	0.0317	0.0937
Se [mg/L]	0.00124	0.00048	0.00047	0.00004	< 0.00004	0.00034	0.00135
Si [mg/L]	2.03	1.50	1.50	2.44	2.29	2.90	1.50
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	0.0572	0.0397	0.453	0.0129	0.401	0.0391	0.0341
Te [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Ti [mg/L]	0.00032	0.00008	< 0.00005	0.00008	0.00005	0.00167	0.00010
Th [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.0002	< 0.0001
TI [mg/L]	0.000044	0.000078	< 0.000005	0.000012	0.000048	0.000052	0.000055
U [mg/L]	0.000489	0.000609	0.0118	0.00425	0.00655	0.00550	0.00552
V [mg/L]	0.00305	0.00243	0.00110	0.01109	0.00396	0.00124	0.00423
W [mg/L]	0.00235	0.00681	0.00032	0.00273	0.00151	0.00192	0.00114
Y [mg/L]	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	0.00023	< 0.00002
Zn [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Analysis	24:	25:	26:	28:	29:	31:	34:
	OSK-W-18-1386-OSF	(-W-18-1608-OS	K-W-18-1713-OSK-	W-18-1759-OSF	(-W-19-1181-OS	K-W-19-1181-OSk	(-W-19-1181-
	W4-885	805	470	190	W12-1140	W5-845	W5-970
Sample Date & Time	23-Jun-22	24-Jun-22	24-Jun-22	24-Jun-22	24-Jun-22	24-Jun-22	24-Jun-22

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: PO#OSK-619

Analysis	24:	25:	26:	28:	29:	31:	34:
	OSK-W-18-1386-OS						
	W4-885	805	470	190	W12-1140	W5-845	W5-970
Sample weight [g]	100	100	100	100	100	100	100
Volume D.I. Water [mL]	400	400	400	400	400	400	400
Alkalinity [mg/L as CaCO3]	321	283	111	124	160	195	137
CO3 [mg/L as CaCO3]	22	21	2	10	8	10	3
HCO3 [mg/L as CaCO3]	300	262	108	113	152	186	134
pH [No unit]	8.59	8.63	8.37	8.72	8.59	8.59	8.35
Conductivity [uS/cm]	851	650	374	447	473	482	720
F [mg/L]	0.42	0.43	0.70	1.08	1.32	1.64	0.15
Br [mg/L]	< 30	< 30	< 30	< 30	< 30	< 30	< 30
CI [mg/L]	< 20	< 20	< 20	< 20	< 20	< 20	< 20
SO4 [mg/L]	76	< 20	21	29	31	< 20	200
NO2 [as N mg/L]	< 3	< 3	< 3	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	< 6	< 6	< 6	< 6	< 6	< 6	< 6
NO2+NO3 [as N mg/L]	< 6	< 6	< 6	< 6	< 6	< 6	< 6
NH3+NH4 [as N mg/L]	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tot.Reactive P [mg/L]	< 0.03	0.04	< 0.03	0.04	< 0.03	< 0.03	< 0.03
Hg [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Al [mg/L]	0.402	0.442	0.598	1.22	1.36	1.31	0.351
As [mg/L]	0.0242	0.0166	0.0071	0.0743	0.0128	0.0054	0.0012
Ag [mg/L]	0.00015	< 0.00005	0.00007	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Ba [mg/L]	0.00268	0.00740	0.00328	0.00418	0.00249	0.00266	0.00866
Be [mg/L]	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	0.037	0.032	0.017	0.028	0.024	0.030	0.024
Bi [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	11.3	10.3	7.86	5.71	5.86	3.84	21.9
Cd [mg/L]	0.000003	0.000010	0.000007	0.000008	0.000026	0.000004	< 0.000003
Co [mg/L]	0.000056	0.000190	0.000028	0.000009	0.000012	0.000016	0.000031
Cr [mg/L]	0.00166	0.00083	0.00210	0.00051	0.00032	0.00038	0.00025
Cu [mg/L]	0.0004	< 0.0002	< 0.0002	0.0006	0.0004	0.0002	0.0003
Fe [mg/L]	< 0.007	< 0.007	< 0.007	0.011	< 0.007	< 0.007	< 0.007
K [mg/L]	80.5	100	62.0	70.8	76.9	49.3	34.4
Li [mg/L]	0.0158	0.0123	0.0069	0.0052	0.0144	0.0116	0.0251
Mg [mg/L]	20.9	15.5	6.75	2.03	2.33	2.63	32.7
Mn [mg/L]	0.0281	0.0127	0.00434	0.00161	0.00209	0.00157	0.00822
Mo [mg/L]	0.00134	0.00139	0.00168	0.00176	0.00227	0.00054	0.00091
Na [mg/L]	76.4	31.6	14.4	30.6	29.5	54.7	45.2
Ni [mg/L]	0.0005	0.0004	0.0002	0.0002	0.0003	0.0002	0.0002
P [mg/L]	0.004	0.015	< 0.003	0.004	0.004	0.004	< 0.003
Pb [mg/L]	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	0.0364	0.0320	0.0221	0.0723	0.0444	0.0074	0.0040
Se [mg/L]	0.00117	0.00086	0.00029	0.00024	0.00047	0.00005	0.00060
Si [mg/L]	2.09	1.78	1.39	1.42	1.57	1.53	1.70
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	0.0231	0.0212	0.0241	0.00892	0.0152	0.0205	0.184
Te [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
	\ 0.0001	\ 0.0001	\ 0.0001	\ 0.000 i	\ 0.0001	\ 0.0001	\ 0.0001

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: PO#OSK-619

Analysis	24: OSK-W-18-1386-OS	25: K-W-18-1608-OS	26: SK-W-18-1713-0	28: SK-W-18-1759-0	29: SK-W-19-1181-0	31: SK-W-19-1181-0	34: SK-W-19-1181-
	W4-885	805	470	190	W12-1140	W5-845	W5-970
Ti [mg/L]	< 0.00005	0.00005	0.00006	0.00023	0.00020	0.00010	< 0.00005
Th [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
TI [mg/L]	0.000058	0.000067	0.000064	0.000049	0.000067	0.000040	0.000062
U [mg/L]	0.00322	0.00286	0.0100	0.00505	0.0140	0.0210	0.00257
V [mg/L]	0.00485	0.00291	0.00226	0.00519	0.00660	0.00326	0.00184
W [mg/L]	0.00893	0.00536	0.00483	0.00285	0.00708	0.01062	0.00244
Y [mg/L]	< 0.00002	< 0.00002	< 0.00002	0.00002	< 0.00002	< 0.00002	< 0.00002
Zn [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Analysis	35:	36:	37:	38:BLK:
	OSK-W-19-1412-OS			CTEU Blank
	W3-715	W3-765	W3-765	
Sample Date & Time	24-Jun-22	24-Jun-22		
Sample weight [g]	100	100	100	
Volume D.I. Water [mL]	400	400	400	400
Alkalinity [mg/L as CaCO3]	246	209	146	4
CO3 [mg/L as CaCO3]	18	9	15	< 2
HCO3 [mg/L as CaCO3]	227	200	131	4
pH [No unit]	8.66	8.43	8.37	6.57
Conductivity [uS/cm]	497	600	569	7
F [mg/L]	0.36	0.30	0.34	< 0.06
Br [mg/L]	< 30	< 30	< 30	< 30
CI [mg/L]	< 20	< 20	< 20	< 20
SO4 [mg/L]	< 20	< 20	< 20	< 20
NO2 [as N mg/L]	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	< 6	< 6	< 6	< 6
NO2+NO3 [as N mg/L]	< 6	< 6	< 6	< 6
NH3+NH4 [as N mg/L]	< 0.1	< 0.1	< 0.1	< 0.1
Tot.Reactive P [mg/L]	0.03	0.04	< 0.03	< 0.03
Hg [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Al [mg/L]	0.753	0.232	0.214	0.003
As [mg/L]	0.0038	0.0013	0.0013	< 0.0002
Ag [mg/L]	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Ba [mg/L]	0.00245	0.00375	0.00387	< 0.00008
Be [mg/L]	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	0.045	0.051	0.050	0.010
Bi [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	5.02	17.2	17.1	0.02
Cd [mg/L]	< 0.000003	< 0.000003	< 0.000003	< 0.000003
Co [mg/L]	0.000087	0.000095	0.000095	0.000007
Cr [mg/L]	0.00242	< 0.00008	< 0.00008	< 0.00008
Cu [mg/L]	< 0.0002	0.0002	< 0.0002	< 0.0002
Fe [mg/L]	< 0.007	< 0.007	< 0.007	< 0.007
K [mg/L]	34.6	31.4	30.4	0.162

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: PO#OSK-619

LR Report: CA11013-SEP22

Analysis	35:	36:	37:	38:BLK:
	OSK-W-19-1412-OS W3-715	K-W-19-1412-OS W3-765	K-W-19-1412- W3-765	CTEU Blank
Li [mg/L]	0.0217	0.0198	0.0197	< 0.0001
Mg [mg/L]	14.2	24.5	24.8	0.007
Mn [mg/L]	0.00304	0.0332	0.0336	0.00036
Mo [mg/L]	0.00046	0.00169	0.00159	< 0.00004
Na [mg/L]	53.4	52.5	51.6	1.35
Ni [mg/L]	0.0004	0.0002	0.0002	< 0.0001
P [mg/L]	< 0.003	< 0.003	< 0.003	0.005
Pb [mg/L]	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	0.0038	0.0069	0.0070	< 0.0009
Se [mg/L]	0.00011	0.00043	0.00045	< 0.00004
Si [mg/L]	1.35	2.29	2.05	< 0.02
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	0.0196	0.0506	0.0495	< 0.00008
Te [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Ti [mg/L]	0.00006	0.00006	< 0.00005	< 0.00005
Th [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001
TI [mg/L]	0.000039	0.000032	0.000030	< 0.000005
U [mg/L]	0.00191	0.00446	0.000691	0.000051
V [mg/L]	0.00329	0.00059	0.00059	0.00002
W [mg/L]	0.00215	0.00047	0.00037	< 0.00002
Y [mg/L]	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Zn [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002

Catharine Arnold, B.Sc., C.Chem

Project Specialist,

Catharine aurold

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Osisko Mining Inc. Attn: Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau Montreal, QC

H3B- 2S2, Canada

Phone: 514-206-3917

Fax:

Quebec MA110 ACISOL 1.0

Project: PO#OSK-619

05-October-2022

Date Rec.: 15 September 2022 LR Report: CA11014-SEP22

Reference: 21489857 Windfall - set 2/5

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3:	4:	6:	10:	12:	32:	35:
	Analysis Completed DateCon	•	9SK-W-19-1746 -W1-765	OSK-W-17-663-0 W2-680	OSK-W-17-836-V 400	NST-21-0930-19 5	OSK-W-21-262 9-948
Sample Date & Time			25-Jun-22	25-Jun-22	25-Jun-22	N/A	N/A
Sample weight [g]	21-Sep-22	16:36	2.01	2.02	1.99	1.99	1.98
Initial pH	21-Sep-22	16:36	9.05	9.54	9.48	9.71	9.52
Vol H2SO4 [mL]	21-Sep-22	16:36	1.05	1.25	1.55	1.85	6.45
H2SO4 [Normality]	21-Sep-22	16:36	1.00	1.00	1.00	1.00	1.00
NP [t CaCO3/1000 t]	21-Sep-22	16:36	26.1	30.9	38.9	46.5	163
AP [t CaCO3/1000 t]	22-Sep-22	10:30	3.12	115	14.4	1.09	14.2
NNP [kg CaCO3/ tonne]	22-Sep-22	10:30	23	-84.1	24	45	149
S [%]	22-Sep-22	10:28	0.100	3.68	0.462	0.035	0.453
Acid Leachable SO4-S [%]	22-Sep-22	10:28	< 0.04	0.25	0.07	<0.04	0.09
Sulphide [%]	22-Sep-22	10:28	0.07	3.43	0.39	< 0.04	0.36
C [%]	22-Sep-22	09:50	0.274	0.285	0.534	0.558	2.43
CO3 (HCI) as %CO3 [%]	22-Sep-22	09:50	1.24	1.30	2.51	2.64	12.0
TOC [%]	19-Sep-22	15:29	0.074	0.102	0.132	0.080	0.290
C(g) [%]	19-Sep-22	08:02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

MA110 ACISOL 1.0

Gross NP (kg CaCO3/tonne) Section 7.3 AP (kg CaCO3/tonne) = Total S x 31.25

ASTM E1918 - S and C speciation

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Quebec MA110 ACISOL 1.0

Project: PO#OSK-619

LR Report : CA11014-SEP22

Catharine Arnold, B.Sc., C.Chem

Project Specialist,

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Osisko Mining Inc.

Attn : Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau

Montreal, QC

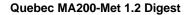
H3B-2S2, Canada

Phone: 514-206-3917

Fax:

Quebec MA200-Met 1.2 Digest

Project: PO#OSK-619


17-October-2022

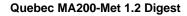
Date Rec.: 15 September 2022 LR Report: CA11015-SEP22

Reference: 21489857 Windfall - set 2/5

Copy: #1

Analysis	1:	2:	3:	4:	6:	10:	12:
		Analysis Start	Analysis			OSK-W-17-663-OS	
	Date	Time	Completed Date Cor	npieted Time	W1-765	W2-680	00
Sample Date & Time					25-Jun-22	25-Jun-22	25-Jun-22
F [μg/g]	12-Oct-22	10:00	12-Oct-22	16:38	< 1	2	1
Br [µg/g]	22-Sep-22	20:39	01-Oct-22	11:44	< 1.5	< 1.5	< 1.5
Hg [ug/g]	23-Sep-22	11:05	23-Sep-22	15:27	< 0.05	< 0.05	< 0.05
Ag [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	< 0.5	0.7	< 0.5
Al [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	3500	12000	2900
As [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	4.1	11	21
3 [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	< 1	< 1	< 1
Ba [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	20	20	22
Be [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	0.13	0.18	0.09
Bi [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	< 0.09	7.3	0.11
Ca [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	4600	13000	9100
Cd [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	0.09	0.06	0.06
Co [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	1.2	24	2.3
Cr [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	22	30	18
Cu [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	7.0	130	44
Fe [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	8700	59000	12000
K [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	1000	1500	970
Li [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	7	18	7
Mg [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	2724	8141	4143
Mn [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	277	297	371
Mo [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	2.1	2.3	2.2
Na [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	150	550	200
Ni [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	3.7	9.4	3.7
P [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	41	1100	25
Pb [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	5.4	2.6	2.2
Sb [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	< 0.8	< 0.8	< 0.8
Se [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	< 0.7	< 0.7	< 0.7
Si [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	570	2000	660
Sn [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	< 5	< 5	< 5

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO


Phone: 705-652-2000 FAX: 705-652-6365

Project: PO#OSK-619

LR Report : CA11015-SEP22

Analysis	1:	2:	3:	4:	6:	10:	12:
	Analysis Start	Analysis Start	Analysis	Analysis(OSK-W-19-1746-	OSK-W-17-663-0	OSK-W-17-836-4
	Date	Time	Completed Date C	completed Time	W1-765	W2-680	00
Sr [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	5.7	17	9.2
Ti [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	4.7	218	5.7
Te [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	< 1	< 1	< 1
TI [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	< 0.02	0.08	0.02
U [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	0.35	0.18	0.24
V [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	< 1	27	< 1
Y [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	4.3	13	2.5
Zn [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	44	72	27

Analysis	32: WST-21-0930-19OSF	35: -W-21-2629-
	5	948
Sample Date & Time	N/A	N/A
F [µg/g]	2	1
Br [µg/g]	< 1.5	< 1.5
Hg [ug/g]	< 0.05	< 0.05
Ag [μg/g]	< 0.5	< 0.5
Al [μg/g]	2100	12000
As [μg/g]	2.0	46
B [µg/g]	< 1	< 1
Ba [µg/g]	27	15
Be [µg/g]	0.07	0.07
Bi [µg/g]	< 0.09	< 0.09
Ca [µg/g]	15000	42000
Cd [µg/g]	< 0.02	0.08
Co [µg/g]	3.8	44
Cr [µg/g]	33	62
Cu [µg/g]	3.5	93
Fe [µg/g]	5200	46000
K [μg/g]	760	630
Li [μg/g]	6	34
Mg [µg/g]	1879	18651
Mn [µg/g]	138	860
Mo [μg/g]	2.2	0.5
Na [µg/g]	360	140
Ni [µg/g]	3.2	83
P [μg/g]	240	350
Pb [μg/g]	0.81	0.76
Sb [µg/g]	< 0.8	< 0.8
Se [µg/g]	< 0.7	< 0.7
Si [µg/g]	560	2400
Sn [µg/g]	< 5	< 5
Sr [µg/g]	46	22
Ti [μg/g]	7.5	10

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: PO#OSK-619

LR Report : CA11015-SEP22

Analysis	32: WST-21-0930-190	35: DSK-W-21-2629-
	5	948
Te [µg/g]	< 1	< 1
TI [μg/g]	< 0.02	< 0.02
U [µg/g]	0.33	0.005
V [μg/g]	1	31
Υ [μg/g]	1.1	2.3
Zn [μg/g]	16	80

Catharine Arnold, B.Sc., C.Chem

Project Specialist,

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

17-October-2022

Project: PO#OSK-619

Date Rec.: 15 September 2022 LR Report: CA11016-SEP22

Reference: 21489857 Windfall - set 2/5

TCLP1311--(Quebec Modified Version - MA. 100 -Lix.com.1.0)20:1 L/S ratio, 18hr

Copy: #1

Osisko Mining Inc.

Attn: Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau

Montreal, QC

H3B- 2S2, Canada

Phone: 514-206-3917

Fax:

Analysis	3:	4:	5:	9:		21:		24:
	Analysis Completed DateComp		K-W-19-1746 -W1-687	OSK-W-17-136 9-365	OSK-W-17-663- W2-680	OSK-W-19-189 7-496	OSK-W-19-909- W12-955	OSK-W-19-934- W3-885
Sample Date & Time			25-Jun-22	25-Jun-22	25-Jun-22	N/A	N/A	N/A
Sample weight [g]	27-Sep-22	10:24	20	20	20	20	20	20
Ext Fluid [#1 or #2]	27-Sep-22	10:24	1	1	1	1	1	1
Ext Volume [mL]	27-Sep-22	10:24	400	400	400	400	400	400
pH [No unit]	30-Sep-22	13:56	5.00	5.09	5.38	5.27	5.00	5.01
Conductivity [uS/cm]	30-Sep-22	13:56	5350	5660	6260	6030	5300	5320
Alkalinity [mg/L as CaCO3]	30-Sep-22	13:56	1070	1200	1620	1460	1090	1090
HCO3 [mg/L as CaCO3]	30-Sep-22	13:56	1070	1200	1620	1460	1090	1090
CO3 [mg/L as CaCO3]	30-Sep-22	13:56	< 2	< 2	< 2	< 2	< 2	< 2
SO4 [mg/L]	06-Oct-22	09:40	< 20	< 20	< 20	< 20	< 20	< 20
CI [mg/L]	06-Oct-22	09:40	< 20	< 20	< 20	< 20	< 20	< 20
NO2 [as N mg/L]	06-Oct-22	09:40	< 3	< 3	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	06-Oct-22	09:40	< 6	< 6	< 6	< 6	< 6	< 6
NO2+NO3 [as N mg/L]	06-Oct-22	09:40	< 6	< 6	< 6	< 6	< 6	< 6
Br [mg/L]	06-Oct-22	09:40	< 30	< 30	< 30	< 30	< 30	< 30
F [mg/L]	03-Oct-22	09:09	< 0.06	< 0.06	< 0.06	0.07	0.08	< 0.06
Tot.Reactive P [mg/L]	11-Oct-22	11:17	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Hg [mg/L]	04-Oct-22	15:45	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Al [mg/L]	07-Oct-22	14:33	0.75	0.57	0.23	0.40	0.65	0.70
As [mg/L]	07-Oct-22	14:33	0.013	0.007	0.002	0.063	0.023	0.008
Ag [mg/L]	07-Oct-22	14:33	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Ba [mg/L]	07-Oct-22	14:33	0.0925	0.0662	0.0798	0.630	0.0687	0.0451
B [mg/L]	07-Oct-22	14:33	0.02	0.02	< 0.02	< 0.02	0.02	0.02
Be [mg/L]	07-Oct-22	14:33	0.00022	0.00044	0.00048	0.00054	0.00043	0.00051
Bi [mg/L]	07-Oct-22	14:33	0.00001	0.00005	0.00005	0.00001	0.00003	0.00001
Ca [mg/L]	07-Oct-22	14:33	86.9	180	411	334	84.9	81.6
Cd [mg/L]	07-Oct-22	14:33	0.00050	0.00097	0.00072	0.00086	0.00072	0.00042
Cr [mg/L]	07-Oct-22	14:33	0.0031	0.0045	0.0017	0.0019	0.0046	0.0075
Co [mg/L]	07-Oct-22	14:33	0.00097	0.00057	0.00172	0.00261	0.00031	0.00065
Cu [mg/L]	07-Oct-22	14:33	0.005	0.008	0.002	0.002	0.004	0.007
Fe [mg/L]	07-Oct-22	14:33	19.9	10.4	0.43	2.86	19.6	20.6
K [mg/L]	07-Oct-22	14:33	5.89	5.66	8.03	3.77	4.57	4.86
Li [mg/L]	07-Oct-22	14:33	0.005	0.005	0.005	0.006	0.005	0.004
Mg [mg/L]	07-Oct-22	14:33	35.0	47.4	4.58	4.21	31.5	34.0

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

TCLP1311--(Quebec Modified Version - MA. 100 -Lix.com.1.0)20:1 L/S ratio, 18hr

Project: PO#OSK-619

LR Report : CA11016-SEP22

Analysis	3: Analysis	4: Analysis OS	5: K-W-19-1746					24: OSK-W-19-934-
	Completed DateCom	pleted Time	-W1-687	9-365	W2-680	7-496	W12-955	W3-885
Mn [mg/L]	07-Oct-22	14:33	2.48	2.24	6.26	11.7	2.91	2.75
Mo [mg/L]	07-Oct-22	14:33	0.0005	0.0007	0.0005	< 0.0004	0.0005	0.0005
Na [mg/L]	07-Oct-22	14:33	1380	1410	1410	1370	1420	1390
Ni [mg/L]	07-Oct-22	14:33	0.003	0.001	0.002	0.014	0.003	0.007
P [mg/L]	07-Oct-22	14:33	< 0.003	< 0.003	0.010	0.010	< 0.003	< 0.003
Pb [mg/L]	07-Oct-22	14:33	0.01059	0.01561	0.00096	0.00975	0.00852	0.0246
Sb [mg/L]	07-Oct-22	14:33	< 0.009	< 0.009	< 0.009	< 0.009	< 0.009	< 0.009
Se [mg/L]	07-Oct-22	14:33	< 0.0004	0.0008	0.0025	< 0.0004	0.0031	0.0017
Si [mg/L]	07-Oct-22	14:33	1.13	1.20	1.33	1.38	1.04	1.11
Sn [mg/L]	07-Oct-22	14:33	0.00006	0.00011	0.00007	< 0.00006	0.00008	0.00007
Sr [mg/L]	07-Oct-22	14:33	0.08572	0.200	0.457	0.296	0.08996	0.07973
Te [mg/L]	07-Oct-22	14:33	0.0004	0.0008	0.0007	0.0004	0.0007	0.0005
Ti [mg/L]	07-Oct-22	14:33	0.0024	0.0027	0.0029	0.0029	0.0034	0.0028
TI [mg/L]	07-Oct-22	14:33	< 0.00005	0.00008	0.00009	< 0.00005	< 0.00005	0.00005
Th [mg/L]	07-Oct-22	14:33	0.0006	0.0003	0.0002	0.0002	0.0008	0.0010
U [mg/L]	07-Oct-22	14:33	0.000490	0.000760	0.000230	0.000420	0.000490	0.000470
V [mg/L]	07-Oct-22	14:33	0.00005	< 0.00001	0.00012	0.00007	0.00008	0.00003
W [mg/L]	07-Oct-22	14:33	0.00047	0.00048	0.00027	0.00030	0.00023	0.00031
Zn [mg/L]	07-Oct-22	14:33	0.08	0.06	0.02	0.02	0.13	0.06

Analysis	26: OSK-W-21-2613 -W1-1105	27: OSK-W-19-934- W3-1045	34: OSK-W-21-260 5-1332
Sample Date & Time	N/A	N/A	N/A
Sample weight [g]	20	20	20
Ext Fluid [#1 or #2]	1	1	1
Ext Volume [mL]	400	400	400
pH [No unit]	5.06	5.02	5.12
Conductivity [uS/cm]	5430	5380	5600
Alkalinity [mg/L as CaCO3]	1160	1130	1310
HCO3 [mg/L as CaCO3]	1160	1130	1310
CO3 [mg/L as CaCO3]	< 2	< 2	< 2
SO4 [mg/L]	< 20	< 20	< 20
CI [mg/L]	< 20	< 20	< 20
NO2 [as N mg/L]	< 3	< 3	< 3
NO3 [as N mg/L]	< 6	< 6	< 6
NO2+NO3 [as N mg/L]	< 6	< 6	< 6
Br [mg/L]	< 30	< 30	< 30
F [mg/L]	< 0.06	< 0.06	< 0.06
Tot.Reactive P [mg/L]	< 0.03	< 0.03	< 0.03
Hg [mg/L]	< 0.00001	< 0.00001	< 0.00001
Al [mg/L]	0.49	0.60	0.41
As [mg/L]	0.006	0.006	0.004
Ag [mg/L]	< 0.0005	< 0.0005	< 0.0005
Ba [mg/L]	0.144	0.0344	0.0372
B [mg/L]	0.02	0.03	0.03
Be [mg/L]	0.00043	0.00039	0.00038
Bi [mg/L]	0.00001	0.00002	0.00001
Ca [mg/L]	113	92.6	161
Cd [mg/L]	0.00057	0.00044	0.00069
Cr [mg/L]	0.0030	0.0044	0.0034

Amalyaia

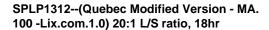
P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

TCLP1311--(Quebec Modified Version - MA. 100 -Lix.com.1.0)20:1 L/S ratio, 18hr

Project: PO#OSK-619

LR Report : CA11016-SEP22


Analysis	26: OSK-W-21-2613 -W1-1105	27: OSK-W-19-934- W3-1045	34: OSK-W-21-260 5-1332
Co [mg/L]	0.00064	0.00028	0.00084
Cu [mg/L]	0.009	0.017	0.023
Fe [mg/L]	30.5	22.2	33.2
K [mg/L]	4.43	5.40	4.54
Li [mg/L]	0.004	0.003	0.005
Mg [mg/L]	41.4	34.0	30.1
Mn [mg/L]	4.73	2.90	8.98
Mo [mg/L]	0.0007	0.0013	0.0012
Na [mg/L]	1440	1370	1350
Ni [mg/L]	0.004	0.002	0.010
P [mg/L]	0.010	0.010	< 0.003
Pb [mg/L]	0.0381	0.0324	0.00242
Sb [mg/L]	< 0.009	< 0.009	< 0.009
Se [mg/L]	0.0005	< 0.0004	0.0027
Si [mg/L]	0.91	1.00	1.09
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	0.218	0.08250	0.103
Te [mg/L]	0.0001	0.0005	0.0005
Ti [mg/L]	0.0037	0.0043	0.0031
TI [mg/L]	< 0.00005	0.00012	0.00015
Th [mg/L]	0.0004	0.0011	0.0006
U [mg/L]	0.000620	0.000720	0.000770
V [mg/L]	0.00011	0.00018	0.00030
W [mg/L]	0.00037	0.00062	0.00074
Zn [mg/L]	0.10	0.06	0.07

Extraction Fluid #1 - pH 4.93 \pm 0.05 5.7mLs of acetic acid plus 64.3 mLs of 1.0N NaOH bulked to 1L with deionized water.

Extraction Fluid #2 - pH 2.88 \pm 0.05 5.7 mLs of acetic acid bulked to 1L with deionized water.

Catharine aurold Catharine Arnold, B.Sc., C.Chem

Project Specialist,

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Osisko Mining Inc.

Attn: Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau, Montreal

Canada, H3B- 2S2

Phone: 514-206-3917, Fax:

12-October-2022

Date Rec.: 15 September 2022 LR Report: CA11017-SEP22

Reference: 21489857 Windfall - set 2/5

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3:	4:	6:	10:	17:	19:	21:
	Analysis Completed Date Con	•	SK-W-19-1746 O -W1-765	SK-W-17-663-O W2-680	SK-W-19-1857 O -W2-1030	SK-W-19-1857 C -W2-1210	SK-W-19-189) 7-496
	Completed Date Con	ipieteu riilie	-W1-765	VVZ-00U	-442-1030	-WZ-1210	7-490
Sample Date & Time			25-Jun-22	25-Jun-22	25-Jun-22	25-Jun-22	N/A
Sample weight [g]	29-Sep-22	12:49	20	20	20	20	20
Ext Fluid [#1 or #2]	29-Sep-22	12:49	1	1	1	1	1
Ext Volume [mL]	29-Sep-22	12:49	400	400	400	400	400
Final pH [no unit]	29-Sep-22	12:49	9.02	8.84	9.28	9.22	8.92
F [mg/L]	03-Oct-22	09:10	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Br [mg/L]	03-Oct-22	09:51	< 30	< 30	< 30	< 30	< 30
SO4 [mg/L]	05-Oct-22	08:44	< 20	< 20	< 20	< 20	< 20
CI [mg/L]	03-Oct-22	09:52	< 20	< 20	< 20	< 20	< 20
NO2 [as N mg/L]	03-Oct-22	09:52	< 3	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	03-Oct-22	09:52	< 6	< 6	< 6	< 6	< 6
pH [No unit]	30-Sep-22	13:58	7.53	7.24	7.66	7.52	7.59
Conductivity [uS/cm]	30-Sep-22	13:58	55	102	65	94	76
Alkalinity [mg/L as CaCO3]	30-Sep-22	13:58	20	18	23	21	22
HCO3 [mg/L as CaCO3]	30-Sep-22	13:58	20	18	23	21	22
CO3 [mg/L as CaCO3]	30-Sep-22	13:58	< 2	< 2	< 2	< 2	< 2
NH3+NH4 [as N mg/L]	29-Sep-22	11:52	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tot.Reactive P [mg/L]	11-Oct-22	11:17	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Hg [mg/L]	30-Sep-22	16:05	< 0.00001	0.00001	< 0.00001	< 0.00001	0.00014
Al [mg/L]	03-Oct-22	11:49	0.824	0.869	1.17	0.575	0.964
As [mg/L]	03-Oct-22	11:49	0.0017	0.0013	0.0065	0.0009	0.0047
Ag [mg/L]	03-Oct-22	11:49	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Ba [mg/L]	03-Oct-22	11:49	0.00094	0.00082	0.00036	0.00197	0.00774
Be [mg/L]	03-Oct-22	11:49	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	03-Oct-22	11:49	0.006	0.004	0.008	0.005	0.007
Bi [mg/L]	03-Oct-22	11:49	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	03-Oct-22	11:49	6.82	16.5	9.57	14.3	13.1
Cd [mg/L]	03-Oct-22	11:49	0.000003	0.000003	< 0.000003	< 0.000003	< 0.000003
Co [mg/L]	03-Oct-22	11:49	0.000012	0.000010	0.000007	0.000004	0.000008
Cr [mg/L]	03-Oct-22	11:49	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008

regulation.

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11017-SEP22

Analysis	3:	4:	6:	10:	17:	19:	21:
	Analysis Completed Date Com		SK-W-19-1746 O -W1-765	SK-W-17-663-OS W2-680	SK-W-19-1857 O -W2-1030	SK-W-19-1857 C -W2-1210	SK-W-19-189 7-496
	Completed Date Com	pieteu riilie	-441-703	VVZ-000	-442-1030	-442-1210	7-490
Cu [mg/L]	03-Oct-22	11:49	< 0.0002	< 0.0002	0.0003	< 0.0002	< 0.0002
Fe [mg/L]	03-Oct-22	11:49	0.012	0.008	0.008	< 0.007	< 0.007
K [mg/L]	03-Oct-22	11:49	3.72	3.33	3.65	0.654	2.56
Li [mg/L]	03-Oct-22	11:49	0.0016	0.0013	0.0030	0.0009	0.0011
Mg [mg/L]	03-Oct-22	11:49	1.48	0.797	1.19	2.88	0.745
Mn [mg/L]	03-Oct-22	11:49	0.0164	0.00261	0.00164	0.00062	0.00306
Mo [mg/L]	03-Oct-22	11:49	0.00025	0.00051	0.00029	0.00007	0.00060
Na [mg/L]	03-Oct-22	11:49	1.08	1.45	1.28	1.66	0.71
Ni [mg/L]	03-Oct-22	11:49	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
P [mg/L]	03-Oct-22	11:49	< 0.003	0.004	0.004	< 0.003	0.004
Pb [mg/L]	03-Oct-22	11:49	0.00011	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	03-Oct-22	11:49	0.0055	0.0013	0.0030	< 0.0009	0.0073
Se [mg/L]	03-Oct-22	11:49	< 0.00004	0.00022	< 0.00004	< 0.00004	0.00011
Si [mg/L]	03-Oct-22	11:49	0.99	0.93	1.15	0.59	0.66
Sn [mg/L]	03-Oct-22	11:49	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	03-Oct-22	11:49	0.00908	0.0225	0.00896	0.196	0.0219
Te [mg/L]	03-Oct-22	11:49	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Ti [mg/L]	03-Oct-22	11:49	0.00024	0.00018	0.00015	< 0.00005	0.00009
Th [mg/L]	03-Oct-22	11:49	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
TI [mg/L]	03-Oct-22	11:49	< 0.000005	0.000009	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	03-Oct-22	11:49	0.000059	0.000008	0.000087	0.000002	0.000012
V [mg/L]	03-Oct-22	11:49	0.00005	0.00064	0.00101	0.00073	0.00036
W [mg/L]	03-Oct-22	11:49	0.00026	0.00244	0.00024	0.00036	0.00168
Zn [mg/L]	03-Oct-22	11:49	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Analysis	22:	25:			30:	33:	
	OSK-W-19-909- W12-770	OSK-W-19-934- W3-940		OSK-W-21-2512 C -W3-610	-W1-855	OSK-W-21-262 9-845	
Sample Date & Time	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Sample weight [g]	20	20			20	20	
Ext Fluid [#1 or #2]	1	1	1	1	1	1	1
Ext Volume [mL]	400	400	400	400	400	400	400
Final pH [no unit]	9.32	9.30	9.05	9.21	9.17	9.17	8.52
F [mg/L]	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Br [mg/L]	< 30	< 30	< 30	< 30	< 30	< 30	< 30
SO4 [mg/L]	< 20	< 20	< 20	28	< 20	< 20	< 20
CI [mg/L]	< 20	< 20	< 20	< 20	< 20	< 20	< 20
NO2 [as N mg/L]	< 3	< 3	< 3	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	< 6	< 6	< 6	< 6	< 6	< 6	< 6
pH [No unit]	7.64	7.51	7.40	7.46	7.42	7.76	7.59
Conductivity [uS/cm]	66	64	54	115	56	74	103
Alkalinity [mg/L as CaCO3]	24	21	17	17	23	29	28
HCO3 [mg/L as CaCO3]	24	21	17	17	23	29	28
CO3 [mg/L as CaCO3]	< 2	< 2	< 2	< 2	< 2	< 2	< 2

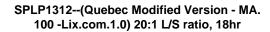
P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11017-SEP22

Analysis	22:	25:	27:	29:	30:	33:	34:
	OSK-W-19-909- C W12-770) SK-W-19-934- (W3-940	OSK-W-19-934-O W3-1045	SK-W-21-2512 O -W3-610	KS-W-21-2613 (-W1-855	OSK-W-21-262 C 9-845	0SK-W-21-260 5-1332
							- 100-
NH3+NH4 [as N mg/L]	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tot.Reactive P [mg/L]	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Hg [mg/L]	< 0.00001	0.00013	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Al [mg/L]	1.00	0.806	0.589	0.787	0.199	0.777	0.423
As [mg/L]	0.0049	0.0017	0.0029	0.0010	0.0013	0.0030	0.0018
Ag [mg/L]	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Ba [mg/L]	0.00054	0.00054	0.00045	0.00495	0.199	0.00087	0.00067
Be [mg/L]	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	0.009	0.005	0.005	0.005	0.004	0.009	0.006
Bi [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	8.87	6.95	6.32	18.2	9.08	9.36	16.1
Cd [mg/L]	0.000011	< 0.000003	< 0.000003	< 0.000003	0.000005	< 0.000003	< 0.000003
Co [mg/L]	0.000068	0.000005	0.000006	0.000011	0.000005	0.000016	0.000012
Cr [mg/L]	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008
Cu [mg/L]	0.0003	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Fe [mg/L]	0.008	< 0.007	0.010	< 0.007	< 0.007	< 0.007	< 0.007
K [mg/L]	2.93	4.69	3.67	3.04	0.246	1.60	2.60
Li [mg/L]	0.0038	0.0021	0.0014	0.0009	0.0004	0.0018	0.0024
Mg [mg/L]	1.70	2.06	1.82	1.21	2.18	2.92	1.88
Mn [mg/L]	0.00487	0.00828	0.0129	0.00257	0.00022	0.00074	0.0492
Mo [mg/L]	0.00026	0.00038	0.00023	0.00042	0.00009	0.00038	0.00033
Na [mg/L]	2.43	1.12	0.78	2.71	0.51	2.05	1.32
Ni [mg/L]	0.0006	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
P [mg/L]	0.005	0.005	0.004	0.003	0.003	< 0.003	< 0.003
Pb [mg/L]	0.00019	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	0.0018	0.0182	0.0064	< 0.0009	< 0.0009	0.0014	0.0071
Se [mg/L]	< 0.00004	< 0.00004	0.00006	< 0.00004	< 0.00004	< 0.00004	< 0.00004
Si [mg/L]	1.06	0.92	0.93	1.07	0.47	0.69	0.53
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	0.0150	0.0103	0.00830	0.309	0.159	0.0307	0.0176
Te [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Ti [mg/L]	0.00015	0.00011	0.00022	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Th [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.0003	< 0.0001	< 0.0001
TI [mg/L]	< 0.000005	< 0.000005	< 0.000005	< 0.000005	0.00008	< 0.000005	< 0.000005
U [mg/L]	0.000091	0.000039	0.000127	0.000112	0.000004	0.000002	0.000022
V [mg/L]	0.00029	0.00009	0.00005	0.00093	0.00044	0.00129	0.00002
W [mg/L]	0.00028	0.00020	0.00017	0.00028	0.00018	0.00063	0.00028
Zn [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Analysis	35: OSK-W-21-262 OSK	36: (-W-21-262	37:BLK: \$SPLP1312
	9-948	9-845	Blank #1
Sample Date & Time	N/A		
Sample weight [g]	20	20	



P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11017-SEP22

Analysis	35: OSK-W-21-262 C	36:	37:BLK: \$SPLP1312	
	9-948	9-845	Blank #1	
Ext Fluid [#1 or #2]	1	1	1	
Ext Volume [mL]	400	400	400	
Final pH [no unit]	9.09	9.14	4.25	
F [mg/L]	0.06	< 0.06	< 0.06	
Br [mg/L]	< 30	< 30	< 30	
SO4 [mg/L]	< 20	< 20	< 20	
CI [mg/L]	< 20	< 20	< 20	
NO2 [as N mg/L]	< 3	< 3	< 3	
NO3 [as N mg/L]	< 6	< 6	< 6	
pH [No unit]	7.66	7.67	6.48	
Conductivity [uS/cm]	79	84	14	
Alkalinity [mg/L as CaCO3]	31	34	3	
HCO3 [mg/L as CaCO3]	31	34	3	
CO3 [mg/L as CaCO3]	< 2	< 2	< 2	
NH3+NH4 [as N mg/L]	< 0.1	< 0.1	< 0.1	
Tot.Reactive P [mg/L]	< 0.03	< 0.03	< 0.03	
Hg [mg/L]	< 0.00001	0.00001	< 0.00001	
AI [mg/L]	0.950	0.946	0.001	
As [mg/L]	0.0062	0.0067	< 0.0002	
Ag [mg/L]	< 0.00005	< 0.00005	< 0.00005	
Ba [mg/L]	0.00079	0.00103	0.00037	
Be [mg/L]	< 0.000007	< 0.000007	< 0.000007	
B [mg/L]	0.009	0.011	< 0.002	
Bi [mg/L]	< 0.00001	< 0.00001	< 0.0001	
Ca [mg/L]	10.8	10.3	0.04	
Cd [mg/L]	< 0.000003	0.000004	0.000003	
Co [mg/L]	0.000016	0.000014	0.000005	
Cr [mg/L]	0.00012	< 0.00008	0.00022	
Cu [mg/L]	< 0.0002	< 0.0002	< 0.0002	
Fe [mg/L]	0.007	< 0.007	< 0.007	
K [mg/L]	3.19	3.20	0.656	
Li [mg/L]	0.0020	0.0021	< 0.0001	
Mg [mg/L]	2.41	2.43	0.007	
Mn [mg/L]	0.00153	0.00171	0.00056	
Mo [mg/L]	0.00005	0.00009	< 0.00004	
Na [mg/L]	1.71	1.75	0.00	
	< 0.0001	< 0.0001	< 0.0001	
Ni [mg/L] P [mg/L]				
Pb [mg/L]	< 0.003 < 0.0009	< 0.003 < 0.00009	< 0.003 < 0.0009	
Sb [mg/L]	0.0034	0.0036	< 0.0009	
Se [mg/L]	0.00008	0.00014	< 0.00004	
Si [mg/L]	0.63	0.87	< 0.02	
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006	
Sr [mg/L]	0.0155	0.0158	0.00009	
Te [mg/L]	< 0.0001	< 0.0001	< 0.0001	

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA11017-SEP22

Analysis	35: OSK-W-21-262	OSK-W-21-262 OSK-W-21-262	
	9-948	9-845	Blank #1
Ti [mg/L]	0.00006	0.00009	< 0.00005
Th [mg/L]	< 0.0001	< 0.0001	< 0.0001
TI [mg/L]	< 0.000005	0.000005	< 0.000005
U [mg/L]	0.000002	0.000003	< 0.000002
V [mg/L]	0.00118	0.00119	0.00001
W [mg/L]	0.00157	0.00151	0.00002
Zn [mg/L]	< 0.002	< 0.002	< 0.002

Catharine Arnold, B.Sc., C.Chem

Project Specialist,

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Osisko Mining Inc.

Attn : Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau

Montreal, QC

H3B-2S2, Canada

Phone: 514-206-3917

Fax:

12-October-2022

Project: PO#OSK-619

Date Rec.: 15 September 2022 LR Report: CA11018-SEP22

Reference: 21489857 Windfall - set 2/5

Copy: #1

Analysis	3:	4:	6:	10:	17:	19:	21:	22:
	Analysis Completed DateComp		SK-W-19-1746 -W1-765	OSK-W-17-663-0 W2-680	OSK-W-19-1857 (-W2-1030	OSK-W-19-1857 -W2-1210	OSK-W-19-189 7-496	OSK-W-19-909 W12-770
Sample Date & Time			25-Jun-22	25-Jun-22	25-Jun-22	25-Jun-22	N/A	N/A
Sample weight [g]	28-Sep-22	09:01	100	100	100	100	100	100
Volume D.I. Water [mL]	28-Sep-22	09:01	400	400	400	400	400	400
Alkalinity [mg/L as CaCO3]	30-Sep-22	14:00	109	76	99	87	79	101
CO3 [mg/L as CaCO3]	30-Sep-22	14:00	< 2	< 2	< 2	< 2	< 2	< 2
HCO3 [mg/L as CaCO3]	30-Sep-22	14:00	109	76	99	87	79	101
pH [No unit]	30-Sep-22	14:00	8.26	7.88	8.06	7.88	7.88	8.27
Conductivity [uS/cm]	30-Sep-22	14:00	355	625	313	323	423	417
F [mg/L]	03-Oct-22	09:11	1.13	0.66	0.63	0.12	0.47	0.82
Br [mg/L]	02-Oct-22	11:19	< 30	< 30	< 30	< 30	< 30	< 30
CI [mg/L]	02-Oct-22	11:19	< 20	< 20	< 20	< 20	< 20	< 20
SO4 [mg/L]	02-Oct-22	11:19	< 20	130	< 20	59	63	< 20
NO2 [as N mg/L]	02-Oct-22	11:19	< 3	< 3	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	02-Oct-22	11:19	< 6	< 6	< 6	< 6	< 6	< 6
NO2+NO3 [as N mg/L]	02-Oct-22	11:19	< 6	< 6	< 6	< 6	< 6	< 6
NH3+NH4 [as N mg/L]	29-Sep-22	11:53	< 0.1	< 0.1	< 0.1	0.1	0.1	< 0.1
Tot.Reactive P [mg/L]	11-Oct-22	11:18	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.05
Hg [mg/L]	03-Oct-22	11:50	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Al [mg/L]	03-Oct-22	11:50	2.95	0.272	0.968	0.397	0.314	1.32
As [mg/L]	03-Oct-22	11:50	0.0134	0.0023	0.0126	0.0010	0.0021	0.0209
Ag [mg/L]	03-Oct-22	11:50	< 0.00005	0.00310	< 0.00005	< 0.00005	0.00086	< 0.00005
Ba [mg/L]	03-Oct-22	11:50	0.00807	0.01197	0.00177	0.00381	0.08125	0.00208
Be [mg/L]	03-Oct-22	11:50	0.000013	0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	03-Oct-22	11:50	0.025	0.016	0.037	0.024	0.024	0.054
Bi [mg/L]	03-Oct-22	11:50	< 0.00001	< 0.00001	< 0.00001	0.00002	0.00016	< 0.00001
Ca [mg/L]	03-Oct-22	11:50	6.35	45.0	12.9	18.9	30.7	8.45
Cd [mg/L]	03-Oct-22	11:50	0.000015	0.000011	0.000022	0.000041	0.000024	0.000007
Co [mg/L]	03-Oct-22	11:50	0.000023	0.000025	0.000027	0.000079	0.000022	0.000084
Cr [mg/L]	03-Oct-22	11:50	0.00014	0.00026	0.00033	0.00058	0.00009	0.00033
Cu [mg/L]	03-Oct-22	11:50	0.0008	0.0016	0.0029	0.0043	0.0010	0.0015
Fe [mg/L]	03-Oct-22	11:50	0.086	0.016	0.031	0.059	0.033	0.013
K [mg/L]	03-Oct-22	11:50	78.5	79.6	54.9	6.99	49.7	52.6
Li [mg/L]	03-Oct-22	11:50	0.0057	0.0137	0.0129	0.0063	0.0097	0.0212
Mg [mg/L]	03-Oct-22	11:50	1.49	12.6	5.06	20.8	12.6	4.08

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: PO#OSK-619

LR Report : CA11018-SEP22

Analysis	3:	4:	6:					
	Analysis Completed DateCon		K-W-19-1746- W1-765-				OSK-W-19-189 7-496	OSK-W-19-909- W12-770
							•.	
Mn [mg/L]	03-Oct-22	11:50	0.00462	0.0187	0.00482	0.00543	0.0338	0.00419
Mo [mg/L]	03-Oct-22	11:50	0.0111	0.0146	0.00487	0.00091	0.00492	0.00232
Na [mg/L]	03-Oct-22	11:50	32.4	26.1	23.8	22.6	12.5	76.2
Ni [mg/L]	03-Oct-22	11:50	0.0003	< 0.0001	0.0002	0.0003	< 0.0001	0.0009
P [mg/L]	03-Oct-22	11:50	0.015	0.015	0.014	< 0.003	0.003	0.008
Pb [mg/L]	03-Oct-22	11:50	0.00029	< 0.00009	0.00024	0.00186	0.00025	< 0.00009
Sb [mg/L]	03-Oct-22	11:50	0.0416	0.0030	0.0191	0.0016	0.0273	0.0092
Se [mg/L]	03-Oct-22	11:50	0.00028	0.00145	0.00018	0.00015	0.00079	0.00005
Si [mg/L]	03-Oct-22	11:50	1.09	1.36	1.85	1.28	1.51	I 1.34
Sn [mg/L]	03-Oct-22	11:50	< 0.00006	< 0.00006	0.00016	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	03-Oct-22	11:50	0.0125	0.0958	0.0202	0.380	0.0833	0.0192
Te [mg/L]	03-Oct-22	11:50	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Ti [mg/L]	03-Oct-22	11:50	0.00155	0.00040	0.00054	0.00029	0.00019	0.00025
Th [mg/L]	03-Oct-22	11:50	0.0001	0.0002	< 0.0001	< 0.0001	< 0.0001	< 0.0001
TI [mg/L]	03-Oct-22	11:50	0.000049	0.000074	0.000040	0.000020	0.000059	0.000039
U [mg/L]	03-Oct-22	11:50	0.00270	0.000067	0.001864	0.000013	0.000093	0.00126
V [mg/L]	03-Oct-22	11:50	0.00032	0.00162	0.00181	0.00157	0.00095	0.00277
W [mg/L]	03-Oct-22	11:50	0.00261	0.0168	0.00158	0.00133	0.00570	0.00280
Y [mg/L]	03-Oct-22	11:50	0.00012	0.00004	0.00007	0.00006	0.00009	0.00004
Zn [mg/L]	03-Oct-22	11:50	0.003	< 0.002	0.006	0.013	0.003	0.003

Analysis	25: OSK-W-19-934- O	27: SK-W-10-034-09	29: SK-W-21-2512 OI	30: 20: 20: 30: 30: 30: 30: 30: 30: 30: 30: 30: 3	33:	34:	35:
	W3-940	W3-1045	-W3-610	-W1-855	9-845	5-1332	9-948
Sample Date & Time	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Sample weight [g]	100	100	100	100	100	100	100
Volume D.I. Water [mL]	400	400	400	400	400	400	400
Alkalinity [mg/L as CaCO3]	143	114	101	71	163	157	203
CO3 [mg/L as CaCO3]	< 2	< 2	< 2	< 2	< 2	< 2	4
HCO3 [mg/L as CaCO3]	143	114	101	71	163	157	199
pH [No unit]	8.25	8.11	8.15	7.90	8.31	8.25	8.36
Conductivity [uS/cm]	454	415	468	167	390	570	539
F [mg/L]	0.95	1.01	1.18	0.13	0.38	0.74	0.45
Br [mg/L]	< 30	< 30	< 30	< 30	< 30	< 30	< 30
CI [mg/L]	< 20	< 20	< 20	< 20	< 20	< 20	< 20
SO4 [mg/L]	27	37	84	< 20	< 20	60	< 20
NO2 [as N mg/L]	< 3	< 3	< 3	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	< 6	< 6	< 6	< 6	< 6	< 6	< 6
NO2+NO3 [as N mg/L]	< 6	< 6	< 6	< 6	< 6	< 6	< 6
NH3+NH4 [as N mg/L]	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tot.Reactive P [mg/L]	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Hg [mg/L]	0.00004	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
AI [mg/L]	1.10	1.34	1.09	0.270	0.748	0.542	0.486
As [mg/L]	0.0049	0.0122	0.0015	0.0019	0.0023	0.0042	0.0358
Ag [mg/L]	0.00006	0.00027	< 0.00005	< 0.00005	< 0.00005	0.00010	0.00008
Ba [mg/L]	0.00395	0.00238	0.01441	0.504	0.00473	0.00585	0.00796
Be [mg/L]	< 0.000007	< 0.000007	< 0.000007	0.000014	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	0.024	0.024	0.029	0.012	0.069	0.034	0.057
Bi [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	13.2	10.2	9.12	15.9	8.99	27.4	13.3
Cd [mg/L]	0.000007	0.000013	0.000005	0.000003	< 0.000003	0.000008	0.000003

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: PO#OSK-619

LR Report : CA11018-SEP22

Analysis	25: OSK-W-19-934-	27: OSK-W-19-934-	29: OSK-W-21-2512		33: OSK-W-21-262		
	W3-940	W3-1045	-W3-610	-W1-855	9-845	5-1332	
Co [mg/L]	< 0.000004	0.000009	0.000010	0.000021	0.000037	0.000019	0.000275
Cr [mg/L]	0.00020	0.00031	0.00038	0.00131	0.00245	0.00010	0.00178
Cu [mg/L]	0.0003	0.0009	0.0002	< 0.0002	0.0003	0.0003	0.0002
Fe [mg/L]	< 0.007	0.013	0.007	0.022	0.007	0.014	0.007
K [mg/L]	93.7	101	54.5	1.20	35.2	93.3	76.7
Li [mg/L]	0.0080	0.0067	0.0045	0.0056	0.0151	0.0122	0.0167
Mg [mg/L]	5.78	3.60	4.66	12.6	16.2	13.6	20.4
Mn [mg/L]	0.00565	0.00320	0.00246	0.00093	0.00378	0.0604	0.0153
Mo [mg/L]	0.00701	0.00306	0.00206	0.00014	0.00190	0.00999	0.00057
Na [mg/L]	30.8	18.6	63.3	3.73	50.1	28.3	48.1
Ni [mg/L]	< 0.0001	< 0.0001	< 0.0001	0.0002	0.0002	0.0002	0.0003
P [mg/L]	0.004	0.007	0.006	< 0.003	< 0.003	0.005	0.003
Pb [mg/L]	< 0.00009	0.00053	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	0.0898	0.0584	0.0030	0.0020	0.0143	0.0243	0.0231
Se [mg/L]	0.00019	0.00046	< 0.00004	< 0.00004	0.00029	0.00057	0.00185
Si [mg/L]	1.18	1.54	1.73	1.64	1.48	1.81	2.07
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	0.00044	< 0.00006
Sr [mg/L]	0.0227	0.0126	0.291	0.649	0.0382	0.0444	0.0301
Te [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Ti [mg/L]	0.00012	0.00033	0.00009	0.00067	< 0.00005	0.00011	0.00006
Th [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
TI [mg/L]	0.000066	0.000064	0.000046	0.000014	0.000056	0.000072	0.000159
U [mg/L]	0.00166	0.0023	0.00111	0.000059	0.000012	0.000707	0.000005
V [mg/L]	0.00050	0.00045	0.00674	0.00100	0.00536	0.00052	0.00607
W [mg/L]	0.00555	0.00231	0.00337	0.00027	0.00681	0.00376	0.0139
Y [mg/L]	0.00004	0.00006	< 0.00002	0.00003	< 0.00002	0.00006	< 0.00002
Zn [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Catharine aunold Catharine Arnold, B.Sc., C.Chem Project Specialist,

CHEMIST

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6

Phone: 705-652-2000 FAX: 705-652-6365

Osisko Mining Inc. Attn: Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau Montreal, QC H3B- 2S2, Canada

Phone: 514-206-3917

Fax:

Quebec MA110 ACISOL 1.0

Project: PO#OSK-619

05-October-2022

Date Rec.: 15 September 2022 LR Report: CA11019-SEP22

Reference: Windfall - 21489857 - set 3/5

Copy: #1

Analysis	3:	4:	13:	23:
	Analysis Completed Date	Completed Time		OSK-W-20-22 56-W1-1051.7
Sample Date & Time			26-Jun-22	N/A
Sample weight [g]	21-Sep-22	16:37	2.00	2.03
Initial pH	21-Sep-22	16:37	9.62	9.46
Vol H2SO4 [mL]	21-Sep-22	16:37	1.65	3.40
H2SO4 [Normality]	21-Sep-22	16:37	1.00	1.00
NP [t CaCO3/1000 t]	21-Sep-22	16:37	41.2	83.7
AP [t CaCO3/1000 t]	22-Sep-22	10:31	27.4	30.7
NNP [kg CaCO3/ tonne]	22-Sep-22	10:31	14	53
S [%]	22-Sep-22	10:31	0.878	0.982
Acid Leachable SO4-S [%]	22-Sep-22	10:31	< 0.04	< 0.04
Sulphide [%]	22-Sep-22	10:31	0.88	1.01
C [%]	22-Sep-22	09:50	0.394	1.29
CO3 (HCI) as %CO3 [%]	22-Sep-22	09:50	1.84	6.24
TOC [%]	19-Sep-22	15:30	0.105	0.263
C(g) [%]	19-Sep-22	08:03	< 0.05	< 0.05

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Gross NP (kg CaCO3/tonne) Section 7.3 AP (kg CaCO3/tonne) = Total S x 31.25

ASTM E1918 - S and C speciation

Quebec MA110 ACISOL 1.0

Project: PO#OSK-619

LR Report : CA11019-SEP22

Catharine Arnold, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Osisko Mining Inc.

Attn: Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau

Montreal, QC H3B- 2S2, Canada

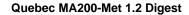
Phone: 514-206-3917

Fax:

Quebec MA200-Met 1.2 Digest

Project: PO#OSK-619

18-October-2022


Date Rec.: 15 September 2022 LR Report: CA11020-SEP22

Reference: Windfall - 21489857 - set

3/5

Copy: #1

Analysis	1:	2:	3:	4:	13:	23:
	Analysis	Analysis	Analysis		SK-W-19-18 OS	
	Start Date	Start Time	Completed Date	Completed Time	97-880 56-	W1-1051.7
Sample Date & Time					26-Jun-22	N/A
F [µg/g]	22-Sep-22	08:28	27-Sep-22	14:06	3	2
Br [µg/g]	22-Sep-22	20:39	18-Oct-22	11:50	< 1.5	< 1.5
Hg [ug/g]	23-Sep-22	11:05	23-Sep-22	15:27	< 0.05	0.13
Ag [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	< 0.5	0.5
Al [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	4200	3200
As [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	16	31
B [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	< 1	< 1
Ba [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	23	23
Be [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	0.09	0.18
Bi [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	2.2	0.38
Ca [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	13000	21000
Cd [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	0.05	1.4
Co [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	5.5	6.6
Cr [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	34	12
Cu [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	67	21
Fe [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	13000	17000
K [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	1300	1400
Li [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	9	5
Mg [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	3300	8700
Mn [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	160	400
Mo [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	4.1	6.1
Na [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	470	210
Ni [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	7.9	10
P [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	310	340
Pb [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	2.2	10
Sb [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	< 0.8	1.5

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: PO#OSK-619

LR Report : CA11020-SEP22

Analysis	1:	2:	3:	4:	13:	23:
	Analysis Start Date	Analysis Start Time	Analysis Completed	Analysis OS Completed	SK-W-19-18 OS -97-880 56	
	Otal t Buto	Otart Timo	Date	Time	01 000 00	
Se [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	< 0.7	< 0.7
Si [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	700	600
Sn [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	< 5	< 5
Sr [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	17	18
Te [µg/g]	23-Sep-22	23:31	28-Sep-22	12:45	< 1	< 1
Ti [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	10.0	5.3
TI [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	0.03	0.03
U [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	0.15	0.71
V [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	4	2
Υ [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	2.4	3.1
Zn [μg/g]	23-Sep-22	23:31	28-Sep-22	12:45	14	260

Catharine Arnold, B.Sc., C.Chem Project Specialist,

Environment, Health & Safety

Catharine aurold

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Osisko Mining Inc.

Attn: Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau Montreal, QC H3B- 2S2, Canada

Phone: 514-206-3917

Fax:

SPLP1312--(Quebec Modified Version - MA. 100

-Lix.com.1.0) 20:1 L/S ratio, 18hr Project: PO#OSK-619

05-October-2022

Date Rec.: 15 September 2022 LR Report: CA11022-SEP22

Reference: Windfall - 21489857 - set 3/5

Copy: #1

Analysis	3:	4:	5:	7:	9:	10:	12:	14:	15:	17:	19:
	Analysis Completed DateCor		K-W-21-2613-OS 1042	K-W-21-2587-WS 1060	ST-21-0879-63 OS 9	K-W-19-1897- OS 610	6K-W-19-1897-OS 825	6K-W-19-1897-OS 983	K-W-20-2323-OS 115	K-W-19-1949- OS W1-948	6K-W-21-2252- W12-922
Sample Date & Time			26-Jun-22	26-Jun-22	26-Jun-22	26-Jun-22	26-Jun-22	26-Jun-22	26-Jun-22	26-Jun-22	26-Jun-22
Sample weight [g]	29-Sep-22	12:49	20	20	20	20	20	20	20	20	20
Ext Fluid [#1 or #2]	29-Sep-22	12:49	1	1	1	1	1	1	1	1	1
Ext Volume [mL]	29-Sep-22	12:49	400	400	400	400	400	400	400	400	400
Final pH [no unit]	29-Sep-22	12:49	9.08	9.08	9.20	9.36	9.21	8.96	9.00	9.17	8.10
F [mg/L]	04-Oct-22	14:04	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	0.15	< 0.06
Br [mg/L]	01-Oct-22	15:21	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30
SO4 [mg/L]	01-Oct-22	15:21	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
CI [mg/L]	01-Oct-22	15:21	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
NO2 [as N mg/L]	01-Oct-22	15:21	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	01-Oct-22	15:21	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
pH [No unit]	04-Oct-22	11:19	7.67	7.63	7.81	7.74	7.83	7.65	7.68	7.83	7.36
Conductivity [uS/cm]	04-Oct-22	11:19	66	60	71	67	68	82	72	77	46
Alkalinity [mg/L as CaCO3]	04-Oct-22	11:19	22	24	33	27	29	28	27	37	12
HCO3 [mg/L as CaCO3]	04-Oct-22	11:19	22	24	33	27	29	28	27	37	12
CO3 [mg/L as CaCO3]	04-Oct-22	11:19	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
NH3+NH4 [as N mg/L]	03-Oct-22	15:16	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tot.Reactive P [mg/L]	04-Oct-22	14:05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Hg [mg/L]	04-Oct-22	12:51	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Al [mg/L]	04-Oct-22	12:12	0.778	0.631	0.780	0.852	0.823	0.932	0.889	0.773	0.386

P.O. Box 4300 - 185 Concession St.

Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

SPLP1312--(Quebec Modified Version - MA. 100 -Lix.com.1.0) 20:1 L/S ratio, 18hr Project : PO#OSK-619

LR Report : CA11022-SEP22

Analysis	3:	4:	5:	7:	9:	10:	12:	14:	15:	17:	19:
	Analysis Completed DateCo	•	6K-W-21-2613- O 1042	SK-W-21-2587-W 1060	ST-21-0879-63 OS 9	SK-W-19-1897-O 610	SK-W-19-1897-O 825	SK-W-19-1897- C 983	OSK-W-20-2323-O 115	SK-W-19-1949-O W1-948	SK-W-21-2252- W12-922
As [mg/L]	04-Oct-22	10:36	0.0734	0.0067	0.0020	0.0014	0.0015	0.0033	0.0013	0.0038	0.0189
Ag [mg/L]	04-Oct-22	10:36	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Ba [mg/L]	04-Oct-22	10:36	0.00140	0.00463	0.00031	0.00147	0.00089	0.00060	0.00052	0.00063	0.00171
Be [mg/L]	04-Oct-22	10:36	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	0.000007
B [mg/L]	04-Oct-22	10:36	0.005	0.003	0.002	< 0.002	< 0.002	0.006	< 0.002	0.004	0.004
Bi [mg/L]	04-Oct-22	10:36	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	04-Oct-22	10:36	8.53	6.16	8.36	8.45	8.27	9.87	10.3	8.77	4.11
Cd [mg/L]	04-Oct-22	10:36	0.000003	0.000003	0.000006	< 0.000003	< 0.000003	< 0.000003	< 0.000003	< 0.000003	0.000007
Co [mg/L]	04-Oct-22	10:36	0.000011	0.000004	0.000009	0.000009	0.000006	0.000005	0.000009	0.000010	0.000022
Cr [mg/L]	04-Oct-22	10:36	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008
Cu [mg/L]	04-Oct-22	10:36	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0002
Fe [mg/L]	04-Oct-22	10:36	0.030	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	0.039
K [mg/L]	04-Oct-22	10:36	3.49	2.82	1.31	1.70	1.72	4.79	1.75	2.07	2.98
Li [mg/L]	04-Oct-22	10:36	0.0018	0.0015	0.0009	0.0006	0.0009	0.0012	0.0007	0.0016	0.0016
Mg [mg/L]	04-Oct-22	10:36	1.50	1.39	2.00	0.851	1.00	0.545	0.787	2.56	0.758
Mn [mg/L]	04-Oct-22	10:36	0.0128	0.00943	0.00054	0.00121	0.00107	0.00126	0.00155	0.00078	0.0473
Mo [mg/L]	04-Oct-22	10:36	0.00017	0.00012	0.00014	0.00011	0.00052	0.00045	0.00008	0.00019	0.00011
Na [mg/L]	04-Oct-22	10:36	1.13	1.07	1.33	1.80	1.73	1.78	1.00	0.99	1.31
Ni [mg/L]	04-Oct-22	10:36	0.0002	0.0001	< 0.0001	0.0001	< 0.0001	< 0.0001	< 0.0001	0.0001	0.0003
P [mg/L]	04-Oct-22	10:36	0.020	0.009	0.009	0.008	0.006	0.009	0.007	0.006	0.031
Pb [mg/L]	04-Oct-22	10:36	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	0.00022
Sb [mg/L]	04-Oct-22	10:36	0.0132	0.0037	0.0025	< 0.0009	0.0020	0.0019	0.0010	0.0056	0.0017
Se [mg/L]	04-Oct-22	10:36	0.00007	0.00011	0.00006	0.00005	0.00018	0.00064	0.00032	0.00007	0.00007
Si [mg/L]	04-Oct-22	10:36	0.95	1.04	0.70	1.31	1.13	1.21	0.74	0.66	0.80
Sn [mg/L]	04-Oct-22	10:36	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	04-Oct-22	10:36	0.0136	0.0163	0.0138	0.139	0.0234	0.0117	0.0238	0.0160	0.00918
Te [mg/L]	04-Oct-22	10:36	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Ti [mg/L]	04-Oct-22	10:36	0.00030	0.00017	0.00017	0.00009	0.00008	0.00021	0.00014	0.00026	0.00158
Th [mg/L]	04-Oct-22	10:36	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
TI [mg/L]	04-Oct-22	10:36	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	04-Oct-22	10:36	0.000011	0.000029	0.000005	0.000047	0.000010	0.000034	0.000003	0.000002	0.000018
V [mg/L]	04-Oct-22	10:36	0.00027	0.00012	0.00082	0.00093	0.00096	0.00071	0.00043	0.00079	0.00012
W [mg/L]	04-Oct-22	10:36	0.00027	0.00035	0.00015	0.00024	0.00118	0.00026	0.00046	0.00046	0.00032
Zn [mg/L]	04-Oct-22	10:36	0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.002

P.O. Box 4300 - 185 Concession St.

Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

SPLP1312--(Quebec Modified Version - MA. 100 -Lix.com.1.0) 20:1 L/S ratio, 18hr Project : PO#OSK-619

LR Report : CA11022-SEP22

Analysis	20:	21:	23:	25:	27:	28:	29:	30:BLK
	OSK-W-21-2252- OS 1013	SK-W-20-2283- OS W7-888	SK-W-20-2256- OS W1-1051.7	SK-W-20-2375-OS W4-890	SK-W-20-2350- OS 125	SK-W-21-2444-OS 545	545 SK-W-21-2444	\$BLANK
	1013	W/-000	W1-1051.7	VV4-09U	125	343	343	
Sample Date & Time	N/A	N/A	N/A	N/A	N/A	N/A		
Sample weight [g]	20	20	20	20	20	20	20	
Ext Fluid [#1 or #2]	1	1	1	1	1	1	1	1
Ext Volume [mL]	400	400	400	400	400	400	400	400
Final pH [no unit]	9.31	9.06	9.25	8.79	9.31	9.01	9.00	4.24
F [mg/L]	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Br [mg/L]	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30
SO4 [mg/L]	< 20	< 20	< 20	< 20	< 20	52	51	< 20
CI [mg/L]	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
NO2 [as N mg/L]	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
pH [No unit]	7.80	7.66	7.75	7.59	7.92	7.47	7.43	5.27
Conductivity [uS/cm]	71	70	71	64	76	148	145	8
Alkalinity [mg/L as CaCO3]	30	27	29	21	34	17	17	< 2
HCO3 [mg/L as CaCO3]	30	27	29	21	34	17	17	< 2
CO3 [mg/L as CaCO3]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
NH3+NH4 [as N mg/L]	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tot.Reactive P [mg/L]	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Hg [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Al [mg/L]	0.969	0.713	0.933	0.511	0.934	0.482	0.497	0.002
As [mg/L]	0.0051	0.0428	0.0036	0.0079	0.0045	0.0005	0.0005	< 0.0002
Ag [mg/L]	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Ba [mg/L]	0.00064	0.00060	0.00048	0.00208	0.00062	0.0135	0.0185	0.00010
Be [mg/L]	0.000013	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	0.003	0.004	0.008	0.007	< 0.002	< 0.002	< 0.002	< 0.002
Bi [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	7.66	8.43	8.06	6.40	8.33	20.7	21.8	0.03
Cd [mg/L]	< 0.000003	< 0.000003	< 0.000003	0.000007	< 0.000003	0.000003	0.000003	< 0.000003
Co [mg/L]	< 0.000004	0.000009	0.000008	0.000008	0.000004	0.000006	0.000007	0.000005
Cr [mg/L]	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008
Cu [mg/L]	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Fe [mg/L]	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
K [mg/L]	3.84	3.18	3.21	3.23	2.22	0.280	0.310	0.021
Li [mg/L]	0.0016	0.0015	0.0017	0.0016	0.0013	0.0011	0.0011	< 0.0001
Mg [mg/L]	1.49	1.18	1.58	1.59	1.82	2.41	2.41	0.005
Mn [mg/L]	0.00240	0.00622	0.00260	0.00743	0.00147	0.00289	0.00294	0.00040

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

SPLP1312--(Quebec Modified Version - MA. 100

-Lix.com.1.0) 20:1 L/S ratio, 18hr Project : PO#OSK-619

LR Report : CA11022-SEP22

Analysis	20:	21:	23:	25:	27:	28:	29:	30:BLK:
	OSK-W-21-2252-OS							\$BLANK
	1013	W7-888	W1-1051.7	W4-890	125	545	545	
Mo [mg/L]	0.00011	0.00038	0.00136	0.00024	0.00011	0.00020	0.00022	0.00009
Na [mg/L]	1.48	0.77	1.11	1.40	2.08	1.12	1.18	0.08
Ni [mg/L]	< 0.0001	0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
P [mg/L]	0.003	0.003	0.003	0.004	< 0.003	< 0.003	< 0.003	< 0.003
Pb [mg/L]	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	0.0067	0.0075	0.0075	0.0020	0.0016	< 0.0009	< 0.0009	< 0.0009
Se [mg/L]	0.00009	0.00018	0.00024	0.00015	0.00008	0.00009	0.00008	< 0.00004
Si [mg/L]	1.17	0.98	1.06	0.97	1.27	0.63	0.65	< 0.02
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	0.0154	0.0121	0.0128	0.0142	0.0285	0.452	0.583	0.00019
Te [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Ti [mg/L]	0.00009	0.00013	0.00017	0.00029	0.00009	0.00010	0.00006	0.00008
Th [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
TI [mg/L]	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	0.000088	0.000031	0.000121	0.000048	0.000039	0.000002	0.000002	< 0.000002
V [mg/L]	0.00057	0.00021	0.00058	0.00067	0.00103	0.00050	0.00052	< 0.00001
W [mg/L]	0.00026	0.00031	0.00019	0.00035	0.00014	0.00026	0.00031	0.00003
Zn [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Catharine Arnold, B.Sc., C.Chem

Project Specialist,

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Osisko Mining Inc. Attn : Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau

Montreal, QC

H3B-2S2, Canada

Phone: 514-206-3917

Fax:

Project: PO#OSK-619

12-October-2022

Date Rec.: 15 September 2022 LR Report: CA11023-SEP22

Reference: Windfall - 21489857 - set

3/5

Copy: #1

Analysis	3: Analysis Completed DateComp		5: OSK-W-21-261 3-1042	OSK-W-21-258\	9: NST-21-0879-63 9	10: OSK-W-19-189 7-610	12: OSK-W-19-189 7-825	14: OSK-W-19-189 7-983
Sample Date & Time	,		26-Jun-22		26-Jun-22			26-Jun-22
•	20 Can 22	14.51	26-Jun-22 100		26-Jun-22 100	26-Jun-22 100		
Sample weight [g]	28-Sep-22	14:51 14:51	400		400	400	400	100 400
Volume D.I. Water [mL] Alkalinity [mg/L as CaCO3]	28-Sep-22 04-Oct-22	09:53			221			73
			111	148		113		/3 < 2
CO3 [mg/L as CaCO3]	04-Oct-22	09:53	111	144	10			73
HCO3 [mg/L as CaCO3]	04-Oct-22 04-Oct-22	09:53			211	113		7.99
pH [No unit]	04-Oct-22	09:53	8.20 366		8.48 489	8.22 409	8.24 371	7.99
Conductivity [uS/cm]		09:53						
F [mg/L]	29-Sep-22	08:54	0.75		0.41	0.83	0.70	0.68
Br [mg/L]	04-Oct-22	16:15	< 30		< 30	< 30		< 30
CI [mg/L]	04-Oct-22	16:15	< 20		< 20	< 20		< 20
SO4 [mg/L]	04-Oct-22	16:15	25		< 20			44
NO2 [as N mg/L]	04-Oct-22	16:15	< 3		< 3			< 3
NO3 [as N mg/L]	04-Oct-22	16:15	< 6		< 6	< 6		< 6
NO2+NO3 [as N mg/L]	04-Oct-22	16:15	< 6		< 6	< 6		< 6
NH3+NH4 [as N mg/L]	29-Sep-22	11:53	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tot.Reactive P [mg/L]	11-Oct-22	16:38	0.04		< 0.03	< 0.03		< 0.03
Hg [mg/L]	03-Oct-22	11:36	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00001
Al [mg/L]	04-Oct-22	12:49	0.573		0.485	0.476		0.415
As [mg/L]	03-Oct-22	14:58	0.0729		0.0044	0.0029	0.0024	0.0069
Ag [mg/L]	03-Oct-22	14:58	0.00080		0.00007	< 0.00005	0.00020	0.00314
Ba [mg/L]	03-Oct-22	14:58	0.00788	0.0101	0.00325	0.0163	0.00451	0.00224
Be [mg/L]	03-Oct-22	14:58	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	03-Oct-22	14:58	0.023	0.019	0.026	0.015	0.011	0.025
Bi [mg/L]	03-Oct-22	14:58	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00004
Ca [mg/L]	03-Oct-22	14:58	18.0	10.2	8.99	16.0	14.9	17.0
Cd [mg/L]	03-Oct-22	14:58	0.000018	< 0.000003	< 0.000003	< 0.000003	0.000012	< 0.000003
Co [mg/L]	03-Oct-22	14:58	0.000007	< 0.000004	0.000040	0.000023	0.000012	< 0.000004
Cr [mg/L]	03-Oct-22	14:58	< 0.00008	0.00012	0.00190	0.00017	0.00019	0.00021
Cu [mg/L]	03-Oct-22	14:58	0.0004	< 0.0002	< 0.0002	< 0.0002	0.0012	0.0026
Fe [mg/L]	03-Oct-22	14:58	0.010	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
K [mg/L]	03-Oct-22	14:58	50.8	89.2	38.1	38.4	26.0	43.4
Li [mg/L]	03-Oct-22	14:58	0.0091	0.0080	0.0095	0.0050	0.0067	0.0059

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: PO#OSK-619

LR Report : CA11023-SEP22

Analysis	3: Analysis	4: Analysis	5: OSK-W-21-261	7: OSK-W-21-258V	9: ST-21-0879-63/	10: OSK-W-19-189	12: OSK-W-19-189	14: OSK-W-19-189
	Completed DateCom	pleted Time	3-1042	7-1060	9	7-610	7-825	7-983
Mg [mg/L]	03-Oct-22	14:58	5.46	3.55	23.5	8.73	8.64	3.37
Mn [mg/L]	03-Oct-22	14:58	0.0286	0.00533	0.00678	0.00593	0.00672	0.00628
Mo [mg/L]	03-Oct-22	14:58	0.00597	0.00233	0.00135	0.00393	0.0127	0.00678
Na [mg/L]	03-Oct-22	14:58	14.2	23.0	36.6	29.4	30.6	17.9
Ni [mg/L]	03-Oct-22	14:58	< 0.0001	< 0.0001	0.0003	< 0.0001	< 0.0001	< 0.0001
P [mg/L]	03-Oct-22	14:58	0.005	< 0.003	0.004	0.006	< 0.003	< 0.003
Pb [mg/L]	03-Oct-22	14:58	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	03-Oct-22	14:58	0.0886	0.0233	0.0157	0.0032	0.0156	0.0210
Se [mg/L]	03-Oct-22	14:58	0.00038	0.00094	0.00131	< 0.00004	0.00124	0.00610
Si [mg/L]	03-Oct-22	14:58	2.36	1.76	2.19	3.20	2.93	2.47
Sn [mg/L]	03-Oct-22	14:58	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	04-Oct-22	12:49	0.0398	0.0304	0.0226	0.889	0.0840	0.0475
Te [mg/L]	03-Oct-22	14:59	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.0001
Ti [mg/L]	03-Oct-22	14:59	0.00011	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Th [mg/L]	03-Oct-22	14:59	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
TI [mg/L]	03-Oct-22	14:59	0.00008	0.000062	0.000053	0.000055	0.000044	0.000053
U [mg/L]	03-Oct-22	14:59	0.00141	0.000947	0.000060	0.00119	0.000433	0.000537
V [mg/L]	03-Oct-22	14:59	0.00151	0.00074	0.00456	0.00473	0.00299	0.00181
W [mg/L]	03-Oct-22	14:59	0.00276	0.00493	0.00129	0.00148	0.00538	0.00159
Y [mg/L]	03-Oct-22	14:59	0.00004	0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Zn [mg/L]	03-Oct-22	14:59	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Analysis	15:	17:	19:	20:	21:	23:	25:	27:
	OSK-W-20-232 OS							
	3-115	-W1-948	-W12-922	2-1013	-W7-888	-W1-1051.7	-W4-890	0-125
Sample Date & Time	26-Jun-22	26-Jun-22	26-Jun-22	N/A	N/A	N/A	N/A	N/A
Sample weight [g]	100	100	100	100	100	100	100	100
Volume D.I. Water [mL]	400	400	400	400	400	400	400	400
Alkalinity [mg/L as CaCO3]	89	156	93	136	106	131	89	231
CO3 [mg/L as CaCO3]	< 2	3	< 2	4	< 2	< 2	3	16
HCO3 [mg/L as CaCO3]	89	153	93	132	106	131	87	215
pH [No unit]	8.10	8.36	8.21	8.37	8.17	8.28	8.36	8.61
Conductivity [uS/cm]	287	340	403	350	346	386	533	505
F [mg/L]	0.55	0.21	1.30	0.80	0.69	0.56	1.33	0.72
Br [mg/L]	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30
CI [mg/L]	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
SO4 [mg/L]	23	< 20	50	< 20	27	26	70	< 20
NO2 [as N mg/L]	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
NO2+NO3 [as N mg/L]	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
NH3+NH4 [as N mg/L]	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tot.Reactive P [mg/L]	< 0.03	< 0.03	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Hg [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Al [mg/L]	0.419	0.389	0.875	1.03	0.588	< 0.001	0.679	0.710
As [mg/L]	0.0006	0.0127	0.0798	0.0086	0.0211	0.0071	0.0201	0.0030
Ag [mg/L]	0.00033	< 0.00005	0.00016	< 0.00005	0.00017	0.00042	0.00008	< 0.00005
Ba [mg/L]	0.00327	0.00292	0.00308	0.00375	0.00434	0.00330	0.00197	0.00400
Be [mg/L]	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	0.011	0.031	0.026	0.019	0.019	0.036	0.032	0.023
Bi [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	15.6	13.7	6.48	10.8	15.8	15.0	13.1	8.06

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: PO#OSK-619

LR Report : CA11023-SEP22

alysis	15:	17:	19:	20:	21:	23:	25:	27:
	OSK-W-20-232 O: 3-115	-W1-948	-W12-922	OSK-W-21-225 OS 2-1013	-W7-888	-W1-1051.7	-W4-890	05K-W-20-235 0-125
[mg/L]	< 0.000003	< 0.000003	0.000081	0.000047	0.000138	0.000239	0.000034	0.000029
[mg/L]	0.000009	0.000387	0.000013	0.000039	0.000012	0.000025	0.000024	0.000096
[mg/L]	< 0.00008	0.00023	0.00011	< 0.00008	< 0.00008	0.00011	0.00028	0.00018
[mg/L]	0.0003	0.0009	0.0011	0.0011	0.0012	0.0014	0.0019	0.0016
[mg/L]	< 0.007	< 0.007	0.009	< 0.007	< 0.007	< 0.007	0.017	< 0.007
mg/L]	25.7	29.1	68.9	57.3	52.4	57.0	81.2	57.1
mg/L]	0.0045	0.0092	0.0094	0.0061	0.0085	0.0105	0.0088	0.0054
[mg/L]	6.54	17.0	2.43	6.25	5.28	8.05	4.50	7.88
[mg/L]	0.0108	0.00648	0.0122	0.00515	0.0196	0.00779	0.00708	0.00682
[mg/L]	0.00228	0.00081	0.00361	0.00154	0.00683	0.0209	0.00741	0.00390
[mg/L]	17.0	15.3	27.5	17.4	12.7	19.7	45.0	59.8
[mg/L]	< 0.0001	0.0011	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
mg/L]	< 0.003	< 0.003	0.008	0.003	0.003	0.005	0.009	0.008
[mg/L]	< 0.00009	< 0.00009	0.00019	0.00018	0.00025	0.00028	< 0.00009	< 0.00009
[mg/L]	0.0036	0.0329	0.0201	0.0617	0.0615	0.0760	0.0192	0.0095
[mg/L]	0.00137	0.00028	0.00032	0.00021	0.00086	0.00182	0.00031	0.00010
[mg/L]	1.68	1.66	1.91	2.03	1.90	2.26	1.94	2.02
[mg/L]	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
[mg/L]	0.0614	0.0462	0.0193	0.0510	0.0349	0.0445	0.0292	0.0389
[mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
[mg/L]	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.00018	< 0.00005
[mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
[mg/L]	0.000048	0.000046	0.000042	0.000054	0.000028	0.000038	0.000047	0.000063
mg/L]	0.000075	0.000019	0.000508	0.000714	0.00132	0.00110	0.000954	0.000403
mg/L]	0.00135	0.00172	0.00334	0.00241	0.00103	0.00245	0.01153	0.00373
[mg/L]	0.00725	0.00247	0.00408	0.00244	0.00105	0.00157	0.00445	0.00113
mg/L]	< 0.00002	< 0.00002	0.00008	< 0.00002	0.00006	< 0.00002	0.00003	< 0.00002
[mg/L]	< 0.002	< 0.002	< 0.002	< 0.002	0.005	0.007	< 0.002	< 0.002

Analysis	28: OSK-W-21-244 4-545	29: OSK-W-21-244 4-545	30:BLK: CTEU Blank
Sample Date & Time	N/A		
Sample weight [g]	100	100	
Volume D.I. Water [mL]	400	400	
Alkalinity [mg/L as CaCO3]	68	73	4
CO3 [mg/L as CaCO3]	< 2	< 2	< 2
HCO3 [mg/L as CaCO3]	68	73	4
pH [No unit]	8.00	8.01	6.73
Conductivity [uS/cm]	541	556	8
F [mg/L]	0.55	0.54	< 0.06
Br [mg/L]	< 30	< 30	< 30
CI [mg/L]	< 20	< 20	< 20
SO4 [mg/L]	170	180	< 20
NO2 [as N mg/L]	< 3	< 3	< 3
NO3 [as N mg/L]	< 6	< 6	< 6
NO2+NO3 [as N mg/L]	< 6	< 6	< 6
NH3+NH4 [as N mg/L]	< 0.1	< 0.1	< 0.1
Tot.Reactive P [mg/L]	< 0.03	< 0.03	< 0.03
Hg [mg/L]	< 0.00001	< 0.00001	< 0.00001
Al [mg/L]	0.408	0.437	0.001

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: PO#OSK-619

LR Report: CA11023-SEP22

Analysis	28: OSK-W-21-244 4-545	29: OSK-W-21-244 4-545	30:BLK: CTEU Blank
As [mg/L]	0.0011	0.0010	< 0.0002
Ag [mg/L]	< 0.00005	< 0.00005	< 0.00005
Ba [mg/L]	0.0148	0.0141	0.00012
Be [mg/L]	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	0.004	0.005	< 0.002
Bi [mg/L]	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	26.4	26.3	0.01
Cd [mg/L]	0.000013	0.000006	< 0.000003
Co [mg/L]	0.000096	0.000094	< 0.000004
Cr [mg/L]	0.00042	0.00048	< 0.00008
Cu [mg/L]	0.0010	0.0010	< 0.0002
Fe [mg/L]	< 0.007	< 0.007	< 0.007
K [mg/L]	10.0	11.2	0.285
Li [mg/L]	0.0155	0.0157	< 0.0001
Mg [mg/L]	34.7	35.5	0.003
Mn [mg/L]	0.00822	0.00792	0.00020
Mo [mg/L]	0.0127	0.0142	0.00013
Na [mg/L]	23.8	24.3	1.70
Ni [mg/L]	0.0007	0.0006	< 0.0001
P [mg/L]	0.004	< 0.003	< 0.003
Pb [mg/L]	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	0.0061	0.0066	< 0.0009
Se [mg/L]	0.00057	0.00064	< 0.00004
Si [mg/L]	1.55	1.54	< 0.02
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	0.588	0.543	0.00009
Te [mg/L]	< 0.0001	< 0.0001	< 0.0001
Ti [mg/L]	< 0.00005	< 0.00005	0.00006
Th [mg/L]	< 0.0001	< 0.0001	< 0.0001
TI [mg/L]	0.000022	0.000024	< 0.000005
U [mg/L]	0.000012	0.000010	0.000023
V [mg/L]	0.00161	0.00166	< 0.00001
W [mg/L]	0.00117	0.00146	< 0.00002
Y [mg/L]	< 0.00002	< 0.00002	< 0.00002
Zn [mg/L]	< 0.002	0.013	< 0.002

Catharine Arnold, B.Sc., C.Chem

Project Specialist,

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Osisko Mining Inc. Attn: Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau Montreal, QC H3B-2S2, Canada

Phone: 514-206-3917

Fax:

Quebec MA110 ACISOL 1.0

Project: PO#OSK-619

05-October-2022

Date Rec. : 15 September 2022 LR Report: CA11024-SEP22

Reference: Windfall - 21489857 - set 4/5

Copy: #1

Analysis	3: Analysis Completed Date	4: Analysis W Completed Time	13: /ST-22-1020 -210
Sample Date & Time			27-Jun-22
Sample weight [g]	21-Sep-22	16:37	2.00
Initial pH	21-Sep-22	16:37	9.36
Vol H2SO4 [mL]	21-Sep-22	16:37	1.85
H2SO4 [Normality]	21-Sep-22	16:37	1.00
NP [t CaCO3/1000 t]	21-Sep-22	16:37	46.2
AP [t CaCO3/1000 t]	22-Sep-22	10:33	16.2
NNP [kg CaCO3/ tonne]	22-Sep-22	10:33	30
S [%]	22-Sep-22	10:32	0.518
Acid Leachable SO4-S [%]	22-Sep-22	10:32	< 0.04
Sulphide [%]	22-Sep-22	10:32	0.51
C [%]	22-Sep-22	09:51	0.655
CO3 (HCI) as %CO3 [%]	22-Sep-22	09:51	3.13
TOC [%]	19-Sep-22	15:30	0.088
C(g) [%]	19-Sep-22	08:05	< 0.05

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Gross NP (kg CaCO3/tonne) Section 7.3 AP (kg CaCO3/tonne) = Total S x 31.25

ASTM E1918 - S and C speciation

Quebec MA110 ACISOL 1.0

Project: PO#OSK-619

LR Report : CA11024-SEP22

Catharine Arnold, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Osisko Mining Inc.

Attn : Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau

Montreal, QC H3B- 2S2, Canada

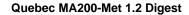
Phone: 514-206-3917

Fax:

Quebec MA200-Met 1.2 Digest

Project: PO#OSK-619

05-October-2022


Date Rec.: 15 September 2022 LR Report: CA11025-SEP22

Reference: Windfall - 21489857 - set

4/5

Copy: #1

Analysis	1: Analysis Start Date	2: Analysis Start Time	3: Analysis Completed	Completed	13: /ST-22-1020 -210
O			Date	Time	07.1.00
Sample Date & Time					27-Jun-22
F [µg/g]	22-Sep-22	08:28	27-Sep-22	14:06	< 1
Br [µg/g]	22-Sep-22	20:39	01-Oct-22	11:46	< 1.5
Hg [ug/g]	23-Sep-22	11:05	23-Sep-22	15:27	< 0.05
Ag [μg/g]	23-Sep-22	23:31	28-Sep-22	09:53	< 0.5
Al [μg/g]	23-Sep-22	23:31	28-Sep-22	09:53	3200
As [μg/g]	23-Sep-22	23:31	28-Sep-22	09:53	22
B [µg/g]	23-Sep-22	23:31	28-Sep-22	09:53	< 1
Ba [µg/g]	23-Sep-22	23:31	28-Sep-22	09:53	17
Be [µg/g]	23-Sep-22	23:31	28-Sep-22	09:53	0.05
Bi [µg/g]	23-Sep-22	23:31	28-Sep-22	09:53	< 0.09
Ca [µg/g]	23-Sep-22	23:31	28-Sep-22	09:53	15000
Cd [µg/g]	23-Sep-22	23:31	28-Sep-22	09:53	0.04
Co [µg/g]	23-Sep-22	23:31	28-Sep-22	09:53	4.1
Cr [µg/g]	23-Sep-22	23:31	28-Sep-22	09:53	22
Cu [µg/g]	23-Sep-22	23:31	28-Sep-22	09:53	5.7
Fe [µg/g]	23-Sep-22	23:31	28-Sep-22	09:53	8500
K [μg/g]	23-Sep-22	23:31	28-Sep-22	09:53	750
Li [μg/g]	23-Sep-22	23:31	28-Sep-22	09:53	11
Mg [μg/g]	23-Sep-22	23:31	28-Sep-22	09:53	5600
Mn [μg/g]	23-Sep-22	23:31	28-Sep-22	09:53	240
Mo [μg/g]	23-Sep-22	23:31	28-Sep-22	09:53	0.2
Na [μg/g]	23-Sep-22	23:31	28-Sep-22	09:53	300
Ni [µg/g]	23-Sep-22	23:31	28-Sep-22	09:53	2.8
P [μg/g]	23-Sep-22	23:31	28-Sep-22	09:53	270
Pb [μg/g]	23-Sep-22	23:31	28-Sep-22	09:53	2.7
Sb [µg/g]	23-Sep-22	23:31	28-Sep-22	09:53	< 0.8

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: PO#OSK-619

LR Report : CA11025-SEP22

Analysis	1:	2:	3:	4:	13:
	Analysis	Analysis	Analysis	Analysis W	ST-22-1020
	Start Date	Start Time	Completed	Completed	-210
			Date	Time	
Se [µg/g]	23-Sep-22	23:31	28-Sep-22	09:53	< 0.7
Si [µg/g]	23-Sep-22	23:31	28-Sep-22	12:46	770
Sn [µg/g]	23-Sep-22	23:31	28-Sep-22	09:53	< 5
Sr [µg/g]	23-Sep-22	23:31	28-Sep-22	09:53	15
Te [µg/g]	23-Sep-22	23:31	28-Sep-22	12:46	< 1
Ti [μg/g]	23-Sep-22	23:31	28-Sep-22	09:53	3.8
TI [μg/g]	23-Sep-22	23:31	28-Sep-22	09:53	< 0.02
U [μg/g]	23-Sep-22	23:31	28-Sep-22	09:53	0.12
V [µg/g]	23-Sep-22	23:31	28-Sep-22	09:53	1
Y [μg/g]	23-Sep-22	23:31	28-Sep-22	09:53	1.4
Zn [µg/g]	23-Sep-22	23:31	28-Sep-22	09:53	16

Catharine Arnold, B.Sc., C.Chem Project Specialist,

Environment, Health & Safety

Catharine aurold

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Osisko Mining Inc. Attn : Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau

Montreal, QC H3B- 2S2, Canada

Phone: 514-206-3917

Fax:

TCLP1311--(Quebec Modified Version - MA. 100 -Lix.com.1.0)20:1 L/S ratio, 18hr

Project: PO#OSK-619

12-October-2022

Date Rec.: 15 September 2022 LR Report: CA11026-SEP22

Reference: Windfall - 21489857 - set

4/5

Copy: #1

Analysis	3:	4:	6:	8:	9:	15:
	Analysis Completed	Analysis Completed	WST-21-0647-W 260	/ST-19-0160A -55-	OSK-W-21-26 06-615	WST-22-1013- 345
	Date	Time	200	-33	00-013	343
Sample Date & Time			27-Jun-22	27-Jun-22	27-Jun-22	27-Jun-22
Sample weight [g]	27-Sep-22	10:23	20	20	20	20
Ext Fluid [#1 or #2]	27-Sep-22	10:23	1	1	1	1
Ext Volume [mL]	27-Sep-22	10:23	400	400	400	400
pH [No unit]	30-Sep-22	14:01	4.91	5.20	5.48	4.98
Conductivity [uS/cm]	30-Sep-22	14:01	5090	5780	6250	5310
Alkalinity [mg/L as CaCO3]	30-Sep-22	14:01	888	1430	1670	1060
HCO3 [mg/L as CaCO3]	30-Sep-22	14:01	888	1430	1670	1060
CO3 [mg/L as CaCO3]	30-Sep-22	14:01	< 2	< 2	< 2	< 2
SO4 [mg/L]	06-Oct-22	09:41	< 20	< 20	< 20	< 20
CI [mg/L]	06-Oct-22	09:41	< 20	< 20	< 20	< 20
NO2 [as N mg/L]	06-Oct-22	09:41	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	06-Oct-22	09:41	< 6	< 6	< 6	< 6
NO2+NO3 [as N mg/L]	06-Oct-22	09:41	< 6	< 6	< 6	< 6
Br [mg/L]	06-Oct-22	09:41	< 30	< 30	< 30	< 30
F [mg/L]	03-Oct-22	09:12	< 0.06	< 0.06	< 0.06	< 0.06
Tot.Reactive P [mg/L]	11-Oct-22	11:18	< 0.03	< 0.03	< 0.03	< 0.03
Hg [mg/L]	04-Oct-22	15:50	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Al [mg/L]	07-Oct-22	14:34	0.68	0.39	0.17	0.80
As [mg/L]	07-Oct-22	14:34	0.015	0.002	0.084	0.044
Ag [mg/L]	07-Oct-22	14:34	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Ba [mg/L]	07-Oct-22	14:34	0.166	0.0725	0.0757	0.105
B [mg/L]	07-Oct-22	14:34	< 0.02	< 0.02	< 0.02	0.02
Be [mg/L]	07-Oct-22	14:34	0.00025	0.00036	0.00046	0.00086
Bi [mg/L]	07-Oct-22	14:34	0.00003	0.00002	0.00001	0.00003
Ca [mg/L]	07-Oct-22	14:34	41.7	243	513	91.8
Cd [mg/L]	07-Oct-22	14:34	0.00033	0.00078	0.00072	0.00092

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

TCLP1311--(Quebec Modified Version - MA. 100 -Lix.com.1.0)20:1 L/S ratio, 18hr

Project: PO#OSK-619

LR Report : CA11026-SEP22

Analysis	3:	4:	6:	8:	9:	15:
	Analysis Completed	Analysis \ Completed	WST-21-0647-W 260	ST-19-0160A O -55	SK-W-21-26 V 06-615	VST-22-1013- 345
	Date	Time	200	-33	00-013	343
Cr [mg/L]	07-Oct-22	14:34	0.0046	0.0015	0.0013	0.0029
Co [mg/L]	07-Oct-22	14:34	0.00042	0.00314	0.00300	0.00454
Cu [mg/L]	07-Oct-22	14:34	< 0.002	< 0.002	< 0.002	0.008
Fe [mg/L]	07-Oct-22	14:34	7.18	30.0	2.13	15.0
K [mg/L]	07-Oct-22	14:34	4.83	5.79	6.08	5.26
Li [mg/L]	07-Oct-22	14:34	0.004	0.007	0.005	0.006
Mg [mg/L]	07-Oct-22	14:34	18.5	23.5	3.08	25.6
Mn [mg/L]	07-Oct-22	14:34	1.45	10.9	6.67	2.52
Mo [mg/L]	07-Oct-22	14:34	0.0004	0.0006	0.0005	< 0.0004
Na [mg/L]	07-Oct-22	14:34	1390	1390	1580	1410
Ni [mg/L]	07-Oct-22	14:34	0.002	0.013	0.003	0.015
P [mg/L]	07-Oct-22	14:34	0.020	< 0.003	0.010	< 0.003
Pb [mg/L]	07-Oct-22	14:34	0.04930	0.00099	0.01096	0.07089
Sb [mg/L]	07-Oct-22	14:34	< 0.009	< 0.009	< 0.009	< 0.009
Se [mg/L]	07-Oct-22	14:34	0.0025	0.0004	0.0023	0.0008
Si [mg/L]	07-Oct-22	14:34	0.90	1.28	1.14	1.12
Sn [mg/L]	07-Oct-22	14:34	0.00009	< 0.00006	0.00010	0.00007
Sr [mg/L]	07-Oct-22	14:34	0.0652	0.370	0.511	0.135
Te [mg/L]	07-Oct-22	14:34	0.0006	0.0001	0.0003	0.0003
Ti [mg/L]	07-Oct-22	14:34	0.0033	0.0005	0.0036	0.0008
TI [mg/L]	07-Oct-22	14:34	< 0.00005	0.00020	0.00008	0.00020
Th [mg/L]	07-Oct-22	14:34	0.0028	0.0009	0.0001	0.0019
U [mg/L]	07-Oct-22	14:34	0.000490	0.000240	0.000140	0.000540
V [mg/L]	07-Oct-22	14:34	0.00007	0.00015	0.00004	0.00010
W [mg/L]	07-Oct-22	14:34	0.00015	0.00011	0.00017	0.00014
Zn [mg/L]	07-Oct-22	14:34	0.04	0.09	< 0.02	0.22

Analysis	17: WST-21-0873- 268.1	22: WST-18-0024-\$ 50	33:BLK: Reg347/TCL P1311 Blank#1
Sample Date & Time	27-Jun-22	27-Jun-22	
Sample weight [g]	20	20	
Ext Fluid [#1 or #2]	1	1	1
Ext Volume [mL]	400	400	400
pH [No unit]	4.89	5.09	4.78
Conductivity [uS/cm]	5000	5670	4800
Alkalinity [mg/L as CaCO3]	824	1200	612
HCO3 [mg/L as CaCO3]	824	1200	612
CO3 [mg/L as CaCO3]	< 2	< 2	< 2
SO4 [mg/L]	< 20	< 20	< 20
CI [mg/L]	< 20	< 20	< 20

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

TCLP1311--(Quebec Modified Version - MA. 100 -Lix.com.1.0)20:1 L/S ratio, 18hr

Project: PO#OSK-619

LR Report : CA11026-SEP22

NO2 [as N mg/L] NO3 [as N mg/L] NO2+NO3 [as N mg/L] Br [mg/L] F [mg/L] Tot.Reactive P [mg/L] Hg [mg/L] As [mg/L] As [mg/L] Ba [mg/L] Ba [mg/L] Be [mg/L] Bi [mg/L] Ca [mg/L] Cd [mg/L] Cr [mg/L] Cu [mg/L] Fe [mg/L] K [mg/L]	<pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	< 6 < 6 < 30 0.07	P1311 Blank#1 < 3 < 6 < 3 < 0.06 < 0.03
NO3 [as N mg/L] NO2+NO3 [as N mg/L] Br [mg/L] F [mg/L] Tot.Reactive P [mg/L] Hg [mg/L] Al [mg/L] As [mg/L] Ba [mg/L] Be [mg/L] Be [mg/L] Bi [mg/L] Ca [mg/L] Cd [mg/L] Cr [mg/L] Cu [mg/L] Cu [mg/L] Fe [mg/L]	< 3 < 6 < 6 < 30 < 0.06 < 0.03 < 0.00001 0.72 0.007	< 3 < 6 < 6 < 30 0.07 < 0.03	Slank#1 < 3 < 6 < 7 < 8 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9
NO3 [as N mg/L] NO2+NO3 [as N mg/L] Br [mg/L] F [mg/L] Tot.Reactive P [mg/L] Hg [mg/L] Al [mg/L] As [mg/L] Ba [mg/L] Ba [mg/L] Be [mg/L] Bi [mg/L] Ca [mg/L] Cd [mg/L] Cr [mg/L] Cu [mg/L] Cu [mg/L] Fe [mg/L]	< 6 < 30 < 0.06 < 0.03 < 0.00001 0.72 0.007	< 6 < 6 < 30 0.07 < 0.03	< 6 < 6 < 30 < 0.06
NO2+NO3 [as N mg/L] Br [mg/L] F [mg/L] Tot.Reactive P [mg/L] Hg [mg/L] Al [mg/L] As [mg/L] As [mg/L] Ba [mg/L] Be [mg/L] Be [mg/L] Ca [mg/L] Cd [mg/L] Cr [mg/L] Co [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L]	< 6 < 30 < 0.06 < 0.03 < 0.00001 0.72 0.007	< 6 < 30 0.07 < 0.03	< 6 < 30 < 0.06
Br [mg/L] F [mg/L] F [mg/L] Tot.Reactive P [mg/L] Hg [mg/L] Al [mg/L] As [mg/L] Ag [mg/L] Ba [mg/L] Be [mg/L] Be [mg/L] Ca [mg/L] Cd [mg/L] Cr [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L] Fe [mg/L]	< 30 < 0.06 < 0.03 < 0.00001 0.72 0.007	< 30 0.07 < 0.03	< 30 < 0.06
F [mg/L] Tot.Reactive P [mg/L] Hg [mg/L] Al [mg/L] As [mg/L] As [mg/L] Ba [mg/L] Be [mg/L] Be [mg/L] Ca [mg/L] Ca [mg/L] Cr [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L]	< 0.06 < 0.03 < 0.00001 0.72 0.007	0.07 < 0.03	< 0.06
F [mg/L] Tot.Reactive P [mg/L] Hg [mg/L] AI [mg/L] As [mg/L] As [mg/L] Ba [mg/L] Be [mg/L] Be [mg/L] Ca [mg/L] Ca [mg/L] Cr [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L]	< 0.03 < 0.00001 0.72 0.007	< 0.03	
Hg [mg/L] Al [mg/L] As [mg/L] As [mg/L] Ag [mg/L] Ba [mg/L] Be [mg/L] Be [mg/L] Ca [mg/L] Cd [mg/L] Cr [mg/L] Co [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L]	< 0.00001 0.72 0.007		< 0.03
AI [mg/L] As [mg/L] As [mg/L] Ag [mg/L] Ba [mg/L] B [mg/L] Bi [mg/L] Ca [mg/L] Cd [mg/L] Cr [mg/L] Co [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L]	0.72 0.007	< 0.00001	
AI [mg/L] As [mg/L] As [mg/L] Ag [mg/L] Ba [mg/L] B [mg/L] Bi [mg/L] Ca [mg/L] Cd [mg/L] Cr [mg/L] Co [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L]	0.007		< 0.0000
As [mg/L] Ag [mg/L] Ba [mg/L] B [mg/L] Be [mg/L] Bi [mg/L] Ca [mg/L] Cd [mg/L] Cr [mg/L] Co [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L] Cu [mg/L] K [mg/L]		0.63	< 0.0
Ag [mg/L] Ba [mg/L] B [mg/L] Be [mg/L] Be [mg/L] Ca [mg/L] Cd [mg/L] Cr [mg/L] Co [mg/L] Co [mg/L] Cu [mg/L] K [mg/L]	< 0.0005	0.003	< 0.002
Ba [mg/L] B [mg/L] Be [mg/L] Bi [mg/L] Ca [mg/L] Cd [mg/L] Cr [mg/L] Co [mg/L] Cu [mg/L] Cu [mg/L] K [mg/L]			< 0.0005
B [mg/L] Be [mg/L] Bi [mg/L] Ca [mg/L] Cd [mg/L] Cr [mg/L] Co [mg/L] Cu [mg/L] En [mg/L] K [mg/L]	0.0540		0.0003
Be [mg/L] Bi [mg/L] Ca [mg/L] Cd [mg/L] Cr [mg/L] Co [mg/L] Co [mg/L] Cu [mg/L] K [mg/L]	< 0.02		< 0.02
Bi [mg/L] Ca [mg/L] Cd [mg/L] Cr [mg/L] Co [mg/L] Cu [mg/L] Cu [mg/L] Fe [mg/L] K [mg/L]	0.00042		< 0.0000
Ca [mg/L] Cd [mg/L] Cr [mg/L] Co [mg/L] Cu [mg/L] Fe [mg/L] K [mg/L]	0.00008		< 0.0000
Cd [mg/L] Cr [mg/L] Co [mg/L] Cu [mg/L] Fe [mg/L] K [mg/L]	33.1	258	< 0.
Cr [mg/L] Co [mg/L] Cu [mg/L] Fe [mg/L] K [mg/L]	0.00047	0.00046	< 0.0000
Co [mg/L] Cu [mg/L] Fe [mg/L] K [mg/L]	0.0037		0.002
Cu [mg/L] Fe [mg/L] K [mg/L]	0.00028		< 0.0000
Fe [mg/L] K [mg/L]	< 0.002		< 0.002
K [mg/L]	7.19		< 0.0
	4.73		0.3
LI IIIIQ/LI	0.002		< 0.00
Mg [mg/L]	12.8		< 0.0
Mn [mg/L]	0.856		0.000
Mo [mg/L]	0.0008		< 0.000
Na [mg/L]	1400		141
Ni [mg/L]	0.002		< 0.00
P [mg/L]	< 0.003		< 0.003
Pb [mg/L]	0.03769		< 0.0000
Sb [mg/L]	< 0.009		< 0.00
Se [mg/L]	0.0009		< 0.000
Si [mg/L]	1.05		< 0.03
Sn [mg/L]	< 0.00006		< 0.0000
Sr [mg/L]	0.06697		0.0001
Te [mg/L]	< 0.0001	< 0.0001	< 0.000
Ti [mg/L]	0.0028		< 0.000
TI [mg/L]	< 0.00005		< 0.0000
Th [mg/L]	0.0041	0.0007	< 0.000
U [mg/L]	0.00570		0.00000
V [mg/L]	0.000370	0.000230	< 0.00000
W [mg/L]	0.00011		< 0.0000
vv [mg/L] Zn [mg/L]	0.00011	0.00013	— (1 (1)(1)(1)

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

TCLP1311--(Quebec Modified Version - MA. 100 -Lix.com.1.0)20:1 L/S ratio, 18hr

Project: PO#OSK-619

LR Report: CA11026-SEP22

5.7mLs of acetic acid plus 64.3 mLs of 1.0N NaOH bulked to 1L with deionized water.

Extraction Fluid #2 - pH 2.88 ± 0.05

5.7 mLs of acetic acid bulked to 1L with deionized water.

Catharine Arnold, B.Sc., C.Chem Project Specialist,

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Osisko Mining Inc.

Attn: Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau

Montreal, QC H3B- 2S2, Canada

Phone: 514-206-3917

Fax:

SPLP1312--(Quebec Modified Version - MA. 100 -Lix.com.1.0) 20:1 L/S ratio, 18hr

Project: PO#OSK-619

12-October-2022

Date Rec.: 15 September 2022 LR Report: CA11027-SEP22

Reference: Windfall - 21489857 - set

4/5

Copy: #1

Analysis	3:	4:	5:	7:	8:	9:
•	Analysis		WST-21-0647- \			
	Completed Date	Completed Time	161.5	313	-55	6-615
Sample Date & Time	Date	Tillie	27-Jun-22	27-Jun-22	27-Jun-22	27-Jun-22
•	20 0 22	10.10				
Sample weight [g]	29-Sep-22	12:49	20	20	20	20
Ext Fluid [#1 or #2]	29-Sep-22	12:49	1	1	1	1
Ext Volume [mL]	29-Sep-22	12:49	400	400	400	400
Final pH [no unit]	29-Sep-22	12:49	9.03	8.69	8.87	9.01
F [mg/L]	04-Oct-22	14:05	< 0.06	< 0.06	< 0.06	< 0.06
Br [mg/L]	04-Oct-22	11:09	< 30	< 30	< 30	< 30
SO4 [mg/L]	04-Oct-22	11:09	< 20	< 20	< 20	< 20
CI [mg/L]	04-Oct-22	11:09	< 20	< 20	< 20	< 20
NO2 [as N mg/L]	04-Oct-22	11:09	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	04-Oct-22	11:09	< 6	< 6	< 6	< 6
pH [No unit]	04-Oct-22	11:21	7.86	7.54	7.79	7.78
Conductivity [uS/cm]	04-Oct-22	11:21	66	52	79	74
Alkalinity [mg/L as CaCO3]	04-Oct-22	11:21	30	23	32	27
HCO3 [mg/L as CaCO3]	04-Oct-22	11:21	30	23	32	27
CO3 [mg/L as CaCO3]	04-Oct-22	11:21	< 2	< 2	< 2	< 2
NH3+NH4 [as N mg/L]	30-Sep-22	09:10	< 0.1	< 0.1	< 0.1	< 0.1
Tot.Reactive P [mg/L]	11-Oct-22	11:18	< 0.03	< 0.03	< 0.03	< 0.03
Hg [mg/L]	04-Oct-22	12:51	0.00002	< 0.00001	< 0.00001	< 0.00001
Al [mg/L]	05-Oct-22	14:53	0.902	0.546	0.808	0.913
As [mg/L]	05-Oct-22	14:53	0.0037	0.0040	0.0005	0.0120
Ag [mg/L]	05-Oct-22	14:53	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Ba [mg/L]	05-Oct-22	14:53	0.00077	0.00067	0.00072	0.00060
Be [mg/L]	05-Oct-22	14:53	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	05-Oct-22	14:53	< 0.002	0.004	< 0.002	< 0.002
Bi [mg/L]	05-Oct-22	14:53	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	05-Oct-22	14:53	7.98	4.90	11.3	10.7

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

SPLP1312--(Quebec Modified Version - MA. 100 -Lix.com.1.0) 20:1 L/S ratio, 18hr

Project: PO#OSK-619

LR Report : CA11027-SEP22

Analysis	3:	4:	5:	7:	8:	9:
	Analysis Completed Date	Analysis Completed Time	WST-21-0647- 161.5	WST-21-0647-V 313	WST-19-0160A 0 -55	OSK-W-21-260 6-615
Cd [mg/L]	05-Oct-22	14:53	< 0.000003	< 0.000003	< 0.000003	< 0.000003
Co [mg/L]	05-Oct-22	14:53	0.000014	0.000005	0.000006	0.000004
Cr [mg/L]	05-Oct-22	14:53	< 0.00008	< 0.00008	< 0.00008	< 0.00008
Cu [mg/L]	05-Oct-22	14:53	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Fe [mg/L]	05-Oct-22	14:53	0.009	0.010	< 0.007	< 0.007
K [mg/L]	05-Oct-22	14:53	2.05	2.96	2.11	2.27
Li [mg/L]	05-Oct-22	14:53	0.0014	0.0022	0.0014	0.0009
Mg [mg/L]	05-Oct-22	14:53	0.664	1.85	1.47	0.417
Mn [mg/L]	05-Oct-22	14:53	0.00116	0.0108	0.00568	0.00089
Mo [mg/L]	05-Oct-22	14:53	0.00176	0.00041	0.00023	0.00017
Na [mg/L]	05-Oct-22	14:53	1.97	1.01	0.94	0.92
Ni [mg/L]	05-Oct-22	14:53	0.0001	0.0001	0.0001	0.0001
P [mg/L]	05-Oct-22	14:53	< 0.003	< 0.003	< 0.003	< 0.003
Pb [mg/L]	05-Oct-22	14:53	< 0.00009	0.00016	< 0.00009	< 0.00009
Sb [mg/L]	05-Oct-22	14:53	< 0.0009	0.0067	0.0046	0.0025
Se [mg/L]	05-Oct-22	14:53	< 0.00004	0.00015	0.00006	0.00016
Si [mg/L]	05-Oct-22	14:53	2.03	1.42	0.90	1.00
Sn [mg/L]	05-Oct-22	14:53	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	05-Oct-22	14:53	0.0218	0.00845	0.0214	0.0180
Te [mg/L]	05-Oct-22	14:53	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Ti [mg/L]	05-Oct-22	14:53	0.00007	0.00020	< 0.00005	< 0.00005
Th [mg/L]	05-Oct-22	14:53	< 0.0001	< 0.0001	< 0.0001	< 0.0001
TI [mg/L]	05-Oct-22	14:53	< 0.000005	< 0.00005	< 0.000005	0.000008
U [mg/L]	05-Oct-22	14:53	0.000157	0.000048	0.000005	0.000003
V [mg/L]	05-Oct-22	14:53	0.00074	0.00005	0.00040	0.00021
W [mg/L]	05-Oct-22	14:53	0.00028	0.00020	0.00064	0.00038
Zn [mg/L]	05-Oct-22	14:53	< 0.002	< 0.002	< 0.002	< 0.002

Analysis	10:	12:	15:	16:	18:	19:
	OSK-W-21-260	WST-21-0666-	WST-22-1013-0	OSK-W-21-255	WST-21-0992-	WST-21-0952-
	6-670	54	345	1-W3-915	450	32
Sample Date & Time	27-Jun-22	27-Jun-22	27-Jun-22	27-Jun-22	27-Jun-22	27-Jun-22
Sample weight [g]	20	20	20	20	20	20
Ext Fluid [#1 or #2]	1	1	1	1	1	1
Ext Volume [mL]	400	400	400	400	400	400
Final pH [no unit]	9.27	9.20	9.11	9.35	9.24	9.17
F [mg/L]	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Br [mg/L]	< 30	< 30	< 30	< 30	< 30	< 30
SO4 [mg/L]	< 20	< 20	< 20	< 20	< 20	< 20
CI [mg/L]	< 20	< 20	< 20	< 20	< 20	< 20
NO2 [as N mg/L]	< 3	< 3	< 3	< 3	< 3	< 3

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

SPLP1312--(Quebec Modified Version - MA. 100 -Lix.com.1.0) 20:1 L/S ratio, 18hr

Project: PO#OSK-619

LR Report : CA11027-SEP22

Analysis	10: OSK-W-21-260	12: WST-21-0666-	15: WST-22-1013-C	16: SK-W-21-255	18: WST-21-0992-	19: WST-21-0952-
	6-670	54	345	1-W3-915	450	32
NO3 [as N mg/L]	< 6	< 6	< 6	< 6	< 6	< 6
pH [No unit]	7.67	7.84	7.74	7.80	7.89	7.78
Conductivity [uS/cm]	48	85		60	69	71
Alkalinity [mg/L as CaCO3]	23	38		27	30	31
HCO3 [mg/L as CaCO3]	23	38	25	27	30	31
CO3 [mg/L as CaCO3]	< 2	< 2	< 2	< 2	< 2	< 2
NH3+NH4 [as N mg/L]	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1
Tot.Reactive P [mg/L]	< 0.03	< 0.03		< 0.03	< 0.03	< 0.03
Hg [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Al [mg/L]	0.766	0.718	0.832	1.08	0.894	0.523
As [mg/L]	0.0007	0.0021	0.0082	0.0081	0.0089	0.0032
Ag [mg/L]	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Ba [mg/L]	0.00051	0.00144	0.00090	0.00021	0.00033	0.00101
Be [mg/L]	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	< 0.002	0.007		0.007	0.004	
Bi [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	7.62	10.4	7.42	8.07	7.92	8.65
Cd [mg/L]	< 0.000003	< 0.000003	< 0.000003	< 0.000003	< 0.000003	< 0.000003
Co [mg/L]	0.000005	0.000006	0.000006	0.000008	0.000005	0.000004
Cr [mg/L]	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008
Cu [mg/L]	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Fe [mg/L]	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
K [mg/L]	0.926	1.07	3.34	1.26	2.31	0.938
Li [mg/L]	0.0004	0.0023	0.0021	0.0046	0.0015	0.0013
Mg [mg/L]	0.740	2.96	1.07	0.840	1.30	2.36
Mn [mg/L]	0.00061	0.00094	0.00211	0.00099	0.00114	0.00055
Mo [mg/L]	0.00020	0.00030	0.00031	0.00013	0.00022	0.00011
Na [mg/L]	1.06	2.16	1.37	2.67	1.72	1.28
Ni [mg/L]	0.0001	< 0.0001	0.0001	< 0.0001	< 0.0001	< 0.0001
P [mg/L]	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Pb [mg/L]	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	< 0.0009	0.0013	0.0071	0.0022	0.0019	0.0012
Se [mg/L]	< 0.00004	0.00040	0.00011	0.00006	< 0.00004	< 0.00004
Si [mg/L]	1.03	1.06	1.48	1.73	1.58	0.99
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	0.0272	0.228	0.0135	0.0125	0.0101	0.0655
Te [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Ti [mg/L]	< 0.00005	< 0.00005	0.00010	< 0.00005	< 0.00005	< 0.00005
Th [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
TI [mg/L]	0.000009	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	< 0.000002	< 0.000002		0.000056	0.000014	
V [mg/L]	0.00123			0.00060	0.00071	0.00062

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

SPLP1312--(Quebec Modified Version - MA. 100 -Lix.com.1.0) 20:1 L/S ratio, 18hr

Project: PO#OSK-619

LR Report: CA11027-SEP22

Analysis	10: OSK-W-21-260 6-670	12: WST-21-0666- 54	15: WST-22-1013-0 345	16: DSK-W-21-255 1-W3-915	18: WST-21-0992- 450	19: WST-21-0952- 32
W [mg/L]	0.00022	0.00015	0.00019	0.00019	0.00025	0.00013
Zn [mg/L]	< 0.002	< 0.002	0.002	< 0.002	< 0.002	< 0.002

Analysis	20:	22:	24:	26:	29:
	OSK-W-21-194 9-W15-1080	WST-18-0024-0	OSK-W-21-255 (5-590	OSK-W-21-254 4-838	WST-20-0573-
	9-4413-1000	30	3-390	4-030	307
Sample Date & Time	27-Jun-22	27-Jun-22	27-Jun-22	28-Jun-22	28-Jun-22
Sample weight [g]	20	20	20	20	20
Ext Fluid [#1 or #2]	1	1	1	1	1
Ext Volume [mL]	400	400	400	400	400
Final pH [no unit]	9.19	8.80	9.33	9.23	9.26
F [mg/L]	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Br [mg/L]	< 30	< 30	< 30	< 30	< 30
SO4 [mg/L]	< 20	< 20	< 20	< 20	< 20
CI [mg/L]	< 20	< 20	< 20	< 20	< 20
NO2 [as N mg/L]	< 3	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	< 6	< 6	< 6	< 6	< 6
pH [No unit]	7.77	7.68	7.61	7.76	7.79
Conductivity [uS/cm]	68	93	54	64	67
Alkalinity [mg/L as CaCO3]	26	26	25	28	25
HCO3 [mg/L as CaCO3]	26	26	25	28	25
CO3 [mg/L as CaCO3]	< 2	< 2	< 2	< 2	< 2
NH3+NH4 [as N mg/L]	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tot.Reactive P [mg/L]	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Hg [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
AI [mg/L]	0.831	0.688	0.406	0.751	0.832
As [mg/L]	0.0068	0.0021	0.0007	0.0081	0.0026
Ag [mg/L]	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Ba [mg/L]	0.00036	0.00077	0.0355	0.00070	0.00213
Be [mg/L]	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	0.006	< 0.002	0.002	0.005	0.003
Bi [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	8.09	13.4	7.73	7.88	8.36
Cd [mg/L]	< 0.000003	< 0.000003	< 0.000003	< 0.000003	< 0.000003
Co [mg/L]	0.000007	0.000007	< 0.000004	0.000004	0.000006
Cr [mg/L]	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008
Cu [mg/L]	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Fe [mg/L]	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
K [mg/L]	3.57	3.41	0.307	3.50	1.80
Li [mg/L]	0.0025	0.0013	0.0005	0.0018	0.0014
Mg [mg/L]	1.32	0.703	1.63	1.58	1.28

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

SPLP1312--(Quebec Modified Version - MA. 100 -Lix.com.1.0) 20:1 L/S ratio, 18hr

Project: PO#OSK-619

LR Report: CA11027-SEP22

Analysis	20:	22:	24:	26:	29:
	OSK-W-21-194				WST-20-0573-
	9-W15-1080	50	5-590	4-838	367
Mar Fra - // 1	0.00000	0.00000	0.00057	0.00004	0.00000
Mn [mg/L]	0.00262		0.00057	0.00864	
Mo [mg/L]	0.00033	0.00030	0.00078	0.00037	0.00020
Na [mg/L]	1.38	0.97	0.89	0.90	2.00
Ni [mg/L]	0.0001	< 0.0001	0.0001	0.0001	0.0001
P [mg/L]	0.003	< 0.003	< 0.003	< 0.003	< 0.003
Pb [mg/L]	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	0.0025	0.0014	< 0.0009	0.0091	< 0.0009
Se [mg/L]	0.00011	0.00027	< 0.00004	0.00011	0.00005
Si [mg/L]	2.05	1.01	0.96	1.46	1.83
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	0.0153	0.0347	0.0524	0.0145	0.0548
Te [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Ti [mg/L]	< 0.00005	0.00009	< 0.00005	< 0.00005	< 0.00005
Th [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
TI [mg/L]	< 0.000005	0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	0.000015	0.000006	< 0.000002	0.000027	0.000118
V [mg/L]	0.00047	0.00037	0.00063	0.00030	0.00094
W [mg/L]	0.00022	0.00040	0.00031	0.00022	0.00035
Zn [mg/L]	< 0.002	0.004	< 0.002	< 0.002	< 0.002

Catharine Arnold, B.Sc., C.Chem

Project Specialist,

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Osisko Mining Inc.

Attn: Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau

Montreal, QC H3B- 2S2, Canada

Phone: 514-206-3917 Fax:

12-October-2022

Project: PO#OSK-619

Date Rec.: 15 September 2022 LR Report: CA11028-SEP22

Reference: Windfall - 21489857 - set

4/5

Copy: #1

Analysis	3:	4:	5:	7:	8:	9:	10:	12:
	Analysis Completed DateCom		ST-21-0647-16WS 1.5	3T-21-0647-31 \ 3	NST-19-0160A-0 55	OSK-W-21-2606- 615	OSK-W-21-2606-V 670	VST-21-0666-54
Sample Date & Time			27-Jun-22	27-Jun-22	27-Jun-22	27-Jun-22	27-Jun-22	27-Jun-22
Sample weight [g]	28-Sep-22	09:01	100	100	100	100	100	100
Volume D.I. Water [mL]	28-Sep-22	09:01	400	400	400	400	400	400
Alkalinity [mg/L as CaCO3]	30-Sep-22	14:03	88	76	122	63	53	215
CO3 [mg/L as CaCO3]	30-Sep-22	14:03	< 2	< 2	< 2	< 2	< 2	- 6
HCO3 [mg/L as CaCO3]	30-Sep-22	14:03	88	76	122	63	53	209
pH [No unit]	30-Sep-22	14:03	8.05	7.94	8.10	7.81	7.81	8.38
Conductivity [uS/cm]	30-Sep-22	14:03	239	279	404	326	152	600
F [mg/L]	03-Oct-22	09:14	0.92	0.59	0.35	0.36	0.26	0.38
Br [mg/L]	02-Oct-22	11:04	< 30	< 30	< 30	< 30	< 30	< 30
CI [mg/L]	02-Oct-22	11:04	< 20	< 20	< 20	< 20	< 20	< 20
SO4 [mg/L]	02-Oct-22	11:04	< 20	22	36	53	< 20	33
NO2 [as N mg/L]	02-Oct-22	11:04	< 3	< 3	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	02-Oct-22	11:04	< 6	< 6	< 6	< 6	< 6	< 6
NO2+NO3 [as N mg/L]	02-Oct-22	11:04	< 6	< 6	< 6	< 6	< 6	< 6
NH3+NH4 [as N mg/L]	29-Sep-22	11:54	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tot.Reactive P [mg/L]	11-Oct-22	11:19	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.03
Hg [mg/L]	03-Oct-22	11:50	< 0.00001	0.00001	< 0.00001	< 0.00001	0.00001	< 0.00001
AI [mg/L]	03-Oct-22	11:50	1.26	0.956	0.236	0.394	0.461	0.419
As [mg/L]	03-Oct-22	11:50	0.0080	0.0233	0.0007	0.0058	0.0009	0.0021
Ag [mg/L]	03-Oct-22	11:50	< 0.00005	0.00013	0.00041	0.00082	< 0.00005	< 0.00005
Ba [mg/L]	03-Oct-22	11:50	0.00260	0.00277	0.00771	0.00360	0.00120	0.00461
Be [mg/L]	03-Oct-22	11:50	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	03-Oct-22	11:50	0.027	0.026	0.018	0.021	0.011	0.064
Bi [mg/L]	03-Oct-22	11:50	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	03-Oct-22	11:50	6.36	12.1	35.5	27.4	11.4	13.4
Cd [mg/L]	03-Oct-22	11:50	< 0.000003	0.000043	0.000020	0.000009	0.000003	0.000012
Co [mg/L]	03-Oct-22	11:50	0.000019	0.000013	0.000043	0.000030	0.000017	0.000048
Cr [mg/L]	03-Oct-22	11:50	0.00015	0.00022	< 0.00008	0.00008	0.00055	0.00131
Cu [mg/L]	03-Oct-22	11:50	0.0006	0.0006	0.0003	0.0005	0.0003	0.0003
Fe [mg/L]	03-Oct-22	11:50	0.009	< 0.007	0.008	0.009	< 0.007	< 0.007
K [mg/L]	03-Oct-22	11:50	27.2	47.1	26.3	40.5	5.79	25.0
Li [mg/L]	03-Oct-22	11:50	0.0070	0.0087	0.0068	0.0055	0.0023	0.0175

Analysis

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: PO#OSK-619

LR Report: CA11028-SEP22

Analysis	3:	4:	5:	7:	8:	9:	10:	12:
	Analysis Completed DateCor		T-21-0647-16WS 1.5	3T-21-0647-31 V 3	WST-19-0160A-OS 55	SK-W-21-2606- OS 615	SK-W-21-2606-W 670	ST-21-0666-54
Mg [mg/L]	03-Oct-22	11:50	2.91	4.24	19.4	5.22	6.23	27.0
Mn [mg/L]	03-Oct-22	11:50	0.00206	0.00567	0.0765	0.0101	0.00206	0.00936
Mo [mg/L]	03-Oct-22	11:50	0.00116	0.00737	0.00330	0.00343	0.00200	0.02032
Na [mg/L]	03-Oct-22	11:50	34.3	18.1	13.9	13.2	11.6	88.0
Ni [mg/L]	03-Oct-22	11:50	< 0.0001	< 0.0001	0.0003	< 0.0001	< 0.0001	< 0.0001
P [mg/L]	03-Oct-22	11:50	0.006	0.005	< 0.003	0.003	< 0.003	0.004
Pb [mg/L]	03-Oct-22	11:50	< 0.00009	0.00044	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	03-Oct-22	11:50	0.0047	0.116	0.0460	0.0109	0.0022	0.0176
Se [mg/L]	03-Oct-22	11:50	0.00007	0.00184	0.00067	0.00087	0.00015	0.00411
Si [mg/L]	03-Oct-22	11:50	2.08	1.77	1.53	1.48	1.06	1.53
Sn [mg/L]	03-Oct-22	11:50	0.00008	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	03-Oct-22	11:50	0.0395	0.0231	0.114	0.0717	0.0535	0.166
Te [mg/L]	03-Oct-22	11:50	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Ti [mg/L]	03-Oct-22	11:50	0.00046	0.00021	0.00008	0.00014	< 0.00005	< 0.00005
Th [mg/L]	03-Oct-22	11:50	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
TI [mg/L]	03-Oct-22	11:50	0.000040	0.000051	0.000045	0.000074	0.000053	0.000028
U [mg/L]	03-Oct-22	11:50	0.00249	0.00159	0.000041	0.000101	< 0.000002	0.000013
V [mg/L]	03-Oct-22	11:50	0.00530	0.00028	0.00055	0.00064	0.00219	0.00286
W [mg/L]	03-Oct-22	11:50	0.00367	0.00186	0.00205	0.00235	0.00098	0.00071
Y [mg/L]	03-Oct-22	11:50	< 0.00002	0.00004	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Zn [mg/L]	03-Oct-22	11:50	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Analysis	15:	16:	18:	19:	20:	22:	24:	26:
	WST-22-1013-34 O	W3-915	51-21-0992-45W	51-21-0952-32O	W15-1080	S1-18-0024-50 O	590	838
Sample Date & Time	27-Jun-22	27-Jun-22	27-Jun-22	27-Jun-22	27-Jun-22	27-Jun-22	27-Jun-22	28-Jun-22
Sample weight [g]	100	100	100	100	100	100	100	100
Volume D.I. Water [mL]	400	400	400	400	400	400	400	400
Alkalinity [mg/L as CaCO3]	93	152	156	141	132	90	86	106
CO3 [mg/L as CaCO3]	< 2	2	< 2	< 2	< 2	< 2	< 2	< 2
HCO3 [mg/L as CaCO3]	93	150	156	141	132	90	86	106
pH [No unit]	8.07	8.34	8.29	8.21	8.23	7.94	7.84	8.09
Conductivity [uS/cm]	447	392	518	391	470	744	192	371
F [mg/L]	1.02	0.57	0.77	0.23	1.01	0.69	0.27	0.70
Br [mg/L]	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30
CI [mg/L]	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
SO4 [mg/L]	47	< 20	45	24	34	190	< 20	27
NO2 [as N mg/L]	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
NO2+NO3 [as N mg/L]	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
NH3+NH4 [as N mg/L]	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tot.Reactive P [mg/L]	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Hg [mg/L]	< 0.00001	< 0.00001	0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
AI [mg/L]	0.887	1.76	0.818	0.542	1.12	0.192	0.238	0.658
As [mg/L]	0.0135	0.0760	0.0304	0.0045	0.0168	0.0031	0.0020	0.0179
Ag [mg/L]	0.00024	< 0.00005	0.00006	< 0.00005	0.00006	0.00040	< 0.00005	0.00023
Ba [mg/L]	0.00658	0.00109	0.00333	0.00325	0.00349	0.00988	0.145	0.00761
Be [mg/L]	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	0.045	0.082	0.033	0.026	0.028	0.018	0.010	0.032
Bi [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	12.8	5.56	11.4	10.0	10.7	54.6	12.1	19.8

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: PO#OSK-619

LR Report : CA11028-SEP22

26:	24:	22:	20:	19:	18:	16:	15:	Analysis
-K-W-21-2544 838	SK-W-21-2555-OS 590	T-18-0024-50 OS	K-W-21-1949-WS W15-1080	ST-21-0952-32 OS	T-21-0992-45WS 0	K-W-21-2551-WS W3-915	WST-22-1013-34 OSI 5	
000	555		***************************************		ŭ		·	
0.000035	< 0.000003	0.000011	0.000042	< 0.000003	0.000007	0.000010	0.000075	Cd [mg/L]
0.000015	0.000016	0.000016	0.000012	0.000030	0.000010	0.000052	0.000029	Co [mg/L]
0.00011	0.00127	0.00011	0.00055	0.0149	0.00054	0.00040	0.00047	Cr [mg/L]
0.0002	< 0.0002	0.0006	0.0004	< 0.0002	0.0006	0.0005	0.0002	Cu [mg/L]
0.014	< 0.007	0.011	< 0.007	< 0.007	< 0.007	0.015	0.011	Fe [mg/L]
62.3	3.18	102	99.2	20.9	66.8	20.4	81.6	K [mg/L]
0.0110	0.0041	0.0122	0.0135	0.0192	0.0079	0.0182	0.0113	Li [mg/L]
7.70	15.0	11.3	5.40	25.7	8.61	2.12	4.40	Mg [mg/L]
0.0221	0.00229	0.0266	0.00377	0.00273	0.00336	0.00204	0.00516	Mn [mg/L]
0.01061	0.00065	0.00895	0.01635	0.00040	0.00383	0.01177	0.02569	Mo [mg/L]
15.6	9.91	32.6	33.9	37.4	64.6	87.9	35.2	Na [mg/L]
< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.0001	Ni [mg/L]
0.006	< 0.003	0.006	0.011	0.003	0.007	0.020	0.013	P [mg/L]
0.00013	< 0.00009	< 0.00009	0.00020	< 0.00009	< 0.00009	0.00052	< 0.00009	Pb [mg/L]
0.0942	0.0015	0.0188	0.0301	0.0108	0.0545	0.0323	0.0722	Sb [mg/L]
0.00201	0.00009	0.00228	0.00057	0.00027	0.00022	0.00009	0.00097	Se [mg/L]
1.77	1.43	2.23	1.57	1.12	1.74	1.71	1.46	Si [mg/L]
< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	0.00014	< 0.00006	Sn [mg/L]
0.0525	0.177	0.191	0.0388	0.0624	0.0393	0.0150	0.0408	Sr [mg/L]
< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	Te [mg/L]
0.00011	< 0.00005	0.00041	0.00023	0.00039	0.00018	0.00021	0.00022	Ti [mg/L]
< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	Th [mg/L]
0.000062	0.000029	0.000088	0.000094	0.000021	0.000060	0.000020	0.000033	TI [mg/L]
0.00155	0.000008	0.000162	0.000426	0.000009	0.000304	0.00200	0.000981	U [mg/L]
0.00133	0.00146	0.00213	0.00493	0.00233	0.00561	0.00690	0.00461	V [mg/L]
0.00269	0.00060	0.00236	0.00476	0.00048	0.00403	0.00258	0.00237	W [mg/L]
0.00003	< 0.00002	0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	0.00003	Y [mg/L]
< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.004	< 0.002	Zn [mg/L]

Analysis	29:	33:	34:	35:BLK:
	WST-20-0573-36WS	3T-21-0647-16WS 1.5	T-20-0573-36 7	CTEU Blank
	,	1.5	,	
Sample Date & Time	28-Jun-22			
Sample weight [g]	100	100	100	
Volume D.I. Water [mL]	400	400	400	400
Alkalinity [mg/L as CaCO3]	147	93	143	5
CO3 [mg/L as CaCO3]	< 2	< 2	< 2	< 2
HCO3 [mg/L as CaCO3]	147	93	143	5
pH [No unit]	8.30	8.03	8.22	6.69
Conductivity [uS/cm]	428	247	431	18
F [mg/L]	0.95	0.87	0.96	0.10
Br [mg/L]	< 30	< 30	< 30	< 30
CI [mg/L]	< 20	< 20	< 20	< 20
SO4 [mg/L]	28	< 20	23	< 20
NO2 [as N mg/L]	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	< 6	< 6	< 6	< 6
NO2+NO3 [as N mg/L]	< 6	< 6	< 6	< 6
NH3+NH4 [as N mg/L]	< 0.1	< 0.1	< 0.1	< 0.1
Tot.Reactive P [mg/L]	< 0.03	< 0.03	< 0.03	< 0.03
Hg [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Al [mg/L]	1.22	1.25	1.17	0.003

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: PO#OSK-619

LR Report: CA11028-SEP22

Analysis	29: WST-20-0573-36W	33: ST-21-0647-16W	34: ST-20-0573-36	35:BLK: CTEU Blank
	7	1.5	7	OTEO BIATIK
As [mg/L]	0.0046	0.0079	0.0044	0.0010
Ag [mg/L]	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Ba [mg/L]	0.0137	0.00289	0.0132	< 0.00008
Be [mg/L]	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	0.031	0.027	0.030	0.007
Bi [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	9.97	6.82	9.42	0.03
Cd [mg/L]	0.000004	0.000004	0.000003	< 0.000003
Co [mg/L]	0.000019	0.000017	0.000019	0.000011
Cr [mg/L]	0.00090	0.00019	0.00084	< 0.00008
Cu [mg/L]	0.0004	0.0004	0.0003	< 0.0002
Fe [mg/L]	0.009	0.015	0.018	< 0.007
K [mg/L]	62.2	28.4	59.2	2.69
Li [mg/L]	0.0061	0.0076	0.0063	< 0.0001
Mg [mg/L]	5.97	3.06	5.67	0.008
Mn [mg/L]	0.00390	0.00217	0.00387	0.00036
Mo [mg/L]	0.00178	0.00124	0.00040	0.00028
Na [mg/L]	57.4	35.7	55.3	2.90
Ni [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001
P [mg/L]	0.015	0.008	0.014	< 0.003
Pb [mg/L]	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	0.0061	0.0052	0.0056	< 0.0009
Se [mg/L]	0.00009	0.00009	0.00006	< 0.00004
Si [mg/L]	1.74	2.22	1.28	< 0.02
Sn [mg/L]	< 0.00006	0.00009	< 0.00006	< 0.00006
Sr [mg/L]	0.187	0.0424	0.179	0.00015
Te [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Ti [mg/L]	0.00009	0.00009	0.00007	0.00026
Th [mg/L]	< 0.0001	< 0.0001	0.0002	< 0.0001
TI [mg/L]	0.000106	0.000044	0.000109	< 0.000005
U [mg/L]	0.00104	0.00262	0.00106	0.000002
V [mg/L]	0.00702	0.00549	0.00666	0.00002
W [mg/L]	0.00899	0.00408	0.00862	0.00005
Y [mg/L]	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Zn [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002

Catharine Arnold, B.Sc., C.Chem

Project Specialist,

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Osisko Mining Inc. Attn: Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau

Montreal, QC H3B-2S2, Canada

Phone: 514-206-3917

Fax:

Quebec MA110 ACISOL 1.0

Project: PO#OSK-619

05-October-2022

Date Rec.: 15 September 2022 LR Report: CA11029-SEP22

Reference: Windfall - 21489857 - set

5/5

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	3: Analysis Completed Date	4: Analysis Completed Time	9: #08355
Sample Date & Time			N/A
Sample weight [g]	21-Sep-22	16:37	2.01
Initial pH	21-Sep-22	16:37	9.76
Vol H2SO4 [mL]	21-Sep-22	16:37	3.30
H2SO4 [Normality]	21-Sep-22	16:37	1.00
NP [t CaCO3/1000 t]	21-Sep-22	16:37	82.1
AP [t CaCO3/1000 t]	22-Sep-22	11:06	28.9
NNP [kg CaCO3/ tonne]	22-Sep-22	11:06	53
S [%]	22-Sep-22	11:06	0.924
Acid Leachable SO4-S [%]	22-Sep-22	11:06	0.04
Sulphide [%]	22-Sep-22	11:06	0.88
C [%]	22-Sep-22	09:51	1.03
CO3 (HCI) as %CO3 [%]	22-Sep-22	09:51	4.98
TOC [%]	19-Sep-22	15:30	0.251
C(g) [%]	19-Sep-22	08:06	< 0.05

MA110 ACISOL 1.0

Gross NP (kg CaCO3/tonne) Section 7.3 AP (kg CaCO3/tonne) = Total S x 31.25

ASTM E1918 - S and C speciation

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Quebec MA110 ACISOL 1.0

Project: PO#OSK-619

LR Report : CA11029-SEP22

Catharine Arnold, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Osisko Mining Inc. Attn : Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau

Montreal, QC H3B- 2S2, Canada

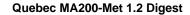
Phone: 514-206-3917

Fax:

Quebec MA200-Met 1.2 Digest

Project: PO#OSK-619

05-October-2022


Date Rec.: 15 September 2022 LR Report: CA11030-SEP22

Reference: Windfall - 21489857 - set

5/5

Copy: #1

Analysis	1:	2:	3:	4:	9:
	Analysis Start Date	Analysis Start Time	Analysis Completed	Analysis Completed	#08355
			Date	Time	
Sample Date & Time					N/A
F [µg/g]	22-Sep-22	08:28	27-Sep-22	14:06	3
Br [µg/g]	22-Sep-22	20:39	01-Oct-22	11:46	< 1.5
Hg [ug/g]	23-Sep-22	11:05	23-Sep-22	15:27	< 0.05
Ag [μg/g]	23-Sep-22	23:31	28-Sep-22	09:52	< 0.5
Al [μg/g]	23-Sep-22	23:31	28-Sep-22	09:52	5200
As [μg/g]	23-Sep-22	23:31	28-Sep-22	09:52	43
B [μg/g]	23-Sep-22	23:31	28-Sep-22	09:52	< 1
Ba [µg/g]	23-Sep-22	23:31	28-Sep-22	09:52	32
Be [µg/g]	23-Sep-22	23:31	28-Sep-22	09:52	0.13
Bi [µg/g]	23-Sep-22	23:31	28-Sep-22	09:52	< 0.09
Ca [µg/g]	23-Sep-22	23:31	28-Sep-22	09:52	19000
Cd [µg/g]	23-Sep-22	23:31	28-Sep-22	09:52	0.10
Co [µg/g]	23-Sep-22	23:31	28-Sep-22	09:52	6.6
Cr [µg/g]	23-Sep-22	23:31	28-Sep-22	09:52	1.7
Cu [µg/g]	23-Sep-22	23:31	28-Sep-22	09:52	14
Fe [µg/g]	23-Sep-22	23:31	28-Sep-22	09:52	14000
K [μg/g]	23-Sep-22	23:31	28-Sep-22	09:52	2200
Li [μg/g]	23-Sep-22	23:31	28-Sep-22	09:52	12
Mg [μg/g]	23-Sep-22	23:31	28-Sep-22	09:52	8800
Mn [μg/g]	23-Sep-22	23:31	28-Sep-22	09:52	560
Mo [μg/g]	23-Sep-22	23:31	28-Sep-22	09:52	0.4
Na [µg/g]	23-Sep-22	23:31	28-Sep-22	09:52	470
Ni [μg/g]	23-Sep-22	23:31	28-Sep-22	09:52	7.5
P [μg/g]	23-Sep-22	23:31	28-Sep-22	09:52	380
Pb [μg/g]	23-Sep-22	23:31	28-Sep-22	09:52	5.7
Sb [µg/g]	23-Sep-22	23:31	28-Sep-22	09:52	< 0.8

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: PO#OSK-619

LR Report : CA11030-SEP22

Analysis	1: Analysis	2: Analysis	3: Analysis	4: Analysis	9: #08355
	Start Date	Start Time	Completed Date	Completed Time	#00333
Se [µg/g]	23-Sep-22	23:31	28-Sep-22	09:52	< 0.7
Si [µg/g]	23-Sep-22	23:31	28-Sep-22	12:46	750
Sn [µg/g]	23-Sep-22	23:31	28-Sep-22	09:52	< 5
Sr [µg/g]	23-Sep-22	23:31	28-Sep-22	09:52	20
Te [µg/g]	23-Sep-22	23:31	28-Sep-22	12:46	< 1
Ti [µg/g]	23-Sep-22	23:31	28-Sep-22	09:52	6.8
TI [µg/g]	23-Sep-22	23:31	28-Sep-22	09:52	0.05
U [µg/g]	23-Sep-22	23:31	28-Sep-22	09:52	0.18
V [μg/g]	23-Sep-22	23:31	28-Sep-22	09:52	4
Υ [μg/g]	23-Sep-22	23:31	28-Sep-22	09:52	2.6
Zn [μg/g]	23-Sep-22	23:31	28-Sep-22	09:52	25

Catharine Arnold, B.Sc., C.Chem Project Specialist,

Environment, Health & Safety

Catharine aurold

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Osisko Mining Inc. Attn : Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau

Montreal, QC H3B- 2S2, Canada

Phone: 514-206-3917

Fax:

SPLP1312--(Quebec Modified Version - MA. 100 -Lix.com.1.0) 20:1 L/S ratio, 18hr

Project: PO#OSK-619

17-October-2022

Date Rec.: 15 September 2022 LR Report: CA11031-SEP22

Reference: Windfall - 21489857 - set

5/5

Copy: #1

Analysis	3:	4:	5:	6:	7:	12:	13:	14:BLK:
	Analysis Completed DateCon	Analysis npleted Time	#08351	#08352	#08353	#08358	#08358	\$SPLP1312 Blank #1
Sample Date & Time			N/A	N/A	N/A	N/A		
Sample weight [g]	04-Oct-22	11:31	20	20	20	20	20	
Ext Fluid [#1 or #2]	04-Oct-22	11:31	1	1	1	1	1	1
Ext Volume [mL]	04-Oct-22	11:31	400	400	400	400	400	400
Final pH [no unit]	04-Oct-22	11:31	8.80	9.03	9.12	8.52	8.53	4.25
F [mg/L]	05-Oct-22	14:47	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Br [mg/L]	16-Oct-22	10:50	< 30	< 30	< 30	< 30	< 30	< 30
SO4 [mg/L]	16-Oct-22	10:50	31	< 20	< 20	93	72	< 20
CI [mg/L]	16-Oct-22	10:50	< 20	< 20	< 20	< 20	< 20	< 20
NO2 [as N mg/L]	16-Oct-22	10:51	< 3	< 3	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	16-Oct-22	10:51	< 6	< 6	< 6	< 6	< 6	< 6
pH [No unit]	04-Oct-22	16:07	7.80	8.33	8.03	7.55	7.57	4.52
Conductivity [uS/cm]	04-Oct-22	16:07	154	87	68	241	207	21
Alkalinity [mg/L as CaCO3]	04-Oct-22	16:07	17	32	28	12	13	< 2
HCO3 [mg/L as CaCO3]	04-Oct-22	16:07	17	32	28	12	13	< 2
CO3 [mg/L as CaCO3]	04-Oct-22	16:07	< 2	< 2	< 2	< 2	< 2	< 2
NH3+NH4 [as N mg/L]	05-Oct-22	10:04	1.6	0.3	0.2	0.1	< 0.1	< 0.1
Tot.Reactive P [mg/L]	05-Oct-22	10:08	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Hg [mg/L]	06-Oct-22	14:17	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
AI [mg/L]	11-Oct-22	14:49	0.431	0.913	0.461	0.377	0.386	0.003
As [mg/L]	11-Oct-22	14:49	0.0010	0.0059	0.0015	0.0111	0.0105	< 0.0002
Ag [mg/L]	11-Oct-22	14:49	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Ba [mg/L]	11-Oct-22	14:49	0.00322	0.00068	0.00043	0.138	0.113	0.00030
Be [mg/L]	11-Oct-22	14:49	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	11-Oct-22	14:49	0.015	0.014	0.009	0.009	0.008	< 0.002
Bi [mg/L]	11-Oct-22	14:49	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	11-Oct-22	14:49	19.2	9.31	7.66	40.0	34.3	0.07
Cd [mg/L]	11-Oct-22	14:49	< 0.000003	0.000004	0.000021	< 0.000003	< 0.000003	< 0.000003
Co [mg/L]	11-Oct-22	14:49	0.000060	0.000010	0.000016	0.000014	0.000017	0.000014
Cr [mg/L]	11-Oct-22	14:49	< 0.00008	< 0.00008	< 0.00008	< 0.00008	0.00009	< 0.00008
Cu [mg/L]	11-Oct-22	14:49	< 0.0002	0.0004	< 0.0002	0.0007	0.0002	0.0002
Fe [mg/L]	11-Oct-22	14:49	< 0.007	0.010	0.007	0.012	< 0.007	< 0.007
K [mg/L]	11-Oct-22	14:49	0.269	3.49	0.828	0.409	0.757	0.507

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

SPLP1312--(Quebec Modified Version - MA. 100 -Lix.com.1.0) 20:1 L/S ratio, 18hr

Project: PO#OSK-619

LR Report : CA11031-SEP22

Analysis	3: Analysis Completed DateCom	4: Analysis opleted Time	5: #08351	6: #08352	7: #08353	12: #08358	13: #08358	14:BLK: \$SPLP1312 Blank #1
Li [mg/L]	11-Oct-22	14:49	0.0019	0.0045	0.0013	0.0015	0.0013	< 0.0001
Mg [mg/L]	11-Oct-22	14:49	2.20	1.66	2.09	1.95	2.01	0.009
Mn [mg/L]	11-Oct-22	14:49	0.00171	0.00252	0.00036	0.00151	0.00113	0.00068
Mo [mg/L]	11-Oct-22	14:49	0.00018	0.00045	0.00014	0.00039	0.00023	0.00028
Na [mg/L]	11-Oct-22	14:49	3.00	2.46	2.12	0.28	0.26	< 0.01
Ni [mg/L]	11-Oct-22	14:49	0.0002	0.0001	< 0.0001	0.0002	0.0002	0.0002
P [mg/L]	11-Oct-22	14:49	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Pb [mg/L]	11-Oct-22	14:49	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	11-Oct-22	14:49	< 0.0009	< 0.0009	< 0.0009	0.0016	0.0015	< 0.0009
Se [mg/L]	11-Oct-22	14:49	0.00005	0.00006	0.00007	0.00005	< 0.00004	0.00006
Si [mg/L]	11-Oct-22	14:49	0.75	1.44	1.02	0.65	0.66	< 0.02
Sn [mg/L]	11-Oct-22	14:49	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	11-Oct-22	14:49	0.162	0.0148	0.0283	0.994	0.857	0.00050
Te [mg/L]	11-Oct-22	14:49	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Ti [mg/L]	11-Oct-22	14:49	0.00008	0.00020	0.00020	0.00030	0.00015	0.00009
Th [mg/L]	11-Oct-22	14:49	< 0.0001	< 0.0001	< 0.0001	0.0001	< 0.0001	< 0.0001
TI [mg/L]	11-Oct-22	14:49	0.000005	< 0.00005	< 0.000005	0.000016	0.000016	< 0.000005
U [mg/L]	11-Oct-22	14:49	0.000007	0.000066	0.000023	0.000052	0.000024	0.000012
V [mg/L]	11-Oct-22	14:49	0.00027	0.00091	0.00054	0.00038	0.00038	0.00001
W [mg/L]	11-Oct-22	14:49	0.00014	0.00034	0.00011	0.00013	0.00014	0.00005
Zn [mg/L]	11-Oct-22	14:49	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Catharine Arnold, B.Sc., C.Chem Project Specialist,

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Osisko Mining Inc. Attn : Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau Montreal, QC H3B- 2S2, Canada

Phone: 514-206-3917

Fax:

C1E0-3--(4.1 L/3 ratio, r day off rooffiesi

Project: PO#OSK-619

17-October-2022

Date Rec.: 15 September 2022 LR Report: CA11032-SEP22

Reference: Windfall - 21489857 - set

5/5

Copy: #1

Analysis	3:	4:	5:	6:	7:	12:	13:
	Analysis Analysis Completed DateCompleted Time		#08351	#08352	#08353	#08358	#08358
Sample Date & Time			N/A	N/A	N/A	N/A	
Sample weight [g]	30-Sep-22	11:21	100	100	100	100	100
Volume D.I. Water [mL]	30-Sep-22	11:21	400	400	400	400	400
Alkalinity [mg/L as CaCO3]	04-Oct-22	11:22	131	337	136	57	57
CO3 [mg/L as CaCO3]	04-Oct-22	11:22	6	22	7	< 2	< 2
HCO3 [mg/L as CaCO3]	04-Oct-22	11:22	125	315	129	57	57
pH [No unit]	04-Oct-22	11:22	8.52	8.57	8.51	8.01	7.93
Conductivity [uS/cm]	04-Oct-22	11:22	481	1210	393	424	427
F [mg/L]	03-Oct-22	13:40	< 0.06	0.63	0.13	0.26	0.25
Br [mg/L]	13-Oct-22	12:07	< 30	< 30	< 30	< 30	< 30
CI [mg/L]	13-Oct-22	12:07	< 20	< 20	< 20	< 20	< 20
SO4 [mg/L]	13-Oct-22	12:07	43	170	< 20	140	140
NO2 [as N mg/L]	13-Oct-22	12:07	< 3	< 3	< 3	< 3	< 3
NO3 [as N mg/L]	13-Oct-22	12:07	17.1	< 6	< 6	< 6	< 6
NO2+NO3 [as N mg/L]	13-Oct-22	12:07	17.1	< 6	< 6	< 6	< 6
NH3+NH4 [as N mg/L]	04-Oct-22	12:40	0.6	0.3	0.3	0.1	0.1
Tot.Reactive P [mg/L]	11-Oct-22	16:39	< 0.03	< 0.03	< 0.03	< 0.03	0.03
Hg [mg/L]	03-Oct-22	13:52	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Al [mg/L]	03-Oct-22	16:48	0.551	0.405	0.389	0.994	0.653
As [mg/L]	03-Oct-22	16:48	0.0009	0.0022	0.0011	0.0014	0.0014
Ag [mg/L]	03-Oct-22	16:48	< 0.00005	0.00013	< 0.00005	< 0.00005	< 0.00005
Ba [mg/L]	03-Oct-22	16:48	0.00257	0.0104	0.00205	0.0220	0.0223
Be [mg/L]	03-Oct-22	16:48	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	03-Oct-22	16:48	0.028	0.068	0.032	0.014	0.012
Bi [mg/L]	03-Oct-22	16:48	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	03-Oct-22	16:48	6.49	19.6	7.56	24.2	25.1
Cd [mg/L]	03-Oct-22	16:48	0.000030	0.000009	0.000005	0.000010	0.000006
Co [mg/L]	03-Oct-22	16:48	0.000138	0.000023	0.000079	0.000033	0.000030
Cr [mg/L]	03-Oct-22	16:48	0.00641	0.00022	0.00558	0.0113	0.0126
Cu [mg/L]	03-Oct-22	16:48	0.0003	0.0005	< 0.0002	0.0004	< 0.0002
Fe [mg/L]	03-Oct-22	16:48	< 0.007	< 0.007	< 0.007	0.007	< 0.007
K [mg/L]	03-Oct-22	16:48	0.832	140	14.2	0.612	0.581
Li [mg/L]	03-Oct-22	16:48	0.0438	0.0309	0.0199	0.0251	0.0257

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: PO#OSK-619

LR Report: CA11032-SEP22

Analysis	3:	4:	5:	6:	7:	12:	13:
	Analysis Completed DateCon	Analysis	#08351	#08352	#08353	#08358	#08358
	Completed Editocom	ipiotou riiio					
Mg [mg/L]	03-Oct-22	16:48	25.6	14.6	17.1	30.6	32.1
Mn [mg/L]	03-Oct-22	16:48	0.00217	0.0118	0.00169	0.00378	0.00245
Mo [mg/L]	03-Oct-22	16:48	0.0457	0.0102	0.00260	0.0100	0.00971
Na [mg/L]	03-Oct-22	16:48	44.5	102	38.9	3.67	3.74
Ni [mg/L]	03-Oct-22	16:48	0.0004	0.0004	0.0002	0.0003	0.0002
P [mg/L]	03-Oct-22	16:48	< 0.003	0.008	< 0.003	< 0.003	< 0.003
Pb [mg/L]	03-Oct-22	16:48	< 0.00009	< 0.00009	< 0.00009	0.00016	< 0.00009
Sb [mg/L]	03-Oct-22	16:48	0.0015	0.0082	0.0026	0.0016	0.0016
Se [mg/L]	03-Oct-22	16:48	0.00075	0.00041	0.00025	0.00006	0.00007
Si [mg/L]	03-Oct-22	16:48	1.05	1.99	1.48	1.34	1.33
Sn [mg/L]	03-Oct-22	16:48	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	03-Oct-22	16:48	0.0169	0.0517	0.0485	1.03	1.09
Te [mg/L]	03-Oct-22	16:48	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Ti [mg/L]	03-Oct-22	16:48	< 0.00005	0.00011	< 0.00005	< 0.00005	0.00006
Th [mg/L]	03-Oct-22	16:48	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
TI [mg/L]	03-Oct-22	16:48	< 0.000005	0.000063	0.000024	0.000006	0.000007
U [mg/L]	03-Oct-22	16:48	0.00529	0.000850	0.00158	0.00212	0.000280
V [mg/L]	03-Oct-22	16:48	0.00135	0.00282	0.00140	0.00092	0.00091
W [mg/L]	03-Oct-22	16:48	0.00164	0.00698	0.00060	0.00024	0.00020
Y [mg/L]	03-Oct-22	16:48	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Zn [mg/L]	03-Oct-22	16:48	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Weight [g]	19-Sep-22		5044	6278	6886	4568	
Split	19-Sep-22		1	1	1	1	
CRU24 [kg]	19-Sep-22		2.0	3.3	3.9	1.6	
Pulv200M [250g]	19-Sep-22		1	1	1	1	

Catharine Arnold, B.Sc., C.Chem Project Specialist,

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Osisko Mining Inc. Attn: Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau Montreal, QC H3B-2S2, Canada

Phone: 514-206-3917

Fax:

Quebec MA110 ACISOL 1.0

Project: PO#OSK-619

05-October-2022

Date Rec. : 20 September 2022 LR Report: CA11033-SEP22

Copy: #1

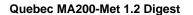
CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed Date	4: Analysis Completed Time	5: 08359 Down Ramp 3	6: 08360 Down Ramp 4
Sample Date & Time			N/A	N/A
Sample weight [g]	03-Oct-22	11:49	1.99	2.02
Initial pH	03-Oct-22	11:49	9.72	9.55
Vol H2SO4 [mL]	03-Oct-22	11:49	4.15	9.65
H2SO4 [Normality]	03-Oct-22	11:49	1.00	1.00
NP [t CaCO3/1000 t]	03-Oct-22	11:49	104	89.4
AP [t CaCO3/1000 t]	03-Oct-22	13:24	15.4	16.4
NNP [kg CaCO3/ tonne]	03-Oct-22	13:24	89	73
S [%]	03-Oct-22	13:24	0.492	0.526
Acid Leachable SO4-S [%]	03-Oct-22	13:24	< 0.04	< 0.04
Sulphide [%]	03-Oct-22	13:24	0.48	0.50
C [%]	03-Oct-22	13:24	1.00	2.78
CO3 (HCI) as %CO3 [%]	03-Oct-22	13:39	4.86	13.7
TOC [%]	03-Oct-22	13:40	0.030	0.035
C(g) [%]	30-Sep-22	12:57	< 0.05	< 0.05

MA110 ACISOL 1.0

Gross NP (kg CaCO3/tonne) Section 7.3

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO


Phone: 705-652-2000 FAX: 705-652-6365

AP (kg CaC03/tonne) = Total S \times 31.25 ASTM E1918 - S and C speciation Quebec MA110 ACISOL 1.0

Project: PO#OSK-619

LR Report : CA11033-SEP22

Catharine Arnold, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

Project: PO#OSK-619

SGS Canada Inc.

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

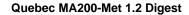
17-October-2022

17 0010001 2022

Date Rec.: 20 September 2022 LR Report: CA11034-SEP22

Copy: #1

Osisko Mining Inc.


Attn: Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau Montreal, QC H3B- 2S2, Canada

Phone: 514-206-3917

Fax:

Analysis	1: Analysis Start Date	2: Analysis Start Time	3: Analysis Completed	4: Analysis Completed	5: 08359 Down	6: 08360 Down
	Start Date	Start Time	Date	Time	Ramp 3	Ramp 4
Sample Date & Time					N/A	N/A
F [μg/g]	12-Oct-22	10:00	12-Oct-22	16:38	3	1
Br [µg/g]	30-Sep-22	10:48	01-Oct-22	14:23	< 1.5	< 1.5
Hg [ug/g]	06-Oct-22	12:41	07-Oct-22	10:34	< 0.05	< 0.05
Ag [μg/g]	04-Oct-22	14:14	06-Oct-22	09:49	< 0.5	< 0.5
Al [μg/g]	04-Oct-22	14:14	06-Oct-22	09:49	9200	20000
As [µg/g]	04-Oct-22	14:14	06-Oct-22	09:49	27	21
B [μg/g]	04-Oct-22	14:14	06-Oct-22	09:49	< 1	< 1
Ba [µg/g]	04-Oct-22	14:14	06-Oct-22	09:49	44	14
Be [µg/g]	04-Oct-22	14:14	06-Oct-22	09:49	0.08	0.04
Bi [µg/g]	04-Oct-22	14:14	06-Oct-22	09:49	< 0.09	< 0.09
Ca [µg/g]	04-Oct-22	14:14	06-Oct-22	09:49	21000	47000
Cd [µg/g]	04-Oct-22	14:14	06-Oct-22	09:49	0.03	0.06
Co [µg/g]	04-Oct-22	14:14	06-Oct-22	09:49	12	38
Cr [µg/g]	04-Oct-22	14:14	06-Oct-22	09:49	48	140
Cu [µg/g]	04-Oct-22	14:14	06-Oct-22	09:49	30	73
Fe [µg/g]	04-Oct-22	14:14	06-Oct-22	09:49	19000	49000
K [μg/g]	04-Oct-22	14:14	06-Oct-22	09:49	2000	680
Li [µg/g]	04-Oct-22	14:14	06-Oct-22	09:49	28	70
Mg [µg/g]	04-Oct-22	14:14	06-Oct-22	09:49	11000	33000
Mn [μg/g]	04-Oct-22	14:14	06-Oct-22	09:49	452	860
Mo [μg/g]	04-Oct-22	14:14	06-Oct-22	09:49	0.4	0.1
Na [μg/g]	04-Oct-22	14:14	06-Oct-22	09:49	800	390
Ni [µg/g]	04-Oct-22	14:14	06-Oct-22	09:49	23	130
P [μg/g]	04-Oct-22	14:14	06-Oct-22	09:49	360	330
Pb [μg/g]	04-Oct-22	14:14	06-Oct-22	09:49	3.5	1.9
Sb [µg/g]	04-Oct-22	14:14	06-Oct-22	09:49	< 0.8	< 0.8
Se [µg/g]	04-Oct-22	14:14	06-Oct-22	09:49	< 0.7	< 0.7

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

Project: PO#OSK-619

LR Report : CA11034-SEP22

Analysis	1: Analysis Start Date	2: Analysis Start Time	3: Analysis Completed Date	4: Analysis Completed Time	5: 08359 Down Ramp 3	6: 08360 Down Ramp 4
Si [µg/g]	04-Oct-22	14:14	06-Oct-22	09:49	340	710
Sn [µg/g]	04-Oct-22	14:14	06-Oct-22	09:49	< 5	< 5
Sr [µg/g]	04-Oct-22	14:14	06-Oct-22	09:49	28	53
Te [µg/g]	04-Oct-22	14:14	06-Oct-22	09:49	< 1	< 1
Ti [μg/g]	04-Oct-22	14:14	06-Oct-22	09:49	5.9	13
TI [μg/g]	04-Oct-22	14:14	06-Oct-22	09:49	0.05	< 0.02
U [µg/g]	04-Oct-22	14:14	06-Oct-22	09:49	0.16	0.039
V [µg/g]	04-Oct-22	14:14	06-Oct-22	09:49	11	64
Y [μg/g]	04-Oct-22	14:14	06-Oct-22	09:49	2.5	4.6
Zn [μg/g]	04-Oct-22	14:14	06-Oct-22	09:49	54	64

Catharine aurold

Catharine Arnold, B.Sc., C.Chem

Project Specialist,

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

05-October-2022

Project: PO#OSK-619

Date Rec.: 20 September 2022 LR Report: CA11035-SEP22

Copy: #1

Osisko Mining Inc. Attn : Kim Nguyen

1100 Avenues des Canadiens-de-Montreal, Bureau

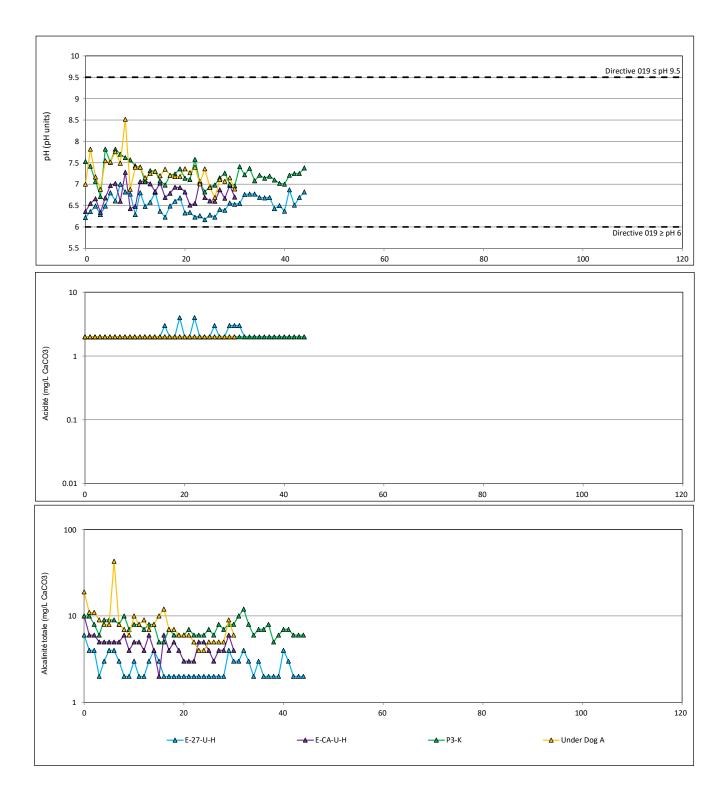
Montreal, QC H3B- 2S2, Canada

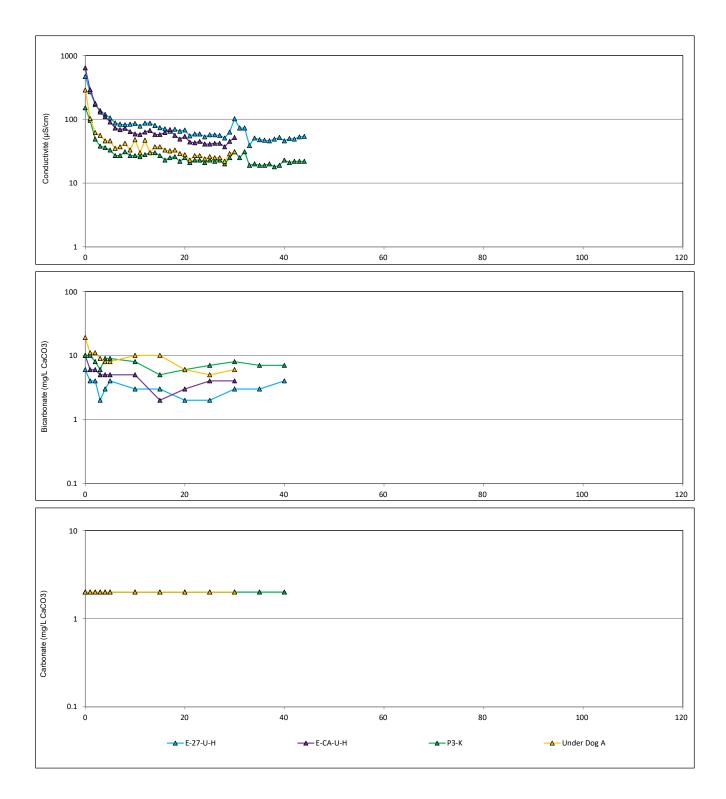
Phone: 514-206-3917

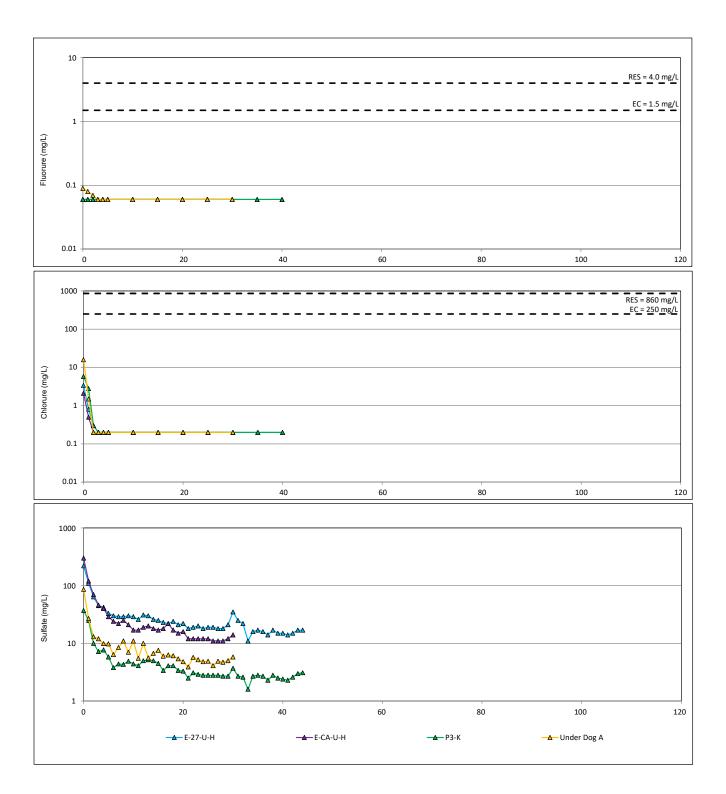
Fax:

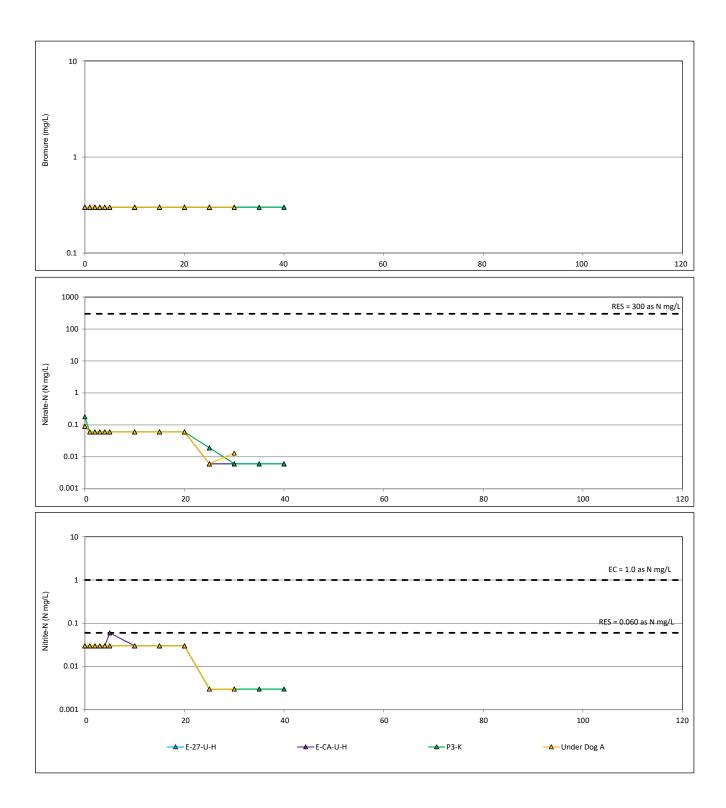
CERTIFICATE OF ANALYSIS Final Report

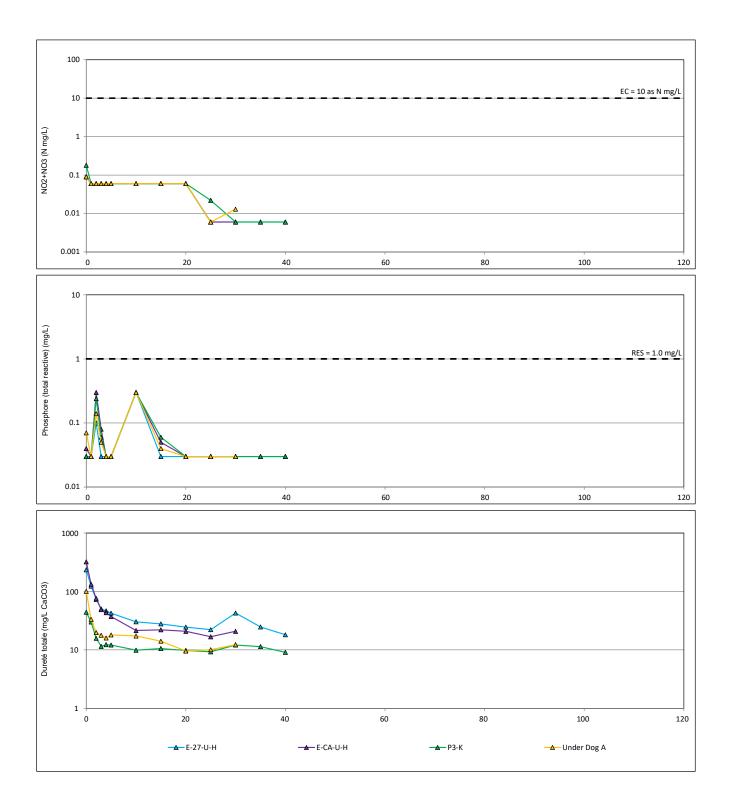
Analysis	1: Analysis Start Date	2: Analysis Start Time	3: Analysis Completed Date	4: Analysis Completed Time	5: 08359 Down Ramp 3	6: 08360 Down Ramp 4
Sample Date & Time					N/A	N/A
SiO2 [%]	28-Sep-22	10:33	03-Oct-22	11:00	63.8	42.4
Al2O3 [%]	28-Sep-22	10:33	03-Oct-22	11:00	14.8	14.2
Fe2O3 [%]	28-Sep-22	10:33	03-Oct-22	11:00	3.39	9.60
MgO [%]	28-Sep-22	10:33	03-Oct-22	11:00	2.26	7.70
CaO [%]	28-Sep-22	10:33	03-Oct-22	11:00	3.53	7.98
Na2O [%]	28-Sep-22	10:33	03-Oct-22	11:00	2.13	1.40
K2O [%]	28-Sep-22	10:33	03-Oct-22	11:00	2.35	1.09
TiO2 [%]	28-Sep-22	10:33	03-Oct-22	11:00	0.36	0.60
P2O5 [%]	28-Sep-22	10:33	03-Oct-22	11:00	0.11	0.11
MnO [%]	28-Sep-22	10:33	03-Oct-22	11:00	0.05	0.16
Cr2O3 [%]	28-Sep-22	10:33	03-Oct-22	11:00	< 0.01	0.04
V2O5 [%]	28-Sep-22	10:33	03-Oct-22	11:00	< 0.01	0.04
LOI [%]	28-Sep-22	10:33	03-Oct-22	11:00	6.39	13.4
Sum [%]	28-Sep-22	10:33	03-Oct-22	11:00	99.2	98.8

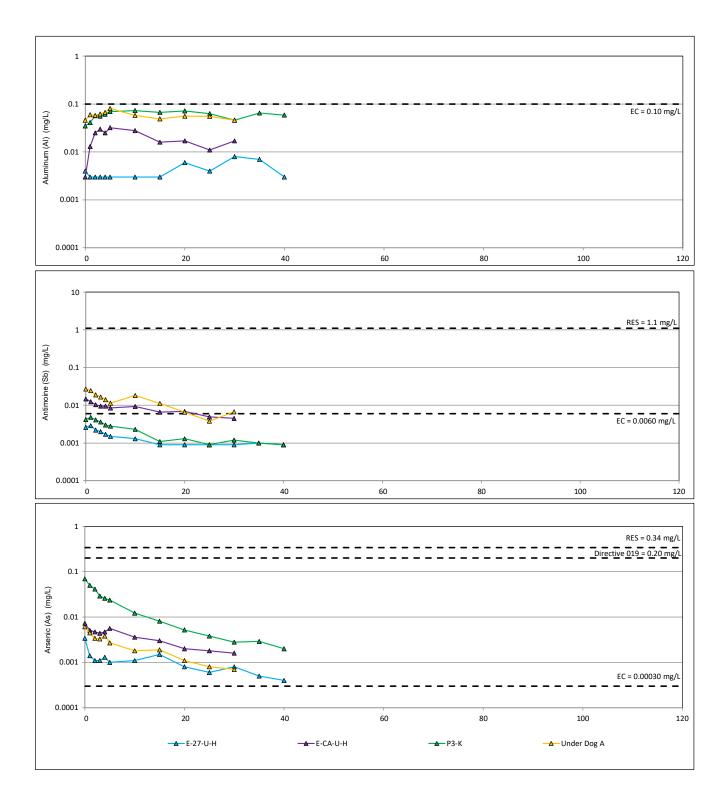

Catharine Arnold, B.Sc., C.Chem Project Specialist,

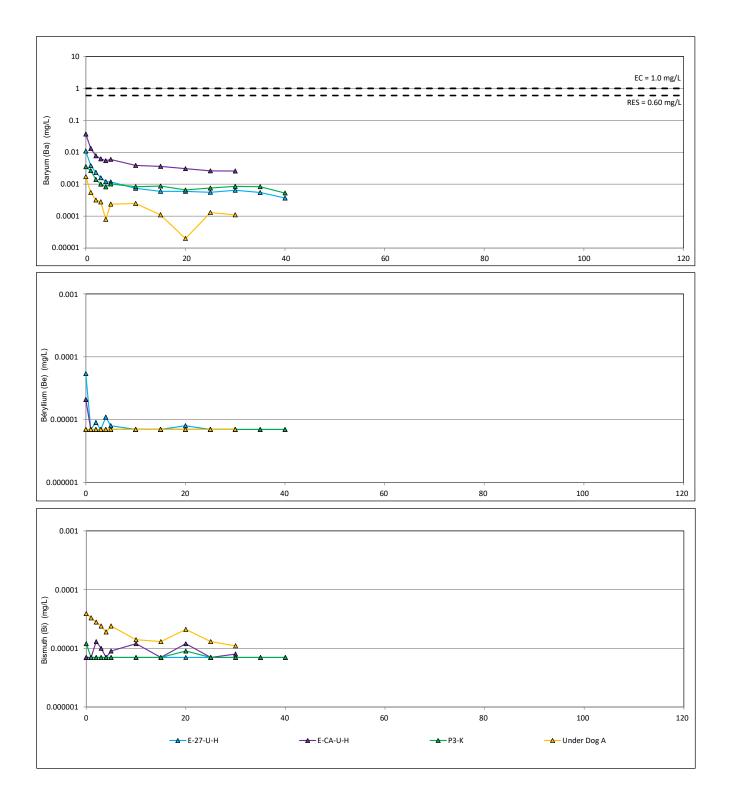

ANNEXE

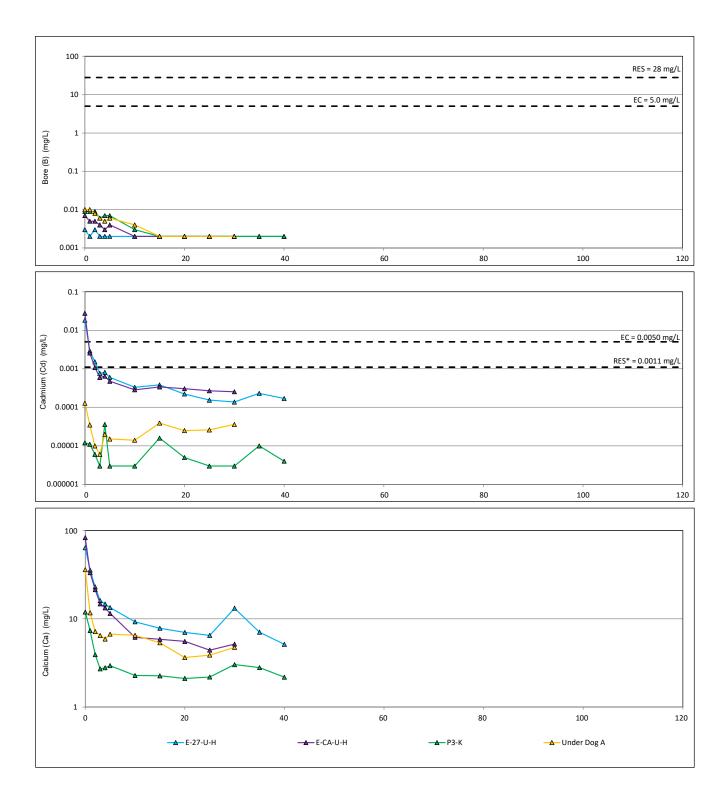

D

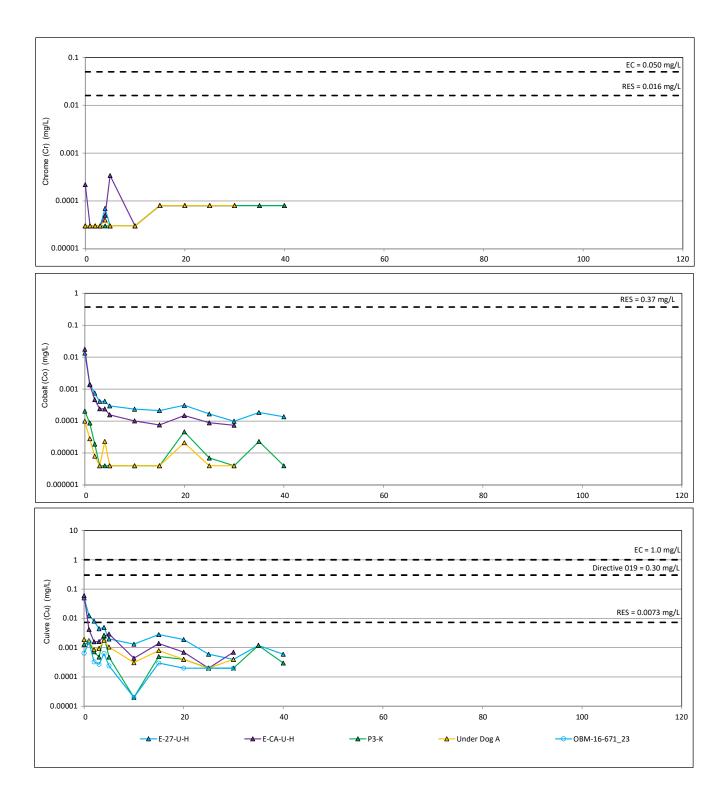

ESSAIS CINÉTIQUES GRAPHIQUES DES SÉRIES CHRONOLOGIQUES

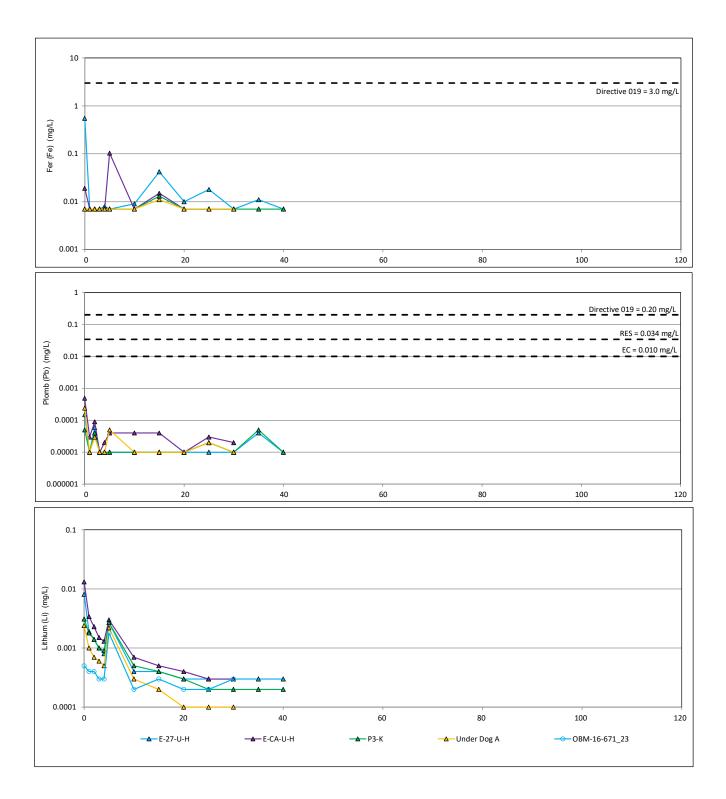

Section A : Séries chronologiques du minerai Section B : Séries chronologiques des stériles Section C : Séries chronologiques des résidus

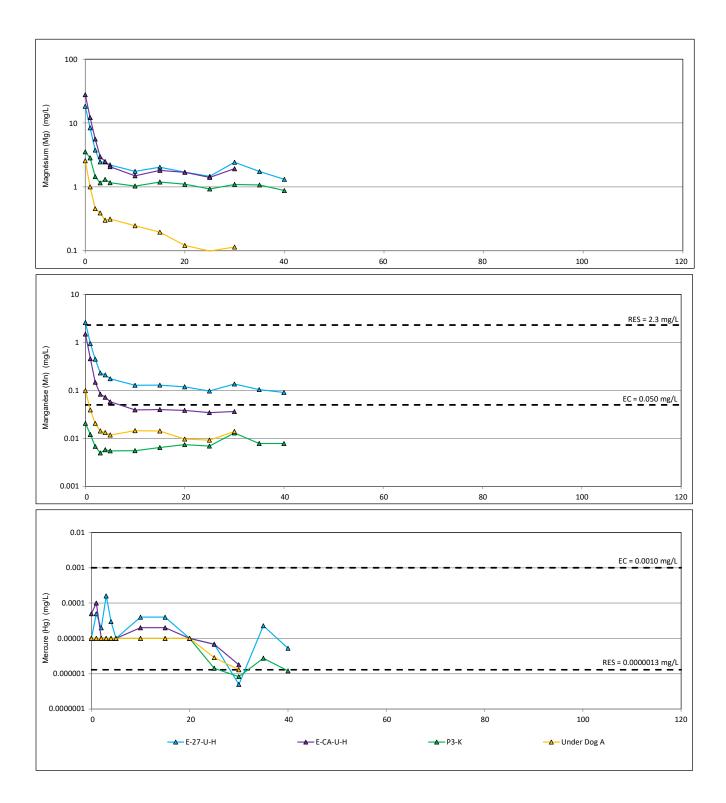


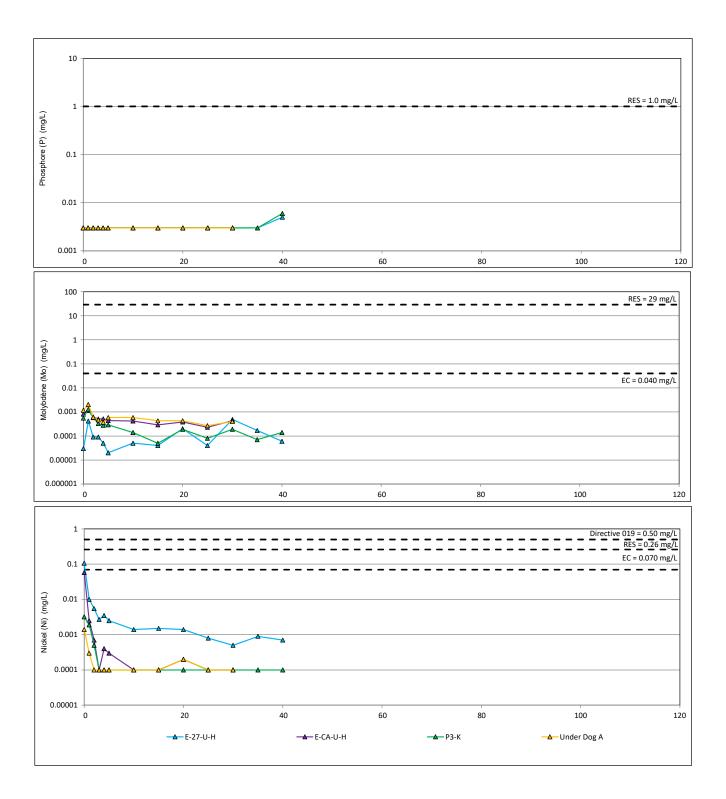


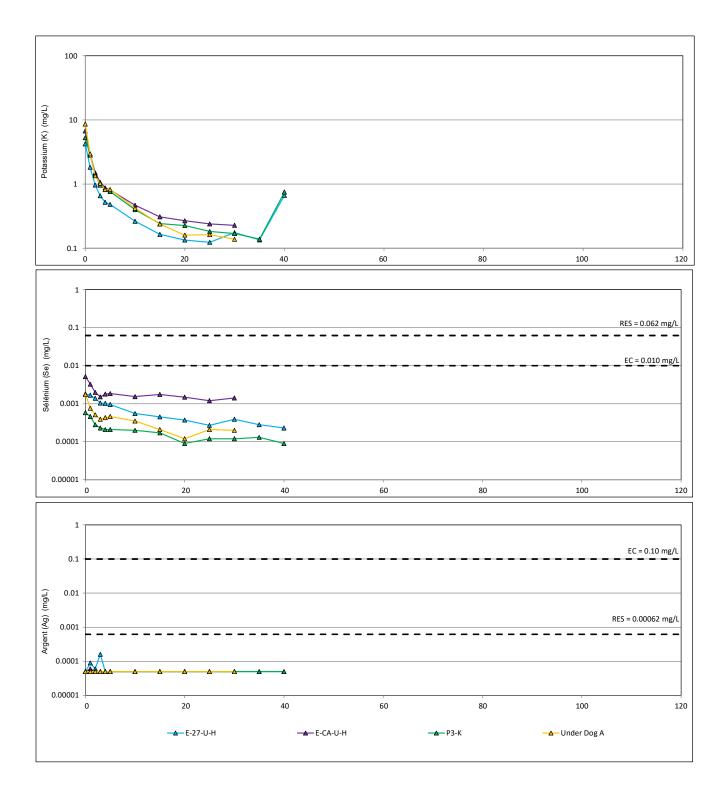


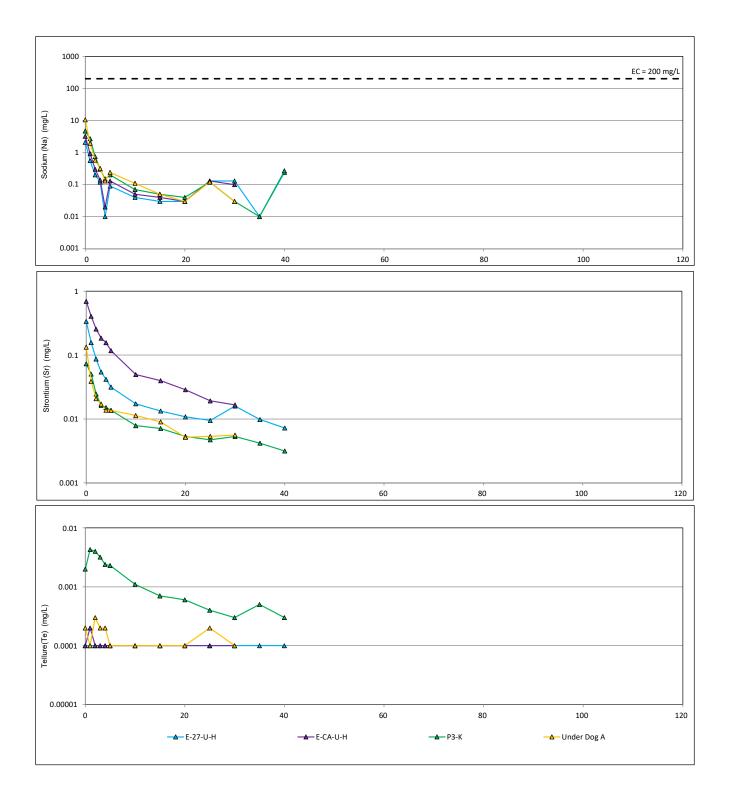


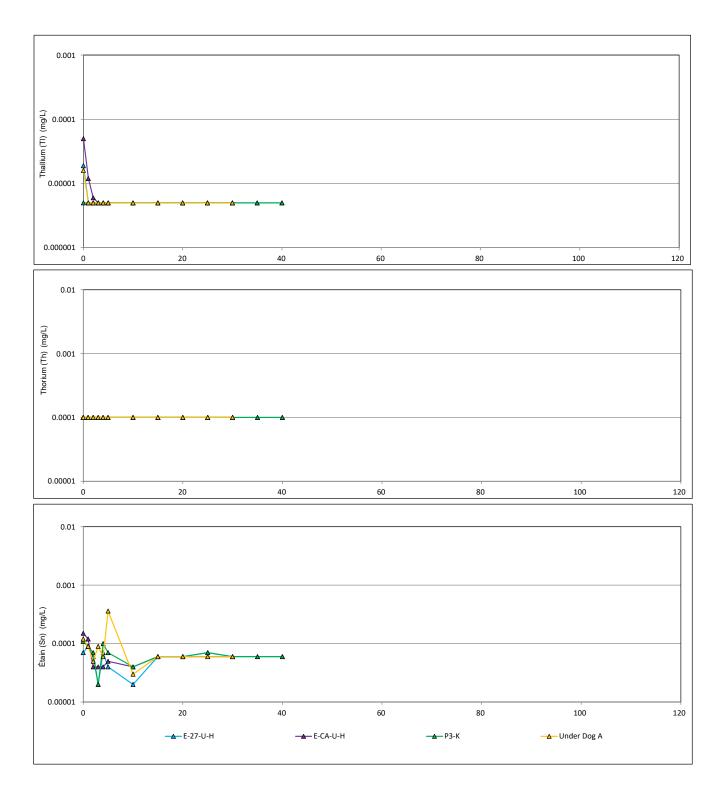


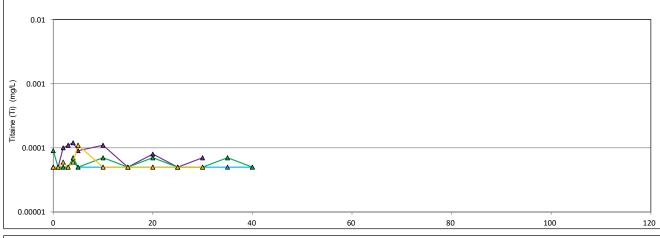


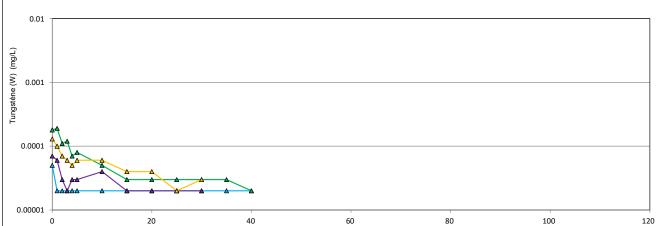


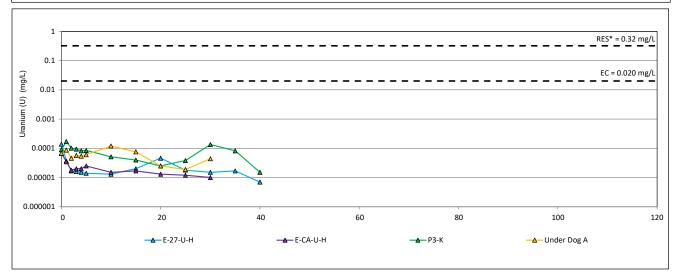


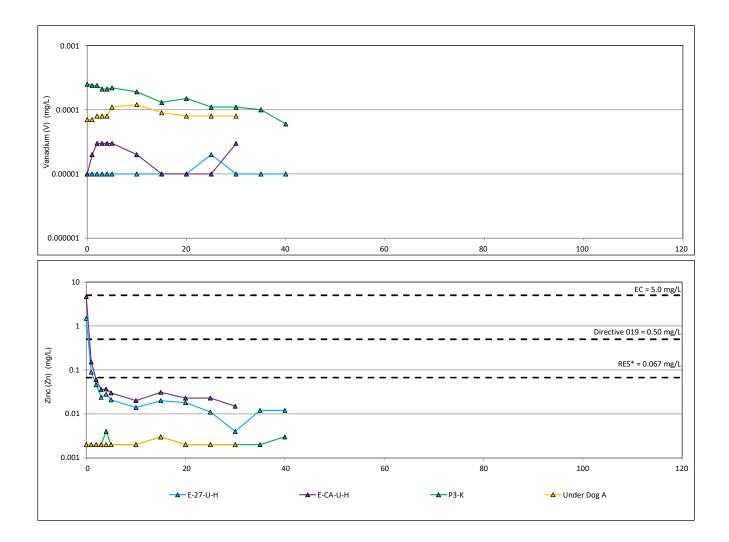


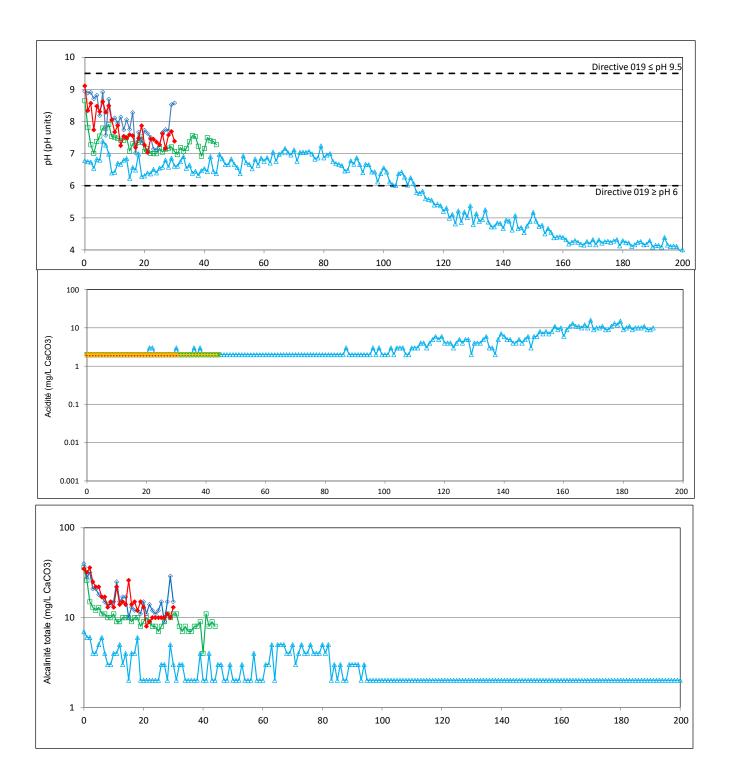


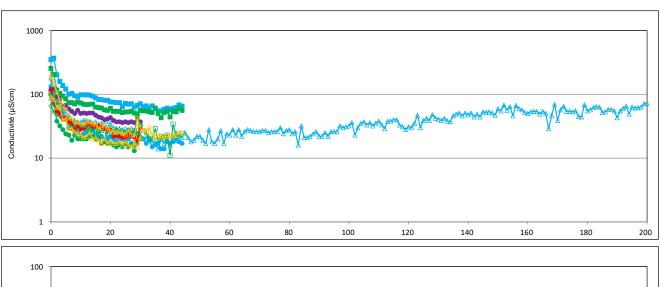


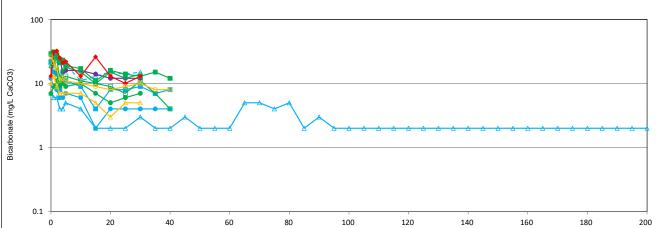


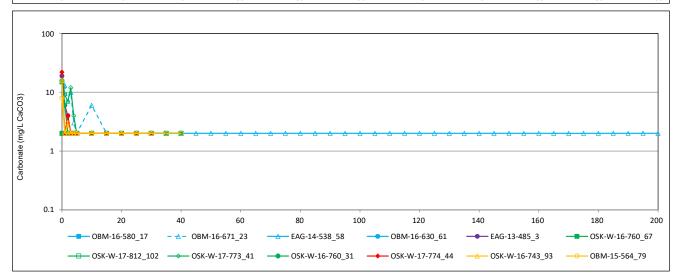


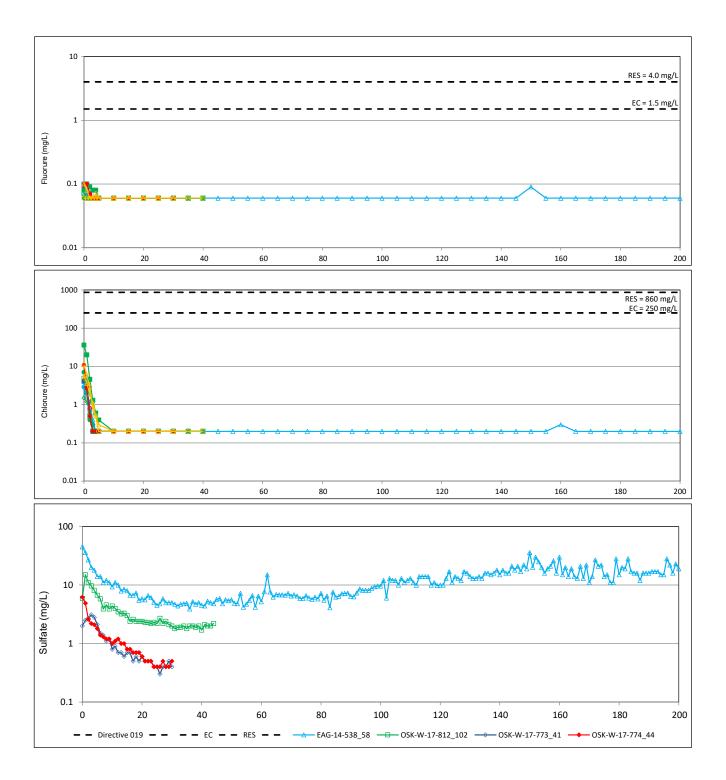


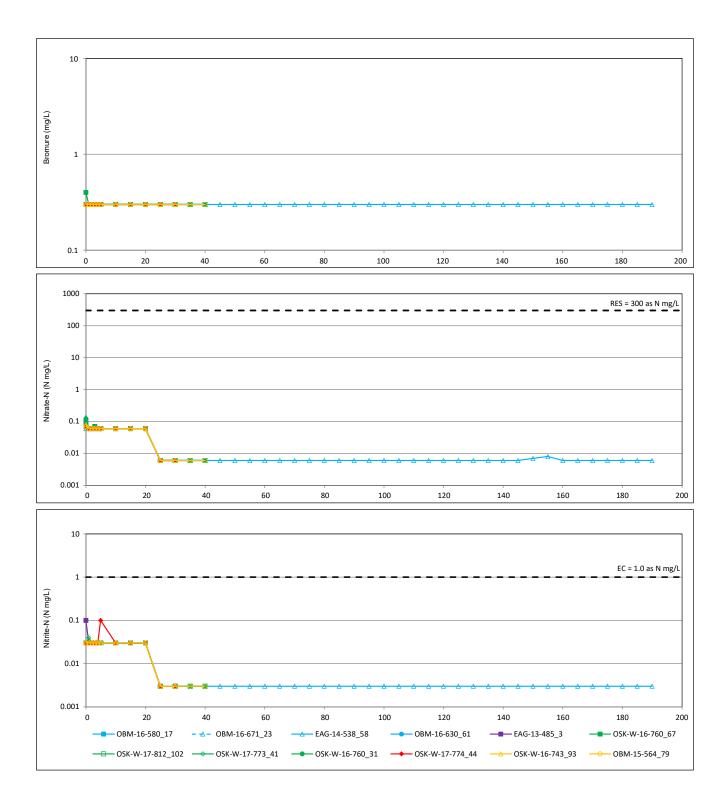


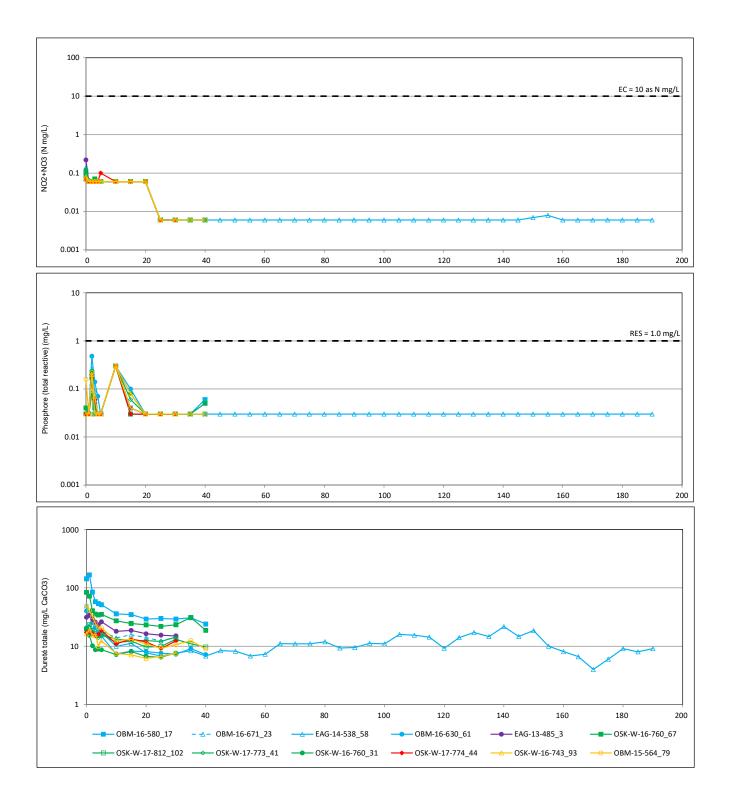


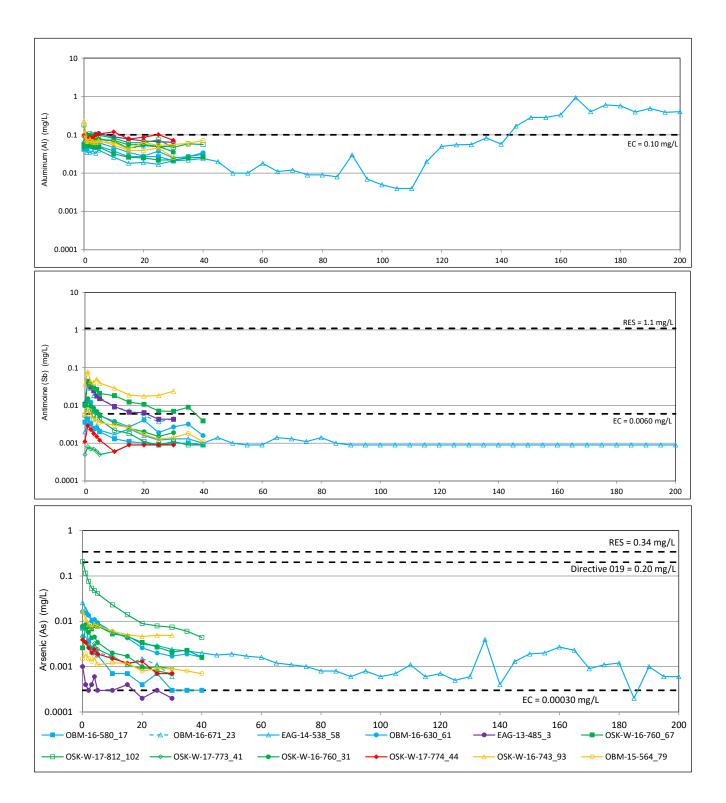


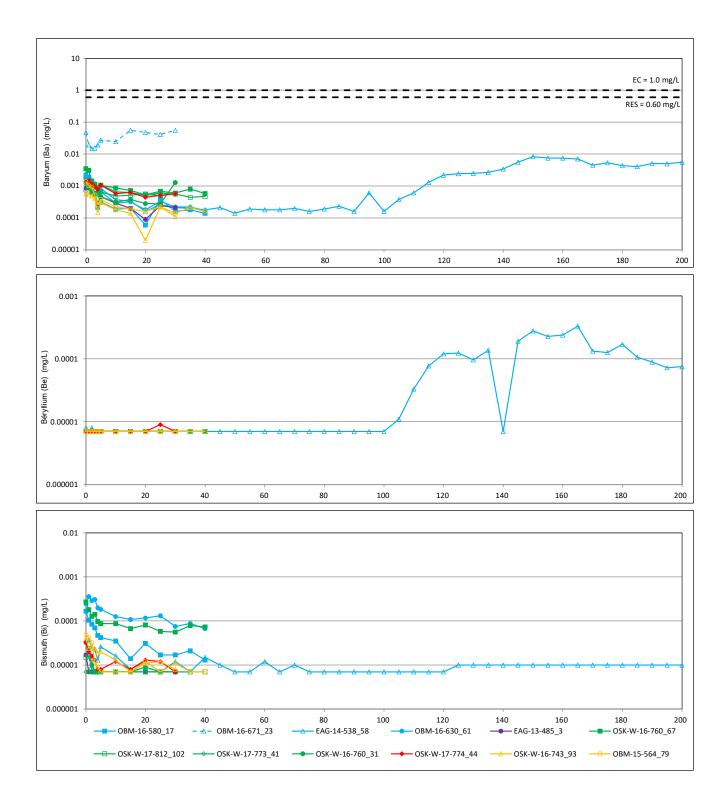


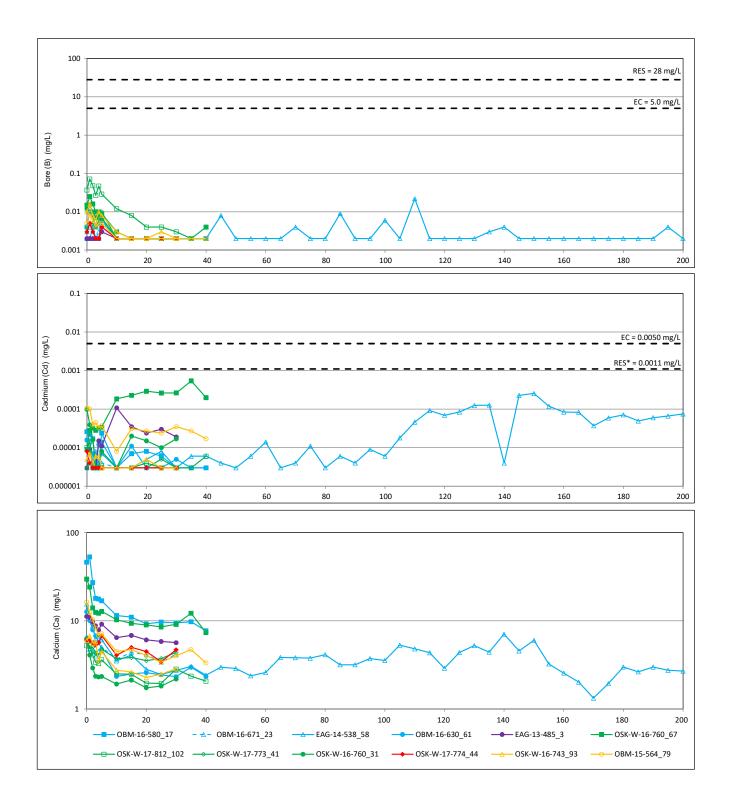


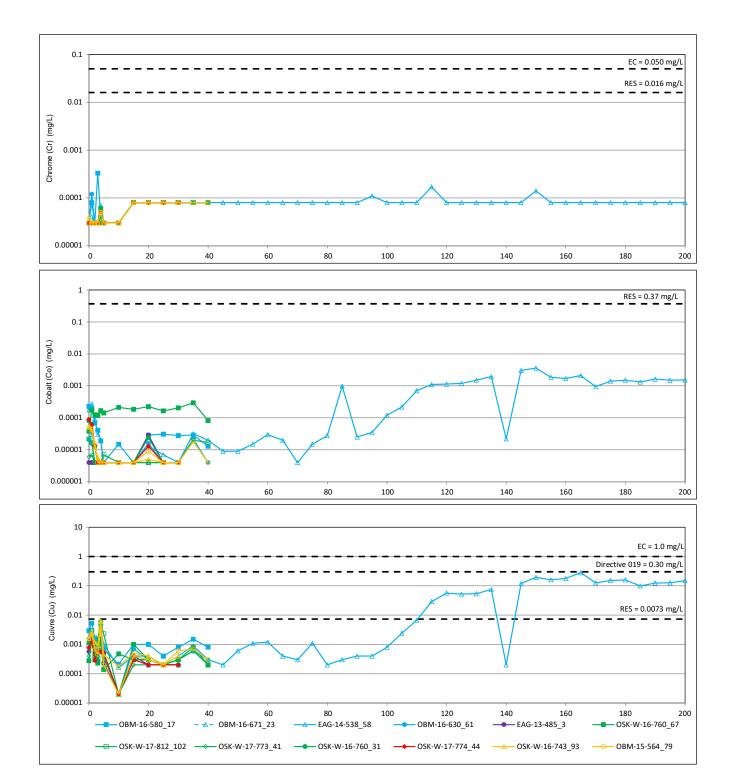


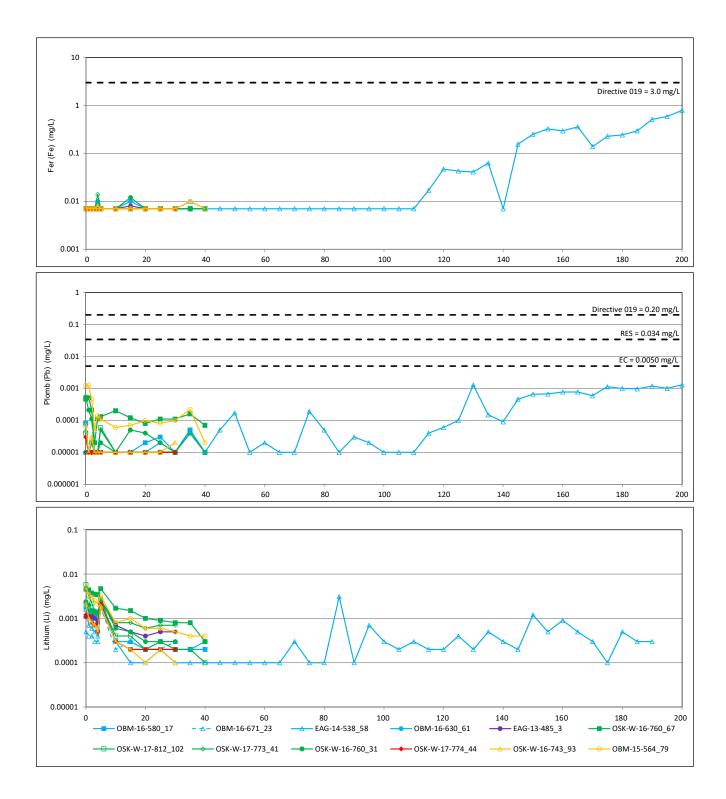


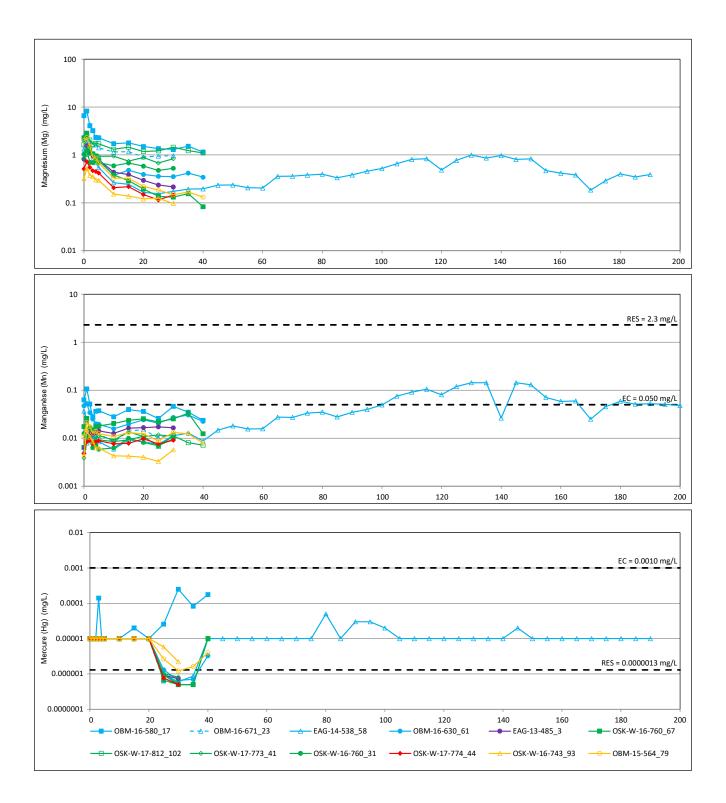


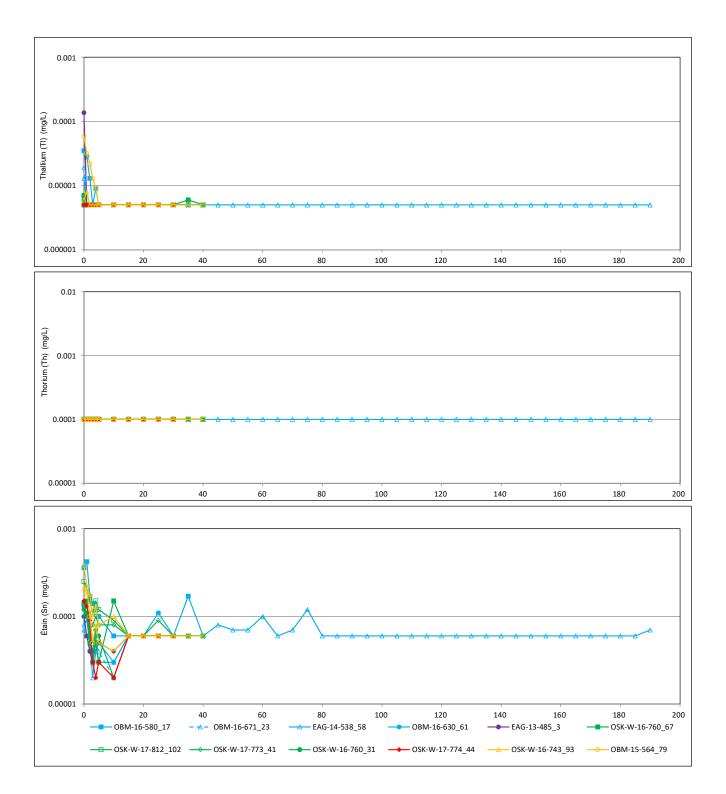


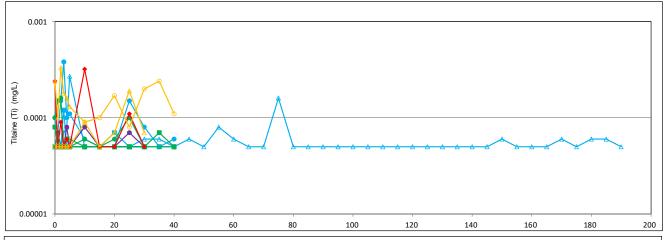


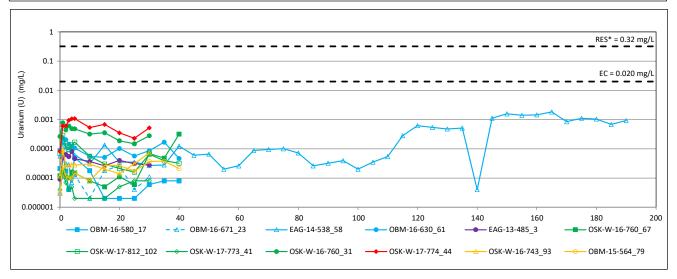


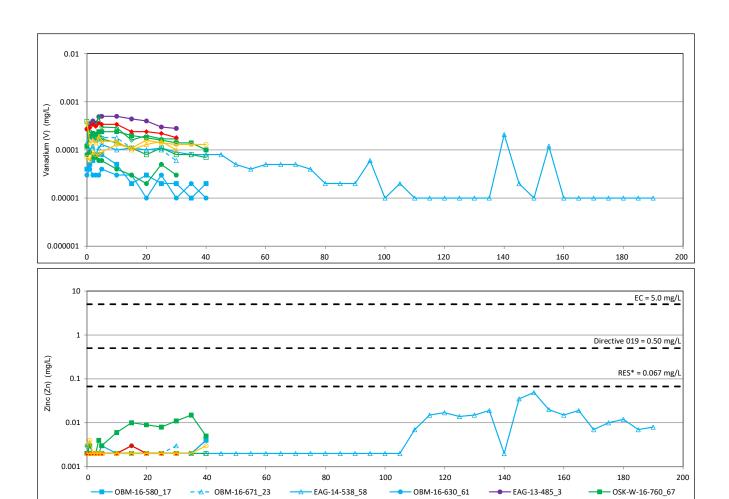


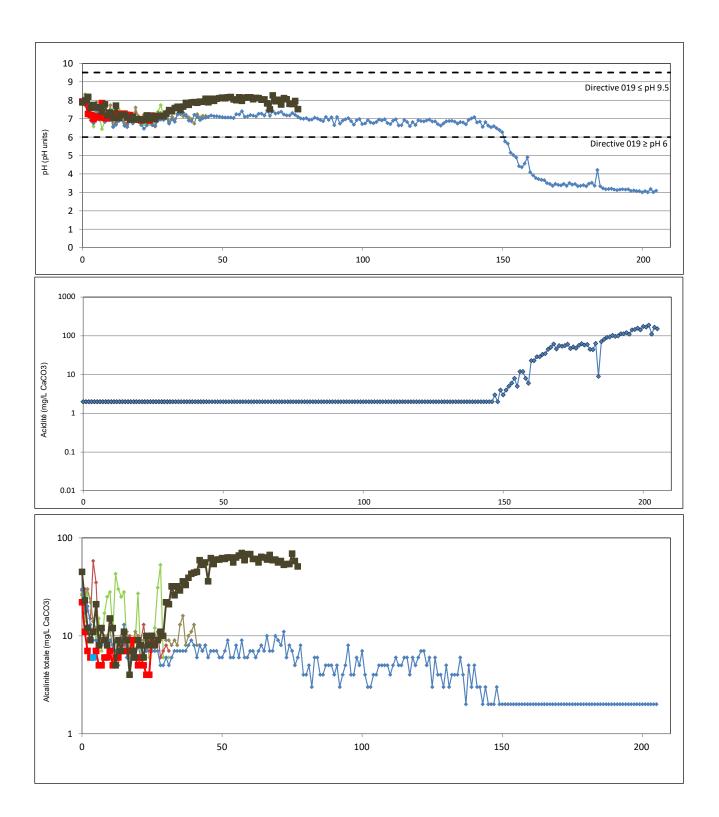


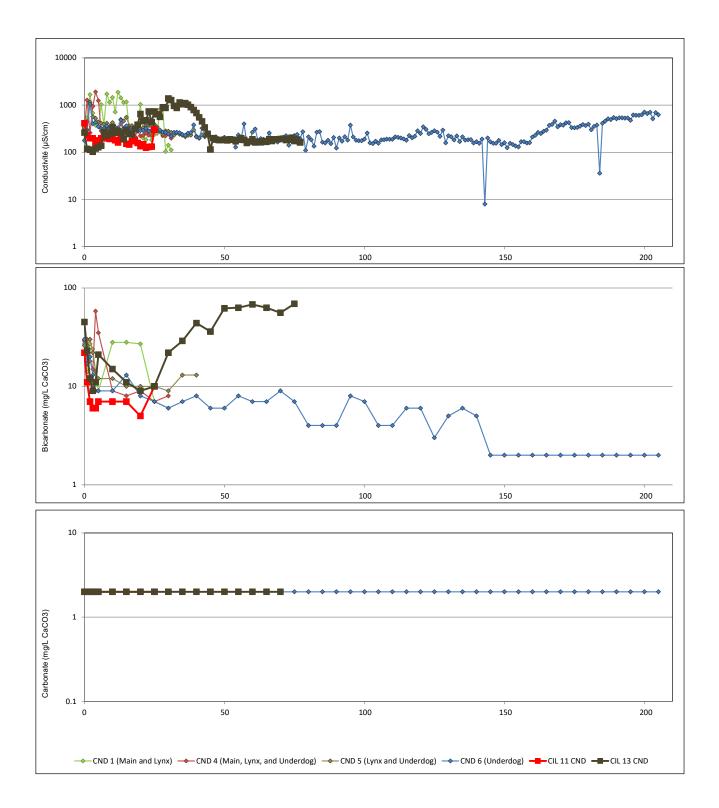


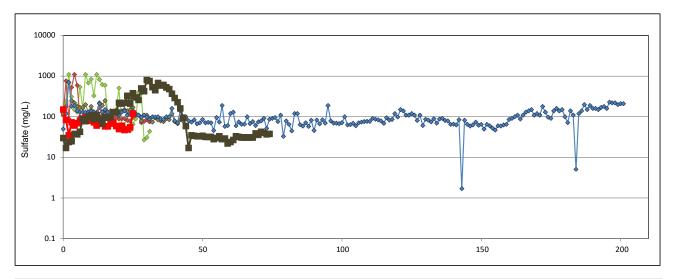


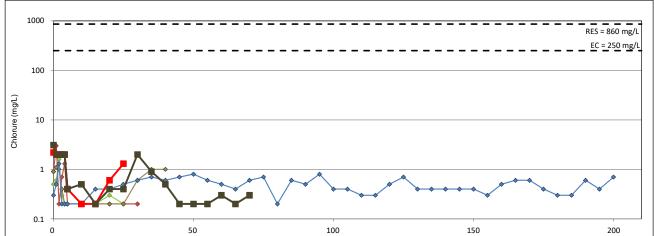




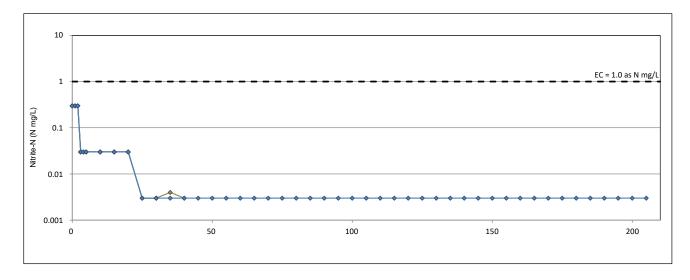


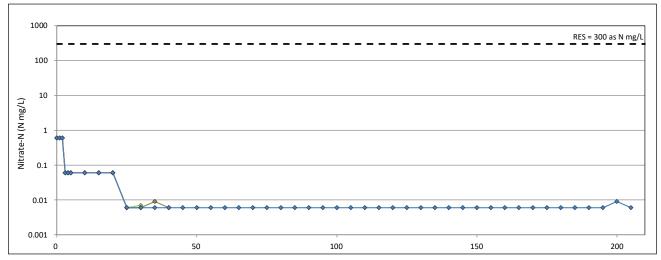


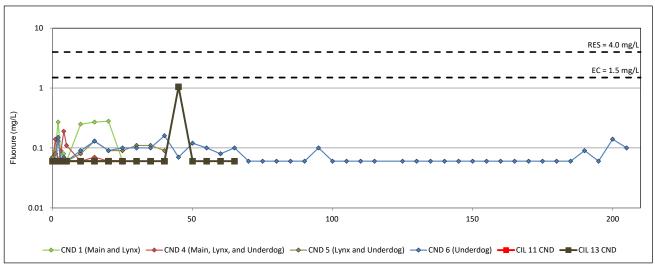


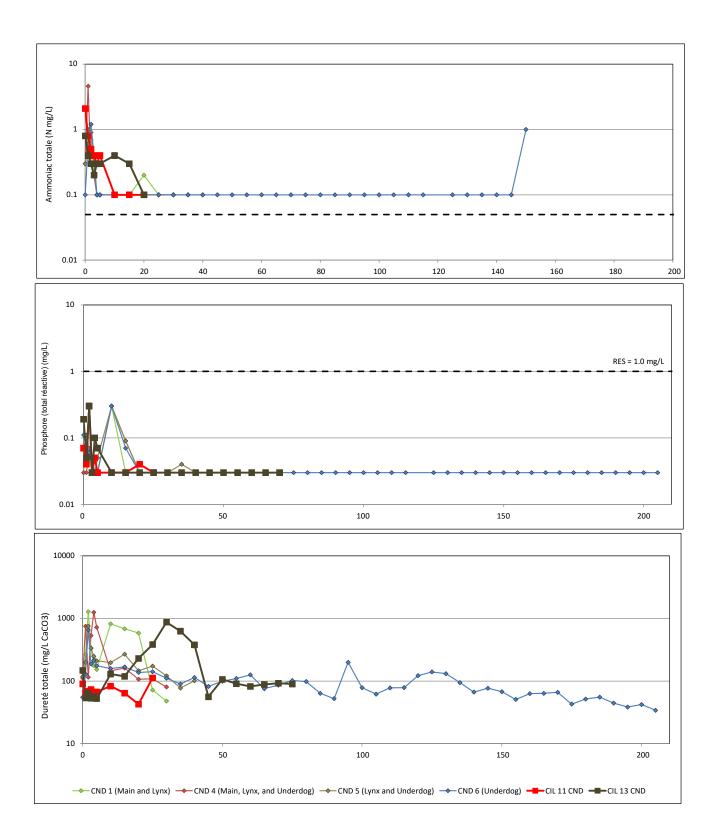


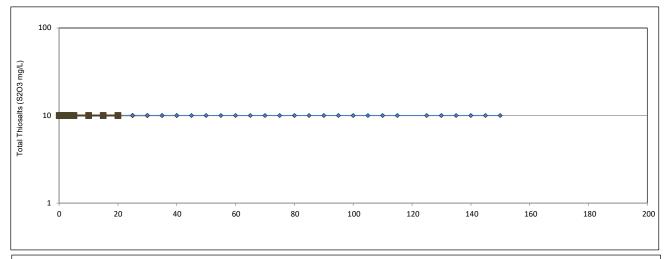

— OSK-W-17-812_102 → OSK-W-17-773_41 → OSK-W-16-760_31 → OSK-W-17-774_44 → OSK-W-16-743_93 → OSK-W-16-743_93

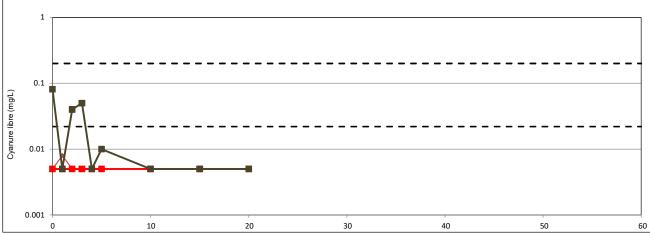


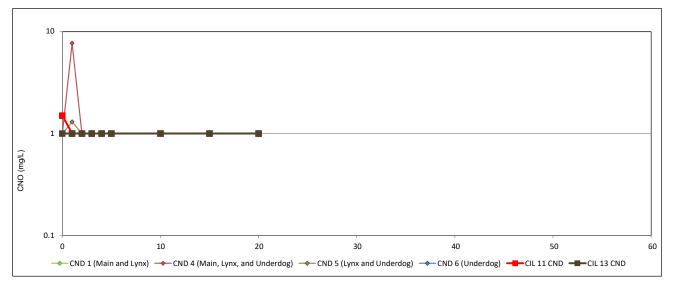


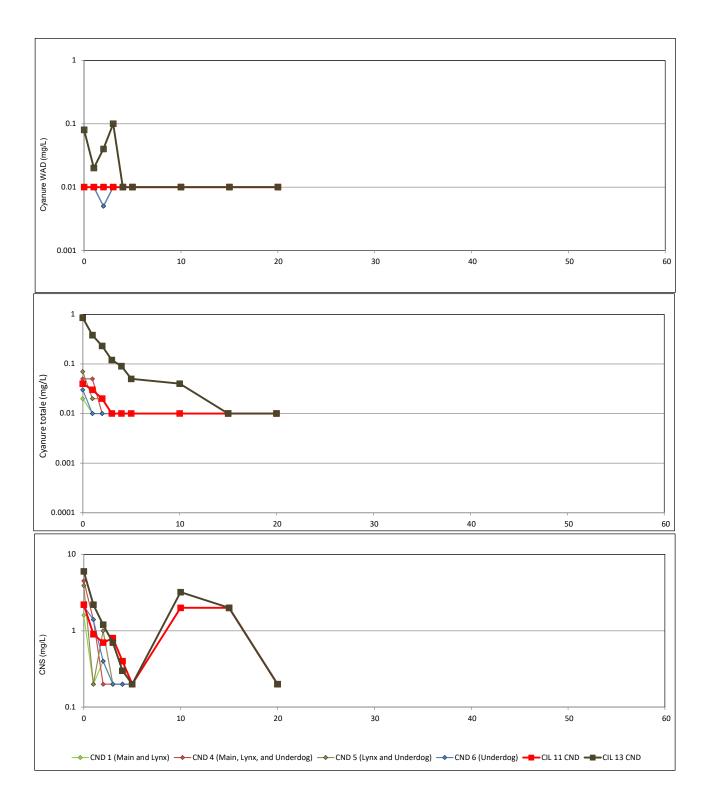


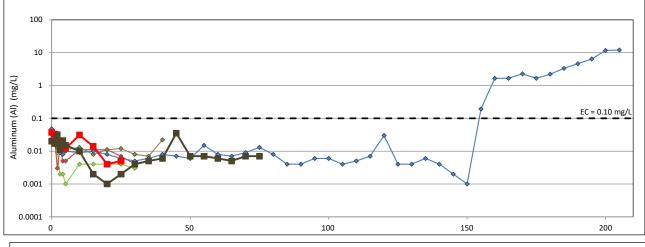


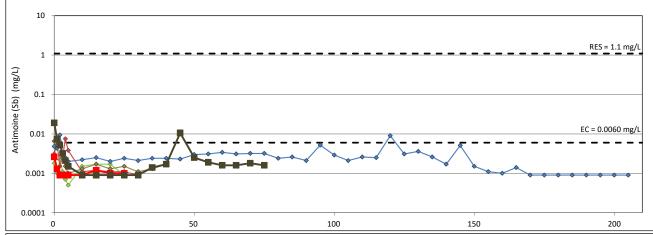


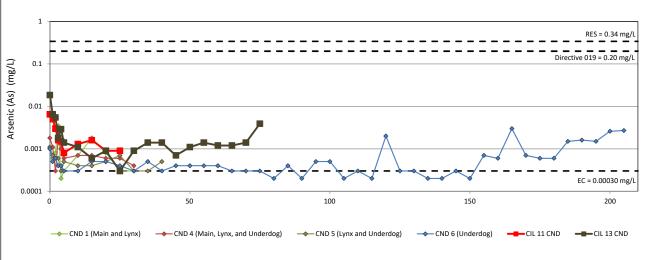


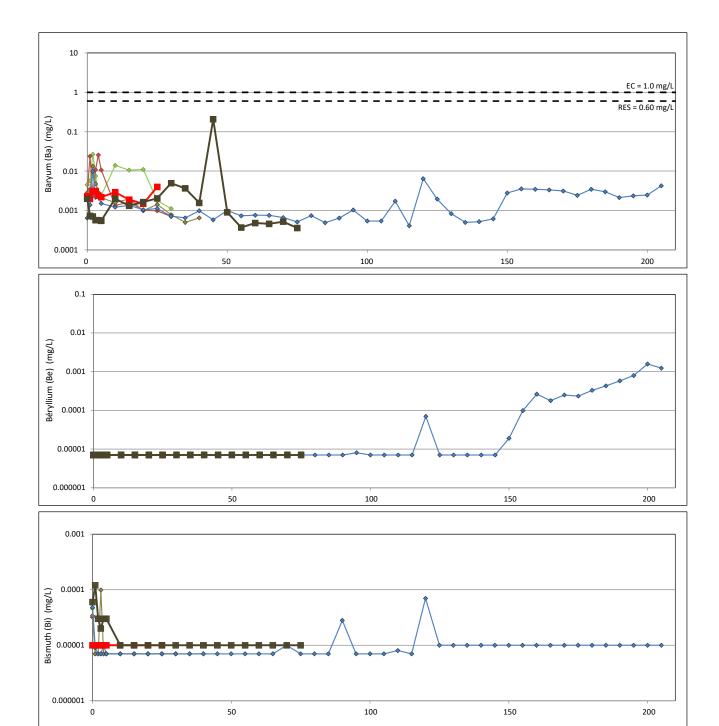


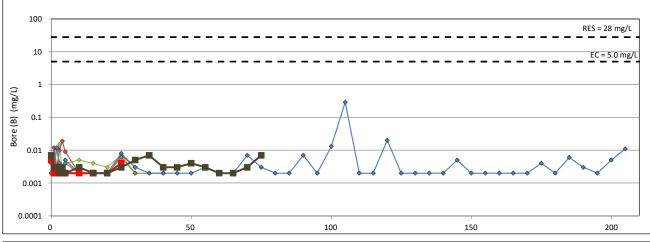


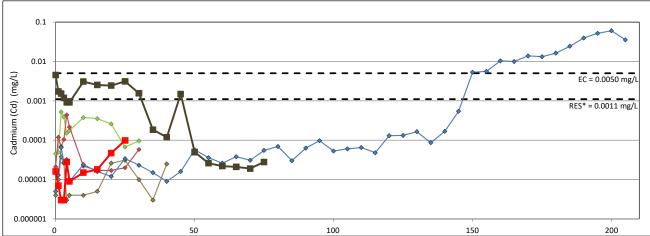


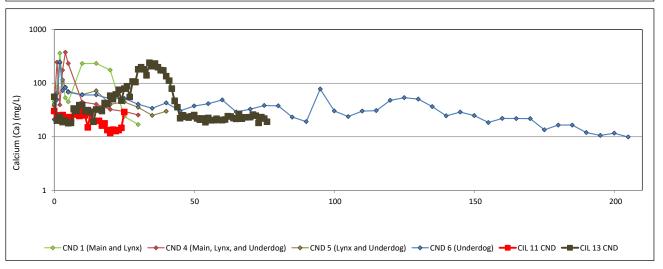


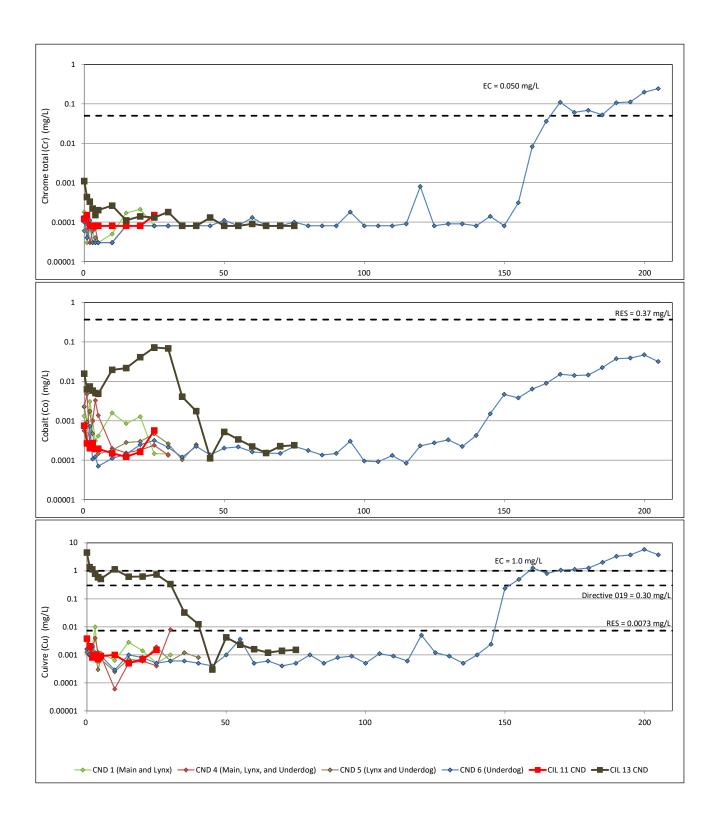


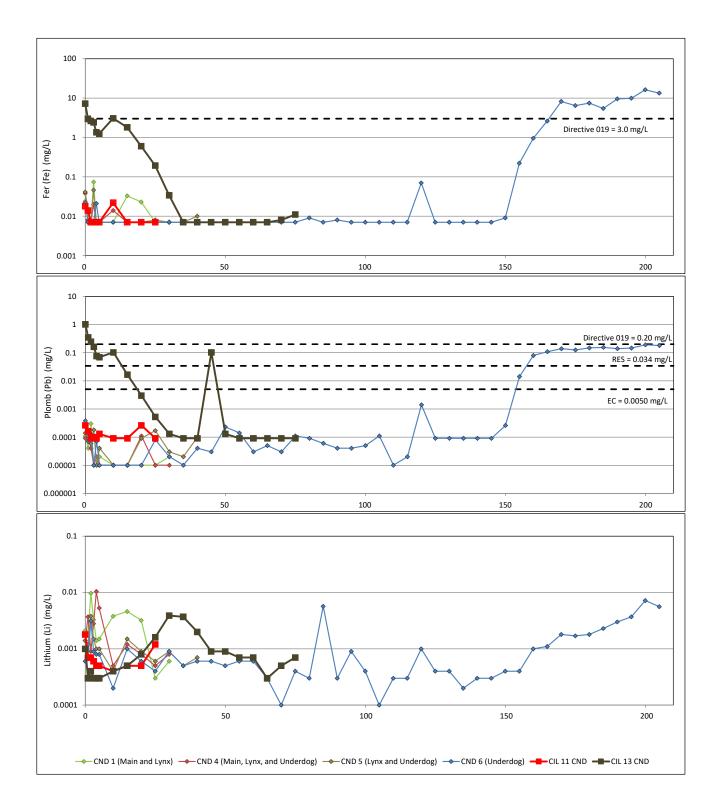


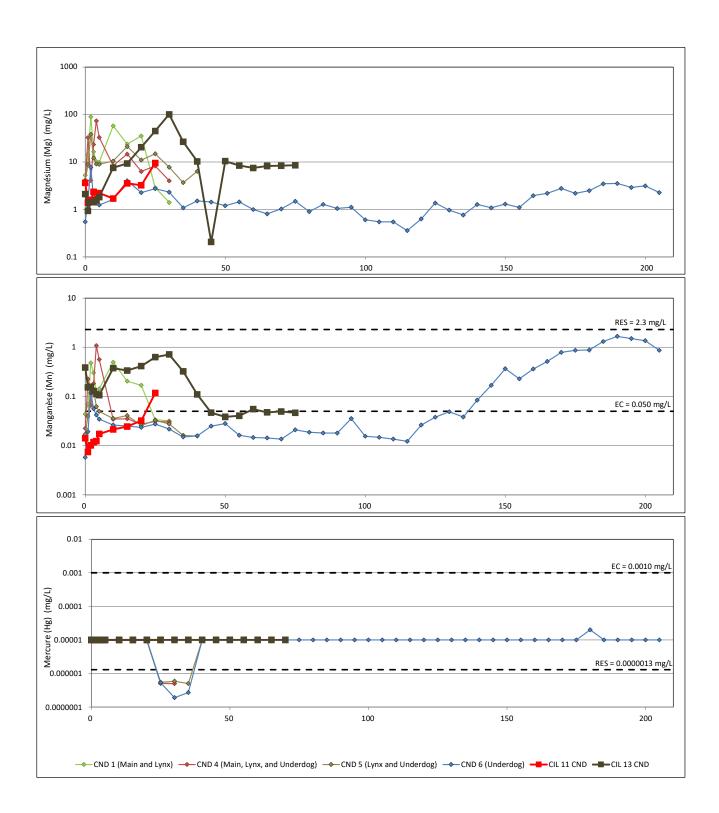


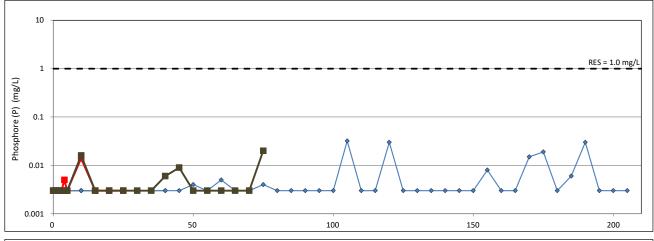


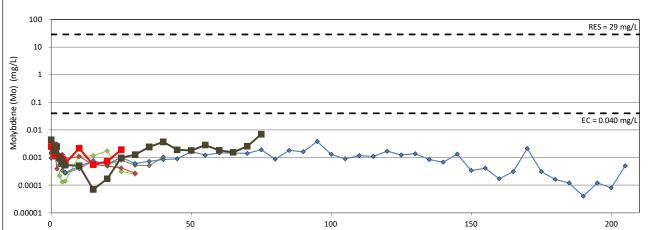


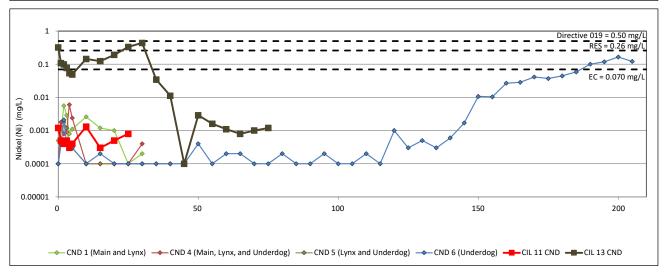


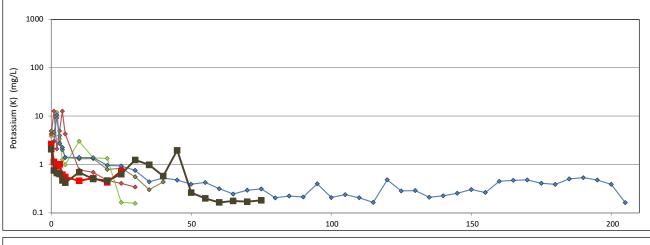

→ CND 4 (Main and Lynx) → CND 4 (Main, Lynx, and Underdog) → CND 5 (Lynx and Underdog) → CND 6 (Underdog) → CND 6 (Underdog)

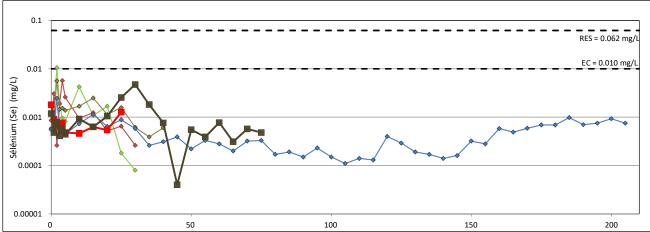


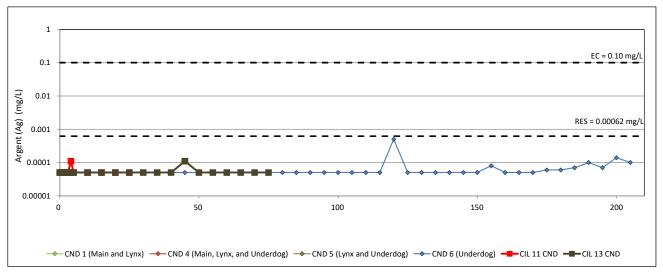


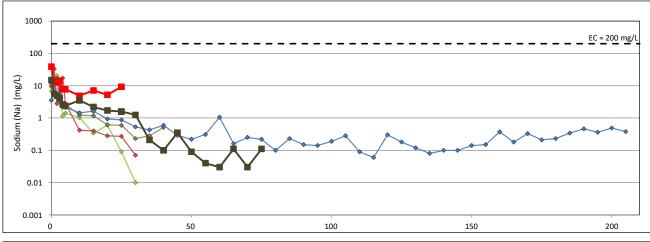


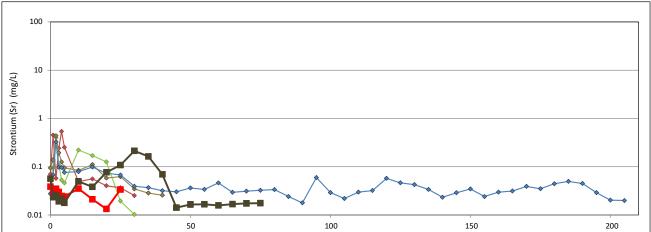


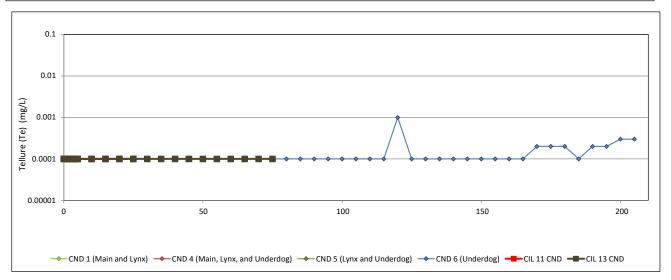


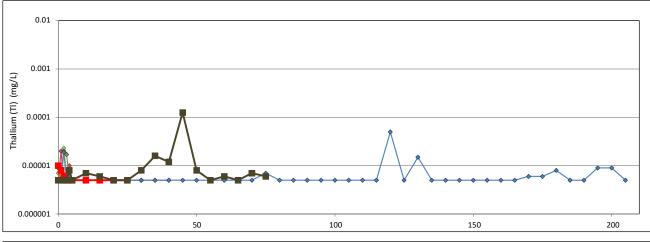


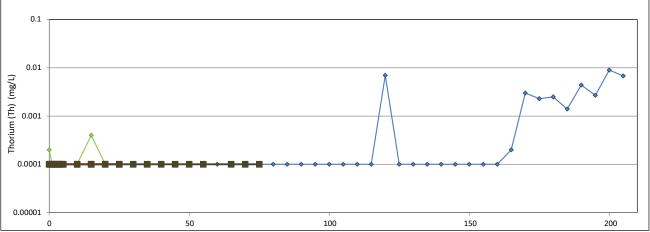


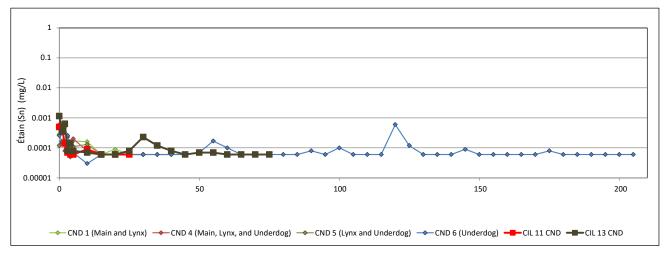


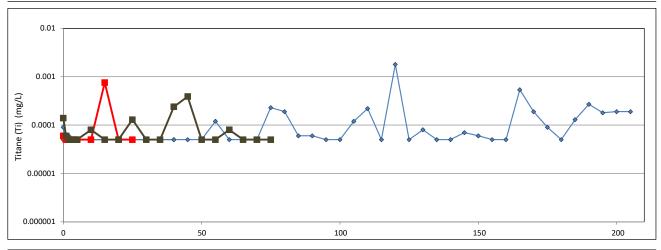


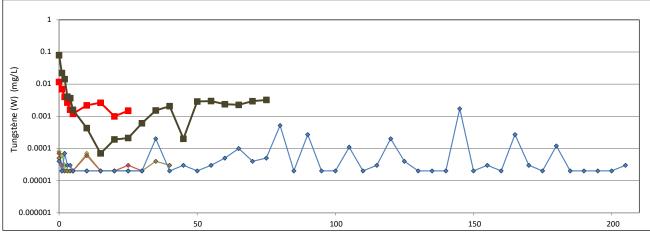


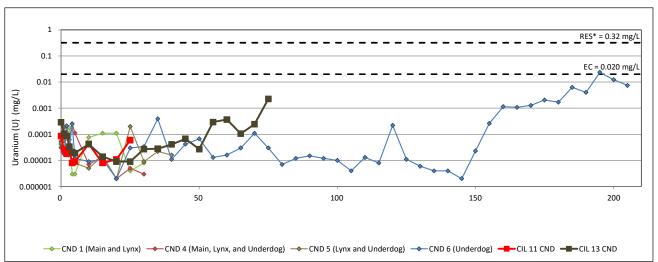


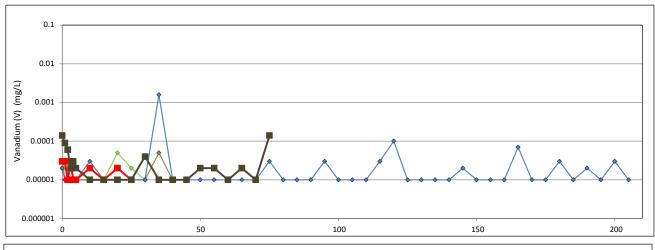


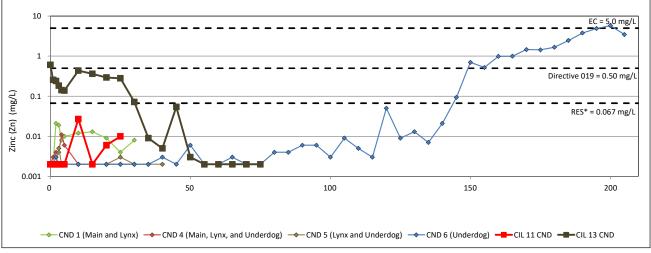












ANNEXE

D

LISTE DES AUTORISATIONS ET DES ENTENTES DÉTENUES PAR OSISKO

ACTIVITÉS	DOCUMENT ET NUMÉRO DES AUTORISATIONS	DEMANDEUR	DATE D'ÉMISSION
Captage d'eau souterraine à des fins d'alimentation en eau potable pour le campement minier (P1).	Autorisation en vertu de l'article 32 de la Loi sur la qualité de l'environnement (MDDEP), n° 7330-10-01-00258-00 (200 186 144)	Noront Resources	15 janvier 2008
Captage d'eau souterraine à des fins d'alimentation en eau potable pour le campement minier (P2).	Autorisation en vertu de l'article 31.75 de la Loi sur la qualité de l'environnement (MDDELCC), n° 7330-10-01-00258-02 (401 536 716)	Minière Osisko	21 décembre 2016
Captage d'eau souterraine à des fins d'alimentation en eau potable pour le campement minier (P2). Augmentation à 150 personnes	Modification d'autorisation pour augmentation à 150 personnes (MDDELCC) n° 7330-10-01-00258-02 / (401 560 056)	Minière Osisko	10 février 2017
Captage d'eau souterraine à des fins d'alimentation en eau potable pour le campement minier (P3).	Autorisation en vertu de l'article 31.75 de la Loi sur la qualité de l'environnement (MDDELCC), n°7330-10-01-00258-04 / (401 585 040)		2 mai 2017
Établissement d'un système de traitement des eaux usées d'origine domestique pour le campement minier (S1).	Autorisation en vertu de l'article 32 de la Loi sur la qualité de l'environnement (MDDEP), n° 7330-10-01-00258-00 (200 177 355)		4 septembre 2007
Établissement d'un système de traitement des eaux usées d'origine domestique pour le campement minier (S2).	Autorisation en vertu de l'article 32 de la Loi sur la qualité de l'environnement (MDDELCC), n° 7330-10-01-00258-01 / (401 368 153)	Minière Osisko	3 août 2016
Établissement d'un système de traitement des eaux usées d'origine domestique pour le campement minier (S3).	Autorisation en vertu de l'article 32 de la Loi sur la qualité de l'environnement (MDDELCC), n° 7330-10-01-00258-03 / (401 584 842)	Minière Osisko	24 avril 2017
Aménagement d'un système de traitement d'eau d'exhaure	Autorisation en vertu de l'article 32 de la Loi sur la qualité de l'environnement (MDDELCC), n° 7610-10-01-70090-22 / (401 598 242)	Minière Osisko	25 mai 2017
Aménagement d'un système de traitement de l'azote ammoniacal (zéolite)	Autorisation en vertu de l'article 22 de la Loi sur la qualité de l'environnement (MDDELCC), n° 7610-10-01-70090-28 / (401 697 819)	Minière Osisko	29 mai 2018
Installation et opération d'un système d'appoint pour l'évaporation de l'azote ammoniacal	Autorisation en vertu de l'article 22 de la Loi sur la qualité de l'environnement (MELCC), n° 7610-10-01-70090-29 / (401 844 698)	Minière Osisko	20 août 2019
Mise en service d'un traitement d'électro-oxydation pour l'enlèvement de l'azote ammoniacal	Autorisation en vertu de l'article 22 de la Loi sur la qualité de l'environnement (MELCC), n°7610-10-01-70090-30 / (401 975 041)		1 décembre 2020
Aménagement d'un système de traitement d'eau d'exhaure (ajout d'un géotube)	Modification d'autorisation en vertu de l'article 30 de la Loi sur la qualité de l'environnement (MELCC), n° 7610-10-01-70090-22 / (402 043 288)	Minière Osisko	21 juillet 2021
Aménagement d'un système de traitement d'eau d'exhaure (Installation et opération d'un <u>deuxième</u> système d'appoint pour l'évaporation de l'azote ammoniacal)	Modification d'autorisation en vertu de l'article 30 de la Loi sur la qualité de l'environnement (MELCC), n° 7610-10-01-70090-29 / (402 034 793)	Minière Osisko	21 juin 2021
Installation et exploitation d'un composteur thermophile fermé	Avis de projet (MDDELCC), n°7530-08-01-00002-00 / (401 640 574)	Minière Osisko	8 novembre 2017
Ajout d'une poste de pompage au système de traitement des eaux usées	Autorisation en vertu de l'article 32 de la Loi sur la qualité de l'environnement (MDDELCC), n° 7330-10-01-00258-03 / (401 642 584)	Minière Osisko	22 novembre 2017
Aménagement d'un système de traitement de l'eau potable (UV)	Autorisation en vertu de l'article 32 de la Loi sur la qualité de l'environnement (MDDELCC), n° 7330-10-01-00258-05 / (401 655 502)	Minière Osisko	2 février 2018
Installation d'un système de traitement d'eau de type MudWizard	Autorisation en vertu de l'article 32 de la Loi sur la qualité de l'environnement (MDDELCC), n° 7610-08-01-70090-24 / (401 662 718)	Minière Osisko	15 février 2018
Augmentation du système de traitement d'eau de type Mudwizard	Autorisation en vertu de l'article 32 de la Loi sur la qualité de l'environnement (MDDELCC), n° 7610-08-01-70090-24 / (402 139 806)	Minière Osisko	18 mai 2022
Installation d'un séparateur eau-huile (sous terre)	Autorisation en vertu de l'article 32 de la Loi sur la qualité de l'environnement (MDDELCC), n° 7610-08-01-70090-26 / (401 662 678)	Minière Osisko	15 février 2018
Installation d'un séparateur eau-huile (dôme)	Autorisation en vertu de l'article 32 de la Loi sur la qualité de l'environnement (MDDELCC), n° 7610-08-01-70090-25 / (401 662 562)	Minière Osisko	15 février 2018

ACTIVITÉS	DOCUMENT ET NUMÉRO DES AUTORISATIONS	DEMANDEUR	DATE D'ÉMISSION
Prise d'un échantillon en vrac sur le site Windfall Lake	Autorisation d'échantillonnage en vrac conformément à l'article 69 de la Loi sur les mines (MRNF)	Noront Resources	10 octobre 2007
Prise d'un échantillon en vrac sur le site Windfall Lake	Certificat d'autorisation en vertu de l'article 22 Loi sur la qualité de l'environnement (MDDEP), n° 7610-10-0170 090-20 (200 178 172)	Noront Resources	18 septembre 2007
Prise d'un échantillon en vrac sur le site Windfall Lake (cédé à Osisko)	Cession de certificat d'autorisation cédé en faveur d'Osisko (MDDELCC), n°7610-10-01-70090-20 / (401 576 562)		17 mars 2017
Projet d'échantillonnage en vrac au Lac Windfall (Caribou et 27)	Attestation de non-assujettissement (MDDELCC), n° 3214-14-059		10 octobre 2017
Projet d'échantillonnage en vrac au Lac Windfall (Caribou et 27)	Autorisation d'échantillonnage en vrac conformément à l'article 69 de la Loi sur les mines (MERN)	Minière Osisko	16 octobre 2017
Projet d'échantillonnage en vrac au Lac Windfall (Lynx et Underdog)	Attestation de non-assujettissement (MDDELCC), n° 3214-14-059	Minière Osisko	20 juin 2018
Condamnation de ressources pour le projet d'échantillonnage en vrac au Lac Windfall (Caribou et 27)	Autorisation en vertu de l'article 241 de la Loi sur les mines (MERN)	Minière Osisko	18 décembre 2018
Projet d'échantillonnage en vrac au Lac Windfall (Lynx et Underdog)	Autorisation d'échantillonnage en vrac conformément à l'article 69 de la Loi sur les mines (MERN)	Minière Osisko	20 décembre 2018
Échantillonnage en vrac des lentilles Lynx et Underdog et agrandissement de la halde à stérile	Certificat d'autorisation en vertu de l'article 22 Loi sur la qualité de l'environnement (MDDELCC), n° 7610-10-0170 090-27 / (401 726 560)	Minière Osisko	6 août 2018
Projet d'échantillonnage en vrac au Lac Windfall (Triple Lynx)	Attestation de non-assujettissement (MELCC), n° 3214-14-059	Minière Osisko	26 mai 2020
Projet d'échantillonnage en vrac au Lac Windfall (Triple Lynx et travaux de caractérisation)	Attestation de non-assujettissement (MELCC), n° 3214-14-059		23 décembre 2020
Projet d'échantillonnage en vrac au Lac Windfall (Triple Lynx et travaux de caractérisation)	Autorisation d'échantillonnage en vrac conformément à l'article 69 de la Loi sur les mines (MERN)	Minière Osisko	21 janvier 2021
Condamnation de ressources pour le projet d'échantillonnage en vrac au Lac Windfall (Lynx et Underdog)	Autorisation en vertu de l'article 241 de la Loi sur les mines (MERN)	Minière Osisko	22 mai 2020
Échantillonnage en vrac des lentilles Lynx et Underdog et agrandissement de la halde à stérile (Triple Lynx)	Modification d'autorisation en vertu de l'article 30 de la Loi sur la qualité de l'environnement (MELCC), n° 7610-10-01-70090-27 / (401 926 147)	Minière Osisko	8 juin 2020
Échantillonnage en vrac des lentilles Lynx et Underdog et agrandissement de la halde à stérile (Triple Lynx et travaux de caractérisation)	Modification d'autorisation en vertu de l'article 30 de la Loi sur la qualité de l'environnement (MELCC), n° 7610-10-01-70090-27 / (401 985 463)	Minière Osisko	14 janvier 2021
Bail pour infrastructures minières dans le secteur de la rampe	Bail à des fins industrielles (infrastructures minières) 332 17 910	Minière Osisko	11 octobre 2022
Bail pour l'entreposage de résidus miniers dans le secteur de la rampe (halde à stériles)	Bail pour l'entreposage de résidus miniers 494 18 910	Minière Osisko	11 octobre 2022
Bail pour campement de travailleurs	Bail à des fins industrielles (campement de travailleurs) 218098 00 000	Minière Osisko	décembre 2022
Plan de restauration du site minier du Lac Windfall (2007)	Plan de restauration en vertu de l'article 232.2 de la Loi sur les mines (MRNF). n° 8341-1796	Noront Resources	App. le 7 avril 2008
Plan de restauration du site minier du Lac Windfall (2012)	Mise à jour du plan de restauration en vertu de l'article 232.6 de la Loi sur les mines (MRN). n° 8341-1796	Eagle Hill	App. le 27 juin 2014

ACTIVITÉS	DOCUMENT ET NUMÉRO DES AUTORISATIONS	DEMANDEUR	DATE D'ÉMISSION
Plan de restauration du site minier du Lac Windfall (2017)	Mise à jour du plan de restauration en vertu de l'article 232.6 de la Loi sur les mines (MERN). n° 8341-1796	Minière Osisko	App. le 6 juin 2018
Addenda au plan de restauration pour le vrac Lynx et Underdog (2018)	Addenda au plan de restauration (MERN). nº 8341-1796	Minière Osisko	App. le 29 octobre 2019
Addenda au plan de restauration pour le vrac Triple Lynx (2020)	Addenda au plan de restauration (MERN). nº 8341-1796	Minière Osisko	App. le 26 février 2021
Échantillonnage en vrac des zones Caribou et Lynx 4 et agrandissement de la halde à stérile	Attestation de non-assujettissement (MELCC), n° 3214-14-059	Minière Osisko	6 mai 2022
Condamnation de ressources pour le projet d'échantillonnage en vrac au Lac Windfall (Caribou et Lynx)	Autorisation en vertu de l'article 241 de la Loi sur les mines (MERN)	Minière Osisko	15 mars 2022
Addenda au plan de restauration pour le vrac Caribou et Lynx 4 (2022)	Addenda au plan de restauration (MRNF). nº 8341-1796	Minière Osisko	7 décembre 2022
Échantillonnage en vrac des zones Caribou et Lynx 4 et agrandissement de la halde à stérile	Autorisation d'échantillonnage en vrac conformément à l'article 69 de la Loi sur les mines (MERN)	Minière Osisko	22 décembre 2022
Modification d'autorisation - Échantillonnage en vrac des lentilles Lynx et Underdog et agrandissement de la halde à stériles - Prise d'échantillon en vrac and les zones Lynx 4 et Caribou	Modification d'autorisation en vertu de l'article 30 de la Loi sur la qualité de l'environnement (MELCC), n° 7610-10-01-70090-27 / (402 199 594)	Minière Osisko	28 décembre 2022